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Low-Computational-Complexity Zeroing Neural
Network Model for Solving Systems of Dynamic
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Abstract— Nonlinear equation systems are ubiquitous in
a variety of fields, and how to tackle them has drawn much
attention, especially dynamic ones. As a particular class
of recurrent neural network, zeroing neural network (ZNN)
takes time-derivative information into consideration, and
thus, is a competent approach to dealing with dynamic
problems. Hitherto, two kinds of ZNN models have been
developed for solving systems of dynamic nonlinear equa-
tions. One of them is explicit, involving the computation
of a pseudoinverse matrix, and the other is of implicit
dynamics essentially. To address these two issues at once,
a low-computational-complexity ZNN (LCCZNN) model is
proposed. It does not need to compute any pseudoinverse
matrix, and is in the form of explicit dynamics. Addition-
ally, a novel activation function is presented to endow the
LCCZNN model with finite-time convergence and certain
robustness, which is proved rigorously by Lyapunov theory.
Numerical experiments are conducted to validate the re-
sults of theoretical analyses, including the competence and
robustness of the LCCZNN model. Finally, a pseudoinverse-
free controller derived from the LCCZNN model is designed
for a UR5 manipulator to online accomplish a trajectory-
following task.

Index Terms— Low computational complexity, activation
function, zeroing neural network, dynamic nonlinear equa-
tion systems, trajectory following.

I. INTRODUCTION

NONLINEARITY is the inherent characteristic of most
systems in nature. Nonlinear equation systems are en-

countered with relatively high frequency in distinct fields, such
as manipulator control, multi-agent systems, signal processing,
and other industrial applications [1]–[8]. For instance, in [1],
the constrained quadratic programming problem with dynamic
parameters is converted into a set of dynamic nonlinear equa-
tions, which is then solved for the optimal solution. In [8], the
time-varying containment problem for a multi-agent system is
transformed into a dynamic nonlinear equation system (DNES)
describing the system error, and then a control strategy is
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exploited to make the system variable converge to the solution
of the DNES. Therefore, it is of great significance to solve
nonlinear equation systems. Since most systems in nature are
dynamic rather than static, it is much more important to deal
with DNESs.

Considerable efforts have been devoted to solutions of non-
linear equation systems. There is a series of numerical meth-
ods, including dichotomy, Newton-Raphson’s method, secant
method, Steffensen’s method, and other variation methods [9]–
[11]. According to [10], these numerical methods, or so-called
root-finders, are divided into four categories, namely one-point
iterative methods with or without memory, and multi-point
iterative methods with or without memory. Generally, multi-
point methods perform better than one-point methods, since
they surmount one-point methods’ theoretical shortcomings
associated with convergence order and rate [10]. It is worth
mentioning that the aforementioned numerical methods secure
solutions by iteration, and they may not be efficient enough
for online solutions on account of their serial-processing nature
[12]. Additionally, these traditional methods have a common
major drawback, that is, strong sensitiveness to the initial point
[5].

Lately, recurrent neural network (RNN) has been developed
rapidly, and utilized to address various problems online, due
to its parallel-processing capability and potential of analog-
circuit implementation [6], [13]–[18]. Gradient neural network
(GNN) is one kind of the RNN based on the elimination
of a scalar-valued nonnegative error. It updates a candidate
solution recursively along the negative-gradient direction of
the predefined objective function. For finding the root of a
static nonlinear equation, the GNN is sensitive to the initial
point and may yield an inaccurate or misleading solution when
the root is multiple or does not exist [17]. Furthermore, the
GNN tends to generate solutions with nonnegligible lagging
errors, when dealing with DNESs [18]. The reason why there
exist lagging errors is that the GNN does not make use of
time-derivative information of DNESs. Aiming at eliminating
lagging errors, Zhang et al. proposed zeroing neural network
(ZNN) in [19], which is another particular class of the RNN
taking time-derivative information into consideration. Basical-
ly, the ZNN surmounts the aforementioned weakness of the
GNN, including the existence of lagging errors. Overall, the
ZNN outperforms the GNN in dynamic problem solving [18],
[20]. Afterwards, on the basis of the design scheme in [19],
literatures [6], [12], [21], [22] construct different ZNN models
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for solving DNESs. However, the ZNN models proposed
in [6], [21], [22] either involve computing a pseudoinverse
matrix or appear in implicit form. In other words, all these
models need to compute a pseudoinverse, either directly or
indirectly, and the computation of pseudoinverse matrices is
time-consuming and inefficient during online solving process-
es. In this paper, we try to circumvent any pseudoinverse
computation, and construct a low-computational-complexity
ZNN (LCCZNN) model in the form of explicit dynamics for
tackling DNESs.

Activation functions (AFs) play a powerful role in the
performance of the ZNN, such as convergence and robustness.
In general, an appropriate nonlinear AF outperforms a linear
one in the aspect of the ZNN’s convergence rate. However, not
all nonlinear AFs are able to endow the ZNN with finite-time
convergence [23]. Li et al. proposed a sign-bi-power AF with
such a valuable property in [23]. From there on, a number
of researches on designing proper AFs have been carried out,
and the strengths of the ZNN activated by different AFs have
been analyzed theoretically and verified by experiments in
[22], [24]–[28]. In [22], [24]–[26], some AFs modified from
the sign-bi-power AF are raised. Two more complicated AFs
are developed in [27]. It is proved in [28] that nonlinear AFs
enable the ZNN with certain robustness as well. On the basis of
the sign-bi-power AF, a novel AF is developed to improve the
LCCZNN model for better performance. Besides, comparisons
among the new AF and AFs put forward in [22] are carried
out, and numerical experiments are conducted to verify the
relevant analysis results. At the end of this section, the major
contributions of the paper are summarized as follows.
• The LCCZNN model without computing any pseudoin-

verse matrix is proposed for solving DNESs in high
efficiency.

• The novel AF is put forward to enhance the convergence
rate and robustness of the LCCZNN model. Furthermore,
we prove that the performance of the proposed model in
these two aspects depends on the design parameters and
the AF.

• The newly proposed AF is compared with two AFs
presented in [22], in terms of convergence time. Through
both theoretical analyses and numerical experiments, its
superiority is shown and verified.

• A pseudoinverse-free controller derived from the pro-
posed LCCZNN model is developed for a UR5 manipu-
lator to online finish a trajectory-following task success-
fully in the absence or presence of noise disturbance.

II. PRELIMINARIES AND RELATED WORK

In this section, relevant definitions and necessary lemmas
are first provided for better understanding of the paper. Then,
the DNES problem is stated in mathematical form. Finally,
we retrospect the related work based on the ZNN and discuss
some flaws of the existing work.

A. Preliminaries
Consider the following autonomous system:

ż(t) = g(z(t)), t ∈ [0,+∞), (1)

where g : Rn 7→ Rn is a locally Lipschitz function. Suppose
that the origin z = 0 is an equilibrium point of (1), that is

g(0) = 0.

Here are definitions on the different stability of the equilibrium
point.

Definition 1 [29]: The equilibrium point z = 0 of the
autonomous system (1) is stable if, for any ε > 0, there exists
a σ > 0 such that

‖z(0)‖2 < σ ⇒ ‖z(t)‖2 < ε, ∀ t ≥ 0.

Definition 2 [29]: The equilibrium point z = 0 of the
autonomous system (1) is globally asymptotically stable if it
is stable and limt→+∞ z(t) = 0 holds for any z(0) ∈ Rn.

Definition 3 [30]: The equilibrium point z = 0 of the
autonomous system (1) is globally finite-time-stable if it is
globally asymptotically stable, and there exists a settling-time
function T1 : Rn\{0} 7→ (0,+∞) such that

z(t) = 0, ∀ t ≥ T1(z(0)).

Two lemmas are provided to lay foundation for the proofs
of theorems presented in the paper.

Lemma 1 [29]: Consider the autonomous system (1) with
the equilibrium point z = 0. Let V : Rn 7→ R be a
continuously differentiable function such that

1) V (z) > 0, ∀ z ∈ Rn\{0},
2) V (0) = 0,

3) V̇ (z) =
dV (z)

dz
g(z) < 0, ∀ z ∈ Rn\{0},

4) V̇ (0) = 0,

5) ‖z‖2 → +∞⇒ V (z)→ +∞.

Then, z = 0 is globally asymptotically stable.
Lemma 2 [29]: Consider the following nonautonomous

system:
ż(t) = g(t, z(t)), t ∈ [0,+∞), (2)

where g : [0,+∞) × Rn 7→ Rn is piecewise continuous in t
and locally Lipschitz in z. Let V : [0,+∞) × Rn 7→ R be a
continuously differentiable function such that

1) α (‖z‖2) ≤ V (t, z) ≤ β (‖z‖2) , ∀ t ∈ [0,+∞) and
∀ z ∈ Rn,

2) V̇ (t, z) =
∂V (t, z)

∂t
+
∂V (t, z)

∂z
g(t, z) ≤ −W (z),

∀ ‖z‖2 ≥ η,

where α(·) and β(·) are class K∞ functions, W (·) is a con-
tinuous positive-definite function, and η is a positive constant.
Then, for any z(0) ∈ Rn , there exists a settling-time function
T2 : (0,+∞) × Rn 7→ [0,+∞) such that the solution of (2)
satisfies

‖z‖2 ≤ α−1(β(η)), ∀ t ≥ T2(η, z(0)).

Lemma 3: Consider an equation described as

exp(z)− za − 1 = 0, z ∈ (0,+∞), (3)
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where a ∈ (0, 1) is a constant. Then, the above equation only
has one root laying on (0, 1). Besides, the root decreases and
approaches to 0 with the increase of a.

proof : Please see Appendix for the rigorous proof. �

B. Problem Statement
Consider the following DNES:

f1(t, x1(t), x2(t), · · · , xn(t)) = 0,

f2(t, x1(t), x2(t), · · · , xn(t)) = 0,

...
fm(t, x1(t), x2(t), · · · , xn(t)) = 0,

(4)

where symbols t, xi ∈ R (i ∈ {1, 2, · · · , n}), and
fj : [0,+∞) × Rn 7→ R (j ∈ {1, 2, · · · ,m}) respec-
tively denote time, the ith dynamic state variable, and the
jth smooth nonlinear function, with n ≥ m. To acquire
a more compact form of the above problem, a vector
x(t) = [x1(t), x2(t), · · · , xn(t)]T and a function f(t,x(t)) =
[f1(t,x(t)), f2(t,x(t)), · · · , fm(t,x(t)]T are defined. Then, a
concise modality of (4) is presented as

f(t,x(t)) = 0 ∈ Rm, x(t) ∈ Rn, n ≥ m. (5)

In consideration that each fj is nonlinear, an assumption that
system (5) has at least one solution x∗(t) is made in this paper.
Our primary objective is to solve (5) with more efficiency (e.g.,
lower computational complexity and shorter convergence time)
than previous works. To pursue the brevity (i.e., reduce the
redundancy of equations), when some variables and functions
are referred, the variables that they depend on may be omitted
in the remainder of the paper, since the dependences have been
already introduced or are negligible. For instance, function
f(t,x(t)) and variable x(t) in (5) are abbreviated as f and
x, respectively.

C. Related Work on ZNN
The ZNN has stronger convergence capability because of

its parallel-processing feature, and thus, it is proper for large-
scale dynamic problem solving in real time [31]–[33].

With the development of the ZNN, there are mainly two
ZNN models proposed in [12], [21], [22]. In literatures [21],
a ZNN model is presented as

ẋ = −J
†
(
µφ(f) +

∂f

∂t

)
. (6)

Thereinto, µ > 0 is a design parameter, ∂f/∂t = [∂f1/∂t,
∂f2/∂t, · · · , ∂fm/∂t]T is the partial derivative of f with
respect to t, J† ∈ Rn×m is the pseudoinverse of Jacobian
matrix J with the form as

J =
∂f

∂x
=


∂f1/∂x1 ∂f1/∂x2 · · · ∂f1/∂xn
∂f2/∂x1 ∂f2/∂x2 · · · ∂f2/∂xn

...
...

. . .
...

∂fm/∂x1 ∂fm/∂x2 · · · ∂fm/∂xn

 ,
and φ(f) = [φ(f1), φ(f2), · · · , φ(fm)]T is a function array,
where φ denotes a monotonically increasing and odd AF.

It should be noted that, model (6) needs to compute the
pseudoinverse J†, leading to high computational complexity.

In order to fix the above weakness, the other ZNN model
is raised as [22]:

ẋ = −
(
µφ(f) +

∂f

∂t

)
+ (I − J)ẋ, (7)

where I denotes an n-dimensional identity matrix. Note that
model (7) works only when m = n. In addition, to endow
model (7) with the ability of finite-time convergence, authors
in [22] exploited the sign-bi-power AF and another modified
one, namely

φ(z) = sigr(z) (8)

and
φ(z) = sigr(z) + z, (9)

where sigr(z) is defined as

sigr(z) =


|z|r, if z > 0,

0, if z = 0,

−|z|r, if z < 0,

with a constant parameter r ∈ (0, 1). It seems that model (7)
gets rid of the pseudoinverse J† and lessens the computation
burden. However, (7) is an implicit neural network model
essentially, and it still requires the pseudoinverse when we
implement it through programming.

For higher efficiency, we are motivated to devise an explicit
neural network model with low computational complexity.

III. LCCZNN MODEL AND THEORETICAL ANALYSES

For the sake of a pseudoinverse-free model, the LCCZNN
model is constructed step by step in this section. Besides,
the novel AF is presented to reinforce the convergence and
robustness of the LCCZNN model. Comparisons among the
presented AF in this paper and two AFs in [22] are also
provided.

A. LCCZNN Model

By drawing lessons from the design scheme of the ZNN
in [19], the model with low computational complexity is
constructed as follows.

Every neural network needs an error function to monitor its
performance and then optimize its inner structure. Therefore,
the first step of the construction is determining an error
function, that is

ν(t) =
1

2
‖f‖22 =

1

2
fTf . (10)

Second, the ZNN design formula is utilized to force ν to
tend towards 0 with the passage of time. It is expressed as
[19]:

ν̇ = −µφ(ν), (11)

where µ > 0 and φ represent a design parameter and an AF,
respectively. Since

ν̇ =
∂ν

∂x

dx
dt

+
∂ν

∂t
= fTJẋ+ fT ∂f

∂t
,
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it follows from (11) that

fTJẋ+ fT ∂f

∂t
= −µφ

(
‖f‖22

2

)
.

Finally, through a simple transformation, the LCCZNN
model is obtained as

ẋ = − JTf

‖JTf‖22

(
fT ∂f

∂t
+ µφ

(
‖f‖22

2

))
. (12)

Remark 1: Notice that the denominator of model (12) may
become zero, resulting in a singularity problem. To address
the issue, one approach is to incorporate a regularization term
for avoiding the problem, and the corresponding regularized
LCCZNN model is formulated as

ẋ = − JTf

‖JTf‖22 + λ

(
fT ∂f

∂t
+ µφ

(
‖f‖22

2

))
,

where λ > 0 denotes the regularization term. It is evident that
the denominator is always greater than zero. Besides, it follows
from the subsequent Theorem 4 that the perturbance caused
by the regularization term λ can be suppressed by a sufficient
large value of parameter µ. Nonetheless, in order to reduce
the side effect brought by λ, it is more reasonable to assign a
sufficiently small value to the regularization term. We notice
that when λ approaches 0, the regularized model has similar
performance to model (12) in the experiments. Therefore,
we keep focus on the LCCZNN model (12) without the
regularization term in the following analyses and experiments.

To enable the LCCZNN model (12) with the capability of
finite-time convergence, the novel nonlinear AF is proposed
as below:

φ(z) = sigr(z) exp(|z|). (13)

In order to explain the computational complexity of the
LCCZNN model (12) more clearly, the computing procedure
of (12) is illustrated in Algorithm 1. In Algorithm 1, lines 4

Algorithm 1: LCCZNN model (12) for solving DNES
Data: Jacobian matrix J ; partial derivative ∂f/∂t; AF φ;

design parameter µ; task time Γ.
Result: To find x satisfying f = 0 during time interval

[0,Γ].
1 t← 0;
2 Assign a random vector to x;
3 while t ≤ Γ do
4 ν ← ‖f(t,x)‖22/2;
5 ω ← JT(t,x)f(t,x);
6 κ1 ← fT(t,x)∂f∂t (t,x);
7 κ2 ← µφ(e);
8 κ3 ← ‖ω‖22 ;
9 ẋ← −((κ1 + κ2)/κ3)ω;

10 Update t;
11 Update x by ẋ;
12 end

and 8 are mainly about computing the square of the Euclidean
norm of a vector; line 5 involves the multiplication of a
matrix by a vector; line 6 is concerning the inner product

of two vectors; line 7 is primarily about mapping a scalar;
line 9 is the multiplication of a vector by a scalar; and
line 11 comprises the integration of a vector. Evidently, the
computational complexities of all these operations are at most
O(mn), and thus, each loop in Algorithm 1 takes O(mn)
time. That is to say, the computational complexity of model
(12) is O(mn).

It is always meaningful to realize the theoretical knowledge
physically, instead of staying in theoretical level. According
to [34], it is practicable to implement the LCCZNN model
(12) as an analog circuit by using analog devices, including
resistors, operational amplifiers, and diodes. As an important
step of the ultimate hardware implementation, the schematic
diagram of model (12) is depicted in Fig. 1.
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Fig. 1: Schematic diagram of LCCZNN model (12).

Remark 2: From the perspective of computational complex-
ity, model (6) is found to has high computational complexity.
Owing to the fact that it needs to compute the pseudoinverse of
the Jacobian matrix, the computational complexity of model
(6) is O(mn2). From the perspective of circuit complexity,
the structure of model (7) becomes more complicated when
the dimension of x gets larger, since (7) has term (I − J)ẋ.
In summary, the proposed LCCZNN model (12) is more
prominent in terms of computational complexity and circuit
implementation.

B. Convergence and Robustness Analyses

We analyze the LCCZNN model (12) aided by the AF
(13), and summarize the research findings as the following
theorems.

Theorem 1: Suppose that the DNES (5) has at least one
solution. Starting from any initial state x(0), the LCCZNN
model (12) activated by the AF (13) converges to one feasible
solution x∗(t) of (5) within finite time

tAF3 =
1

µ
γ(1− r, νini) ≤

ν1−r
ini [1 + (1− r) exp(−νini)]

µ(1− r)(2− r)
,

where νini = ν(0) > 0 denotes the initial error, and γ denotes
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the lower incomplete gamma function defined as [35]:

γ(a, z) =

∫ z

0

τa−1 exp(−τ) dτ,

where a ∈ C with real(a) > 0 and z ∈ R with z > 0.
Proof: Define a Lyapunov function candidate with respect

to ν: V1(ν) = ν. It follows from the definition of ν that V1 ≥
0, and the equality holds only when ν = 0. Then, the time
derivative of V1 along the trajectory of (11) is obtained as

V̇1(ν) =
dV1

dt
= −µsigr(ν) exp(|ν|).

Evidently, V̇1 ≤ 0 and the equality holds only when ν = 0.
Additionally, V1 → +∞ when |ν| → +∞. Therefore, V1 and
V̇1 satisfy the conditions in Lemma 1. As a result, model (12)
globally asymptotically converges to one solution x∗(t), which
is closest to x(0) among all feasible solutions at time t = 0.

Next, we prove that model (12) is able to converge to x∗(t)
without infinite time. Because ν = 0 is globally asymptotically
stable, given any initial error νini > 0, ν will decrease to 0 and
then remain unchanged. Suppose when t = tAF3, ν diminishes
to 0. On the basis of previous discussion, it is confirmed that

ν = ν̇ = 0, ∀ t ≥ tAF3.

Due to the nonnegativity of ν, (11) is rewritten in differential
form as

dt = − 1

µ
ν−r exp(−ν) dν, ∀ t ∈ [0, tAF3].

Then, by integrating the above equation from t = 0 towards
t = tAF3, an integral equation is acquired as below:∫ tAF3

0

dt = − 1

µ

∫ ν(tAF3)

νini

ν−r exp(−ν) dν

=
1

µ

∫ νini

0

ν(1−r)−1 exp(−ν) dν

=
1

µ
γ(1− r, νini).

(14)

In light of Theorem 4.1 in [36], the following inequality

a

za
γ(a, z) ≤ 1

a+ 1
(1 + a exp(−z))

holds true. It follows from (14) that

tAF3 =
1

µ
γ(1− r, νini) ≤

ν1−r
ini (1 + (1− r) exp(−νini))

µ(1− r)(2− r)
.

(15)
Thus, model (12) converges to one feasible solution of (5)
within finite time tAF3, and the proof is completed. �

Theorem 2: Suppose that the DNES (5) has at least one
solution. The time required for the LCCZNN model (12)
activated by the AF (13) with any initial state to converge
to one solution of (5), can be shortened by 1) increasing
parameter µ; 2) decreasing parameter r.

Proof: Please see Appendix for the detailed proof. �
Remark 3: As mentioned before, not all nonlinear AFs are

capable to enable the ZNN to converge within finite time.
Thus, it is of great significance to find an AF possessing such
a merit. Besides, the convergence time of the ZNN varies by

the adopted AF. It is necessary to compare the convergence
performance of the ZNN aided by different AFs. By following
the reasoning in [22], the convergence times of the LCCZNN
model (12) aided by (8) and (9) are obtained as below:

tAF1 =
ν1−r

ini

µ(1− r)
and

tAF2 =
ln(1 + ν1−r

ini )

µ(1− r)
.

It follows from Theorem 1 that for any νini > 0,

tAF3

tAF1
=

γ(1− r, νini)

ν1−r
ini /(1− r)

≤ 1 + (1− r) exp(−νini)

2− r
< 1.

Thereby, the AF (13) endows the LCCZNN model (12) with
faster convergence speed than the AF (8). As for the magnitude
relationship between tAF3 and tAF2, Theorem 3 discusses it
subsequently.

Theorem 3: Suppose that the DNES (5) has at least one
solution. Suppose that tAF2 and tAF3 respectively correspond
to the convergence times of the LCCZNN model (12) activated
by the AFs (9) and (13) with any initial state. Then, there exists
a sufficiently small r̄ ∈ (0, 1) such that

tAF3 < tAF2, ∀ r ∈ (0, r̄), ∀ νini ∈ (0,+∞).

Proof: In view of Theorem 1 and Remark 3, the difference
between tAF3 and tAF2 is

tAF3 − tAF2 =
1

µ

∫ νini

0

ν−r exp(−ν)dν − ln(1 + ν1−r
ini )

µ(1− r)
.

The partial derivative of the difference with respect to νini is

∂(tAF3 − tAF2)

∂νini
=
ν−rini

µ

(
exp(−νini)−

1

1 + ν1−r
ini

)
.

According to Lemma 3, equation exp(−νini) = 1/(1 + ν1−r
ini )

only has one root ζ ∈ (0, 1), and when r tends to 0, ζ
tends to 0. Besides, ∂(tAF3 − tAF2)/∂νini is positive on (0, ζ)
and negative on (ζ,+∞). As a consequence, the following
inequality is obtained:

tAF3 − tAF2 ≤
1

µ

∫ ζ

0

ν−r exp(−ν)dν −
ln
(
1 + ζ1−r)
µ(1− r)

≤ 1

µ(1− r)

(
ζ1−r (1 + (1− r) exp(−ζ))

2− r
−

ln
(
1 + ζ1−r))

<
1

µ(1− r)
(
ζ1−r − ln

(
1 + ζ1−r)) .

Moreover, the value of limr→0+

(
ζ1−r − ln(1 + ζ1−r)

)
is

evaluated as below:

lim
r→0+

(
ζ1−r − ln(1 + ζ1−r)

)
= lim
ζ→0+

(ζ − ln(1 + ζ)) = 0.

That is to say, when r → 0+, tAF3− tAF2 is less than 0 for any
νini ∈ (0,+∞). Therefore, there exists a sufficiently small
r̄ ∈ (0, 1) such that for any r ∈ (0, r̄) ⊂ (0, 1) and any
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νini ∈ (0,+∞), tAF3 − tAF2 < 0 holds. The proof is thus
completed. �

Fig. 2: Graph of ratio tAF3/tAF2 with νini ∈ (0, 10] and r ∈
(0, 0.5], where blue area represents tAF3 < tAF2 and red one
represents tAF3 ≥ tAF2.

Remark 4: The relationship between tAF3 and tAF2 is shown
more apparently in Fig. 2. It is found in the local enlarged
drawing that r̄ mentioned in Theorem 3 exists on interval
(0, 0.02). Besides, for any r ∈ (0, 1), there exists a ζ̂ > 0
such that ratio tAF3/tAF2 < 1 when νini ∈ (ζ̂,+∞) and
tAF3/tAF2 ≥ 1 when νini ∈ (0, ζ̂]. Therefore, it is better to
choose the AF (13) to assist the LCCZNN model (12) when the
initial error νini is relatively large. Since ζ̂ → 0+ as r → 0+,
the AF (13) is superior when r is relatively small.

Note that we have not taken noises into account so far. In
fact, it is unreasonable not to consider noise disturbance in
practical implementations due to noise ubiquity. Hence, it is
of necessity to analyze the robustness of the LCCZNN model
(12) under different kinds of noises. In this work, all sorts
of noises are deemed additive for convenience [37]. Then,
the disturbed LCCZNN model and its error dynamics are
respectively formulated as

ẋ = − JTf

‖JTf‖22

(
fT ∂f

∂t
+ µφ

(
‖f‖22

2

))
+ δ(t), (16)

and
ν̇ = −µφ(ν) + d(t),

where d(t) = fTJδ(t), and δ(t) ∈ Rn represents the
aggregation of all dynamic noises. The forthcoming Theorem
4 investigates the robustness of the disturbed LCCZNN model
(16) in detail.

Theorem 4: Consider the DNES (5) with at least one
solution. Let ν̃ = ‖f‖2 = (2ν)1/2 be the residual error
synthesized by the interfered LCCZNN model (16). Suppose
that d is bounded and satisfies |d| ≤ d̄. Then, the steady-
state residual error limt→+∞ ν̃ synthesized by the interfered
LCCZNN model (16) activated by the AF (13) with any initial
state is bounded by (2 ln(1+2d̄/µ))1/2. Moreover, the steady-
state residual error limt→+∞ ν̃ can be arbitrarily small as long
as µ is sufficiently large.

Proof: Define a Lyapunov function candidate with respect
to ν: V2(ν) = (sigr(ν) exp(|ν|))p = (νr exp(ν))p, where p =

(a) (b)

Fig. 3: Solutions and residual errors synthesized by LCCZNN
model (12) starting from four different initial states with µ = 5
and r = 0.6, where x∗(t) represents one feasible solution of
system (17), and x(t)i and ν̃(t)i respectively denote solution
and residual error generated by (12) starting from initial state
x(0)i with i ∈ {1, 2, 3, 4}. (a) Neural states x(t)i. (b) Residual
errors ν̃(t)i.

1+1/r. Correspondingly, the time derivative of V2 is expressed
as

V̇2(t, ν) =
dV2

dt
= −p(rνr + ν1+r) exp(pν)(µνr exp(ν)

+ d) ≤ −p(rνr + ν1+r) exp(pν)(µνr exp(ν)− d̄).

Let η satisfy µηr exp(η) = 2d̄. Let α(·) and β(·) be class K∞
functions defined as α(|ν|) = (exp(ν) − 1)p and β(|ν|) =
(νr exp(ν))p. Inequality α ≤ V2 holds for any ν ∈ [1,+∞)
evidently, and when ν ∈ [0, 1), inequality α ≤ V2 is proved
by the deduction below:

1− νr ≤ 1− ν ≤ exp(−ν)

⇒ (1− νr) exp(ν) ≤ 1

⇒ exp(ν)− 1 ≤ νr exp(ν)

⇒ (exp(ν)− 1)p ≤ (νr exp(ν))p.

Then, the following results are obtained:

1) α ≤ V2 ≤ β, ∀ t ∈ [0,+∞) and ∀ ν ∈ [0,+∞),

2) V̇2 ≤ −d̄p(rνr + ν1+r) exp(pν), ∀ν ≥ η.

In light of Lemma 2, for any initial state x(0), there exists a
T = T (η, νini) such that

|ν| = ν ≤ α−1(β(η)) = ln

(
1 +

2d̄

µ

)
holds for any t ≥ T . As a consequence,

ν̃ = ‖f‖2 =
√

2ν ≤

√
2 ln

(
1 +

2d̄

µ

)
, ∀ t ≥ T.

The upper bound of the steady-state residual error is negatively
correlated with µ, and thus, the steady-state residual error can
be arbitrarily small as long as µ is sufficiently large. The proof
is thus completed. �

We have provided a lot of proofs on the properties of the
LCCZNN model and the comparisons among the AFs in this
section. Next, experimental results are displayed to verify the
properties.
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Fig. 4: Residual errors synthesized by LCCZNN model (12) with different values of parameters. (a) Residual errors ν̃(t) with
r = 0.7 and different values of µ. (b) Semilog plot of residual errors ν̃(t) with r = 0.7 and different values of µ. (c) Residual
errors ν̃(t) with µ = 4 and different values of r. (d) Semilog plot of residual errors ν̃(t) with µ = 4 and different values of r.
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Fig. 5: Residual errors synthesized by LCCZNN model (12) activated by three distinct functions (i.e., (8), (9), and (13)) with
µ = 4 and r = 0.6. (a) Residual errors ν̃(t) with relatively large initial error ν(0). (b) Semilog plot of residual errors ν̃(t) with
relatively large initial error ν(0). (c) Residual errors ν̃(t) with relatively small initial error ν(0). (d) Semilog plot of residual
errors ν̃(t) with relatively small initial error ν(0).

IV. NUMERICAL AND SIMULATIVE EXPERIMENTS

In this section, numerical experiments are first conducted to
verify the theories corroborated in Section III, including the
effectiveness and robustness of the proposed LCCZNN model
(12), and the effects of various AFs and parameter values
on the model. Then, model (12) is applied to the trajectory-
following control of a UR5 manipulator with six degrees of
freedom. The successful simulation outcome substantiates the
practical value of model (12). It is worth mentioning that
(13) is the default AF for the LCCZNN model (12) in the
experiments.

A. Case Study without Noises

Consider the following DNES:

f(t,x(t)) =


ln(x1(t))− 1/(t+ 1) = 0,

x1(t)x2(t)− sin(t) exp(1/(t+ 1)) = 0,

x2
1(t)− sin(t)x2(t) + x3(t)− 2 = 0,

x2
1(t)− x2

2(t) + x3(t) + x4(t)− t = 0,
(17)

where x1(t) 6= 0. One feasible solution of system (17) is
formulated as

x∗(t) =


x1(t)
x2(t)
x3(t)
x4(t)

 =


exp(1/(t+ 1))

sin(t)
2− exp(2/(t+ 1)) + sin2(t)

t− 2

 .

First, in order to validate whether the LCCZNN model (12)
is competent to deal with DNESs, model (12) is utilized to
solve system (17). In the experiments, parameters µ and r are
respectively set as 4 and 0.7, and four initial states x(0) ∈
[0, 4]4×1 are randomly generated to observe the influence of
the initial state on the convergence. The corresponding results
are displayed in Fig. 3. In Fig. 3(a), the solid curves with
red color and markers ∗ represent the feasible solution, and
the dashed ones with other colors and markers are solutions
generated by model (12) with different initial states. Evidently,
the dashed curves overlap with the solid ones in a short time.
The residual errors ν̃ synthesized by model (12) with different
initial states are depicted in Fig. 3(b), where each ν̃ dwindles
to 0 within 1 second. Therefore, the LCCZNN model (12) is
capable to handle the DNES and insensitive to the initial state.
To put it in another way, it is verified that ν = 0 is globally
asymptotically stable.

Second, we pay attention to the effects of parameters µ and
r on the convergence performance of model (12), by fixing
the initial state x(0) and one of the parameters, and adjusting
the other one. As observed in Fig. 4, it is verified that the
convergence time of model (12) is cut down by raising µ
or diminishing r, which is completely in coincidence with
Theorem 2 in Section III. Besides, it is seen that the variation
of the parameters has nothing to do with the precision of model
(12), which is between 10−3 and 10−4.

Third, we focus on the impact of various AFs on the
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convergence performance of model (12). In the experiments,
parameters µ and r are respectively set as 4 and 0.6, and the
corresponding results are shown in Fig. 5. As seen in Fig. 5(a),
starting from a relatively large initial error ν(0), model (12)
takes the least time to converge when aided by the AF (13).
It is also observed that the convergence times of model (12)
assisted by (9) and (13) are almost the same, when it starts
from a relatively small initial error ν(0). Besides, model (12)
aided by (8) takes the most time to converge no matter what
the initial error ν(0) is. The above observations are consistent
with Remark 3 and Theorem 3 in Section III. In addition,
different AFs also have no effect on the precision of model
(12), as spotted in Fig. 5(b) and (d).

B. Case Study with Noises
Let us reconsider system (17) of interest under noisy

circumstances. In this study, a constant noise, two dynamic
noises, and a random noise are incorporated, and the disturbed
LCCZNN model (16) is exploited to cope with system (17).
Specifically, each element of the constant noise δ1, the dy-
namic linear noise δ2, and the dynamic quadratic noise δ3 is
5, 0.6t, and 0.2(t− 5)2. The random noise δ4 is composed of
four randomly generated values ranging from 0 to 5. Then, We
adopt these noises to interfere model (16), and check whether
its residual errors ν̃ are able to converge to a certain bound or
not.

Under the four kinds of noises, the performance of model
(16) assisted by (13) with parameters µ = 50 and r = 0.5 is
presented in Fig. 6. In Fig. 6(a), the solid curves with red color
and markers ∗ represent the feasible solution, and the dashed
ones with other colors and markers are solutions generated by
model (16) interfered with different noises. It is evident that
the solutions synthesized by model (16) still converge to the
feasible solution swiftly, which means that model (12) assisted
by (13) is of robustness to an extent. Additionally, the residual
errors synthesized by model (16) remain below approximately
10−3 after 3 s, as seen in Fig. 6(b).

C. Application to UR5 Manipulator
In this subsection, the LCCZNN model (12) is applied to

a practical problem. Robots are becoming more common in
industry and real life [38]. As a sort of robots, manipulators
have replaced human labor in lots of industrial activities and
improved labor productivity. Trajectory-following control is
one important problem for manipulators, and it has many
applications, such as writing and assembly [28].

On the basis of model (12), a controller that controls the
UR5 manipulator is designed to online follow a desired trajec-
tory in three-dimensional space. In light of [39], the forward
kinematics of the redundant manipulator is generalized as

ψ(θ(t)) = pa(t),

where θ = [θ1, θ2, θ3, θ4, θ5, θ6]T ∈ R6 denotes its joint an-
gles, pa = [paX, paY, paZ]T ∈ R3 denotes the actual position of
the end-effector in the Cartesian space, and ψ : R6 7→ R3 maps
θ onto pa nonlinearly. In the trajectory-following task, pa(t) is
expected to overlap a desired position denoted as pd(t) at any

(a)

0 2 4 6 8 10
10-8

10-6

10-4

10-2

100

102

(b)

Fig. 6: Solutions and residual errors synthesized by LCCZNN
model (16) disturbed by different noises with µ = 50 and
r = 0.5, where x∗(t) represents one feasible solution of
system (17), and x(t)i and ν̃(t)i respectively denote solution
and residual error generated by (16) disturbed by δi(t) with
i ∈ {1, 2, 3, 4}. (a) Neural states x(t)i. (b) Semilog plot of
residual errors ν̃(t)i.

time t. That is to say, pa(t)−pd(t) = ψ(θ(t))−pd(t) = 0 is
wanted. Let Ψ(t,θ(t)) = ψ(θ(t))− pd(t). Then, the essence
of the trajectory-following task is to solve Ψ(t,θ(t)) = 0,
which is a DNES. Derived from model (12), a pseudoinverse-
free controller is formulated as

θ̇ =
JT
ψΨ

‖JT
ψΨ‖22

(
ΨTṗd − µφ

(
‖Ψ‖22

2

))
, (18)

where θ̇ represents the joint velocities, Jψ = ∂ψ/∂θ ∈
R3×6 represents the Jacobian matrix of the manipulator, and
ṗd = dpd/dt ∈ R3 represents the desired velocity of the end-
effector. In the same way, the controller based on model (6)
with a linear function array φ(Ψ) = Ψ is presented as

θ̇ = J†ψ (ṗd − µΨ) . (19)

In the simulation, parameters µ and r are respectively set to
be 6 and 0.5, simulation time T is set as 10 s, and a flower-
shaped trajectory desired to be tracked is described as

pd(t) =
1

10

3 + (1 + 1 sin(6πt/5)) cos(πt/5)/2
3 + (1 + 1 sin(6πt/6)) sin(πt/5)/2

6 + sin(6πt/5)/2

 m.

The simulation environment is exhibited in Fig. 7(a), where
the UR5 manipulator with a pen installed as the end-effector
is put on the workbench, and its joint angles are initialized as
θ(0) = [−4π/5, −π/2, 7π/10, 3π/10, −π/2, 3π/10]T rad.
The motion process of the manipulator controlled by (18) is
displayed in Fig. 7(b) through (f). Specifically, snapshots of
the manipulator controlled by (18) during the motion process
are provided in Fig. 7(b) and (c). As seen from Fig. 7(d),
the actual trajectory overlaps the desired one after a period.
The corresponding resolved joint angles are presented in Fig.
7(e). The tracking errors along X-, Y-, and Z-axes displayed
in Fig. 7(f) are defined as ν̂X(t) = |paX(t)− pdX(t)|, ν̂Y(t) =
|paY(t) − pdY(t)|, and ν̂Z(t) = |paZ(t) − pdZ(t)|. It is seen in
Fig. 7(f) that errors ν̂X, ν̂Y, and ν̂Z converge within 0.5 s, and
the magnitudes of the steady-state errors ν̂X, ν̂Y, and ν̂Z are
all approximately 10−5 m, which illustrates that the trajectory-
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Fig. 7: Motion process of UR5 manipulator controlled by controller (18) with µ = 6 and r = 0.5. (a) Initial state. (b)
Intermediate state. (c) Final state. (d) Actual and desired trajectories. (e) Joint angles. (f) Tracking errors along X-, Y-, and
Z-axes.

following task is completed successfully, and controller (18)
is competent and powerful. The simulation result synthesized
by controller (19) resembles the one synthesized by controller
(18) and thus omitted here, except that controller (19) spends
more time (about 5.5 s) to converge.

TABLE I: Running times of controllers (18) and (19) with
µ = 6 and r = 0.5.

Index Controller (18) Controller (19)
Tu (×10−5 s) 0.74 3.79

To (×10−5 s) 2.86 5.61

N 132672 80000

NTo (s) 3.79 4.49

In the aspect of the running time, two criteria in [40] are
used in the simulation for comparison. Concretely, the average
time for the controller to update θ and the average time for
it to finish one control operation are denoted as Tu and To,
respectively. Furthermore, the number of operations N and the
total running time NTo are taken into consideration. Table I
displays the running times of controllers (18) and (19). On
the one hand, Tu of controller (18) is shorter than that of
controller (19). On the other hand, in spite of more operations,
the total running time NTo of controller (18) is less than
that of controller (19). Both observations substantiate that the
LCCZNN model (12) has lower computational complexity

than model (6). Besides, on the basis of the fact that the
total running times NTo of two controllers are less than the
simulation time T = 10 s, it follows that both controllers have
the capability to complete the trajectory tracking online.

TABLE II: Running times of perturbed controllers (20) and
(21) with µ = 6 and r = 0.5.

Index Controller (20) Controller (21)
Tu (×10−5 s) 0.95 4.33

To (×10−5 s) 3.07 6.15

N 195088 115672

NTo (s) 5.99 7.11

Additionally, noise disturbance is also considered in the sim-
ulation. Suppose that the above controllers with perturbance
are formulated as

θ̇ =
JT
ψΨ

‖JT
ψΨ‖22

(
ΨTṗd − µφ

(
‖Ψ‖22

2

))
+ δθ (20)

and
θ̇ = J†ψ (ṗd − µΨ) + δθ, (21)

where δθ ∈ R6 is a random noise whose elements range from
0 to 3. With the same parameters and settings, the motion
processes of the manipulator and the running times of the
controllers are illustrated in Figs. 8 and 9 along with Table II.
As seen in Fig. 8 and Table II, under the noise interference,
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Fig. 8: Motion process of UR5 manipulator controlled by perturbed controller (20) with µ = 6 and r = 0.5. (a) Intermediate
state. (b) Final state. (c) Actual and desired trajectories. (d) Tracking errors along X-, Y-, and Z-axes.
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Fig. 9: Motion process of UR5 manipulator controlled by perturbed controller (21) with µ = 6. (a) Intermediate state. (b)
Final state. (c) Actual and desired trajectories. (d) Tracking errors along X-, Y-, and Z-axes.

the interfered controller (20) still accomplishes the tracking
task successfully and keeps the same high precision as in the
absence of perturbance. The steady-state tracking error ‖ν̂‖2
synthesized by (20) is about 4.95× 10−5 m. On the contrary,
as observed in Fig. 9 and Table II, although the interfered
controller (21) maintains the real-time processing ability, it
fails to control the manipulator to follow the desired trajectory
accurately in the presence of perturbance and the tracking error
‖ν̂‖2 diverges as time elapses. In a word, the LCCZNN model
(12) possesses a better real-time processing capability and is of
certain robustness, meaning that it is more proper for handling
the practical problem.

V. CONCLUSION

In this paper, the LCCZNN model has been proposed for
solving problems that can be mathematically described as
DNESs. The LCCZNN model gets rid of any pseudoinverse
computation and thus has O(mn) computational complexity,
which is a great progress compared with the O(mn2) model.
It is also convenient to implement the model via an analog
circuit, owing to its core of explicit dynamics. Besides, the
novel AF modified from the sign-bi-power function has been
acquired for strengthening the model in terms of convergence
and robustness. Through Lyapunov theory, we have determined
the upper bounds of the model’s convergence time and the
disturbed one’s steady-state residual error. We have as well
compared the new AF with two other AFs in the aspect of
the model’s convergent rate, and found out the advantages
of the newly proposed AF. Finally, the numerical experiments
coupled with the simulation on the trajectory-following control

of the UR5 manipulator have been conducted to validate the
effectiveness and relevant analysis results of the proposed
model.

APPENDIX

The detailed proofs of Lemma 3 and Theorem 2 are
provided here.

Proof of Lemma 3
An auxiliary function h1(z) = exp(z) − za − 1 with

z ∈ (0,+∞) is introduced, and its first- and second-order
derivatives are

h′1 =
dh1

dz
= exp(z)− az−(1−a)

and

h′′1 =
d2h1

dz2
= exp(z) + a(1− a)z−(2−a).

Since a ∈ (0, 1) and z ∈ (0,+∞), h′′1 is always larger than
0 on the domain. As a consequence, h′1 is strictly increasing
with respect to z. It is observed that

lim
z→0+

h′1(z) = −∞

and
h′1(1) = exp(1)− a > 0.

Therefore, there only exists one root ρ ∈ (0, 1) satisfy-
ing h′1(ρ) = 0. As a result, h is strictly decreasing on
(0, ρ) and strictly increasing on (ρ,+∞). It follows from
limz→0+ h1(z) = 0 that h1(ρ) < 0. On account of the fact
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that h1(1) > 0, we deduce that there only exists one root
ζ ∈ (ρ, 1) ⊂ (0, 1) satisfying h1(ζ) = 0.

Suppose that ζ and ζ̄ respectively correspond to the roots
of equations exp(z) − za − 1 = 0 and exp(z) − zā − 1 = 0,
with 0 < a < ā < 1. Through simple transformations, a and
ā are expressed as

a =
ln(exp(ζ)− 1)

ln ζ

and

ā =
ln(exp(ζ̄)− 1)

ln ζ̄
.

Another auxiliary function is introduced as

h2(z) =
ln(exp(z)− 1)

ln z
, z ∈ (0, 1),

and correspondingly, its first-order derivative is

h′2 =
dh2

dz
=

1

ln2 z

(
exp(z) ln z

exp(z)− 1
− ln(exp(z)− 1)

z

)
.

Since inequality exp(z)z ln z < (exp(z) − 1) ln(exp(z) − 1)
holds for any z ∈ (0, 1), h′2 is negative on the domain. Hence,
h2 is strictly decreasing with respect to z.

Finally, according to the relationship between a and ā (i.e.,
a < ā), and the monotonicity of h2, it is inferred that ζ > ζ̄.
That is to say, the root of equation (3) decreases with the
increase of a. In view of the fact that

lim
z→0+

h2 = lim
z→0+

ln(exp(z)− 1)

ln z
= 1,

it is evident that
lim
a→1−

ζ = 0.

Hence, the proof is completed.

Proof of Theorem 2

On the basis of Theorem 1, model (12) converges to one
solution of (5) in finite time tAF3 = γ(1− r, νini)/µ. It is easy
to verify that the first manner (i.e., increasing parameter µ) is
useful to shorten the convergence time, since tAF3 is inversely
proportional to µ.

In order to prove the second manner, the partial derivative
of tAF3 with respect to r is written out:

∂tAF3

∂r
=

1

µ

∫ νini

0

−ν−r exp(−ν) ln ν dν.

∂tAF3/∂r > 0 holds for any νini ∈ (0, 1]. When νini ∈
(1,+∞), it follows that∫ νini

0
�ν−r exp(�ν) ln ν de

=

∫ 1

0
�ν−r exp(�ν) ln ν dν +

∫ νini

1
�ν−r exp(�ν) ln ν dν

=

∫ 1

0
�ν−r exp(�ν) ln ν dν +

∫ 1

1/νini

ν−(2−r) exp

(
� 1

ν

)
ln ν dν

> �
∫ 1

1/νini

(
ν−r exp(�ν)� ν−(2−r) exp

(
� 1

ν

))
ln ν dν.

Since inequality 1/ν − ν + 2(1 − r) ln ν > 0 holds for any

ν ∈ (1/νini, 1) ⊂ (0, 1), the following deduction is obtained:

1

ν
− ν + 2(1− r) ln ν > 0⇔ 1

ν
− ν > −2(1− r) ln ν

⇔ exp

(
1

ν
− ν
)
> ν−2(1−r)

⇔ ν−r exp(−ν)− ν−(2−r) exp

(
−1

ν

)
> 0.

Consequently, ∂tAF3/∂r > 0 holds when νini ∈ (1,+∞).
To sum up, decreasing parameter r is also functional to

shorten the convergence time. The proof is thus completed.

REFERENCES

[1] L. Jin, L. Wei, and S. Li, “Gradient-based differential neural-solution
to time-dependent nonlinear optimization,” IEEE Trans. Autom. Control,
vol. 68, no. 1, pp. 620–627, Jan. 2023.

[2] L. Xiao, J. Dai, L. Jin, W. Li, S. Li, and J. Hou, “A noise-enduring and
finite-time zeroing neural network for equality-constrained time-varying
nonlinear optimization,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51,
no. 8, pp. 4729–4740, Aug. 2021.

[3] N. Tan, X. Gu, and H. Ren, “Pose characterization and analysis of
soft continuum robots with modeling uncertainties based on interval
arithmetic,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 2, pp. 570–584,
Apr. 2019.

[4] D. Chen, S. Li, W. Li, and Q. Wu, “A multi-level simultaneous mini-
mization scheme applied to jerk-bounded redundant robot manipulators,”
IEEE Trans. Autom. Sci. Eng., vol. 17, no. 1, pp. 463–474, Jan. 2020.

[5] W. Guo, G. Li, Q. Zhang, Y. Luo, and Z. Wang, “Solving nonlinear
equation systems by a two-phase evolutionary algorithm,” IEEE Trans.
Syst. Man Cybern. Syst., vol. 51, no. 9, pp. 5652–5663, Sep. 2021.

[6] W. Li, L. Xiao, and B. Liao, “A finite-time convergent and noise-rejection
recurrent neural network and its discretization for dynamic nonlinear
equations solving,” IEEE Trans. Cybern., vol. 50, no. 7, pp. 3195–3207,
Jul. 2020.

[7] T. Liu, Z. Qin, Y. Hong, and Z.-P. Jiang, “Distributed optimization
of nonlinear multiagent systems: A small-gain approach,” IEEE Trans.
Autom. Control, vol. 67, no. 2, pp. 676–691, Feb. 2022.

[8] J. Santiaguillo-Salinas and E. Aranda-Bricaire, “Time-varying contain-
ment problem for multi-agent systems,” in Proc. Int. Conf. Electr. Eng.
Comput. Sci. Automat. Contr., Mexico City, Mexico, 2013, pp. 358–363.

[9] F.B. Hilderbrand, Introduction to Numerical Analysis. Mineola, NY, USA:
Dover Publications, 1987.

[10] M.S. Petkovic, B. Neta, L.D. Petkovic, and J. Dznic, “Multipoint
methods for solving nonlinear equations: A survey,” Appl. Math. Comput.,
vol. 226, pp. 635–660, Jan. 2014.

[11] H. Ramos and M.T.T Monteiro, “A new approach based on the Newton’s
method to solve systems of nonlinear equations,” J. Comput. Appl. Math.,
vol. 318, pp. 3–13, Jul. 2017.

[12] Y. Zhang, Y. Shi, L. Xiao, and B. Mu, “Convergence and stability
results of Zhang neural network solving systems of time-varying nonlinear
equations,” in Proc. Int. Conf. Nat. Comput., Chongqing, China, 2012, pp.
143–147.

[13] Y. Xia, G. Feng, and J. Wang, “A novel recurrent neural network
for solving nonlinear optimization problems with inequality constraints,”
IEEE Trans. Neural Netw., vol. 19, no. 8, pp. 1340–1353, Aug. 2008.

[14] Q. Liu and J. Wang, “A second-order multi-agent network for bound-
constrained distributed optimization,” IEEE Trans. Autom. Control, vol.
60, no. 12, pp. 3310–3315, Dec. 2015.

[15] L. Xiao, S. Li, L. Jin, K. Li, and B. Liao, “Co-design of finite-time
convergence and noise suppression: A unified neural model for time
varying linear equations with robotic applications,” IEEE Trans. Syst.
Man Cybern. Syst., vol. 50, no. 12, pp. 5233–5243, Dec. 2020.

[16] W. Li, L. Han, X. Xiao, B. Liao, and C. Peng, “A gradient-based neural
network accelerated for vision-based control of an RCM-constrained
surgical endoscope robot,” Neural. Comput. Appl., vol. 34, pp. 1329–
1343, Jan. 2022.

[17] Y. Zhang, P. Xu, and N. Tan, “Further studies on Zhang neural-dynamics
and gradient dynamics for online nonlinear equations solving,” in Proc.
IEEE Int. Conf. Autom. Logist., Shenyang, China, 2009, pp. 566–571.

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3319132

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on November 27,2023 at 13:19:45 UTC from IEEE Xplore.  Restrictions apply. 



12 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX XXXX

[18] Y. Zhang, C. Yi, and D. Guo, “Comparison on Zhang neural dynamics
and gradient-based neural dynamics for online solution of nonlinear time-
varying equation,” Neural Comput. Appl., vol. 20, no. 1, pp. 1–7, Feb.
2011.

[19] Y. Zhang, D. Jiang, and J. Wang, “A recurrent neural network for solving
Sylvester equation with time-varying coefficients,” IEEE Trans. Neural
Netw., vol. 13, no. 5, pp. 1053–1063, Sep. 2002.

[20] L. Xiao and Y. He, “A noise-suppression ZNN model with new variable
parameter for dynamic Sylvester equation,” IEEE Trans. Ind. Informat.,
vol. 17, no. 11, pp. 7513–7522, Nov. 2021.

[21] J. Li, Y. Zhang, S. Li, and M. Mao, “New discretization-formula-based
zeroing dynamics for real-time tracking control of serial and parallel
manipulators,” IEEE Trans Ind. Informat., vol. 14, no. 8, pp. 3416–3425,
Aug. 2018.

[22] L. Xiao, Z. Zhang, and S. Li, “Solving time-varying system of nonlinear
equations by finite-time recurrent neural networks with application to
motion tracking of robot manipulators,” IEEE Trans. Syst. Man Cybern.
Syst., vol. 49, no. 11, pp. 2210–2220, Nov. 2019.

[23] S. Li, S. Chen, and B. Liu, “Accelerating a recurrent neural network
to finite-time convergence for solving time-varying Sylvester equation by
using a sign-bi-power activation function,” Neural Process. Lett., vol. 37,
no. 2, pp. 189–205, Apr. 2013.

[24] L. Xiao, J. Tao, and W. Li, “An arctan-type varying-parameter ZNN for
solving time-varying complex Sylvester equations in finite time,” IEEE
Trans. Ind. Informat., vol. 18, no. 6, pp. 3651–3660, Jun. 2022.

[25] Z. Zhang, L. Kong, L. Zheng, P. Zhang, X. Qu, B. Liao, and Z. Yu,
“Robustness analysis of a power-type varying-parameter recurrent neural
network for solving time-varying QM and QP problems and applications,”
IEEE Trans. Syst. Man Cybern. Syst., vol. 50, no. 12, pp. 5106–5118, Dec.
2020.

[26] L. Xiao, Y. Zhang, J. Dai, J. Li, and W. Li, “New noise-tolerant
ZNN models with predefined-time convergence for time-variant Sylvester
equation solving,” IEEE Trans. Syst. Man Cybern. Syst., vol. 51, no. 6,
pp. 3629–3640, Jun. 2021.

[27] Z. Tan, W. Li, L. Xiao, and Y. Hu, “New varying-parameter ZNN
models with finite-time convergence and noise suppression for time-
varying matrix Moore-Penrose inversion,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 8, pp. 2980–2992, Aug. 2020.

[28] N. Tan and P. Yu, “Robust model-free control for redundant robotic
manipulators based on zeroing neural networks activated by nonlinear
functions,” Neurocomputing, vol. 438, pp. 44–54, May. 2021.

[29] H.K. Khalil, Nonlinear Systems Third Edition. Upper Saddle River, NJ,
USA: Prentice Hall, 2002.

[30] S.P. Bhat and D.S. Bernstein, “Finite-time stability of continuous au-
tonomous systems,” SIAM J. Control Optim., vol. 38, no. 3, pp. 751–766,
Feb. 2000.

[31] L. Jin, Y. Zhang, S. Li, and Y. Zhang, “Noise-tolerant ZNN models
for solving time-varying zero-finding problems: A control-theoretic ap-
proach,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 992–997, Feb.
2017.

[32] Z. Zhang, Y. Lu, L. Zheng, S. Li, Z. Yu, and Y. Li, “A new varying-
parameter convergent-differential neural-network for solving time-varying
convex QP problem constrained by linear-equality,” IEEE Trans. Autom.
Control, vol. 63, no. 12, pp. 4110–4125, Dec. 2018.

[33] Z. Zhang, L. Zheng, T. Qiu, and F. Deng, “Varying-parameter
convergent-differential neural solution to time-varying overdetermined
system of linear equations,” IEEE Trans. Autom. Control, vol. 65, no.
2, pp. 874–881, Feb. 2020.

[34] S. Li and Y. Li, “Nonlinearly activated neural network for solving time-
varying complex Sylvester equation,” IEEE Trans. Cybern., vol. 44, no.
8, pp. 1397–1407, Oct. 2013.

[35] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables. Washington, DC, USA:
Government Publishing Office, 1964.

[36] E. Neuman, “Inequalities and bounds for the incomplete gamma func-
tion,” Results Math., vol. 63, no. 3, pp. 1209–1214, Jun. 2013.

[37] V.G. Rao and D.S. Bernstein, “Naive control of the double integrator: A
comparison of a dozen diverse controllers under off-nominal conditions,”
in Proc. Am. Control Conf., San Diego, USA, 1999, pp. 1477–1481.

[38] M. Yang, Y. Zhang, X. Zhou, and H. Hu, “Pose control of constrained
redundant arm using recurrent neural networks and one-iteration comput-
ing algorithm,” Appl. Soft Comput., vol. 113, p. 108007, Dec. 2021.

[39] J.J. Craig, Introduction to Robotics: Mechanics and Control. Upper
Saddle River, NJ, USA: Pearson Prentice Hall, 2005.

[40] L. Zheng and Z. Zhang, “Time-varying quadratic-programming-based
error redefinition neural network control and its application to mobile

redundant manipulators,” IEEE Trans. Autom. Control, vol. 67, no. 11,
pp. 6151–6158, Nov. 2022.

Kangze Zheng received the B.S. degree in com-
puter science and technology from Sun Yat-sen
University, Guangzhou, China, in 2021. He is
currently pursuing the M.S. degree at the School
of Computer Science and Engineering, Sun Yat-
sen University, Guangzhou, China.

His current research interests include robotic
control, neural networks, multiagent systems,
and intelligent optimization.

Shuai Li (Senior Member, IEEE) received the
B.E. degree in precision mechanical engineering
from the Hefei University of Technology, Hefei,
China, in 2005, the M.E. degree in automatic
control engineering from the University of Sci-
ence and Technology of China, Hefei, in 2008,
and the Ph.D. degree in electrical and computer
engineering from the Stevens Institute of Tech-
nology, Hoboken, NJ, USA, in 2014.

He is currently a full professor with Faculty of
Information Technology and Electrical Engineer-

ing, University of Oulu, Finland, and also with VTT-Technology Research
Center of Finland. His current research interests include dynamic neural
networks, robotics, machine learning, and autonomous systems.

Dr. Li is the Founding Editor-in-Chief of the International Journal of
Robotics and Control, an Associate Editor of the IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMSII: EXPRESS BRIEFS, and the General
Co-Chair of the 2018 International Conference on Advanced Robotics
and Intelligent Control.

Yunong Zhang (Member, IEEE) received the
B.S. degree in industrial electrical automation
from Huazhong University of Science and Tech-
nology, Wuhan, China, in 1996, the M.S. de-
gree in control theory and control engineer-
ing from South China University of Technology,
Guangzhou, China, in 1999, and the Ph.D. de-
gree in mechanical and automation engineering
from Chinese University of Hong Kong, Shatin,
Hong Kong, China, in 2003.

He is currently a professor in the School
of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou, China. Before joining Sun Yat-sen University in 2006,
he had been with National University of Singapore, University of
Strathclyde, and National University of Ireland at Maynooth, since
2003. His main research interests include robotics, neural network-
s, computation and optimization. His web-page is now available at
http://cse.sysu.edu.cn/content/2477

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3319132

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Oulu University. Downloaded on November 27,2023 at 13:19:45 UTC from IEEE Xplore.  Restrictions apply. 


