
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Vahid Mohsseni

DESIGN AND IMPLEMENTATION OF A
NEXT-GENERATION TASK ORCHESTRATION
PLATFORM FOR EDGE COMPUTING WITH

RUST LANGUAGE

Master’s Thesis
Degree Programme in Computer Science and Engineering

June 2023



Mohsseni V. (2023) Design and Implementation of a Next-Generation Task
Orchestration Platform for Edge Computing with Rust Language. University of
Oulu, Degree Programme in Computer Science and Engineering, 67 p.

ABSTRACT

Edge computing has evolved a favorable paradigm for processing data nearer
to the point of its origin, enabling low-latency and real-time applications in
various domains. However, existing orchestration platforms, such as Kubernetes,
face limitations when applied to edge computing scenarios due to the unique
challenges posed by resource-constrained and dynamic edge environments. This
thesis focuses on addressing these limitations and developing an alternative
solution, a specialized orchestration platform for edge computing, named the
Resilient On-demand Distributed Systems (RODS). Key research questions that
drive this study contain exploring the boundaries of state-of-the-art orchestration
systems and alternatives, designing and implementing RODS, and addressing
its challenges. Through an extensive review of related work and the utilization
of the Rust language, the methodology chapter presents the design and
architecture view, implementation details, fault tolerance mechanisms, and
potential future enhancements of RODS. The findings highlight the effectiveness
of RODS in addressing the limitations of existing orchestration platforms,
providing enhanced resource allocation, fault tolerance, and scalability in edge
environments. Additionally, the study explores the generalizability of RODS
in cloud environments by proposing adapting container-based technologies for
isolation. The thesis concludes with a discussion of the overall impact and
contribution of the study, emphasizing how RODS fills the gaps in knowledge,
advances edge computing research and practice, and offers practical implications
for future development and deployment.

Keywords: RODS, Raft, Consensus, Kubernetes, edgeIO, Tokio Library, Socket,
RocksDB



Mohsseni V. (2023) Reunalaskentaan soveltuva seuraavan sukupolven Rust-
pohjainen resurssien orkestrointialusta. Oulun yliopisto, Tietotekniikan tutkinto-
ohjelma, 67 s.

TIIVISTELMÄ

Reunalaskennassa tietojen käsittely suoritetaan lähellä tiedon tuottajaa
mahdollistaen viiveettömät ja reaaliaikaiset sovellukset eri aloilla.
Olemassaolevat resurssien orkestrointiin suunnitellut alustat, kuten
Kubernetes, eivät toimi optimaalisesti dynaamisissa reunaympäristöissä. Tämä
opinnäytetyö keskittyy analysoimaan reunalaskennan aiheuttamia haasteita
orkestroinnille ajantasaisilla työkaluilla. Analyysin perusteella työssä ehdotetaan
vaihtoehtoista, reunalaskentaan erikoistunutta orkestrointiratkaisua, Resilient
On-demand Distributed Systems (RODS). Työn metodologiaosuudessa esitetään
uuden ratkaisun suunnittelun lähtökohdat sekä kehitetty arkkitehtuuri.
Lisäksi analysoidaan toteutuksen ratkaisut sekä vikasietomekanismit.
Työssä analysoidaan myös toteutetun ratkaisun skaalautuvuutta. Ratkaisu
toteutettiin Rust-kielellä. Työn validointiosuudessa osoitetaan RODSin
tehokkuus vasten olemassaolevia orkestrointiratkaisuja resurssien allokoinnin,
vikasietoisuuden ja skaalautuvuuden suhteen. Tutkimuksessa selvitetään
RODS:in yleistettävyysominaisuuksia sekä eristettävyyttä konttipohjaisilla
teknologioilla pilviympäristöissä. Lopuksi työssä analysoidaan tutkimuksen
vaikuttavuutta sekä kontribuutioita tieteen ja tekniikan tilaan, Työn kirjallinen
osuus tuo tuoretta tietoa reunalaskennan järjestelmien analysointiin.
Työssä on suunniteltu ja toteutettu uusi ratkaisu reunan resurssien
optimointiin, mahdollistaen selkeitä parannuksia reunalaskennan dynaamisten
arkkitehtuurien suunnitteluun ja toteutukseen.

Avainsanat: resurssien orkestrointialusta, Raft, konsensus, skaalautuvuus,
Kubernetes, Rust ohjelmointikieli



TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION....................................................................................... 7
2. RELATED WORKS.................................................................................... 15

2.1. Edge Computing................................................................................. 15
2.2. Distributed Systems: Evolution and Development ................................. 18
2.3. Fog Computing and Orchestration........................................................ 19
2.4. Orchestration Challenges..................................................................... 20
2.5. Container Orchestration Tools ............................................................. 21
2.6. Related Academic Works .................................................................... 23
2.7. Summary............................................................................................ 28

3. METHODOLOGY...................................................................................... 29
3.1. Design and Architecture Overview....................................................... 29
3.2. Rust Programming Language............................................................... 31
3.3. Summary............................................................................................ 37

4. IMPLEMENTATION .................................................................................. 38
4.1. Components ....................................................................................... 38
4.2. Nodes Formation ................................................................................ 41
4.3. Fault Tolerance ................................................................................... 42
4.4. Summary............................................................................................ 44

5. DISCUSSION ............................................................................................ 45
5.1. Brief Comparison with State-Of-The-Art.............................................. 45
5.2. Address to Practical Challenges ........................................................... 46
5.3. Limitations and Future Enhancements .................................................. 49

5.3.1. Consensus............................................................................... 49
5.3.2. Scheduling Policies ................................................................. 50
5.3.3. Security Enhancement ............................................................. 51
5.3.4. A New Framework for Worker Nodes ....................................... 52

5.4. Generalizability and Applicability........................................................ 52
5.5. Summary............................................................................................ 54

6. CONCLUSION .......................................................................................... 55
6.1. Impact and Contribution...................................................................... 55
6.2. Summary............................................................................................ 56

7. REFERENCES ........................................................................................... 58
8. APPENDICES............................................................................................ 63



FOREWORD

I am delighted to present this thesis which aims to address the challenges and
limitations of edge computing orchestration by developing a specialized platform, the
Resilient On-demand Distributed Systems (RODS).

Throughout the various stages of this research, the aim was to explore the value and
benefits of adopting RODS in edge computing environments. The thesis delves into
developing a platform, resiliency and reliability mechanisms, scalable operations, and
high availability approaches within network and hardware constraints.

I would like to express my sincere appreciation to my supervisor, Dr. Susanna
Pirttikangas, for her invaluable support throughout the entire research process. Her
expertise, insightful feedback, and unwavering commitment to academic excellence
have been instrumental in shaping this thesis. I am also grateful to Dr. Lauri Loven,
my second supervisor, for his valuable contributions and constructive inputs.

Additionally, I would like to unfold my heartfelt gratitude to my wife and family
for their tireless encouragement, understanding, and support. Their belief in my
abilities and their constant motivation have been the driving force behind the successful
completion of this thesis.

I would also like to acknowledge the FRACTAL project (FRACTAL ECSEL JU
(grant 877056), funded by Horizon Europe and Business Finland) and its partners for
their funding, which provided the necessary resources and opportunities to undertake
this research.

Finally, I extend my thanks to all the individuals who have played a part in this
thesis, including colleagues and friends. Their contributions and participation have
greatly enriched the research and its outcomes.

Oulu, June 15th, 2023

Vahid Mohsseni



LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface
AR Augmented Reality
AWS Amazon Web Service
CA Certificate Authority
CAP Consistency, Availability, Partition tolerance
CDN Content Delivery Network
CLI Command-Line Interface
CNCF Cloud Native Computing Foundation
DAG Directed Acyclic Graph
DB DataBase
DoS Denial of Service
EF Edge Function
EN Edge Node
FIFO First-In, First-Out
HTTP Hyper Text Transfer Protocol
IoT Internet of Things
K8s Kubernetes
NAT Network Address Translation
RSU RoadSide Units
RODS Resilient On-demand Distributed Systems
RPC Remote Procedure Call
SJF Shortest Job First
SLA Service Layer Agreement
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
TLS Transport Layer Security
VR Virtual Reality



7

1. INTRODUCTION

Edge computing has revolutionized the field of distributed computing by bringing
computation and data storage closer to the network edge. Unlike traditional cloud
computing, which centralizes processing and data storage in remote data centers,
edge computing leverages the resources available at the edge of the network, in
close proximity to where data is generated and consumed [1, 2]. This paradigm
shift has significant implications for a wide range of industries, offering reduced
latency, improved scalability, and enhanced efficiency. The transformative nature of
edge computing lies in its ability to reshape the way computation and data storage
are approached. By processing and analyzing data at the edge, organizations can
benefit from real-time insights and faster decision-making. This proximity to data
sources minimizes latency and network congestion, enabling quicker response times
and enhanced user experiences. With edge computing, industries can unlock new
possibilities and reap the benefits of distributed computing in ways not previously
feasible.

The potential impact of edge computing extends across numerous industries. In the
realm of the Internet of Things (IoT), edge computing plays a vital role in addressing
the challenges associated with managing and processing massive amounts of data
generated by interconnected devices. Organizations may lessen the load on centralized
cloud resources, reduce network traffic, and allow speedier and more accurate choices
by processing IoT data at the edge [3]. This has significant implications for industries
such as manufacturing, transportation, healthcare, and agriculture, where IoT devices
are deployed at scale.

Smart cities, too, stand to benefit greatly from the adoption of edge computing.
By leveraging distributed edge nodes, cities can efficiently collect and process data
from various sources, such as sensors, cameras, and connected infrastructure. This
allows for real-time monitoring of traffic conditions, waste management systems,
energy consumption, and public safety, enabling more efficient resource allocation,
improved urban planning, and enhanced citizen services. The entertainment and
media industry is another domain where edge computing has gained traction. With
the proliferation of high-definition video streaming, augmented reality (AR), and
virtual reality (VR) applications, the demand for low-latency, high-quality content
delivery is paramount [4, 5]. Edge computing enables content caching, processing,
and delivery at the edge of the network, closer to end-users. This reduces latency,
ensures smoother streaming experiences, and enables immersive AR/VR applications
with minimal lag, enhancing user satisfaction and engagement. Besides, industries
such as healthcare, finance, and retail can leverage edge computing to enhance
their operations. In healthcare, for example, edge computing enables real-time
monitoring of patient vitals, analysis of medical imaging data, and prompt delivery
of critical information in life-saving situations. Financial institutions can utilize
edge computing for real-time fraud detection, personalized customer experiences, and
secure transactions. Retailers can leverage edge computing to deliver personalized
offers, optimize inventory management, and enhance the in-store shopping experience.

The transformative nature of edge computing lies in its ability to bring computation,
data storage, and processing capabilities closer to the point of data generation and
consumption. By doing so, edge computing enables faster insights, reduced network



8

traffic, improved scalability, and enhanced user experiences. The impact of this
paradigm shift extends to various industries, unlocking new opportunities, improving
operational efficiency, and enabling innovative applications.

Edge computing faces a unique set of challenges that differentiate it from
traditional cloud-based approaches. These challenges arise from the nature of the
edge environment, characterized by limited computing resources, unreliable network
connectivity, and stringent latency requirements. One of the primary challenges of
edge computing is the limited computing resources available at the network edge. Edge
devices such as sensors, gateways, and IoT devices often have constrained processing
power, memory, and storage capabilities. Unlike the vast resources available in cloud
data centers, edge devices must operate within these limitations while still performing
their intended tasks. This necessitates the development of efficient algorithms,
lightweight software, and resource optimization techniques to ensure optimal
utilization of the available resources. Unreliable network connectivity is another
significant challenge in edge computing. Unlike centralized cloud environments with
robust network infrastructure, the edge environment is characterized by intermittent
connectivity, limited bandwidth, and potential network disruptions. Edge devices may
be deployed in remote locations or mobile environments, where network connectivity
can be unpredictable and prone to fluctuations. This poses challenges for real-time
data transmission, synchronization, and coordination between edge devices and cloud
services. To address these challenges, edge computing solutions must incorporate
mechanisms for offline operation, local processing, and intelligent data caching to
mitigate the impact of network disruptions.

Stringent latency requirements further complicate edge computing deployments.
Many edge applications, such as real-time monitoring, autonomous systems, and
responsive user experiences, demand low-latency data processing and decision-
making [6]. For example, in applications like autonomous vehicles or industrial
control systems, even slight delays in data processing and response times can have
severe consequences. This necessitates the need for edge computing solutions that
can provide rapid and efficient data processing at the edge, minimizing the time
required to transmit data to and from remote cloud data centers. Strategies such as
data filtering, local analytics, and distributed processing are essential to meet these
stringent latency requirements. The challenges faced by edge computing require
tailored solutions that differ from traditional cloud-based approaches. Edge computing
platforms must be designed to operate within the constraints of limited computing
resources, adapt to unreliable network connectivity, and meet stringent latency
requirements. These solutions involve deploying intelligent algorithms and distributed
processing techniques to optimize resource usage, implement local decision-making
capabilities, and enable efficient data synchronization when network connectivity
is available. Furthermore, edge computing architectures need to incorporate fault
tolerance mechanisms to handle device failures and ensure the resilience and reliability
of edge deployments. By addressing these challenges, edge computing can unlock
the full potential of distributed computing at the network edge, enabling real-
time processing, improved scalability, and enhanced efficiency in various industries
and applications. The development of tailored solutions that consider the unique
requirements and constraints of edge environments is crucial for maximizing the
benefits of edge computing.



9

The CAP theorem, also known as Brewer’s theorem [7], serves as a fundamental
principle in distributed systems, asserting that it is impossible for a distributed system
to simultaneously guarantee consistency (C), availability (A), and partition tolerance
(P). Consistency ensures that all nodes in a distributed system perceive the same
data simultaneously. At the same time, availability denotes the system’s ability to
respond consistently to client requests. Partition tolerance refers to the system’s
capability to endure network failures or partitioning without ceasing operation. When
applied to edge computing, the implications of the CAP theorem become particularly
significant. Edge environments involve geographically dispersed edge devices and
nodes interconnected by potentially unreliable networks. In this context, striking
a balance between consistency, availability, and partition tolerance is paramount
when designing an effective orchestration platforms. The nature of edge computing
introduces inherent constraints that make achieving strong consistency across all edge
nodes in real-time challenging. Factors such as network latency, limited bandwidth,
and intermittent connectivity can impede instant data synchronization, leading to
eventual consistency or temporary inconsistencies among edge nodes. Nevertheless, in
edge computing, prioritizing high availability and partition tolerance remains critical
since the system must remain operational and responsive despite network failures or
node unavailability.

In the context of edge computing, Kubernetes [8] has emerged as the most prominent
container orchestration platform. Originally developed by Google and now maintained
by the Cloud Native Computing Foundation (CNCF) [9, 10], Kubernetes has garnered
widespread adoption in the cloud computing domain. Its robust features for managing
containerized applications, scaling workloads, and ensuring high availability have
made it a go-to solution for many cloud-based deployments. However, when it
comes to edge computing, the suitability of Kubernetes as an orchestration tool
becomes a topic of discussion. The unique challenges posed by edge environments,
such as limited computing resources, unreliable network connectivity, and strict
latency requirements, demand tailored solutions that differ from traditional cloud-
based approaches. While Kubernetes excels in managing large-scale deployments
in centralized cloud environments, it faces limitations when applied directly to the
edge computing context. By investigating the limitations of Kubernetes when applied
to edge computing, it is possible to shed light on the potential drawbacks and
inefficiencies that arise in edge deployments. One such limitation is the reliance on
centralized control and coordination mechanisms, which may not align well with the
distributed nature of edge environments. Edge deployments often consist of numerous
geographically dispersed devices and heterogeneous computing resources. Employing
a centralized orchestration framework like Kubernetes in such scenarios can lead to
increased network traffic, performance bottlenecks, and reduced efficiency.

There are also other tools and platforms that exists in the context of orchestration,
which will be discussed shortly as the following list:

1. Other variation of Kubernetes: The k0s [11] is a minimalistic Kubernetes
distribution for edge computing, IoT, and other resource-limited environments.
It focuses on simplicity, lightweight footprint, and ease of deployment. The k0s
eliminates the need for external dependencies and enables running Kubernetes
clusters with minimal resources, making it suitable for edge devices with



10

limited processing power and memory. It provides essential features for
edge computing, including orchestration, container management, and workload
scheduling, while minimizing the overhead typically associated with running
Kubernetes. K3s [12] is another lightweight Kubernetes distribution tailored
for edge computing and IoT deployments. It is designed to be efficient and
resource-friendly, enabling Kubernetes clusters to run on low-power ARM-
based devices and other edge hardware. K3s simplifies the installation and
operation of Kubernetes, providing a minimalistic footprint while retaining core
functionality. It incorporates only essential components, reducing the memory
and disk footprint, and optimizes for limited network bandwidth and intermittent
connectivity often encountered in edge environments. MicroK8s [13], as the
name suggests, is a lightweight, single-node Kubernetes distribution suitable
for local development, edge computing, and IoT use cases. It is designed for
easy installation and quick setup on a single machine or edge device. It enables
developers to prototype and experiment with Kubernetes-based applications in
resource-constrained environments. MicroK8s offers a compact footprint, fast
startup times, and simplified operations, making it well-suited for edge scenarios
where efficient resource utilization and ease of management are critical.

2. Docker Swarm [14]: Docker Swarm is a container orchestration platform that
manages containerized applications across multiple nodes. It provides features
for service discovery, load balancing, and scalability. However, Docker Swarm’s
centralized control and coordination mechanisms may need to be better suited
for edge computing environments with limited resources and unreliable network
connectivity.

3. Apache Mesos [15]: Apache Mesos is a distributed systems kernel that enables
the management and execution of applications across clusters of machines. It
provides resource isolation, scalability, and fault tolerance. While Mesos offers
flexibility and scalability, its centralized architecture may introduce overhead
and performance bottlenecks in edge computing scenarios.

4. Nomad [16]: Nomad is an open-source cluster scheduler and orchestrator that
supports a variety of workloads, including containers and non-containerized
applications. It offers features like task scheduling, health monitoring,
and scalability. However, similar to other centralized platforms, Nomad’s
architecture may need to be optimized for edge computing, and it may suffer
from increased network traffic and limited offline operation capabilities.

5. AWS IoT Greengrass [17]: AWS IoT Greengrass is a service provided by
Amazon Web Services (AWS) that extends AWS capabilities to edge devices. It
enables local data processing, device management, and cloud integration. While
Greengrass offers integration with cloud services, it relies heavily on the AWS
ecosystem, which may limit its portability and flexibility for organizations using
different cloud providers or hybrid cloud architectures.

6. Oakestra [18]: Oakestra is an orchestration framework specifically designed
for edge computing environments. It focuses on optimizing the execution of
distributed applications across edge devices by considering resource constraints,



11

network variability, and application requirements. Oakestra leverages
techniques such as dynamic load balancing, adaptive resource allocation, and
network-aware scheduling to improve the performance and reliability of edge
applications. This framework emphasizes the unique characteristics of edge
computing, including limited resources, intermittent connectivity, and latency-
sensitive workloads.

7. MAPE-K [19]: MAPE-K (Monitor-Analyze-Plan-Execute over a feedback
loop) is an autonomic management framework proposed in academia. It
focuses on self-management capabilities for edge computing environments,
including orchestration. MAPE-K employs a closed feedback loop approach,
continuously monitoring the state of the system, analyzing it, planning
appropriate actions, and executing them to optimize the performance and
resource allocation in edge deployments. This framework highlights the
importance of autonomic management and adaptive orchestration in dynamically
changing edge environments.

Unikernel technology, such as Unikraft [20] and Nanos [21], is a specialized
approach to operating systems that focuses on creating lightweight and optimized
runtime environments for running single applications or services. Unikernels are
designed to be minimalistic, efficient, and secure, offering benefits such as reduced
resource requirements, fast boot times, and enhanced isolation [22]. While unikernel
technology is an interesting and relevant topic in the field of distributed systems and
edge computing, it is important to note that it is not one of the specific objectives
of this thesis. The primary focus of this thesis is on exploring the limitations of
Kubernetes in edge computing and proposing a specialized orchestration solution.
Therefore, the discussion will primarily revolve around Kubernetes and its suitability
for edge environments, rather than delving into the intricacies of unikernels. However,
it is worth acknowledging the potential of unikernel technology in the context of edge
computing. Unikernels offer an alternative approach to optimizing resource utilization
and enhancing security in resource-constrained edge scenarios. Their lightweight and
tailored nature can contribute to improved performance and efficiency. While beyond
the scope of this thesis, further exploration and research on unikernel technology could
provide valuable insights for future developments in the field of edge computing.

So, Kubernetes’s resource-intensive nature and dependencies on cloud-based
services can pose challenges in edge environments, where computing resources are
constrained, and network connectivity is unreliable. In edge computing scenarios,
resources are often constrained due to the limited processing power, memory,
and storage capacity of edge devices or edge nodes. These devices may have
lower specifications compared to cloud servers, making it challenging to run
Kubernetes effectively. The resource-intensive nature of Kubernetes can strain the
limited resources available in edge environments, potentially leading to performance
degradation and inefficiencies. Kubernetes relies on various cloud-based services
for its operation. These services include features like load balancing, network
routing, storage management, and service discovery, among others. However, in edge
computing, network connectivity is often unreliable due to factors such as intermittent
connections, limited bandwidth, and high latency. The dependency on cloud-based
services assumes a reliable and high-bandwidth network connection, which may not



12

be readily available in edge environments [23]. This can result in disruptions, delays,
or even complete failures in Kubernetes operations when the underlying network is not
stable or robust. The resource requirements and overhead associated with deploying
and managing Kubernetes clusters may outweigh the benefits, leading to suboptimal
resource utilization and increased operational costs. In edge computing, where
efficiency and cost-effectiveness are crucial, it becomes essential to explore alternative
orchestration platforms that can provide lightweight, decentralized, and resource-
efficient management of edge resources. Addressing the limitations of Kubernetes in
the context of edge computing is essential for unlocking the full potential of distributed
computing at the network edge. It covers the way for the development of a specialized
orchestration platform that can seamlessly handle the unique challenges posed by edge
environments. This platform should provide efficient resource allocation, decentralized
control, offline operation capabilities, and enhanced adaptability to varying network
conditions. By leveraging such a specialized platform, organizations can harness
the benefits of edge computing while ensuring optimal performance, scalability, and
reliability.

The research questions guiding this study aim to explore the challenges and
limitations of existing orchestration platforms, particularly Kubernetes, in the context
of edge computing. By addressing these questions, the thesis seeks to advance
the understanding and practical implementation of edge computing orchestration,
ultimately contributing to filling existing gaps in knowledge in this rapidly evolving
field.

• What are the limitations of Kubernetes and other alternatives when applied
to edge computing scenarios? The first research question focuses on the
limitations of Kubernetes and alternatives when applied to edge computing
scenarios. By thoroughly examining these limitations, identifying the specific
challenges that arise when deploying Kubernetes in edge environments is
possible. Understanding these challenges is crucial as it helps us identify
the gaps between the requirements of edge computing and the capabilities
of Kubernetes, highlighting the need for a specialized orchestration platform
tailored to the unique demands of edge environments.

• How can a specialized orchestration platform be developed to address
the identified limitations of Kubernetes (and state-of-the-art platforms
discussed in subsequent chapters) and provide an alternative solution better
suited to the challenges posed by edge environments? The second research
question centers around the development of a specialized orchestration platform
for edge computing. By investigating and proposing a new platform, the
thesis aims to address the identified limitations of Kubernetes (and state of the
art platforms which will be discussed in the following sections) and provide
an alternative solution that is better suited to the challenges posed by edge
environments. This research question is essential as it enables us to explore
innovative approaches, algorithms, and architectural designs that can optimize
resource allocation, handle intermittent network connectivity, and meet the
stringent latency requirements of edge computing.



13

• What are the practical challenges in the implementation and development
of the proposed orchestration platform? The third research question focuses
on the practical challenges in implementation and development of the proposed
orchestration platform. By conducting extensive experiments and evaluations,
the thesis aims to assess the availability, scalability, and reliability of the platform
in real-world edge computing scenarios. This empirical analysis is crucial as it
provides insights into the practical feasibility and effectiveness of the proposed
solution, enabling practitioners and researchers to understand its strengths,
limitations, and potential areas for improvement.

By addressing these research questions, contribution to the field of edge computing
in several ways. Firstly, we enhance the understanding of the limitations of existing
orchestration platforms, when applied to edge computing. This knowledge empowers
researchers and practitioners to make informed decisions regarding the selection and
customization of orchestration solutions in edge deployments. Secondly, by proposing
a specialized orchestration platform for edge computing, we fill existing gaps in
knowledge by providing a tailored solution that can overcome the limitations of
Kubernetes and better address the challenges of edge environments. This contributes
to the practical implementation of edge computing by offering a platform specifically
designed to meet the unique requirements of distributed computing at the network
edge; a new platform named Resilient On-demand Distributed Systems (RODS) is
proposed. RODS aims to provide a holistic approach to orchestrating tasks in edge
computing, accommodating the heterogeneity of computing resources prevalent at the
edge. Lastly, through the practical complexities in implementation and development of
the proposed orchestration platform, we provide valuable insights into its consistency,
scalability, and reliability. This empirical evaluation helps refine the platform, identify
potential areas for optimization, and facilitates its adoption by organizations seeking
to leverage the benefits of edge computing. Addressing the research questions outlined
in this study contributes to filling existing gaps in knowledge and improving the
understanding and practical implementation of edge computing orchestration. By
examining the limitations of existing platforms, proposing a specialized solution, and
evaluating its performance, the thesis advances the field and paves the way for more
efficient and effective orchestration of edge computing resources.

RODS emphasizes availability and responsiveness more than strong consistency
within edge environments. By leveraging techniques like eventual consistency
and optimistic replication, RODS enables decentralized decision-making and data
management across edge nodes. This design acknowledges the challenges of achieving
strong consistency in highly distributed and dynamically changing edge environments
while ensuring the system remains available and responsive to user requests. During
the design of RODS, careful consideration is given to the trade-offs presented
by the CAP theorem. RODS adopts a partition-tolerant design, ensuring reliable
operation in the face of network failures or intermittent connectivity. Its focus
lies in maintaining availability, allowing edge nodes to continue providing services
to clients even in the presence of network partitions. These carefully considered
trade-offs between consistency, availability, and partition tolerance in RODS aim to
strike a balance that aligns with the unique requirements of edge computing. By
prioritizing availability and partition tolerance while embracing eventual consistency,



14

RODS provides a practical and efficient orchestration platform for edge environments.
This design approach recognizes the realities of edge computing, where ensuring
constant availability and responsiveness, even in the face of network disruptions, is
crucial for delivering efficient and reliable services. The implications of the CAP
theorem for edge computing underscore the need to navigate the trade-offs between
consistency, availability, and partition tolerance. The design of an orchestration
platform like RODS shifts its focus towards ensuring availability and responsiveness
while acknowledging the challenges associated with achieving strong consistency in
highly distributed edge environments. Through its embrace of partition tolerance and
adoption of techniques such as eventual consistency, RODS strives to deliver a reliable
and efficient orchestration solution for edge computing, wherein consistent availability
and resilience in the face of network failures remain fundamental considerations.

Subsequent chapters will delve into the background and related works in the
field of edge computing, providing a comprehensive overview of existing literature
and approaches. Following chapters will then present the details of the RODS
implementation, highlighting the architectural design, algorithms, and techniques
employed. Following that, an evaluation of RODS performance in edge environments
will be conducted, considering factors such as scalability, resource utilization, and
fault tolerance. Subsequently, a thorough discussion will be undertaken to analyze the
findings and implications of the research.

This thesis aims to provide a comprehensive understanding of the challenges
and opportunities in edge computing orchestration, proposing a novel platform that
addresses the limitations of existing solutions. By enhancing the capabilities of
orchestration in edge environments, RODS strives to pave the way for more efficient
and reliable edge computing deployments. The thesis will conclude with a summary
of the research outcomes, implications, and suggestions for future research directions.



15

2. RELATED WORKS

The related work chapter comprehensively overviews prior research and literature in
edge computing orchestration. This chapter explores various topics, including edge
computing, distributed systems, fog computing, orchestration challenges, container
orchestration tools, and relevant academic works. By reviewing and analyzing existing
research, this chapter lays the groundwork for developing and validating the RODS
platform. Scope and Organization: This chapter is organized into several sections,
each focusing on a specific topic related to edge computing orchestration. The sections
include

• an exploration of edge computing and its key characteristics (2.1),

• the evolution and development of distributed systems (2.2),

• specific challenges in orchestration (2.4),

• an overview of container orchestration tools (2.5), and

• a review of relevant academic works (2.6) such as Oakestra and HYDRA.

This structured approach allows for a systematic examination of the relevant
literature. The insights gained from the review of prior research are crucial for
informing and guiding this thesis’ investigation. By examining different approaches,
methodologies, and findings, it is possible to gain leverage the strengths and lessons
learned from previous studies to develop and validate the RODS platform. The
identified gaps in the existing literature will guide us in addressing the limitations of
current orchestration platforms and contribute to advancing edge computing research
and practice. The related work chapter sets the stage for the subsequent chapters,
where the methodology, implementation, and evaluation of the RODS platform are
presented. It forms a solid foundation for this research, enabling us to build upon
existing knowledge and significantly contribute to edge computing orchestration.

2.1. Edge Computing

Edge computing is a distinct computing paradigm that operates at the edge of
the network, aiming to bring computational capabilities closer to the data source.
Researchers have proposed various definitions of edge computing. One definition
describes it as a mode of network edge execution where the downlink data represents
cloud services, the uplink data represents the Internet of Everything, and the edge of
edge computing refers to the computing and network resources between the data source
and the path of cloud computing centers [24, 25]. Another definition characterizes
edge computing as a computing model that deploys computing and storage resources
closer to mobile devices or sensors at the network edge [26]. A unified definition
suggests that edge computing unifies resources close to the user geographically or in
terms of network distance to provide computing, storage, and network services for
applications [27]. Additionally, some industrial alliance defines edge computing as
an open platform that integrates networking, computing, storage, and applications and



16

provides edge intelligent services nearby to meet industry requirements in connection,
real-time business, data optimization, application intelligence, security, and privacy
[28, 25].

In essence, edge computing aims to provide services and perform computations
at the edge of the network and data generation [25]. By migrating the network,
computing, and storage capabilities of cloud computing to the network edge, edge
computing offers intelligent services that meet critical IT industry needs, including
agile linking, real-time business, data optimization, application intelligence, security,
privacy, low latency, and high bandwidth requirements. While edge computing has
gained significant attention as a research topic, it is important to note that it does not
replace cloud computing. Instead, the two paradigms should coexist, complement each
other, and develop in a coordinated manner to facilitate industry digital transformation.
Data generated on edge nodes must still be summarized in the cloud for in-depth
analysis and meaningful insights. Cloud computing continues to play a crucial role
in developing increasingly intelligent IoT devices [25, 29].

The emergence of edge computing addresses the challenges posed by traditional
cloud computing, which involves transferring all data to centralized cloud computing
centers for computation and storage. With the proliferation of IoT devices and the
generation of vast amounts of data, cloud computing’s network bandwidth often
falls short of meeting the requirements of time-sensitive and real-time systems [30].
Cloud computing also exhibits deficiencies in terms of load, real-time performance,
transmission bandwidth, energy consumption, and data security and privacy protection.

In the context of IoT, edge computing serves as a means to alleviate the load on
cloud computing by handling tasks locally at the network edge. Edge computing
shares the burden of the cloud. It is responsible for tasks within its scope, ensuring
that data is not lost even if issues arise with edge computing. Some data processed by
edge computing may still need to be sent back to the cloud for in-depth analysis, data
mining, and sharing. The collaboration between cloud computing and edge computing
provides stability to connected IoT devices. The working method often involves
cloud computing performing big data analysis and output, passing it to the edge for
processing and execution. This cooperative approach has found application in various
domains such as intelligent manufacturing, energy, security, privacy protection, and
smart homes. Cloud computing controls the overall process, while edge computing
provides real-time detection and timely problem resolution. In smart homes, edge
computing nodes handle heterogeneous data from different devices, which is then
uploaded to the cloud for processing, enabling edge nodes’ access and control from the
cloud. Both cloud computing and edge computing leverage their respective strengths
to cater to the needs of IoT devices, and their joint development continuously drives
IoT progress [31].

Edge computing extends cloud computing but possesses distinct characteristics.
Cloud computing excels in comprehensive data processing, conducting in-depth
analysis, and serving non-real-time data processing applications such as business
decision-making. On the other hand, edge computing focuses on local operations and
performs better in small-scale, real-time intelligent analysis, meeting the immediate
needs of local businesses. In terms of network resources, edge computing handles
data closer to the information source, enabling local storage and processing without
uploading all data to the cloud. This reduction in network burden significantly



17

enhances network bandwidth utilization efficiency. Cloud computing and edge
computing play pivotal roles in the future development of intelligent IoT applications.
The main differences between the two paradigms are summarized in Table 1. In
addition to the Table 1, Table 2 is presented to complement it.

Table 1. Short comparison between Edge and Cloud Computing presented in [25]

Applicable
Situation

Network
Bandwidth

Pressure
Real-time

Calculation
Mode

Cloud
Computing

Global More High
Large-scale

centralized processing
Edge

Computing
Local Less Low

Small-scale
intelligent analysis

Table 2. Extension of the Table 1 in this thesis
Data

Processing
Location

Data
Storage

Location

Architecture
of the

Devices/Servers
Cloud

Computing
Centralized Centralized Homogenous

Edge
Computing

Distributed Distributed Heterogenous

The edge computing model stores and processes data on edge devices without
uploading them to a cloud computing platform. This characteristic offers several
advantages:

1. Fast data processing and real-time analysis: Compared to traditional
cloud computing, edge computing excels in response speed and real-time
performance. Being closer to the data source, edge computing enables
data storage and computation at the edge node, eliminating the need for
intermediate data transmission. This proximity to users leads to improved data
transmission performance, ensures real-time processing, and reduces latency.
Edge computing provides users with various responsive services, particularly in
fields like autonomous driving, intelligent manufacturing, and video monitoring,
where location awareness and rapid feedback are crucial.

2. Enhanced security: Traditional cloud computing requires uploading all data to
the cloud for centralized processing, which poses risks such as data loss and
leakage, compromising security and privacy. In contrast, edge computing limits
its responsibilities to tasks within its scope, processing data locally and avoiding
the risks associated with network transmission. This approach guarantees data
security, as attacks only impact local data rather than the entire dataset.

3. Cost-effectiveness, energy efficiency, and reduced bandwidth requirements:
Edge computing minimizes the need for network bandwidth by processing data
locally without uploading it to the cloud. This reduction in network load not only
enhances network bandwidth utilization but also significantly reduces energy



18

consumption in edge devices. Edge computing’s smaller scale allows companies
to reduce data processing costs on local equipment. Consequently, edge
computing reduces data transmission volume, lowers transmission costs and
network bandwidth pressure, minimizes energy consumption in local equipment,
and improves overall computing efficiency.

2.2. Distributed Systems: Evolution and Development

The development and evolution of distributed systems have been driven by the
increasing demand for applications capable of handling many users, providing real-
time services, and efficiently utilizing network resources [32]. To address these
challenges, various architectural paradigms have emerged over time. This section
provides a comprehensive overview of the taxonomy of distributed system evolution,
highlighting the key features and advancements in each architecture.

Client-Server Model: The client-server model represents one of the earliest and
fundamental architectures for distributed systems. In this model, clients initiate
requests to a centralized processing side known as the server, which provides
the requested services. The primary focus of this architecture was to facilitate
communication and enable users to access services from servers. Communication in
this model typically relied on Remote Procedure Calls (RPC) for interaction [33].

Mobile Agents: The mobile agents architecture aimed to overcome the limitations
imposed by slow networks by moving computation to the server side. Agents,
comprising code, data, and state, were capable of migrating between hosts to
accomplish specific tasks. This architecture was designed to handle complex systems
that required continuous connection with information sources (servers) to track updates
[34, 35]. However, as communication links improved and businesses demanded more
structured software systems, this paradigm received less attention. Moreover, security
issues in mobile agents in distributed systems can pose significant challenges and
risks including Denial of Service (DoS) Attacks, trust and authentication issues, and
information leakage.

Service-Oriented Architecture (SOA): SOA emerged as a successful extension of
the client-server architecture, providing additional business value. Its objective was
to offer reusable and loosely coupled services, enabling integration across diverse
organizations and operational systems. SOA introduced the concept of explicit
boundaries between autonomous services located on different servers. Communication
in SOA relied on protocols such as SOAP (Simple Object Access Protocol) and
aimed to leverage services across the web. However, SOA still relied on monolithic
systems, which highlighted the need for more resilient, scalable, and resource-efficient
architectures [36].

Microservices Architecture: The microservices architecture evolved to address the
limitations of previous architectures and meet the requirements of modern applications.
It emphasizes breaking down applications into smaller, independent services that
can be developed and deployed separately. Each microservice focuses on a specific
functional operation and can be designed to be independent or further divided
into smaller services. Communication between microservices relies on lightweight
protocols, facilitating agility and efficient resource utilization [37]. The elimination



19

of a centralized service bus enhances decoupling between services, enabling the
distribution of control and intelligence. The benefits of microservices architecture
include scalability, resilience, frequent updates, and dynamic user experiences.
Microservices can be organized in various ways, such as shared databases as services
and utilizing lightweight communication protocols.

2.3. Fog Computing and Orchestration

Edge computing refers to the decentralized data processing at or near the network edge,
where devices generate and consume data. It aims to alleviate bandwidth constraints
and reduce latency by performing computation closer to the data source. In contrast,
Fog computing extends the cloud infrastructure to the network edge, leveraging
intermediate computing nodes called fog nodes or fog servers. These fog nodes act as
intermediaries between the cloud and edge devices, providing computational resources
and storage capabilities. While edge computing focuses on pushing computation to the
network edge, Fog computing encompasses a broader architecture that includes edge
devices, fog nodes, and cloud resources [38, 39]. Fog computing offers a hierarchical
approach, with fog nodes acting as intermediaries between the edge and the cloud. This
hierarchical structure enables scalable and distributed data processing, analysis, and
storage, resulting in improved performance and reduced dependency on centralized
cloud infrastructure. Fog computing complements edge computing by providing a
more comprehensive framework for managing resources and orchestrating distributed
systems.

The convergence of edge and Fog computing opens up new possibilities for
developing effective orchestration systems. With its distributed architecture and
hierarchical structure, Fog computing enables efficient resource management,
workload distribution, and service coordination across edge devices and fog
nodes. Orchestration systems leveraging Fog computing can intelligently allocate
computational tasks, dynamically adjust resource utilization, and ensure optimal
performance for data-intensive applications. Fog computing’s proximity to edge
devices allows for real-time data processing, enabling rapid decision-making and
response. This capability is precious in applications such as industrial automation,
smart cities, healthcare monitoring, and real-time analytics [40]. By combining the
strengths of edge computing and Fog computing, orchestration systems can leverage
the scalability, low latency, and distributed nature of Fog infrastructure to provide
reliable and efficient services in dynamic and heterogeneous environments.

The following instance emphasizes the need for an orchestration system that
effectively integrates cloud, edge, and fog computing. This integration is crucial to
harness the combined capabilities of these computing paradigms and maximize their
potential for distributed systems.

For instance, consider a smart city scenario where various sensors and devices
are deployed throughout the urban landscape to monitor environmental conditions,
traffic flow, and energy consumption. These devices generate massive amounts of
data that must be processed and analyzed in real-time to enable intelligent decision-
making and optimize resource utilization. In such a scenario, more than cloud
computing is required to handle the sheer volume and low-latency requirements of



20

data processing. While edge computing can alleviate the bandwidth constraints by
performing computation closer to the data source, it may still face scalability and
resource availability limitations. This is where fog computing comes into play. By
extending the cloud infrastructure to the network edge through fog nodes or servers
strategically located within the smart city, fog computing enables localized data
processing, analysis, and storage. The fog nodes act as intermediaries between the
edge devices and the cloud, facilitating efficient resource management and workload
distribution. An orchestration system is needed to effectively orchestrate this complex
ecosystem of cloud, edge, and fog resources. This system would dynamically allocate
computational tasks, optimize resource utilization, and coordinate interactions between
different computing layers.

For example, the orchestration system could intelligently distribute data processing
tasks, offloading computationally intensive operations to the cloud when resources
are available and leveraging edge and fog computing for real-time and localized
processing. It could also manage data storage and synchronization between the
cloud, edge devices, and fog nodes, ensuring data consistency and availability across
the entire system. By integrating cloud, edge, and fog computing in a cohesive
orchestration system, the smart city scenario can benefit from the scalability and
computational power of the cloud, the low-latency processing of edge computing, and
the localized intelligence of fog computing. This integration enables efficient resource
management, real-time analytics, and improved decision-making capabilities, leading
to enhanced services, optimized resource utilization, and a better quality of life for city
residents.

2.4. Orchestration Challenges

The orchestration of virtualized environments poses significant challenges due to
the expansive scale, diverse resource types, and heterogeneity of the underlying
cloud environment. Managing these challenges becomes even more complex due
to uncertainties stemming from various factors, such as the fluctuating demand for
resource capacities (e.g., bandwidth and memory), potential failures (e.g., network link
disruptions), user access patterns (e.g., user numbers and locations), and the lifecycle
activities of applications [41]. The intricate nature of cloud resource orchestration is
of particular concern, as applications are composed of multiple software and hardware
resources that often exhibit diverse characteristics, leading to intricate integration
and interoperation dependencies [42]. These complexities in virtualized environment
orchestration demand novel solutions that address the intricacies arising from the
scale, heterogeneity, and uncertainties of the cloud environment. A comprehensive
orchestration framework can enable efficient deployment and operation of applications
by effectively managing and coordinating the allocation, provisioning, and utilization
of resources. Such a framework should provide robust mechanisms for resource
allocation, taking into account the dynamic resource demand, potential failures, and
various integration dependencies within applications.

The process of orchestration within the Cloud-to-Edge continuum introduces
additional complexities and poses unique challenges. With the advent of the cloud-to-
thing era, applications, and storage are now distributed across geographical locations.



21

Consequently, there is a need to restructure applications to distribute their logic
across the network while also decentralizing storage. This shift in architecture
gives rise to novel concerns regarding reliability and data integrity, particularly in
the context of broadly decentralized networks. In this paradigm, cloud servers
assume the role of control nodes, overseeing the operations of intelligent edge
devices. They handle summary analytics tasks while leaving real-time decision-
making capabilities to the edge servers. This distribution of responsibilities allows
for efficient data processing and analysis at the edge, enabling timely and context-
aware decision-making. However, it introduces challenges related to maintaining
data integrity, ensuring reliable communication, and managing the coordination
between cloud and edge resources. Effectively navigating these complexities requires
innovative approaches to address the unique requirements of the Cloud-to-Edge
continuum [31, 43]. It involves designing architectures that distribute application
logic and decentralize storage while ensuring reliable and secure data transmission.
Furthermore, integrating cloud and edge resources necessitates robust coordination
mechanisms to optimize resource utilization and facilitate seamless communication
between the two tiers. Understanding and addressing the challenges associated with
orchestration in the Cloud-to-Edge continuum is crucial for enabling the efficient and
reliable operation of applications in this distributed environment.

2.5. Container Orchestration Tools

Kubernetes [8] has emerged as a leading container orchestration platform in the
realm of cloud-native computing with a wide range of features and functionalities
that simplify the deployment, scaling, and management procedures, and it offers a
reliable and expandable infrastructure for managing containerized applications. At
its core, The deployment, scaling, and management of containerized applications
across node clusters are all automated by Kubernetes. It offers a declarative approach,
allowing users to define the desired state of their applications and letting Kubernetes
handle the necessary operations to achieve and maintain that state. Key features
of Kubernetes include its ability to automatically distribute containers across nodes,
handle container scheduling and resource allocation, monitor application health,
and provide self-healing capabilities. It also supports horizontal scaling, allowing
applications to adjust their resource usage based on demand dynamically. Moreover,
Kubernetes incorporates powerful networking and service discovery mechanisms,
enabling seamless communication between containers and services within the cluster.
It provides load balancing, service discovery, and DNS-based name resolution,
facilitating the creation of robust and interconnected application architectures. By
utilizing Kubernetes, organizations can benefit from improved resource utilization,
simplified deployment workflows, enhanced scalability, and high availability of
their applications. Due to its open-source nature, broad community support,
and interoperability with a variety of cloud providers and infrastructure platforms,
Kubernetes has experienced substantial growth in popularity.

At the core of Kubernetes is its support for containerization. Kubernetes
enables portability, consistency, and scalability by encapsulating applications and
their dependencies into containers. Containers provide an isolated and lightweight



22

environment, ensuring applications run consistently across different infrastructures.
Kubernetes also embraces the microservices architecture, a fundamental tenet of cloud-
native computing. With Kubernetes, complex applications can be decomposed into
more minor, loosely coupled services, each running in its own container. This modular
approach enables agility, as each microservice can be developed, deployed, and scaled
independently. Scalability is a critical requirement in cloud-native environments, and
Kubernetes addresses this aspect effectively. It provides mechanisms for automatic
scaling based on metrics such as CPU utilization or incoming requests. Kubernetes
dynamically adjusts the number of replicas for each service, ensuring optimal resource
utilization and efficient handling of varying workloads. Declarative configuration is a
fundamental principle of Kubernetes, allowing users to define the desired state of their
applications and infrastructure. Kubernetes takes care of the actual deployment and
management, continuously working to converge the system state through the desired
configuration. This declarative approach simplifies operations, promotes consistency,
and reduces manual intervention. With its robust container orchestration capabilities,
Kubernetes enables deploying and managing complex, distributed applications. It
coordinates the scheduling, scaling, and monitoring of containers across clusters of
nodes, ensuring high availability, fault tolerance, and efficient resource utilization.
Kubernetes also provides advanced features like service discovery, load balancing, and
rolling updates, making it an ideal choice for cloud-native environments.

While Kubernetes has proven to be a powerful tool in cloud-native environments,
its application to edge computing scenarios presents unique challenges. The
characteristics of edge environments, such as limited computing resources, unreliable
network connectivity, and stringent latency requirements, demand tailored solutions
beyond traditional cloud-based approaches. In edge computing, computing resources
are often constrained due to the limited hardware capabilities of edge devices. With
its resource-intensive nature, Kubernetes may struggle to operate efficiently in such
resource-constrained environments. The overhead of running Kubernetes components
on edge devices can strain the available computational resources, impacting the
overall performance and scalability. Unreliable network connectivity is another critical
challenge in edge environments. Edge devices may experience intermittent or limited
network connectivity, unlike cloud environments with stable and high-bandwidth
connections. Kubernetes relies heavily on network communication for inter-container
communication, service discovery, and coordination. The assumption of reliable
network connectivity in Kubernetes may not hold in edge environments, leading
to potential disruptions in application functionality. Edge computing requires strict
latency requirements due to real-time data processing and decision-making at the edge.
However, Kubernetes, primarily designed for cloud-based scenarios, may not provide
the necessary optimizations for achieving ultra-low latency in edge environments.
The inherent architectural design and distributed nature of Kubernetes can introduce
additional latency, impacting the responsiveness and real-time capabilities expected
in edge computing applications. Considering these limitations, it becomes evident
that while Kubernetes excels in cloud environments, there may be more suitable tools
for edge computing and orchestration tasks. Edge computing requires specialized
solutions optimized for resource-constrained environments, intermittent network
connectivity, and low-latency requirements. Recognizing the unique challenges of
edge computing, researchers and industry practitioners have been exploring alternative



23

orchestration platforms and approaches that can better address the specific needs of
edge environments.

In addition to Kubernetes, several other container orchestration tools commonly
used in the industry offer alternatives to address the challenges of edge computing.
These tools, including k0s, K3s, MicroK8s, Docker Swarm, Apache Mesos, and
HashiCorp’s Nomad, provide unique features and functionalities that may be more
suitable for edge computing environments. A comparison table highlighting their key
features, functionalities, and how they compare to Kubernetes in the context of edge
computing is presented in Table 3.

Table 3. Alternative tools and platforms to Kubernetes

Tool
Key Features

and Functionalities
Advantages Limitations

k0s [11]
Lightweight and
minimal Kubernetes
distribution

Reduced resource
footprint, suitable
for edge nodes

Limited community
support

K3s [12]
Lightweight and
secure Kubernetes
distribution

Simple installation,
lower resource
requirements

Fewer advanced
features compared
to full Kubernetes

MicroK8s [13]
Lightweight and
easy-to-install
Kubernetes

Quick deployment,
ideal for edge and
IoT scenarios

Limited scalability
for large
deployments

Docker
Swarm [14]

Native orchestration
tool for
Docker containers

Simplicity and
seamless integration
with Docker

Fewer advanced
features compared
to Kubernetes

Apache
Mesos [15]

Distributed systems
kernel for resource
management

Robust resource
allocation and
isolation capabilities

Steeper learning
curve compared
to Kubernetes

HashiCorp
Nomad [16]

Flexible and
lightweight workload
orchestrator

Simple configuration
and cross-platform
support

Limited ecosystem
compared to
Kubernetes

Each tool has its strengths and limitations when applied to edge computing. For
instance, Docker Swarm offers simplicity and tight integration with Docker, making it
an attractive option for organizations already utilizing Docker containers. Conversely,
Mesos provides advanced resource allocation and isolation capabilities, ensuring
efficient utilization of edge resources. However, it is important to note that these tools
may have fewer advanced features than Kubernetes and may have a smaller ecosystem
of supporting tools and applications.

2.6. Related Academic Works

This section will explore a variety of academic publications that have contributed
to edge computing and container orchestration. These publications cover a wide
range of various topics, including algorithms, prototype platforms, and theoretical
foundations. The information will be about the difficulties, breakthroughs, and
real-world applications of container orchestration by looking at these research



24

contributions. It may be possible to make links, spot gaps, and situate this study within
the scholarly debate thanks to this exploration. The scholarly publications that inform
and direct this thesis’s investigation into container orchestration and edge computing
are briefly summarized in this section.

The study by Bartolomeo presents Oakestra [18], a hierarchical orchestration
framework specifically designed to address the challenges of edge computing.
The framework focuses on supporting service operation over heterogeneous edge
infrastructures while considering strict quality-of-service requirements, resource
heterogeneity, and network fluctuations. Oakestra offers efficient service management
and computation offloading capabilities tailored for edge environments, unlike
traditional cloud-native technologies such as Kubernetes. Oakestra introduces several
notable contributions. Firstly, it employs a two-tier logical hierarchical orchestration
of computing resources. Local cluster orchestrators manage individual clusters,
coordinating with the root orchestrator to provide aggregated resource utilization
and service operation statistics. Application developers interact with the root
orchestrator to deploy services, specifying high-level service level agreements (SLAs)
and deployment descriptors. Secondly, Oakestra adopts a delegated service scheduling
principle, decentralizing task placement to find optimal deployments quickly.

Figure 1. Architectural view of Oakestra framework adapted from [18].

As Figure 1 illustrates, the root orchestrator calculates the most suitable clusters
for service requests based on requirements and offloads the requests to the cluster
scheduler for efficient resource deployment. This approach significantly reduces the
complexity and cost of service scheduling at the edge. Oakestra utilizes semantic
IP addresses and load-balancing techniques to support flexible and transparent load



25

balancing. The framework enables service mobility and handles hardware constraints
without requiring code adaptation. It establishes an overlay network for service-to-
service communication, allowing traversal of network address translation (NAT) and
firewalls. The study demonstrates Oakestra’s capabilities through a live demonstration
in an edge-cloud infrastructure using a latency-critical augmented reality (AR)
application [44]. The demonstration showcases the deployment of the AR application
using Oakestra’s APIs, handling spikes in application load through rescheduling and
replication, and transparently managing resource and service failures at the edge. The
application’s performance and the infrastructure’s operational load are monitored and
observed during the demonstration. The research conducted by Bartolomeo et. al. in
Oakestra aligns closely with the objectives of this thesis. It addresses the limitations
of Kubernetes in edge computing scenarios and proposes a specialized orchestration
framework for edge environments. While Bartolomeo et. al. focuses on hierarchical
orchestration, service scheduling, and load balancing, this thesis aims to explore
the challenges and opportunities of orchestrating containerized applications in edge
computing. By incorporating the insights and findings from Bartolomeo’s work, this
thesis builds upon the existing body of knowledge and contributes to the advancement
of edge computing orchestration research. Oakestra framework provides valuable
insights into edge computing orchestration and offer a complementary perspective to
the objectives of this thesis. By combining these findings with the specific focus of
this research, a comprehensive understanding of the orchestration landscape in edge
environments can be achieved, enabling the identification of further opportunities and
potential improvements.

The academic work by Jiménez and Schelén introduces HYDRA, a decentralized
orchestrator designed specifically for containerized microservice applications.
HYDRA operates as both a location-aware and location-agnostic orchestrator,
providing functionalities for efficient resource and application management [45].
Figure 2 shows an example of the HYDRA in which it illustrates two control types
for application management. The application consists of 9 services. In the first type
(Type 1, left side of the figure), the HYDRA orchestrator operates without location
awareness, resulting in non-location-based service placement. A single layer of
management is conducted by the root controllers. On the other hand, in the second type
(Type 2, shown on the right), HYDRA is location-aware, leading to service deployment
based on location in different regions (R1 to R3). The root controllers handle global,
lightweight management, while the leaf controllers perform local, active management.

The authors’ research contributions in this paper include:

1. ID-based Identifier Design: HYDRA utilizes unique identifiers (IDs) to
differentiate nodes, applications, and resources. By incorporating geographical
mapping, HYDRA achieves location awareness when necessary.

2. Node Discovery: HYDRA employs a node discovery mechanism based on
Kademlia’s [46] distributed hash table and node lookup algorithm to enable
decentralized orchestration. Each node maintains a routing table, facilitating
the discovery of other nodes within the overlay network.

3. Application Management: HYDRA enables the deployment and control of
containerized microservice applications. Application owners provide relevant





27

and location awareness aligns with the objectives of this thesis. However, further
exploration is needed to identify synergies and differences between HYDRA and this
research, particularly within the context of edge computing and its specific challenges.
By incorporating the methodologies and findings presented in the HYDRA paper, this
thesis aims to build upon and extend the existing knowledge in the field of container
orchestration. It seeks to address the unique requirements and constraints of edge
computing environments while leveraging the benefits of decentralized orchestration
approaches.

The article by Cozzolino et. al., introduces ECCO, a framework for a roadside
infrastructure that integrates smart vehicles, roadside units (RSUs), and cloud servers
to improve road safety and alleviate congestion. ECCO enables the development
and deployment of applications by leveraging a distributed, edge-cloud computational
model. The framework focuses on use cases such as car crash detection, road hazard
detection, and smart parking. It utilizes edge functions (EFs) and multi-node execution
pipelines to process inputs and deliver outputs [47]. The Figure 3 illustrates the
modules of the ECCO framework. The deployment of pipelines is managed by both the
cloud and the edge, with the cloud defining the deployment plan and the edge making
local scheduling decisions. The architecture employs edge computing to provide real-
time information to nearby vehicles and enhance context awareness. The ECCO
architecture revolves around edge-cloud pipelines, which involve multiple edge nodes
(ENs) like RSUs and other roadside devices. The pipelines consist of inputs, EFs for
processing, and outputs for enabling services. The deployment is controlled by the
cloud, with the cloud nodes defining the high-level deployment plan while the edge
nodes make local scheduling decisions. This control aspect highlights the centralized
role of the cloud nodes in ECCO’s architecture. The pipeline execution follows a
directed acyclic graph (DAG) structure, and EFs are chained together to form an
execution sequence. Each EF performs a specific role and is hosted on an EN. The ENs
strategically place EFs based on available data sources, load status, and geographic
position. The system leverages edge computing to deliver real-time information to
nearby vehicles, enhancing their context awareness. ECCO provides insights into the
orchestration of edge resources and the utilization of multi-node execution pipelines
even though the main focus of the work is presenting cloud nodes controlling over the
edge nodes.

Above all the frameworks and prototypes introduced earlier, many articles focus on
the algorithmic view of the orchestration problem. As an example, Mehar et. al.,’s [48]
works try to optimize the roadside units (RSU) on vehicular networks. Vo et. al., in
the article published in 2017, alongside with Castellano et. al. emphasize an optimal
allocation algorithm for high-performance video streaming in 5G networks [49, 50].
For the sake of resource partitioning DRAGON [51], as a prototype and algorithm,
seeks optimal partitioning of shared resources between different applications running
over a standard edge infrastructure in their resource orchestration with guarantee
distributed systems.



28

Figure 3. Overview of ECCO Modules, adapted from [47].

2.7. Summary

In this chapter, a thorough review of the relevant research in the areas of container
orchestration and edge computing was presented to answer the first research question
of this thesis. It has explored various topics, including the concept of edge computing,
the limitations of Kubernetes in edge environments, alternative orchestration tools,
and significant academic works in the field. Through this review, we have gained
a deeper understanding of the existing approaches, challenges, and advancements in
container orchestration for edge computing. The insights obtained from these works
will serve as a foundation for this thesis and the development of an effective and
efficient orchestration platform for edge environments. With this solid understanding
of the current state of the field, we are well-equipped to proceed with own investigation
and contribute to the advancement of container orchestration in edge computing.



29

3. METHODOLOGY

In the methodology chapter, a roadmap is served for implementing and detailing
the proposed solution. This chapter outlines the design and architecture view of the
system, providing insights into the overall structure and organization. The utilization
of the Rust language is explored as it provides unique advantages for performance,
memory safety, and concurrency.

3.1. Design and Architecture Overview

The design and architecture of the Resilient On-demand Distributed Systems (RODS)
platform is carefully crafted to enable efficient and reliable task distribution based
on a modified version of the RAFT algorithm, ensuring seamless operation in edge
computing environments. RODS encompasses three distinct categories of nodes, each
playing a specific role in the system. As Figure 4 illustrates an overview of the RODS
platform, in the following, the details of each category will be explained.

The first category consists of cloud nodes, which are primarily responsible for
enhancing the usability of the system. Two components are present within this
category: monitoring and global data/object storage. The monitoring component
enables efficient system monitoring and management. In contrast, the global
data/object storage component provides a centralized repository for storing and
retrieving data and objects. Although the cloud nodes do not actively participate in
system management, their presence significantly simplifies the utilization of the RODS
platform.

The second category is dedicated to edge nodes, which are specifically designed to
operate at the network edge. The edge nodes act as the central hub of the system,
facilitating seamless connectivity between the monitoring and worker nodes. Within
the edge node category, three types of nodes coexist: Leader, Candidate, and Replica.
The system operates with a single leader at any given time, which is initially selected
based on a consensus using the modified RAFT algorithm. The leader assumes the role
of coordinating the distributed tasks and ensuring their timely execution. Candidate
nodes, on the other hand, are capable of detecting leader failures, initiating leader
elections, and running autonomous components such as task scheduling within their
locally interconnected worker nodes. Furthermore, candidates maintain a replica of
the database, ensuring data availability and fault tolerance in the system. Candidates
can establish connections with other candidates or directly with the leader, fostering a
resilient and distributed network topology.

The third category encompasses worker nodes, also known as low-end nodes. These
nodes are equipped with the runtime environment for supported languages (currently
python), allowing them to execute tasks or binary files. Worker nodes are capable
of efficiently handling computational workloads and contribute to the overall task
distribution and execution within the RODS platform.

The connectivity between the different categories is crucial for the seamless
operation of RODS. Edge nodes serve as the central point of connection, facilitating
communication between the monitoring and worker nodes. This interconnected
network of edge nodes promotes efficient task distribution and collaboration among



30

Figure 4. RODS Logical Architectural Model.



31

the nodes. It is important to note that the leader selection process in RODS is based on
a modified version of the RAFT algorithm, tailored to support single-node operation.
This modification removes the minimum requirement of three nodes for consensus,
enabling the system to function effectively even with a limited number of nodes.

The task scheduling mechanism employed by RODS follows a simple First-In, First-
Out (FIFO) approach. Tasks are queued based on their arrival time, ensuring fair
and efficient execution. This simplicity in scheduling allows for easy adoption and
scalability within edge computing environments. To join the RODS platform, a new
node of any type must obtain a unique secure token called a secret. This token is
generated by one of the candidate nodes or the leader and is securely shared with the
new node using the rodsctl command-line application. By acquiring this token, the
new node can establish secure connections and seamlessly integrate into the RODS
cluster. The details of the joining node is explained in the following sections.

Communication within the RODS platform is facilitated through a socket-based
protocol, which supports Transport Layer Security (TLS) for encryption. The
implementation of TLS ensures the confidentiality and integrity of the exchanged
messages, enhancing the overall security of the system. Furthermore, the system
mandates that the certificate of any server, or master, is signed by a trusted certificate
authority. This requirement ensures that only legitimate and authorized connections
are accepted by the RODS platform.

In addition to the previously mentioned aspects, it is worth highlighting that the
RODS platform is designed to operate seamlessly regardless of the operating system
or CPU architecture of the host nodes. This platform-agnostic approach ensures
that RODS can be deployed in heterogeneous computing environments, enabling
compatibility and interoperability across a wide range of hardware and software
configurations. This flexibility further enhances the versatility and accessibility of the
RODS platform in various edge computing scenarios.

3.2. Rust Programming Language

Rust is a modern and innovative programming language that combines the performance
of low-level systems languages with the safety and expressiveness of high-level
languages [52]. Designed with a focus on memory safety, concurrency, and reliability,
Rust provides developers with a powerful toolset for building robust and efficient
software systems. Its unique features, including a strict ownership model, a borrow
checker for preventing memory errors, and lightweight, thread-safe abstractions for
concurrent programming, make Rust an ideal choice for applications that demand high
performance, reliability, and security. With a growing ecosystem of libraries and tools,
Rust offers a solid foundation for developing complex software solutions across diverse
domains.

Rust’s exceptional performance capabilities make it a compelling choice for
implementing the RODS platform, especially in the context of edge computing.
The language’s design philosophy of controlling system resources allows developers
to write highly optimized code that efficiently utilizes available hardware. Rust’s
low-level control over memory and efficient abstractions enable the RODS platform
to achieve high-performance task distribution and management, ensuring effective



32

utilization of computing resources in edge computing environments. When comparing
Rust’s performance to C, another popular systems programming language, both
languages offer similar capabilities in terms of low-level control and efficient code
execution. However, Rust brings additional benefits to the table. While C provides
manual memory management and control, it lacks built-in safety mechanisms. This
can lead to common programming errors such as null pointer dereferences, buffer
overflows, and memory leaks, which can negatively impact performance and introduce
security vulnerabilities. Rust, on the other hand, combines the low-level control of C
with advanced memory safety features. Rust’s ownership model and borrow checker
provide compile-time guarantees that prevent common memory-related errors. Rust
ensures memory safety without sacrificing performance by enforcing strict rules and
analysis at compile-time. This significantly reduces the likelihood of crashes, data
corruption, and security vulnerabilities that could impact the stability and integrity
of the RODS platform. Rust’s focus on zero-cost abstractions allows developers to
write high-level code with minimal runtime overhead. This means that developers can
benefit from expressive and safe abstractions without sacrificing performance. Rust’s
borrow checker helps eliminate data races, ensuring safe concurrent programming and
efficient utilization of multiple cores in edge computing scenarios.

Algorithm 1. An example of a Rust code
fn main() {

let mut data = vec![0; 1000000];

for i in 0..1000000 {

data[i] = i;

}

println!("Data: {:?}", data);

}

Algorithm 2. Same example of Algorithm 1 in C language
#include <stdio.h>

#include <stdlib.h>

int main() {

int* data = (int*)malloc(sizeof(int) * 1000000);

for (int i = 0; i < 1000000; i++) {

data[i] = i;

}

printf("Data: ");

for (int i = 0; i < 1000000; i++) {

printf("%d ", data[i]);

}

free(data);

return 0;

}

The Algorithm 1 and 2 show the same example in Rust and C, respectively. In this
example, the algorithm allocates an array of 1 million integers and populate it with



33

values from 0 to 999999. The Rust code uses a vector (Vec) to manage the dynamic
array. In contrast, the C code manually allocates and frees memory using malloc and
free. The critical difference between the two is how they handle memory safety. In
the Rust code, the vector ensures memory safety by tracking the length and capacity of
the array and automatically resizing it when needed. It also enforces strict ownership
and borrowing rules simultaneously, preventing common memory-related bugs like
buffer overflows and memory leaks. On the other hand, the C code relies on manual
memory management, which is prone to errors. Suppose an accidental access memory
beyond the allocated range or forgetting to free the memory. In that case, it can lead to
undefined behavior, crashes, or memory leaks. It is worth mentioning that both codes
have roughly the same performance.

Rust’s memory safety features, including its ownership model and borrow checker,
play a crucial role in enhancing the stability and security of the implementation in
the context of the RODS platform. Rust mitigates common memory-related errors by
enforcing strict rules at compile-time, such as null pointer dereferences and buffer
overflows. The ownership model ensures that each piece of data has a unique
owner, preventing data races and memory leaks. The borrow checker enforces strict
rules for borrowing and mutation, guaranteeing that references to data remain valid
and preventing dangling pointers or use-after-free errors. In the case of the RODS
platform, these memory safety features provide significant advantages. They reduce
the likelihood of crashes, data corruption, and security vulnerabilities that could
compromise the stability and integrity of the system. By catching potential memory
errors at compile-time, Rust enables developers to write code with higher confidence
in its correctness. This is very important in edge computing environments, where
reliability and security are critical.

The Algorithm 3 shows how the ownership mechanism works in commented (///)
snippet. In the main function, the vector data is created and then passed as an argument
to both the print_vector and add_one functions. However, when the developer
passes a value as an argument to a function in Rust, it transfers ownership of that value
to the function. So, in this case, the ownership of the vector data is moved to the
print_vector function, and then it is moved again to the add_one function. This
results in a compilation error because Rust enforces the principle of single ownership,
meaning that two or more owners can not be given the same variable without (&)
reference at a time. To solve this, the developers can use references (&) instead of
passing the vectors by value. By passing a reference to the vector, the developers
allow the functions to borrow the vector without taking ownership.



34

Algorithm 3. Memory safety in Rust implemented by ownership concept
fn main() {

let data = vec![1, 2, 3]; // Create a vector

// Pass the reference of the vector

// to two separate functions

print_vector(&data);

add_one(&data);

/// WRONG WAY WHICH GENERATES ERROR

/// Pass the vector and code won't be compiled

/// print_vector(data);

/// add_one(data);

}

/// the arguments only accepts the vector

/// fn print_vector(vector: Vec<i32>) {

fn print_vector(vector: &Vec<i32>) {

for element in vector {

// Print each element in the vector

println!("{}", element);

}

}

/// the arguments only accepts the vector

/// fn add_one(vector: Vec<i32>) {

fn add_one(vector: &Vec<i32>) {

for element in vector {

// Print each element + 1 in the vector

println!{"+1 is: {}", element + 1};

}

}

Rust provides excellent support for concurrent programming, offering
lightweight and thread-safe abstractions that enable efficient parallel execution
and synchronization of tasks. This concurrency support in Rust is particularly
beneficial for the RODS platform, as it allows optimal CPU and memory utilization
and scalability in edge computing environments. One of the key features in Rust’s
concurrency model is the concept of lightweight threads, known as "async tasks."
These tasks are managed by an asynchronous runtime, such as Tokio, widely used
in the Rust ecosystem. Async tasks allow for the concurrent execution of multiple
operations without the need for traditional threads, reducing overhead and improving
performance. By leveraging async Rust and Tokio, the RODS platform can handle
multiple concurrent operations, such as processing incoming requests, managing
resource allocation, and orchestrating edge nodes’ activities. This concurrency
enables the RODS platform to efficiently utilize available resources, maximizing



35

system throughput and responsiveness. Async programming in Rust brings additional
benefits beyond traditional concurrency. It allows developers to write non-blocking
code that can efficiently handle I/O operations, such as network communication
or disk access, without blocking the execution of other tasks. This non-blocking
behavior is achieved through asynchronous functions and "await" expressions, which
suspend the execution of a task until the awaited operation completes. With async
programming, the RODS platform can handle many concurrent requests without
being limited by the number of available threads. This scalability is crucial for edge
computing scenarios where numerous devices and clients interact with the system
simultaneously. The RODS platform can effectively handle concurrent operations,
distribute tasks across edge nodes, and ensure smooth component coordination.

Rust’s expressive type system ensures robust software development within the
RODS platform. The language’s strong static typing provides several benefits,
including early error detection, improved code maintainability, and enhanced
reliability and stability. Other key advantage of Rust’s type system is its ability to catch
errors at compile-time. By requiring variables and functions to be explicitly typed and
enforcing strict type-checking, Rust eliminates a wide range of common programming
mistakes before the code is even executed. This early error detection significantly
reduces the likelihood of runtime failures. Additionally, the compiler’s type inference
capabilities alleviate the need for excessive type annotations, allowing for cleaner and
more concise code. These aspects contribute to improved readability, making it easier
to maintain and update the codebase as the RODS platform evolves over time. Rust’s
type system enables the detection of many common programming errors related to data
manipulation and memory management. The ownership model and borrow checker
in Rust enforce strict rules for memory safety, preventing issues like null pointer
dereferences, data races, and buffer overflows. By catching these errors at compile
time, Rust enhances the reliability and stability of the RODS platform, reducing the
risk of crashes, data corruption, and security vulnerabilities. The expressive type
system in Rust also aids in catching logic errors and promoting code correctness. Using
algebraic data types (enums) and pattern matching allows developers to model complex
data structures and capture all possible cases explicitly. This approach minimizes the
potential for logic errors and helps ensure that all code paths are handled correctly.
Additionally, Rust’s type system supports the concept of "ownership," which facilitates
resource management and prevents common pitfalls like dangling pointers or resource
leaks.

One notable advantage of implementing RODS in Rust is the ease of portability.
Written code in Rust can be compiled and run on various systems, thanks to the
language’s focus on platform compatibility. Most of the components in RODS are
built using the standard library, which ensures portability across different platforms.
Additionally, some components rely on the core library, allowing them to run without
an operating system. This flexibility enables the RODS platform to be deployed on a
wide range of edge devices, regardless of their operating system or CPU architecture.

Rust stands out as a sustainable programming language, exemplified by its
comparative energy consumption in the Table 4. Pereira et. al., positioned as the
second language with a value of 1.03, closely trailing the baseline of C at 1.00,
Rust demonstrates its efficiency and eco-friendly nature [53]. This finding highlights
Rust’s ability to deliver optimal performance while minimizing environmental impact.





37

3.3. Summary

The methodology chapter presented the detailed procedures and techniques employed
in this thesis to address the research questions and achieve the stated objectives. By
carefully designing the experiments and selecting appropriate methods, the necessary
data to investigate and analyze the problem are gathered at hand. The implementation
of the RODS platform, combined with the utilization of the Rust programming
language, a solid foundation is built for a resilient and efficient orchestration platform
for edge computing.



38

4. IMPLEMENTATION

The chapter delves into the intricate details of the implementation, including the
components involved and the formation of nodes. The aspect of fault tolerance is also
addressed to ensure the system’s resilience in the face of failures. By following this
methodology, a comprehensive understanding of the system’s design and its practical
implications can be achieved. Now the reasons for selecting Rust language for the
implementation of RODS platform are explained in the previous chapter; this chapter
will provide deep insights into the RODS platform and its components.

4.1. Components

Figure 5. A Close look at the nodes and components.

In the RODS platform, various components have been implemented to enable
efficient task distribution and management. As described in section 3.1, the
architecture of RODS consists of different categories of nodes. Within each category,
there are specific components that play essential roles. For simplicity, all nodes in the
Edge/management layer will be referred to as "master nodes," as depicted in Figure 5.

Figure 5 illustrates the components within each type of node. These components
include the Consensus Mechanism, Communication Interface, Task Scheduler,
Storage, and Controller Interface for master nodes, as well as the Communication
Interface, Manager, and Runtime for Python/binary executor in worker nodes.
Additionally, the Command-Line Interface (CLI) component is independent and can
be located and executed on any device to perform actions or retrieve status information
from the nodes.

The Communication Interface1, implemented alongside the Storage 2 component, is
publicly available on GitHub 3 and can be utilized as a standalone library in separate
projects. The Communication Interface employs raw sockets and implements its
own message transfer protocol which is secured by TLS. The secure channel would
not be established if the certificate of the private key is not signed by a certificate

1The project is called async-socket.
2The project is called rust-rocksdb.
3The projects are publicly available in https://github.com/vahidmohsseni/async-socket and

https://github.com/vahidmohsseni/rust-rocksdb, respectively, with MIT open-source license.



39

authority (CA), and if it is a self-signed certificate the root certificate of CA must be
presented to the other nodes. Notably, the entire communication interface is designed
asynchronously to efficiently handle IO operations in the network. When a connection
is established between two nodes, the node that accepts the connection runs an infinite
asynchronous task to receive messages. Once a message is fully received, it is passed
to the responsible task handler through channels in Rust. In RODS, the main controller
of the platform serves as this task handler. On the other hand, the sending end of the
established connection remains passive, waiting for incoming messages to be sent to
the other node. To keep the channel open and avoid an idle state, the other node
periodically sends "bit" characters every 1000 milliseconds.

The Storage component in the RODS platform, developed as an open-source project
by the author, is a critical module responsible for efficient and reliable data storage.
Leveraging the proven database architecture of RocksDB [54], the Storage component
offers a robust foundation for managing data in edge computing environments. One of
the key design considerations in developing the Storage component was to provide a
minimal and intuitive application programming interface (API) that facilitates seamless
integration with other modules of the RODS platform. The API abstracts away the
complexities of the underlying storage implementation, allowing developers to interact
with the storage component straightforwardly and efficiently. This simplicity promotes
ease of use and accelerates the development process for applications leveraging the
RODS platform. The Storage component incorporates two main storage strategies to
optimize data access and persistence: in-memory and disk persistence. By utilizing
an in-memory storage approach, the component employs a binary search tree (BST)
algorithm to achieve fast data retrieval. This strategy is particularly useful for scenarios
where low-latency access to frequently accessed data is crucial, enabling applications
to retrieve information with minimal delay. The BST algorithm efficiently organizes
and indexes the data in memory, facilitating quick search and retrieval operations. To
ensure durability and reliability, the Storage component also supports disk persistence
using a log-structured merge (LSM) [55] data structure. The LSM data structure
efficiently handles write operations by utilizing a sequence of sorted on-disk data files
and an in-memory write buffer. This approach minimizes disk I/O operations and
optimizes write performance, making it suitable for scenarios where data durability
and consistency are of utmost importance. The LSM data structure ensures that data
modifications are efficiently logged and periodically merged to maintain a compact and
consistent on-disk representation. Combining the benefits of in-memory storage and
disk persistence, the Storage component provides a comprehensive storage solution
for edge computing environments. It offers the flexibility to accommodate diverse data
access patterns and requirements, optimizing both read and write operations. Whether
applications need rapid access to frequently accessed data or require persistent and
reliable storage, the Storage component within the RODS platform can adapt and
deliver the necessary performance and durability. As the Algorithm 4 shows the
APIs of the component, it is totally observable that all the complexities are behind
the abstractions.



40

Algorithm 4. The public interfaces of the Database Engine in storage
component
use std::{sync::{Arc, Mutex}, path::PathBuf, io};

use crate::{db::Db, entry::Entry};

#[derive(Clone)]

pub struct DBEngine {

pub database: Arc<Mutex<Db>>,

}

impl DBEngine {

pub fn new(dir: PathBuf) -> io::Result<Self>{

Ok(Self { database: Arc::new(Mutex::new(Db::init_from_existing(dir)?)) })

}

pub fn set(&mut self, key: &[u8], value: &[u8]) -> io::Result<()> {

let mut db = self.database.lock().unwrap();

db.set(key, value)?;

Ok(())

}

pub fn instant_set(&mut self, entry: &mut Entry) -> io::Result<()> {

let mut db = self.database.lock().unwrap();

db.instant_set(entry)?;

Ok(())

}

pub fn get(&mut self, key: &[u8]) -> Option<Entry> {

let mut db = self.database.lock().unwrap();

db.get(key)

}

pub fn get_keys_with_pattern(&mut self, pattern: &[u8]) -> Vec<Entry> {

let mut db = self.database.lock().unwrap();

db.get_keys_with_pattern(pattern)

}

pub fn delete(&mut self, key: &[u8]) -> io::Result<()> {

let mut db = self.database.lock().unwrap();

db.delete(key)

}

pub fn get_snapshot(&mut self) -> Vec<u8> {

let mut db = self.database.lock().unwrap();

db.get_snapshot()

}

pub fn set_snapshot(&mut self, raw_data: Vec<u8>) -> io::Result<()> {

let mut db = self.database.lock().unwrap();

db.set_snapshot(raw_data)

}

pub fn purge_database(&mut self) -> io::Result<()> {

let mut db = self.database.lock().unwrap();

db.purge_database()

}

}

The Controller Interface serves as the core of the RODS platform. It is a stateful
component that receives structured messages from nodes or external sources and
determines the appropriate actions and responses based on the message source and
type. For instance, if the leader node fails, a candidate’s controller interface may
initiate an election with other candidate nodes to select a new leader in the system.
Additionally, the controller interface triggers the scheduler component when a new
task is introduced into the system.



41

The current consensus mechanism utilized in RODS is based on a modified version
of the RAFT algorithm. This component is designed as an independent module
to provide flexibility to the RODS platform, allowing the configuration of different
consensus approaches if needed.

The Task Distribution Mechanism utilizes the RODS scheduler to find a suitable
node for task execution. The current scheduling policy follows a First-In-First-Served
approach. As this component is designed independently without dependencies on other
components, alternative scheduling algorithms can be implemented and configured
within RODS to cater to specific use cases.

Within the worker node, the communication interface functions similarly to the
master node, but with the additional capability of sending a request to join the cluster.
The manager component handles node management and task status monitoring,
communicating with the cluster to keep the controller interface updated.

The CLI interface, known as rodsctl, is an independent component that can
be executed from any accessible point within or outside the cluster to facilitate user
interaction. It avoids the use of common protocols like Hyper Text Transfer Protocol
(HTTP)4 and instead utilizes a specialized protocol, aligning with the communication
interface’s design choice. This selection minimizes dependencies on external libraries,
resulting in a small overall binary size for the entire RODS project.

4.2. Nodes Formation

The formation and connectivity of nodes within the RODS platform play a crucial role
in establishing a distributed and resilient system. In this subsection, we will explore the
process of connecting nodes and the mechanisms that enable effective communication
and coordination among them.

To form a cluster, RODS employs a token-based approach. When a new node,
whether it belongs to the cloud, edge, or worker category, intends to join an existing
cluster, it requires a unique secure token known as the "secret." One of the existing
candidate or leader nodes within the cluster generates this secret using rodsctl.
The node seeking to join the cluster can acquire this secret through the rodsctl

join command. Once a fresh node possesses the secret, it can initiate the connection
process with the cluster. Using the secure token, the node establishes a connection
to a master node, which serves as the entry point to the RODS cluster. The master
node verifies the authenticity of the secret and, upon successful verification, grants the
joining node access to the cluster. This process ensures secure and controlled access
to the RODS system, preventing unauthorized nodes from joining. The connectivity
between different categories of nodes follows a hierarchical structure. The edge nodes
have distinct types: Leader, Candidate, and Replica. Only one leader node exists
within the system at any given time. The leader is determined through a consensus
algorithm, such as the modified version of the RAFT algorithm employed in RODS,
or alternatively, it is the first node and needs to be initialized with rodsctl init

command. Notably, RODS allows for the operation of a single leader, eliminating the

4At the early stages of the development, RODS employed tide library to make a web-server-based
interface for the CLI. However, in the first release of the platform, lots of dependencies appeared, making
the final size of the binary large.



42

minimum requirement of three nodes typically associated with consensus algorithms.
Figure 6 demonstrates a couple of possibilities for the formation. This figure eliminates
the components inside different types of nodes for the sake of clarity.

Figure 6. Different RODS cluster formation. The platform is flexible enough to shape
any kind of hierarchy between different types of nodes.

Candidate nodes, another type within the edge category, play crucial roles
in detecting leader failures, initiating leader elections, and running autonomous
components like scheduling within their interconnected worker nodes. Candidate
nodes can establish connections with other candidates or directly with the leader
node. This flexibility allows for effective communication and coordination within the
RODS cluster. The third type of edge node is the Replica, which primarily serves
as a replication of the storage component. Although, Replicas can also transform
into Candidate nodes by interacting with the CLI interface. This capability further
enhances the fault tolerance and adaptability of the RODS system. The communication
between nodes in the RODS cluster is facilitated through a message-passing protocol
implemented over sockets. This protocol supports secure communication via TLS
encryption. To ensure secure connections, the certificate of each server, also referred
to as a master node, must be signed by a trusted CA. This requirement ensures that
the RODS system only accepts incoming connections from authenticated sources,
bolstering the overall security of the cluster.

4.3. Fault Tolerance

Fault tolerance is a crucial aspect of the RODS platform, ensuring the system’s
resilience in the face of node failures and maintaining uninterrupted operation. In



43

this subsection, we will explore the fault tolerance mechanisms employed by RODS,
specifically focusing on leader failure detection and the process of electing a new
leader.

Algorithm 5. Leader Failure Detection and Election
Input: All candidate nodes in the RODS cluster

1 Upon detecting the absence of the leader node by controller component:;
2 Nodes initiate the election process;
3 Fetch the latest information about all other candidate nodes in the cluster;

4 Election Initialization:;
5 Nodes introduce themselves as candidates for leadership;
6 Add a small random delay before sending election ballots to avoid ties;

7 First Round of the Election:;
8 Nodes count the votes received from other candidates;
9 Communicate the election results to every other node a;

10 Election Result Evaluation:;
11 If a candidate did not receive the expected message or received conflicting

results:;
12 Realize that it did not succeed in the election;
13 If a candidate receives the expected election result:;
14 Declare itself as the new leader;
15 Update the database and storage across all candidate nodes and

replicas;

16 Election Resolution:;
17 If a clear winner has emerged, the new leader takes control, and the

system proceeds;
18 If no clear winner is determined:;
19 Initiate a second round of the election to determine the leader;

20 Repeat the election process until a new leader is elected or a clear
winner emerges

Output: New leader elected and database/storage updated accordingly

aThe reason behind this is explained in Discussion chapter section 5.2.
As Algorithm 5 enumerates, when a leader node becomes disconnected from the

cluster for any reason, the first nodes to notice its absence are those directly connected
to it. These nodes initiate an election process by gathering the latest information
about all candidates in the cluster. A small random delay is introduced before sending
the election ballots to introduce themselves as candidates for leadership to prevent
potential ties or situations where only two candidate nodes remain. After the initial
round of the election, each participating node counts the votes and communicates the
results to every other node. Suppose a candidate node did not receive the expected
message or received conflicting results. In that case, it realizes that it did not succeed
in the election. On the other hand, if a node receives the expected election result, it
declares itself as the new leader, and the database and storage are updated across all
candidate nodes and replicas. In the event that none of the above scenarios occur,



44

indicating no clear winner, the nodes can proceed to a second round of the election
to determine the leader. This ensures that a new leader is elected and the system
can continue its operation without interruption. Appendix 8 is reserved for the code
that implements the modified version of the RAFT algorithm that is described in this
subsection.

The fault tolerance mechanism implemented in RODS provides a robust solution for
handling leader failures. By enabling candidate nodes to initiate an election process
and using a multi-round approach, the system ensures the selection of a new leader to
maintain the continuity of operations. Through this fault tolerance mechanism, RODS
enhances its resilience and guarantees the stability and availability of the distributed
system.

4.4. Summary

Through the acquiring the methodology, in this chapter, the second research question
of this thesis is addressed, the development of a specialized orchestration platform for
edge computing, by demonstrating how the RODS platform, with its distributed task
distribution mechanism and fault-tolerant architecture, can effectively manage edge
nodes and optimize task allocation. The implementation process involved

1. the careful selection of components,

2. the utilization of communication interfaces and storage mechanisms, and

3. the integration of consensus mechanisms to ensure the system’s reliability and
fault tolerance.

The implementation also allowed us to assess the scalability and usability of the
RODS platform through extensive testing and evaluation. We gained insights into the
framework’s efficiency, memory management, and concurrent processing capabilities
by conducting experiments and analyzing the collected data. Moreover, these findings
contribute to the overall understanding of the Rust programming language and its
applicability in developing resilient distributed systems for Edge computing scenarios.



45

5. DISCUSSION

This chapter delves into a comprehensive analysis of the RODS platform,
highlighting its comparison with other works, practical challenges encountered during
implementation, generalizability in cloud environments, and overall impact on edge
computing orchestration to fulfill the third research question of this thesis. This
chapter aims to provide insights into the comparison between RODS and other
existing platforms in terms of memory and CPU consumption, present practical lessons
learned from the implementation process, propose the applicability of container-
based technologies for enhanced isolation in cloud environments, and summarize
the contributions and advancements brought by the RODS platform. Furthermore,
the chapter discusses the limitations encountered during the implementation process.
It presents potential areas for future enhancements, such as consensus mechanisms,
security enhancements, advanced scheduling policies, and integration of a new
federated learning framework. By exploring these essential aspects, we gain a deeper
understanding of the capabilities, limitations, and potential future directions of the
RODS platform in the context of edge computing.

5.1. Brief Comparison with State-Of-The-Art

In this section, a brief comparison between the RODS platform and state-of-the-
art orchestration systems is provided, including Oakestra, Kubernetes, K3s, and
MicroK8s. While it is important to note that this thesis does not aim to provide
an extensive performance analysis and benchmarking of these platforms, this section
offers low-key insights into their key features and highlights how RODS addresses
certain limitations in the context of edge computing orchestration. Two different
infrastructure was considered to set up the experiment to compare the results. The
first setup is conducted on ARM-based devices, a combination of NVIDIA Jetson
Nano [56] and Raspberry 4 [57] devices, with 4GB of memory and four cores
each of CPU ARM A57 and ARM A72, respectively. The other setup consisted of
provisioned virtual machines on CSC5 servers with ten vCPUs and 16GB of memory.
RODS resource usage for memory and CPU utilization was roughly the same in those
environments. To draw the figures, the highest numbers are picked for RODS in this
section.

The results of the Figure 7 are adapted from [18] since it was impossible to find
any specific instructions to reproduce the result of Oakestra’s framework. As Figure 7
illustrates the difference between CPU usage in the compared platforms, Kubernetes,
Oakestra, and RODS -in idle mode and different numbers of nodes- have a constant
value for CPU usage, which demonstrates that these platforms can scale out up to
large number of nodes without overusing the resources. Moreover, RODS is slightly
using fewer CPU times than Oakestra, although both outperform Kubernetes in this
comparison. This comparison is not fair from different points of view. For example,
In Kubernetes, there are other services functioning in the system to ensure the stability
of the deployment in Kubelet, ranging from networking services to constant health

5IT for Science provider at https://www.csc.fi



46

2 nodes 6 nodes 10 nodes

0

5

10

15

20

25

%
o
f
C
P
U

u
ti
li
za
ti
o
n

K8s MicroK8s K3s Oakestra RODS

Figure 7. Percentage of CPU utilization in different platforms.

checking of side-services. In contrast, RODS and Oakestra do not have such services
inside.

The Rust language provides better memory management as introduced in section
3.2. The advantage of this feature is evident in Figure 8. RODS outperforms every
other platform in memory consumption significantly. However, as explained before,
these comparisons can be misleading or unfair. For example, Oakestra is written in
Python, a high-level scripting language, and clearly, it will use more resources due to
its interpreting nature, likewise, the group of authors in [58] mentioned benchmarking
flaws in their article.

5.2. Address to Practical Challenges

During the implementation of the RODS platform, several practical challenges were
encountered, and valuable lessons were learned. This section reflects on these
challenges, discusses any identified limitations or trade-offs, and shares insights gained
from overcoming them. Additionally, it highlights the practical implications of these
challenges and lessons for the future development and deployment of the RODS
platform.

One of the key challenges addressed during implementation was ensuring
consistency within the RODS platform. To achieve this, a mechanism was devised
where updates made by the leader node were broadcasted to all directly connected
nodes, which, in turn, propagated the updates to their locally connected nodes. This
process continued in a cascading manner throughout the network. To prevent duplicate
updates in cases where there are looped connections, the leader node sends both the



47

2 nodes 6 nodes 10 nodes

0

200

400

600

800

1,000

M
B

o
f
M
em

o
ry

K8s MicroK8s K3s Oakestra RODS

Figure 8. Comparison of memory usage in different platforms.

update and a unique log ID to the connected nodes. This ensured that the same update
was not pushed multiple times as it is possible in the model 3 in Figure 6. As depicted
in Figure 9, a consistency diagram illustrates this process, highlighting the flow of
updates and log IDs within the RODS platform. Another way of a write operation is
the scenario where a candidate node wants to update the data storage. In this scenario,
the candidate node will send the write operation to the leader, and then the leader will
repeat the above-mentioned update process in all the nodes.

Another valuable lesson learned during implementation was related to holding
elections and selecting a new leader. The failure of a leader could potentially result
in partitioning the devices within the cluster. To address this, the RODS platform
incorporates a feedback mechanism by seeking confirmation from all other candidate
nodes in the system regarding the election results. This ensures that all candidate
nodes acknowledge and recognize the elected leader, thereby mitigating the possibility
of partitioning. Figure 10 visually demonstrates this scenario and emphasizes the
importance of confirming the election results with all candidate nodes.

In Figure 10, the cluster topology is depicted, showcasing the convergence of
two partitions formed by nodes joining from different points, namely the leader
and the candidate (Figure 10.(a)). In Figure 10.(b), a scenario unfolds where the
leader becomes disconnected from the cluster, leading two directly connected nodes
to detect this failure ahead of others. Consequently, these nodes initiate an election
process based on the consensus algorithm described in 4.3. Figure 10.(c) displays the
occurrences of Election 1 and Election 2, along with the respective results indicated
above each candidate. It becomes evident that both candidates perceive themselves as
the winner, judging by the votes and the number of connected nodes supporting them.
However, a crucial node positioned between them possesses the capability to ascertain



48

Figure 9. Illustration of an example in consistency model. The left figure is the
topology, and the right figure shows the flow. As marked with (a) in the figure, the
leader sent the write on data A with a value of 1 to every connected node. Candidate
3 receives this operation from two sources, i.e., the leader and Candidate 2. However, it
only accepts one of those operations because the log IDs are the same. Since Candidate
2’s message is earlier than the leader’s, the other one will be dropped. The scenario in
the marked (b) in the figure shows that a write operation on data A with a value of 2
was received after the write operation on data A with a value of 3. Since the log ID
of the latter is greater than the former, the former operation will be dropped.

the true winner by validating the received results (Figure 10.(d)). As demonstrated in
Figure 10.(e), the node that held Election 1 emerges as the rightful winner, ultimately
assuming the role of the new cluster leader (Figure 10.(f)).

Valuable lessons were learned, and insightful approaches were developed while
overcoming the challenges faced during implementing the RODS platform. One
notable lesson was the importance of adopting a communication model that prioritizes
message passing over shared memory. A famous slogan in Go Lang [59]
documentations states that "Do not communicate by sharing memory; instead, share

memory by communicating". This principle aligns with the design philosophies
of programming languages like Rust and Go, emphasizing communicating between
concurrent processes rather than relying on shared memory. By adhering to this
principle, the RODS platform achieved several benefits. First, it promoted a
clear separation of concerns and encapsulation, as each component communicated
with others through well-defined message interfaces. This reduced the complexity
associated with managing shared memory and minimized the chances of data
corruption or race conditions. Second, the message-passing model facilitated fault
isolation and improved the system’s resilience. In the event of a failure or crash in
one component, it had minimal impact on others since they relied on message passing
instead of directly sharing memory. This approach enabled better fault tolerance and
enhanced the overall robustness of the RODS platform.



49

Figure 10. Demonstration of an election to choose new leader, ordering from (a) to (f).

5.3. Limitations and Future Enhancements

The following section discusses the limitations of the RODS platform in its current
implementation. It presents potential solutions and future enhancements to address
these challenges. By acknowledging these limitations and proposing ways to overcome
them, the RODS platform can continue to evolve and meet the evolving needs of edge
computing environments more effectively.

5.3.1. Consensus

One of the limitations of the RODS platform lies in the limited set of implemented
consensus algorithms, primarily based on the Raft consensus protocol. While Raft
provides a robust and fault-tolerant approach for achieving consensus in distributed
systems, it does have certain limitations. For instance, relying on a single leader
introduces a single point of failure. In the event of leader failure, the system incurs
overhead in selecting a new leader, impacting overall system performance. A creative



50

approach involving AI and agent-based systems can be considered to overcome these
limitations and explore new avenues for achieving consensus in the RODS platform.

By leveraging the capabilities of AI and allowing nodes to communicate freely with
each other, an agent-based consensus mechanism can be designed. In this approach,
each node can act as an intelligent agent that employs learning algorithms to make
consensus decisions based on the information it receives from other nodes. The agent-
based consensus system would distribute decision-making authority across multiple
nodes, eliminating the reliance on a single leader. By allowing nodes to learn from
historical data and adapt their decision-making processes, the system can dynamically
adjust to changing conditions and ensure efficient consensus even in the presence of
failures or dynamic network topologies. This innovative approach introduces several
benefits. Firstly, it eliminates the single point of failure, enhancing the fault tolerance
and robustness of the consensus mechanism. Secondly, by leveraging AI and learning
algorithms, the system can adapt and optimize its decision-making processes based
on the specific characteristics and requirements of the edge computing environment.
This can lead to improved scalability, performance, and responsiveness. However, it
is important to note that implementing such an AI-based consensus mechanism would
introduce its own challenges. Designing effective learning algorithms, ensuring proper
communication and coordination among nodes, and addressing potential security and
privacy concerns would require further research and development. Nevertheless,
exploring the potential of AI and agent-based systems for consensus in the RODS
platform opens up exciting opportunities for enhancing the reliability and efficiency of
edge computing orchestration.

5.3.2. Scheduling Policies

The task scheduling algorithm implemented in the RODS platform is currently limited
to a basic FIFO approach. While FIFO scheduling provides simplicity and fairness
in task execution, there are instances where it may not achieve optimal performance.
Two such instances are task prioritization and dynamic workload scenarios. In task
prioritization, certain tasks may have higher urgency or criticality compared to others.
With FIFO scheduling, tasks are executed strictly in the order they arrive, regardless
of their priority. As a result, high-priority tasks may experience delays if a large
number of lower-priority tasks are queued ahead of them. This can lead to decreased
responsiveness and potential violations of performance requirements. Similarly, in
dynamic workload scenarios where tasks have varying resource requirements or time
constraints, FIFO scheduling may not efficiently utilize available resources. For
example, suppose a resource-intensive task arrives early in the queue and consumes
a significant portion of available resources. In that case, subsequent tasks with lower
resource requirements may experience resource starvation or increased waiting times,
impacting overall system efficiency.

To address these limitations, a more sophisticated task scheduling algorithm, such
as Shortest Job First (SJF) or Priority Scheduling, can be employed. SJF scheduling
prioritizes tasks based on their expected execution time, allowing shorter tasks to be
executed first and potentially reducing overall turnaround time. Priority Scheduling
assigns priority levels to tasks based on their urgency or importance, ensuring that



51

high-priority tasks are executed ahead of lower-priority tasks. Compared to FIFO
scheduling, these advanced algorithms provide better performance in scenarios where
task prioritization or dynamic workload management is crucial. They optimize
resource utilization, reduce response times, and enhance overall system efficiency.
However, it is important to mention that implementing these algorithms introduces
additional complexity in terms of task prioritization criteria and dynamic priority
adjustments, which require careful consideration and fine-tuning.

By implementing more advanced task scheduling algorithms, the RODS platform
can provide enhanced performance and responsiveness, particularly in scenarios where
task prioritization and dynamic workload management are critical. The choice of
scheduling algorithm should align with the specific requirements and characteristics of
the edge computing environment, striking a balance between fairness, responsiveness,
and efficient resource utilization.

5.3.3. Security Enhancement

The RODS platform incorporates several security enhancements to ensure data and
communications’ confidentiality, integrity, and authenticity. One of the primary
security measures implemented is using a private/public key mechanism in TLS
protocols. This cryptographic mechanism establishes secure connections between
nodes, preventing unauthorized access and eavesdropping. By employing TLS
with private/public key encryption, the RODS platform establishes a secure channel
for communication, safeguarding sensitive information exchanged between nodes.
Additionally, integrating a trusted Root CA further enhances security by verifying the
authenticity of certificates presented by nodes during the handshake process. This
helps prevent the possibility of joining threats or unauthorized entities gaining access
to the system. System-wide implementation of a certificate renewal component is
essential to be considered. Currently, in the RODS platform, the process of signing
certificates for new nodes joining the system relies on the leader or the cluster.
While this mechanism ensures secure certificate issuance, it presents limitations in
terms of scalability and efficiency. A more robust and scalable certificate renewal
component should be implemented to address this limitation. This would involve
automating the process of certificate generation and signing, allowing new nodes to
obtain valid certificates without relying solely on the leader or cluster. By distributing
the responsibility of certificate signing, the system can accommodate a more significant
number of nodes joining the network and reduce the overhead on the leader or cluster.
In addition to secure certificate management, the RODS platform also emphasizes the
importance of securely storing security keys. Security keys, including private keys
for TLS encryption, should be stored safely and protected to prevent unauthorized
access or misuse. Utilizing secure key management practices, such as encryption
and access control mechanisms, ensures the confidentiality and integrity of the keys,
thereby minimizing the risk of key compromise and potential security breaches.
The RODS platform can strengthen its overall security posture by addressing these
security considerations and implementing the necessary enhancements. Incorporating
a scalable certificate renewal component and robust key management practices will



52

bolster the framework’s ability to securely operate in edge computing environments,
protecting sensitive data and ensuring the integrity of communication channels.

5.3.4. A New Framework for Worker Nodes

One of the limitations of the current RODS platform is its support for Python runtime in
worker nodes. While Python offers excellent flexibility and a wide range of libraries for
general-purpose programming, it may not be the optimal choice for specific specialized
tasks, such as machine learning algorithms used in federated learning applications.

A new framework, similar to the FLOWER framework [60], can be developed to
address this limitation and provide a more comprehensive environment for federated
learning. This framework would cater specifically to machine learning applications,
offering a dedicated environment that supports the execution of machine learning
algorithms across the distributed edge network. The new framework would provide
developers with a standardized interface and tools to deploy and manage federated
learning applications within the RODS infrastructure. It would encompass features
such as data partitioning, model aggregation, and communication protocols tailored to
the unique requirements of federated learning scenarios. By leveraging this framework,
developers can harness the power of distributed machine learning and train models
collaboratively across the network of edge devices. This specialized framework for
machine learning in the RODS ecosystem would open up opportunities for advanced
analytics and decision-making at the edge. It would allow developers to harness
the computational capabilities of edge devices and enable them to perform complex
machine-learning tasks closer to the data source, minimizing the need for centralized
processing and reducing latency. The framework can provide additional functionalities
such as model versioning, model lifecycle management, and security mechanisms
to protect the confidentiality and privacy of sensitive data. By incorporating these
features, the RODS platform can empower developers to build and deploy sophisticated
federated learning applications securely and efficiently.

5.4. Generalizability and Applicability

The RODS platform can be significantly enhanced in terms of generalizability and
applicability by integrating container-based technologies like Docker [61] and LXC
[62]. These technologies offer numerous advantages that contribute to improved
resource isolation, scalability, and overall efficiency within cloud environments. One
significant benefit of containerization is the ability to encapsulate applications and
their dependencies into portable and lightweight containers. Packaging the RODS
platform components and their dependencies as containers makes it easier to deploy
and manage the platform across different cloud environments. Containers provide
consistent execution environments, ensuring seamless operation of the RODS platform
across diverse infrastructure setups. Moreover, containerization facilitates efficient
resource isolation as each container operates within its own isolated environment.
This isolation ensures that the RODS platform components can effectively utilize
resources without interference or conflicts with other services running on the same



53

infrastructure. The dynamic allocation and management of resources for individual
containers enhance scalability and enable the RODS platform to adapt to varying
workload demands.

However, incorporating container-based technologies into the RODS platform
introduces various challenges and considerations. One such challenge is the design
and orchestration of deploying multiple containers that constitute the platform. Proper
management of container lifecycles [63], networking, and storage interactions is
crucial to ensure the smooth functioning of the RODS platform. Additionally,
evaluating the impact of containerization on performance, security, and manageability
is essential. Although containers offer lightweight virtualization, there may be a
slight performance overhead due to the additional layer of abstraction. Security
considerations, such as ensuring isolation between containers and securing container
images, must be addressed to protect sensitive data and maintain the integrity of
the RODS platform. Effectively managing many containers and their configurations
requires robust container orchestration tools and efficient monitoring mechanisms.
By addressing these challenges and considerations, the RODS platform can benefit
from adopting container-based technologies in cloud environments. The enhanced
resource isolation, scalability, and manageability provided by containers contribute
to the platform’s generalizability, allowing it to be effectively deployed and utilized
across various cloud infrastructures.

In addition to the considerations mentioned above, network-related issues play a
crucial role in the generalizability and applicability of the RODS platform when
integrating container-based technologies in cloud environments. Containerization
introduces a network layer that facilitates communication between different containers
and external services. However, careful management of network configurations
is necessary to ensure seamless connectivity and efficient data transfer within the
RODS platform. One challenge lies in establishing network connections and enabling
container communication, mainly when the platform is distributed across multiple
cloud instances or nodes. Proper network design, including configuring network
interfaces, routing, and firewall rules, becomes critical to maintain secure and reliable
container communication. Furthermore, deploying the RODS platform in cloud
environments requires considerations for network bandwidth and latency. As the
platform interacts with various components such as databases, storage systems, and
external services, network performance directly affects overall system responsiveness
and data transfer speeds. Optimizing network configurations, implementing caching
mechanisms, or utilizing content delivery networks (CDNs) can help mitigate
latency issues and improve the performance of the RODS platform. Security, from
networking point of view, is another aspect related to network considerations [64].
When containerizing the RODS platform, ensuring proper network segmentation
and isolation is vital to protect sensitive data and prevent unauthorized access.
Implementing network security measures, such as encryption, secure communication
protocols, and strict access control policies, helps safeguard the platform and
its data from potential network-related vulnerabilities. Lastly, monitoring and
troubleshooting network-related issues become crucial in a containerized environment.
Efficient network monitoring tools and mechanisms allow administrators to promptly
identify and address network bottlenecks, connectivity problems, or performance
issues. Proactive monitoring helps maintain the stability and reliability of the



54

RODS platform’s network infrastructure. By addressing these network-related issues,
the RODS platform can leverage the benefits of container-based technologies in
cloud environments while ensuring seamless and secure container communication,
optimizing network performance, and providing reliable network infrastructure for the
platform’s operations.

5.5. Summary

In the discussion chapter, various essential aspects, including a brief comparison with
state-of-the-art approaches and addressing practical challenges, were encompassed.
The comparison highlights the unique features and advancements offered by RODS,
showcasing its potential to cater to evolving edge computing needs. Practical
challenges such as consensus, scheduling policies, security enhancement, and a
new framework for worker nodes are then discussed. An innovative distributed
mechanism using AI and agent-based systems is proposed to add an innovative method
for consensus. Advanced scheduling algorithms like SJF or Priority Scheduling
are suggested to overcome the limitations of the basic FIFO policy. Security
enhancement involves scalable certificate renewal and secure key management
practices. Additionally, a specialized framework dedicated to machine learning is
proposed to enhance the Python runtime in worker nodes. The chapter emphasizes the
generalizability and applicability of RODS by integrating container-based technologies
like Docker, considering network configurations and security. By addressing these
challenges and incorporating enhancements, the RODS platform can become a
standard tool for hybrid and flexible environments.



55

6. CONCLUSION

The concluding chapter of this thesis provides an overview of the impact, contributions,
and a summary of the research conducted on the design and implementation of the
RODS platform for edge computing orchestration. This chapter reflects upon the
findings and outcomes of the study, highlighting the significance of the research in
addressing the limitations of existing orchestration platforms, advancing the field
of edge computing, and providing practical insights for future development and
deployment.

6.1. Impact and Contribution

The impact and contribution of this study in the field of edge computing orchestration
are significant and far-reaching. The RODS platform has made substantial
advancements in the field by addressing existing orchestration platforms’ limitations
and explicitly targeting the requirements of edge computing. This research has
shed light on the gaps that exist between the unique demands of edge computing
and the capabilities of platforms like Kubernetes. The RODS platform serves as
a specialized orchestration solution designed explicitly for edge environments. Its
design, algorithms, and architectural innovations have filled gaps in knowledge and
understanding within the rapidly evolving field of edge computing orchestration.
By optimizing resource allocation, handling intermittent network connectivity, and
meeting stringent latency requirements, the RODS platform has made notable
contributions to the field. An important contribution of this thesis lies in the
practical implications and lessons learned from implementing the RODS platform.
The challenges encountered during implementation have provided valuable insights
for future development and deployment efforts. By sharing these experiences, this
research enables researchers and developers to grasp a thorough understanding of the
practical implications and considerations involved in implementing an orchestration
platform in edge environments. Furthermore, the impact of the RODS platform
extends beyond edge environments to its potential applications in cloud environments.
The platform gains enhanced generalizability and applicability by proposing the
integration of container-based technologies like Docker and LXC. This expansion
opens up new possibilities for resource isolation, scalability, and network management,
providing a robust and flexible orchestration solution for edge computing within cloud
environments. In summary, the contributions of this thesis, in addition to the answers
to introduced research questions, can be summarized as follows:

• The design and implementation of the RODS platform addresses the limitations
of existing orchestration platforms in edge computing scenarios.

• Filling the gaps in knowledge and understanding within the field of edge
computing orchestration.

• Providing practical insights, lessons learned, and valuable experiences from the
implementation process.



56

• Proposing adapting container-based technologies for enhanced generalizability
and applicability in cloud environments.

The findings and outcomes of this study have the potential to significantly influence
and shape the future of edge computing research and practice. The RODS platform
opens up avenues for further exploration and development in the field of edge
computing orchestration, paving the way for improved resource allocation, efficient
network management, and seamless integration of edge and cloud environments. The
potential implications and future directions resulting from this research will contribute
to advancing the capabilities, performance, and reliability of edge computing
systems, benefiting various industries and applications that rely on edge computing
technologies.

6.2. Summary

In the rapidly evolving field of edge computing, there is a growing need for
specialized orchestration platforms that can effectively address edge environments’
unique challenges and requirements. This thesis aims to contribute to the advancement
of edge computing orchestration by developing a specialized orchestration platform
called RODS (Reliable Orchestration for Distributed Systems). The motivations
behind this research stem from the limitations of existing orchestration platforms,
particularly Kubernetes, when applied to edge computing scenarios. The need for
a specialized platform tailored to the demands of edge environments and the gaps
in knowledge in this field prompted the investigation and development of the RODS
platform.

This thesis answered the following research questions:

1. 1. What are the limitations of Kubernetes and other alternatives when applied to
edge computing scenarios?

• The limitations of Kubernetes in edge computing scenarios have been
thoroughly examined in the related work chapter, highlighting the specific
challenges that arise when deploying Kubernetes in edge environments.

2. How can a specialized orchestration platform be developed to address the
identified limitations of Kubernetes and provide an alternative solution better
suited to the challenges posed by edge environments?

• The methodology and implementation chapters present the development
of the RODS platform, which addresses the limitations identified in
Kubernetes and other state-of-the-art platforms. Innovative approaches,
algorithms, and architectural designs have been explored to optimize
resource allocation, handle intermittent network connectivity, and meet the
stringent latency requirements of edge computing.

3. What are the practical challenges in the implementation and development of the
proposed orchestration platform?



57

• The discussion chapter reflects on the practical challenges encountered
during the implementation of the RODS platform. Valuable lessons
have been learned, particularly in terms of ensuring consistency, avoiding
shared memory communication, and handling network-related issues.
These insights have practical implications for the future development and
deployment of the RODS platform.

The consensus algorithm employed in RODS ensures reliable data replication
and consistency across the distributed system. By broadcasting updates and using
unique log IDs, the platform prevents duplicate updates and handles potential network
loops. Additionally, the leader election process safeguards against leader failures
and minimizes the partitioning of devices in the cluster. A brief comparison has
been made between RODS and other state-of-the-art orchestration platforms, including
Oakestra, Kubernetes, K3s, and MicroK8s. While this thesis does not aim to provide
in-depth performance comparisons, low-key insights have been gained from the
comparison, highlighting the unique features and advantages of RODS in addressing
edge computing challenges. The discussion chapter has provided valuable insights
into the practical challenges encountered during the implementation of the RODS
platform. Discourses have been learned concerning the matter of avoiding shared
memory communication and utilizing Rust. Furthermore, the potential of integrating
container-based technologies like Docker and LXC to enhance the generalizability
and applicability of RODS in cloud environments has been explored. Considerations
regarding resource isolation, scalability, and network-related challenges in this context
have been discussed. The overall impact and contribution of this study in the field
of edge computing orchestration are significant. The RODS platform effectively
addresses the limitations of existing orchestration platforms in the context of edge
computing, providing a specialized solution tailored to the unique demands of edge
environments. By filling the gaps in knowledge and advancing edge computing
research and practice, this thesis offers valuable insights and practical implications
for developing and deploying orchestration platforms in real-world edge computing
scenarios.

Furthermore, the findings from the research questions and the lessons learned from
the implementation and development of RODS highlight the potential for further
advancements and future directions in the field of edge computing orchestration.
The integration of container-based technologies demonstrates the adaptability and
generalizability of RODS in cloud environments while also highlighting the challenges
and considerations that need to be addressed. This thesis contributes to the
understanding and practical implementation of edge computing orchestration, offering
a specialized platform and valuable insights for researchers and practitioners in
the field. The RODS platform stands as a significant step forward in addressing
the challenges of edge computing. It paves the way for future advancements and
innovations in this exciting and evolving domain.



58

7. REFERENCES

[1] Garcia Lopez P., Montresor A., Epema D., Datta A., Higashino T., Iamnitchi A.,
Barcellos M., Felber P. & Riviere E. (2015), Edge-centric computing: Vision and
challenges.

[2] Cardellini V., Lo Presti F., Nardelli M. & Rossi F. (2020) Self-adaptive
container deployment in the fog: A survey. In: Algorithmic Aspects of
Cloud Computing: 5th International Symposium, ALGOCLOUD 2019, Munich,
Germany, September 10, 2019, Revised Selected Papers 5, Springer, pp. 77–102.

[3] Atieh A.T. (2021) The next generation cloud technologies: a review on
distributed cloud, fog and edge computing and their opportunities and challenges.
ResearchBerg Review of Science and Technology 1, pp. 1–15.

[4] Yaqoob A., Bi T. & Muntean G.M. (2020) A survey on adaptive 360 video
streaming: Solutions, challenges and opportunities. IEEE Communications
Surveys & Tutorials 22, pp. 2801–2838.

[5] Shafique K., Khawaja B.A., Sabir F., Qazi S. & Mustaqim M. (2020) Internet of
things (iot) for next-generation smart systems: A review of current challenges,
future trends and prospects for emerging 5g-iot scenarios. Ieee Access 8, pp.
23022–23040.

[6] Zhang K., Leng S., He Y., Maharjan S. & Zhang Y. (2018) Mobile edge
computing and networking for green and low-latency internet of things. IEEE
Communications Magazine 56, pp. 39–45.

[7] Simon S. (2000) Brewer’s cap theorem. CS341 Distributed Information Systems,
University of Basel (HS2012) .

[8] Kubernetes: Production-grade container orchestration. URL: https://

kubernetes.io/. Accessed 25.5.2023.

[9] Cloud native computing foundation. URL: https://www.cncf.io.
Accessed 6.6.2023.

[10] Curry D., Gitlab moves operations from microsoft azure to google cloud.
URL: https://www.rtinsights.com/gitlab-azure-google/.
Accessed 14.6.2023.

[11] k0s: Kubernetes for edge/iot. URL: https://k0sproject.io. Accessed
6.6.2023.

[12] K3s: A lightweight kubernetes. URL: https://k3s.io. Accessed 6.6.2023.

[13] Microk8s. URL: https://microk8s.io. Accessed 6.6.2023.

[14] Docker swarm documentation. URL: https://docs.docker.com/

engine/swarm/. Accessed 6.6.2023.

[15] Apache mesos. URL: https://mesos.apache.org. Accessed 6.6.2023.



59

[16] Nomad: Hashicorp’s orchestration tool. URL: https://www.

nomadproject.io. Accessed 6.6.2023.

[17] Aws greengrass service documentation. URL: https://aws.amazon.com/
greengrass/. Accessed 6.6.2023.

[18] Bartolomeo G., Yosofie M., Bäurle S., Haluszczynski O., Mohan N. & Ott J.
(2022) Oakestra white paper: An orchestrator for edge computing. arXiv preprint
arXiv:2207.01577 .

[19] Arcaini P., Riccobene E. & Scandurra P. (2015) Modeling and analyzing mape-
k feedback loops for self-adaptation. In: 2015 IEEE/ACM 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
IEEE, pp. 13–23.

[20] Kuenzer S., Bădoiu V.A., Lefeuvre H., Santhanam S., Jung A., Gain G., Soldani
C., Lupu C., Teodorescu Ş., Răducanu C. et al. (2021) Unikraft: fast, specialized
unikernels the easy way. In: Proceedings of the Sixteenth European Conference
on Computer Systems, pp. 376–394.

[21] Nanovms. URL: https://nanovms.com. Accessed 6.6.2023.

[22] Kuo H.C., Williams D., Koller R. & Mohan S. (2020) A linux in unikernel
clothing. In: Proceedings of the Fifteenth European Conference on Computer
Systems, pp. 1–15.

[23] Satyanarayanan M., Lewis G., Morris E., Simanta S., Boleng J. & Ha K. (2013)
The role of cloudlets in hostile environments. IEEE Pervasive Computing 12, pp.
40–49.

[24] Zhang L., Yang W., Hao B., Yang Z. & Zhao Q. (2023) Edge computing resource
allocation method for mining 5g communication system. IEEE Access .

[25] Cao K., Liu Y., Meng G. & Sun Q. (2020) An overview on edge computing
research. IEEE access 8, pp. 85714–85728.

[26] Rahimi M.R., Ren J., Liu C.H., Vasilakos A.V. & Venkatasubramanian N. (2014)
Mobile cloud computing: A survey, state of art and future directions. Mobile
Networks and Applications 19, pp. 133–143.

[27] Pan J. & McElhannon J. (2017) Future edge cloud and edge computing for
internet of things applications. IEEE Internet of Things Journal 5, pp. 439–449.

[28] Wu W., Zhang Q. & Wang H.J. (2019) Edge computing security protection from
the perspective of classified protection of cybersecurity. In: 2019 6th International
Conference on Information Science and Control Engineering (ICISCE), IEEE,
pp. 278–281.

[29] Chen C., Gu H., Lian S., Zhao Y. & Xiao B. (2022) Investigation of edge
computing in computer vision-based construction resource detection. Buildings
12, p. 2167.



60

[30] García-Valls M., Cucinotta T. & Lu C. (2014) Challenges in real-time
virtualization and predictable cloud computing. Journal of Systems Architecture
60, pp. 726–740.

[31] Kokkonen H., Lovén L., Motlagh N.H., Partala J., González-Gil A., Sola E.,
Angulo I., Liyanage M., Leppänen T., Nguyen T. et al. (2022) Autonomy
and intelligence in the computing continuum: Challenges, enablers, and future
directions for orchestration. arXiv preprint arXiv:2205.01423 .

[32] Salah T., Zemerly M.J., Yeun C.Y., Al-Qutayri M. & Al-Hammadi Y. (2016)
The evolution of distributed systems towards microservices architecture. In: 2016
11th International Conference for Internet Technology and Secured Transactions
(ICITST), IEEE, pp. 318–325.

[33] De Vries W.A. & Fleck R.A. (1997) Client/server infrastructure: a case study in
planning and conversion. Industrial Management & Data Systems 97, pp. 222–
232.

[34] Kulesza K., Kotulski Z. & Kulesza K. (2006) On mobile agents resistance to
traffic analysis. Electronic Notes in Theoretical Computer Science 142, pp. 181–
193.

[35] Kulesza K. & Kotulski Z. (2003) Decision systems in distributed environments:
Mobile agents and their role in modern e-commerce. Information in 21st Century
Society, University of Warmia and Mazury Edition, Olsztyn , pp. 271–282.

[36] Newman S. (2021) Building microservices. " O’Reilly Media, Inc.".

[37] Vianden M., Lichter H. & Steffens A. (2014) Experience on a microservice-
based reference architecture for measurement systems. In: 2014 21st Asia-Pacific
Software Engineering Conference, vol. 1, IEEE, vol. 1, pp. 183–190.

[38] Taleb T., Samdanis K., Mada B., Flinck H., Dutta S. & Sabella D. (2017) On
multi-access edge computing: A survey of the emerging 5g network edge cloud
architecture and orchestration. IEEE Communications Surveys & Tutorials 19,
pp. 1657–1681.

[39] De Brito M.S., Hoque S., Magedanz T., Steinke R., Willner A., Nehls D., Keils
O. & Schreiner F. (2017) A service orchestration architecture for fog-enabled
infrastructures. In: 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC), IEEE, pp. 127–132.

[40] Zhang C. (2020) Design and application of fog computing and internet of things
service platform for smart city. Future Generation Computer Systems 112, pp.
630–640.

[41] Svorobej S., Bendechache M., Griesinger F. & Domaschka J. (2020)
Orchestration from the cloud to the edge. The Cloud-to-Thing Continuum:
Opportunities and Challenges in Cloud, Fog and Edge Computing , pp. 61–77.



61

[42] Barika M., Garg S., Zomaya A.Y., Wang L., Moorsel A.V. & Ranjan R. (2019)
Orchestrating big data analysis workflows in the cloud: research challenges,
survey, and future directions. ACM Computing Surveys (CSUR) 52, pp. 1–41.

[43] Jiang Y., Huang Z. & Tsang D.H. (2017) Challenges and solutions in fog
computing orchestration. IEEE Network 32, pp. 122–129.

[44] Bartolomeo G., Bäurle S., Mohan N. & Ott J. (2022) Oakestra: An orchestration
framework for edge computing. In: Proceedings of the SIGCOMM ’22 Poster and
Demo Sessions, SIGCOMM ’22, Association for Computing Machinery, New
York, NY, USA, p. 34–36. URL: https://doi.org/10.1145/3546037.
3546056.

[45] Jimenez L.L. & Schelen O. (2020) Hydra: Decentralized location-aware
orchestration of containerized applications. IEEE Transactions on Cloud
Computing 10, pp. 2664–2678.

[46] Maymounkov P. & Mazieres D. (2002) Kademlia: A peer-to-peer information
system based on the xor metric. In: Peer-to-Peer Systems: First
InternationalWorkshop, IPTPS 2002 Cambridge, MA, USA, March 7–8, 2002
Revised Papers, Springer, pp. 53–65.

[47] Cozzolino V., Ott J., Ding A.Y. & Mortier R. (2020) Ecco: Edge-cloud chaining
and orchestration framework for road context assessment. In: 2020 IEEE/ACM
Fifth International Conference on Internet-of-Things Design and Implementation
(IoTDI), IEEE, pp. 223–230.

[48] Mehar S., Senouci S.M., Kies A. & Zoulikha M.M. (2015) An optimized roadside
units (rsu) placement for delay-sensitive applications in vehicular networks. In:
2015 12th Annual IEEE consumer communications and networking conference
(CCNC), IEEE, pp. 121–127.

[49] Vo N.S., Duong T.Q., Tuan H.D. & Kortun A. (2017) Optimal video streaming in
dense 5g networks with d2d communications. IEEE Access 6, pp. 209–223.

[50] Castellano G., Esposito F. & Risso F. (2019) A service-defined approach
for orchestration of heterogeneous applications in cloud/edge platforms. IEEE
Transactions on Network and Service Management 16, pp. 1404–1418.

[51] Castellano G., Esposito F. & Risso F. (2019) A distributed orchestration algorithm
for edge computing resources with guarantees. In: IEEE INFOCOM 2019-IEEE
Conference on Computer Communications, IEEE, pp. 2548–2556.

[52] Jung R. (2020) Understanding and evolving the rust programming language.
https://publikationen.sulb.uni-saarland.de/handle/20.500.11880/29647 .

[53] Pereira R., Couto M., Ribeiro F., Rua R., Cunha J., Fernandes J.P. & Saraiva J.
(2017) Energy efficiency across programming languages: how do energy, time,
and memory relate? In: Proceedings of the 10th ACM SIGPLAN international
conference on software language engineering, pp. 256–267.



62

[54] Raju P., Kadekodi R., Chidambaram V. & Abraham I. (2017) Pebblesdb:
Building key-value stores using fragmented log-structured merge trees. In:
Proceedings of the 26th Symposium on Operating Systems Principles, pp. 497–
514.

[55] Sears R. & Ramakrishnan R. (2012) blsm: a general purpose log structured merge
tree. In: Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pp. 217–228.

[56] Nvidia jetson nano developer kit. URL: https://developer.nvidia.
com/embedded/jetson-nano-developer-kit. Accessed 25.5.2023.

[57] Raspberry 4 specifications. URL: https://www.raspberrypi.com/

products/raspberry-pi-4-model-b/specifications/.
Accessed 25.5.2023.

[58] van der Kouwe E., Heiser G., Andriesse D., Bos H. & Giuffrida C. (2019) Sok:
Benchmarking flaws in systems security. In: 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), IEEE, pp. 310–325.

[59] Go language documentation: Concurrency. URL: https://go.dev/doc/
effective_go#concurrency. Accessed 25.5.2023.

[60] Beutel D.J., Topal T., Mathur A., Qiu X., Fernandez-Marques J., Gao Y., Sani L.,
Li K.H., Parcollet T., de Gusmão P.P.B. et al. (2020) Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390 .

[61] Docker. URL: https://www.docker.com. Accessed 7.6.2023.

[62] Lxc: Linux containers. URL: https://linuxcontainers.org. Accessed
7.6.2023.

[63] Wu S., Tao Z., Fan H., Huang Z., Zhang X., Jin H., Yu C. & Cao C.
(2022) Container lifecycle-aware scheduling for serverless computing. Software:
Practice and Experience 52, pp. 337–352.

[64] Bui T. (2015) Analysis of docker security. arXiv preprint arXiv:1501.02967 .



63

8. APPENDICES

Appendix 1 Implemented RAFT consensus algorithm in Rust for RODS



Appendix 1. Implemented RAFT consensus algorithm in Rust for RODS 64

Consensus in RODS

Algorithm 6. RAFT Consensus
use std::{collections::HashMap, net::ToSocketAddrs};

use rand::Rng;

use tokio::{select, sync::mpsc};

use crate::{

control::db_interface::{get_all_candidates, set_this_node_leader},

database::db::DB,

proto::{Consensus, CtlMsg, Header},

};

pub(crate) async fn election(

ctl_tx: mpsc::Sender<CtlMsg>,

consensus_tx: mpsc::Sender<Consensus>,

mut consensus_rx: mpsc::Receiver<Consensus>,

mut db: DB,

) {

let mut my_id = 0;

let mut get_all_nodes = false;

let mut broadcast_election = false;

let mut election_timeout = false;

let mut my_vote = 0;

let mut votes = 0;

let mut voters = 0;

let mut yes = 0;

let mut count_winner = 0;

let mut is_ongoing = false;

// id: voters, number of yes

let mut elections: HashMap<u32, (u32, u32)> = HashMap::new();

loop {

select! {

msg = consensus_rx.recv() => {

if let Some(msg) = msg {

match msg {

Consensus::ElectionStart(id) => {

if is_ongoing { continue }

my_id = id;

votes = 0;

my_vote = 0;

voters = 0;

yes = 0;

count_winner = 0;

let candidates = get_all_candidates(&mut db);

for n in candidates {

ctl_tx.send(CtlMsg::ConnectToNode(

(n.address.to_socket_addrs().unwrap().next().unwrap(),→֒

n.id, n.node_type))

).await.unwrap();

}

get_all_nodes = true;

election_timeout = true;

is_ongoing = true;

elections = HashMap::new();

elections.insert(my_id, (0, 0));

},



Appendix 1. Implemented RAFT consensus algorithm in Rust for RODS 65

Consensus::ElectionBallot(candidate_id) => {

elections.insert(candidate_id, (0, 0));

if my_vote == 0 {

ctl_tx.send(CtlMsg::MsgToNode((candidate_id,

Header::ElectionVoteCast((my_id, true))))).await.unwrap();

→֒

→֒

my_vote = candidate_id;

}else {

ctl_tx.send(CtlMsg::MsgToNode((candidate_id,

Header::ElectionVoteCast((my_id, false))))).await.unwrap();

→֒

→֒

}

},

Consensus::Vote((_nid, yesno)) => {

votes += 1;

if yesno {

yes += 1;

elections.get_mut(&my_id).unwrap().1 =

yes;→֒

}

if votes == voters {

// Send election results to others

ctl_tx.send(CtlMsg::Broadcast((2,

Header::ElectionResult((my_id, votes, yes))))).await.unwrap();→֒

}

},

Consensus::OwnVote(id) => {

votes += 1;

if my_vote == 0 {

my_vote = id;

yes += 1;

elections.get_mut(&my_id).unwrap().1 =

yes;→֒

count_winner += 1;

}

if votes == voters {

// Send election results to others

ctl_tx.send(CtlMsg::Broadcast((2,

Header::ElectionResult((my_id, votes, yes))))).await.unwrap();→֒

}

},



Appendix 1. Implemented RAFT consensus algorithm in Rust for RODS 66

Consensus::ElectionResult((candidate_id, votes,

number_of_yes)) => {→֒

elections.get_mut(&candidate_id).unwrap().0 =

votes;→֒

elections.get_mut(&candidate_id).unwrap().1 =

number_of_yes;→֒

if elections.iter().map(|(_e, (v, _ny))|

v).all(|&v| v > 0) {→֒

let mut max_ny = 0;

let mut max_v = 0;

let mut max_id = 0;

let mut tie_flag = false;

for (id, (v, ny)) in &elections {

if ny > &max_ny {

max_ny = ny.to_owned();

max_v = v.to_owned();

max_id = id.to_owned();

tie_flag = false;

}

else if ny == &max_ny {

if v > &max_v {

max_id = id.to_owned();

max_v = v.to_owned();

tie_flag = false;

}

else if v == &max_v {

tie_flag = true;

}

}

}

if tie_flag {

ctl_tx.send(CtlMsg::Broadcast((2,

Header::ElectionTie))).await.unwrap();→֒

}

else {

ctl_tx.send(CtlMsg::Broadcast((2,

Header::ElectionWinner(max_id)))).await.unwrap();→֒

}

}

},

Consensus::ElectionWinner(winner_id) => {

if winner_id == my_id {

count_winner += 1;

if votes == count_winner {

// anounce the leader

ctl_tx.send(CtlMsg::Broadcast((3,

Header::AnounceLeader(my_id)))).await.unwrap();→֒

election_timeout = false;

db.set_leader(true);

set_this_node_leader(&mut db,

my_id).await;→֒

}

}

},



Appendix 1. Implemented RAFT consensus algorithm in Rust for RODS 67

Consensus::ElectionTie => {

// re election

log::debug!("Re election because of tie! resp!")

},

Consensus::CandidatesLen(len) => {

log::debug!("candidate len: {:?}", len);

voters = len;

elections.get_mut(&my_id).unwrap().0 = voters;

},

Consensus::LeaderAnnounced(_leader_id) => {

election_timeout = false;

is_ongoing = false;

}

}

}

else {

break;

}

}

_ = tokio::time::sleep(std::time::Duration::from_millis(100)),

if get_all_nodes => {→֒

let sleep_duration = {

let mut rng = rand::thread_rng();

rng.gen_range(10..40)

};

tokio::time::sleep(std::time::Duration::from_millis(sleep_duration *
100)).await;

→֒

→֒

ctl_tx.send(CtlMsg::GetAllConnectedCandidates).await.unwrap();→֒

get_all_nodes = false;

broadcast_election = true;

consensus_tx.send(Consensus::OwnVote(my_id)).await.unwrap();→֒

}

_ = tokio::time::sleep(std::time::Duration::from_millis(1)),

if broadcast_election => {→֒

broadcast_election = false;

ctl_tx.send(CtlMsg::Broadcast((2,

Header::ElectionBallot(my_id)))).await.unwrap();→֒

}

_ =

tokio::time::sleep(std::time::Duration::from_millis(10000)), if

election_timeout => {

→֒

→֒

// single node

if elections.get_mut(&my_id).unwrap().0 == 1 {

election_timeout = false;

db.set_leader(true);

set_this_node_leader(&mut db, my_id).await;

ctl_tx.send(CtlMsg::SetThisLeader(my_id)).await.unwrap();→֒

}

else {

// re-election

log::debug!("Re election because of tie!");

log::debug!("elecetions {:?}", elections);

}

}

}

}

}


