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Abstract—Energy and spectral efficiency of Internet of Things
(IoT) networks can be improved by integrating energy harvesting,
cognitive radio, and non-orthogonal multiple access (NOMA)
techniques, while unmanned aerial vehicles (UAVs), on the other
hand, are a quick and adaptable entity for improving the cov-
erage performance. In this article, we assess the performance of
a UAV-assisted overlay cognitive NOMA (OC-NOMA) system by
employing an energy harvesting based IoT-inspired cooperative
spectrum sharing transmission (I-CSST) scheme. Herein, an
energy-constrained UAV-borne secondary node harvests radio-
frequency energy from the primary source and uses it to send
both its own information signal and the primary information
signal using the NOMA approach. We consider the impact of
the imperfect successive interference cancellation in NOMA and
the distortion noises caused by hardware impairments (HIs) in
signal processing, which are unavoidable in real-world systems.
We obtain the complicated expressions of outage probability (OP)
for primary and secondary IoT networks using I-CSST scheme
under heterogeneous Rician and Nakagami-m fading channels.
We continue to investigate asymptotic analysis for OP in order to
gain insightful knowledge on the high signal-to-noise ratio (SNR)
slope and practicable diversity order. We also assess the system
throughput and energy efficiency for the considered OC-NOMA
system. Our results demonstrate the benefits of the suggested I-
CSST scheme over the benchmark primary direct transmission
and orthogonal multiple access schemes. We create a deep neural
network (DNN) architecture for real-time OP prediction in order
to combat the complications in model-based approaches.

Index Terms—Cognitive radio, deep neural network, energy
harvesting, hardware impairments, non-orthogonal multiple ac-
cess, overlay spectrum sharing system, unmanned aerial vehicle.

I. INTRODUCTION

THE increasing amount of mobile data traffic motivates
researchers to look into spectral-efficient and energy-

efficient communication strategies in sixth-generation (6G)
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wireless networks [1]. In order to meet customer demands
in the near future, the limited amount of spectrum that is
now accessible must be used effectively [2]. The need for
high data transfer speeds, improvements in quality of service
(QoS), connecting massive equipment, etc., has aggravated this
situation. Beyond spectral efficiency, energy efficiency has also
emerged as a crucial issue for designing future Internet of
Things (IoT) networks [3], [4]. When the devices are distantly
located and lack a regular power source, energy consumption
becomes more of an issue. The simultaneous wireless informa-
tion and power transfer (SWIPT) technology, which enables
wireless devices to simultaneously process information and
harvest energy from ambient radio-frequency (RF) signals, can
solve such issues [5]. For SWIPT realization, there are two
prevalent schemes: time switching (TS) and power splitting
(PS) [6] . In PS-based SWIPT, a part of the received power is
used for energy harvesting (EH) and the remaining amount for
the information processing (IP) operation, while in TS-based
SWIPT, time is alternated between the EH and IP phases [7].

A. Background Works

A promising method to control the rapidly expanding num-
ber of mobile applications over the finite spectrum is cognitive
radio (CR) [8]. It can significantly increase the spectral effi-
ciency of wireless networks using the interweave, underlay,
and overlay paradigms of spectrum access. Both the underlay
and overlay models permit simultaneous data transmissions of
primary users (PUs) and secondary users (SUs) over the same
frequency band, provided that the QoS constraint for the PU is
met, unlike the interweave model, which depends on spectrum
sensing and opportunistic spectrum access. If the interference
constraint at the PU is satisfied, the SU can transmit data using
an underlay technique [9] in the direction of its destination.
In contrast, in an overlay model, SU prioritizes helping the
PU’s communication through relay cooperation in exchange
for access to the PU’s licensed spectrum [10], [11]. Non-
orthogonal multiple access (NOMA) allows numerous users to
get multiplexed in the power domain and send over the same
time/frequency band, in contrast to orthogonal multiple access
(OMA). To do this, it uses successive interference cancellation
(SIC), which demultiplexes the superimposed signals at the
receiver, in conjunction with superposition coding at the
transmitter [12]. Eventually, the cognitive NOMA approach,
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which integrates NOMA with CR, has shown to be a potential
method for improving spectral efficiency in future wireless
networks [13]. In this sense, several studies have examined
cognitive NOMA systems utilising both the underlay [14],
[15] and overlay [17], [18] models. The authors investigated
NOMA for the large-scale underlay CR networks in [14], and
used a stochastic geometry approach to examine the outage
probability (OP) performance. Furthermore, a decode-and-
forward (DF) [15] relaying protocol was used to assess the OP
measure of SUs in underlay cognitive NOMA relay networks.
An overlay model uses the secondary transmitter (ST) as a
relay for PU and also enables it to communicate with the
secondary receivers (SRs) by implementing the NOMA prin-
ciple, in contrast to the underlay cognitive NOMA model [16],
[17]. In [18], an overlay NOMA spectrum sharing approach
was used to serve numerous PUs over an integrated satellite-
terrestrial network. It should be highlighted that the overlay
NOMA model might eliminate the interference temperature
constraint from the ST to the primary receiver (PR), and
thereby, it can improve the OP performance of the PU through
ST (relay) as a means of cooperative diversity advantage.

Deploying EH in CR networks is a promising development
aiming to increase energy and spectral efficiency. Energy-
limited SUs will be more able to sustain themselves since
they can share the spectrum and gather energy from nearby RF
sources. Several studies have used SWIPT in cognitive NOMA
systems [19]-[24]. Authors in [19] specifically proposed a
novel cooperative multiple-input single-output SWIPT NOMA
protocol, where a strong NOMA user serves as an EH relay
and aids a weak NOMA user by adopting a PS scheme. The
research in [20] examined a secondary network’s secure energy
efficiency maximization problem while also examining an
underlay cognitive NOMA system. Authors in [21] focussed
on power beacon (PB)-assisted wireless-powered NOMA IoT
systems. They demonstrated that the PB-assisted NOMA IoT
system outperforms SWIPT NOMA system under a time
switching mechanism based on an IoT relay. Authors of [22]
investigated a CR system where the ST uses the RF signal
from the primary transmitter (PT) to harvest the energy. The
ST sends its data utilizing downlink NOMA and serves as the
primary system’s DF relaying service. The outage performance
of cooperative CR networks with SWIPT was examined in
[23], where the cognitive relay harvests the transmission
power from the ST using the PS scheme, and the NOMA
protocol uses the fixed power allocation scheme. In some
additional studies, a full-duplex ST was chosen to convey the
PT information for IoT network across a cooperative overlay
spectrum sharing network, in return for which SUs might
gather energy and investigate a chance of spectrum access [24].

Recent research has shown that deep learning (DL) ap-
proaches are useful for addressing a number of real-world
problems in today’s wireless communication networks, includ-
ing resource allocation, congestion control, and queue manage-
ment [25]. In order to increase a cell-edge user’s productivity
under both perfect SIC (pSIC) and imperfect SIC (iSIC), a
deep neural network (DNN) was used in [26] for wireless
powered CR-NOMA-based IoT relay networks. In [27], DNN
was built to solve classification and regression problems in

cognitive two way relaying networks for relay selection. In
[28], authors have examined a DNN integrated into a NOMA
system, and demonstrated its remarkable performance in terms
of channel encoding, decoding, and detection. Authors in
[29] have presented a novel approach to optimizing service
distribution in IoT networks, which uses deep learning to learn
the optimal distribution strategy.

B. Motivation and Contributions

All the aforementioned works hypothesized the need for
pSIC and ideal hardware at the RF transceivers to inves-
tigate the performance of SWIPT-enabled cognitive NOMA
networks. Practical implementation of the pSIC is challenging.
Additionally, due to amplifier non-linearities, in-quadrature-
phase imbalances, and phase noises, RF transceivers are af-
fected by hardware impairments (HIs) [30]-[33]. Future IoT
networks are predicted to have a great number of inter-
connections, so it would be necessary to include affordable
devices to reduce the implementation cost. Such inexpensive
equipment causes HIs. Even though different compensation
algorithms could reduce the HIs, there are always some resid-
ual impairments in the real world. The SWIPT-based cognitive
NOMA system may have capacity restrictions due to the
impacts of iSIC and HIs, especially for high-rate applications.
While several recent investigations [34], [35], and [36] have
examined the effects of iSIC on the performance assessment
of cognitive NOMA networks, but they have not considered
potential SWIPT aspects. While a very recent work [37] has
analyzed the OP performance of a cooperative NOMA-based
IoT network with RF EH, but it has not considered the
dynamic CR network which has a more richer functionality. To
the best of authors’ knowledge, no research has yet examined
the performance analysis of cognitive NOMA systems inspired
by SWIPT under the combined influences of HIs and iSIC.
This analysis is crucial to understanding how iSIC and HIs
will affect the practical design of cognitive NOMA IoT
networks linked with the EH method for better sustainable
communication in 6G environments.

Recently, unmanned aerial vehicles (UAVs) have become
widely deployed as flying wireless access platforms for reli-
able communication. Recent advancements in drone technol-
ogy have made it possible for wireless applications to create
UAVs that are affordable, robust, and small. As a result, it
is anticipated that UAV-assisted wireless communication will
be a potential contender for IoT-inspired 6G networks [38].
For instance, considering both underwater and aerial segments,
a UAV-assisted multi-access computation offloading using
NOMA for marine communication networks was proposed in
[39], with the objective of minimizing the energy consumption
of ocean devices.

As a result of the previous discussion, we assess the
performance of an EH-based overlay cognitive NOMA (OC-
NOMA) system in this study by taking into account the impact
of iSIC and HIs on the involved devices. SU node, which
typically lacks a distinct spectrum for communication, could
be the affordable energy-constrained components in small cell
IoT networks. We specifically take into account a situation
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of downlink communication between a PT and its PR with
the assistance of a secondary network made up of a single
ST-SR pair. In addition, ST is presumptively equipped with
RF-based EH unit on a UAV, and it can serve as a DF relay
for primary communications while using a shared spectrum
for its own transmission. According to the NOMA principle,
the ST divides its harvested power into two parts, relaying the
primary signal and transmitting its own signal simultaneously.
The following are the article’s main contributions.

• We propose an EH-based IoT-inspired cooperative spec-
trum sharing transmission (I-CSST) scheme for the OC-
NOMA system employing UAV-assisted DF relaying
strategy. We also explore the primary direct transmission
(PDT) scheme as a benchmark for evaluating the I-
CSST’s effectiveness for the OC-NOMA system under
consideration. We further illustrate the relative perfor-
mance advantages of I-CSST with NOMA compared to
OMA.

• We thoroughly examine the accurate and asymptotic OP
performance of the I-CSST schemes for primary and
secondary IoT networks in the presence of HIs and
iSIC over heterogeneous Rician and Nakagami-m fad-
ing environments based on the received signal-to-noise-
and-distortion ratios (SNDRs) and signal-to-interference-
noise-and-distortion ratios (SINDRs).

• With the help of the generated OP expressions, we
provide a NOMA-based power allocation strategy, and
evaluate the system throughput and energy efficiency to
become aware of the OC-NOMA system.

• It is difficult to examine the OP for UAV-borne OC-
NOMA systems because of their complex derivations.
This creates a substantial hurdle for the model-based
approach, therefore in order to achieve realistic real-
time OCR-NOMA network setups, we construct a DNN
model as an unique data-driven alternative for OP predic-
tion with high accuracy and low latency. The execution
time and root-mean-square error (RMSE) are the key
metrics for evaluating the effectiveness and precision of
our design method when predicting the performance of
complicated network circumstances.

C. Paper Organization

The remainder of the paper is set up as follows. We analyze
the I-CSST scheme and provide an illustration of the system
and channel model in Section II. The primary network’s OP
performance analysis using the PDT and I-CSST schemes
is presented in Section III. In Section IV, the secondary
network’s OP performance study is conducted. Section V
assesses the system throughput and energy efficiency for the
overall system. The DNN framework design is discussed
in Section VI. The numerical and simulation findings are
shown in Section VII, and conclusions are drawn in Section
VIII. Additionally, the appendices provide the proof of useful
theorems and lemmas.

Notations: A complex Gaussian distribution with a mean
of zero and a variance of σ2 is denoted as CN (0, σ2). For
a random variable X , the probability density function (PDF)
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Fig. 1: OC-NOMA system model.

and cumulative distribution function (CDF) are denoted, re-
spectively, by fX(·) and FX(·). Further, Kv(·) is the modified
Bessel function of the second kind as stated in [40, eq.
8.432.6], while Γ(·) and Υ(·, ·) are the complete Gamma
function and lower incomplete Gamma function, respectively,
as stated in [40, eqs. (8.310.1) and (8.350.1)]. E[·] stands
for expectancy, and

(
p
q

)
= p!

q!(p−q)! be the coefficient of the
binomial.

II. SYSTEM MODEL AND I-CSST SCHEME DESCRIPTION

In this section, we describe the concerned OC-NOMA
system and channel models, and explain the proposed EH-
based I-CSST scheme using DF relaying strategy.

A. System and Channel Models

We consider an OC-NOMA system as shown in Fig. 1,
which consists of a primary source (S), a secondary source
(R) which also acts as a relay, and two users viz., a PU (U1)
and a SU (U2). Herein, the primary source S transmits its
message signal to the PU U1 with the help of the relay R which
is deployed over a UAV1. As such, we consider a UAV-assisted
system where the UAV communicates with two NOMA users,
i.e., U1 and U2. The UAV flies at an altitude of h, a constant
velocity of v, and a circular trajectory of r. Even though main
channel has been allotted between S and U1, the S might
still approach the adjacent R for assistance and harnessing a
diversity advantage. In exchange, the R can use the primary’s
authorized spectrum for its own transmission to the SU U2.
The S is regarded as having a reliable power source feeding it,
and broadcasts its signal at a constant transmit power. As the
R being assumed as an energy-constrained node, it harvests
energy from the RF signals transmitted by the primary source
S. In anticipation of helping with the primary transmission
between the S and U1, the R is given access to the licensed
primary spectrum based on an overlay paradigm. For this, R
serves as a cooperative relay and uses the NOMA approach
to concurrently transmit its own signal to the SU and help

1UAVs face several key challenges [41], including limited flight time
and battery life, payload capacity restrictions, communication and control
complexities, and the need for effective sense-and-avoid capabilities. To
overcome these challenges [42], accounting for the weight of the UAV, air
density, and rotor disc area is essential. These factors should be carefully
considered in UAV design, analysis, and performance evaluations to ensure
optimal performance and operational efficiency.
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forward the primary source’s signal to the PU. To examine the
underlying I-CSST scheme for the OC-NOMA system under
consideration, as explained in the sequel, we here utilize a
PS-based EH technique.

The coordinates of ground nodes S, U1, and U2 in three-
dimensional (3-D) Cartesian space are denoted by vs =
(Xs,Ys, 0), vu1 = (Xu1 ,Yu1 , 0), and vu2 = (Xu2 ,Yu2 , 0),
respectively. It is expected that the UAV will follow a cir-
cular trajectory with radius ru, height Hu so that Hu ∈
[Hmin

u ,Hmax
u ], and constant speed, where Hmin

u and Hmax
u

are the minimum and maximum allowed heights, respectively.
Let φu represent the angle the UAV is presently positioned
at with respect to the x-axis within the UAV circle. As
a result, vu = (ru cosφu, ru sinφu, Hu) can be used to
indicate the UAV’s location. The locations of S, Uj , and
the UAV can be denoted by the two-dimensional (2-D)
Cartesian coordinates ws = (Xs,Ys), wuj = (Xuj ,Yuj ),
and wu = (ru cosφu, ru sinφu), respectively. Let θs =

arctan
(

Hu

|wu−ws|

)
and θuj

= arctan
(

Hu

|wu−wuj
|

)
, with j ∈

{1, 2}, provide the elevation angles (in rad) between S and
the UAV and between users and the UAV, respectively.

We have assumed that all the nodes use single-antenna
devices and operate in a half-duplex (HD) mode. Additionally,
the devices have cheaper RF transceiver components installed,
which accounts for their HIs. Since it is believed that every
channel would adhere to the block fading, they will all stay
the same for the duration of the block, but may vary on their
own during the transmission over the different blocks. We
have considered independent Nakagami-m fading [31] for the
communication links from S to U1 and U2 with the channel
coefficients hsu1

and hsu2
, respectively. The squared channel

gain |hij |2 follows the Gamma distribution with an average
power of Ωij and a fading severity parameter of mij , for
i ∈ {s} and j ∈ {u1, u2}, with i ̸= j. As a result, the
corresponding PDF and CDF expressions of |hij |2 can be
obtained by

f|hij |2(z) =
1

Γ(mij)

(
mij

Ωij

)mij

(z)mij−1e
−
( mij

Ωij

)
z
, (1)

and

F|hij |2(z) =
1

Γ(mij)
Υ

(
mij ,

(
mij

Ωij

)
z

)
. (2)

Once the path-loss model is taken into account, we obtain
Ωij = d

−αij

ij , where dij is the normalised distance between
nodes i and j and αij is the path-loss exponent. As a result,
since the propagation energy decreases at the rate of d

−αij

ij ,
the RF energy in the RF-based EH system could be harvested
at very low power density. The additive white Gaussian noise
(AWGN) with zero mean and variance σ2 also has an impact
on all receiving nodes.

In accordance with the elevation angle and surroundings,
the communication links between the UAV and ground nodes
(S, U1, and U2) may have line-of-sight (LoS) or non-LoS.
As a result, the probability of LoS in their relevant links is
provided by
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Fig. 2: Transmission block structure for the PS-based EH.

PL(θj) =
(
1 + εj exp

(
− ξj(θj − εj)

))−1

, (3)

where εj and ξj , with j ∈ {s, u1, andu2}, denote the environ-
ment parameters fetched from the curve fitting using Damped
Least-Squares (DLS) method [43]. The corresponding path-
loss exponent is given by

αr,j(θj) = PL(θj)κj + νj , (4)

where κj and νj , with εj and ξj , for j ∈ {s, u1, andu2},
represent constants that depend on the uplink and downlink
environment [43]. The link between S and R is separated by
dsr =

√
|wu −ws|2 +H2

u, and the link between R and Uk is
separated by druk

=
√

|wu −wuk
|2 +H2

u. The related aerial
path-loss exponents are αr,s(θs) and αr,uk

(θuk
), respectively.

Likewise, we assume that dsuk
= |ws − wuk

|2 and αsuk
,

where k ∈ {1, 2}, are the distance and path-loss exponent,
respectively, for the corresponding terrestrial channel.

The channel between UAV and ground nodes (S, U1, or U2)
is typically characterised by a strong LoS path. In order to deal
with LoS and multipath scatterers at the ground receiver, the
independent Rician fading is applied to the channel between
UAV and ground nodes, whereby the channel coefficients for
the links S-R, R-U1, and R-U2 being represented by gsr, gru1

,
and gru2

, respectively. In order to depict the PDF and CDF of
the channel gain |gij |2, for i ∈ {s, r} and j ∈ {r, u1, u2}, with
i ̸= j, a non-central chi-square distribution with two degrees
of freedom is utilised as

f|gij |2(z) = bij e
−Kij e−bijz I0

(
2
√

Kij bij z
)

= e−Kij e−bijz
∞∑
l=0

Kl
ij b

k+1
ij

l! Γ(l + 1)
zl (5)

and

F|gij |2(z) = 1−Q
(√

2Kij ,
√
2bij z

)
, (6)

where bij = (Kij + 1) /Ωij , with Kij ≜ |µij |2 /2σ2,
Ωij = d

−αij

ij , I0(z), and Q(a, b) representing the Rician
factor, the normalized average fading power, the first-order
modified Bessel function in the zeroth-order, and the Marcum
Q-function of the first-order, respectively.

B. PS-Based EH with Source Transmission

In the considered system, an energy harvester is used by the
UAV to generate electricity for data transmission and spectrum
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sensing. It should be noted that in our study, the energy that is
harvested is mostly used for sensing and transmission, while
the embedded battery of the UAV is primarily responsible for
providing the energy required for UAV flying, hovering, and
other expenses. Due to the HD operation employed in the PS-
based EH, the block transmission time T is split into two sub-
blocks, with one half being utilised for primary transmission
(first transmission phase) and the other for secondary transmis-
sion (second transmission phase), as illustrated in Fig. 2. Node
S transmits a unit-power signal xs during the first transmission
phase, and as a result, the signals received at nodes U1 and
U2 can be represented by ysu1

and ysu2
, respectively, and

expressed as

ysj = hsj

(√
Ps xs + ηts

)
+ ηrsj +Ψsj , (7)

where j ∈ {u1, u2}, transmit power at S is denoted as
Ps, the distortion noise for transmit processing at S is
represented by ηts ∼ CN (0, λ2

tsPs), the distortion noise
for receive processing at the j-th node is represented by
ηrsj ∼ CN (0, λ2

rsjPs|hsj |2), where λts and λrsj represent the

severity of the impairments such that λsj =
√
λ2
ts + λ2

rsj , and
Ψsj represents the AWGN variable. Consequently, the final
SNDR at j-th node, j ∈ {u1, u2}, via the direct transmission
(DT)-link, can be represented as

γDT
sj =

∆s |hsj |2

∆s |hsj |2λ2
sj + 1

, (8)

where ∆s =
Ps

σ2 be the transmit signal-to-noise ratio (SNR) at
node S. The received signal at R is given as

ysr = gsr

(√
Ps xs + ηts

)
+ ηrsr +Ψsr, (9)

where ηrsr ∼ CN (0, λ2
rsrPs|gsr|2). Through the use of the

PS-based EH parameter ρ (0 ≤ ρ ≤ 1), the R divides the
received signal ysr into two parts. In particular,

√
ρ ysr is

used to gather energy to refuel its battery, and
√
1− ρ ysr

is utilised to analyse information. Consequently, the received
signal at the energy harvester’s input is provided by
√
ρ ysr=

√
ρgsr

(√
Psxs + ηts

)
+
√
ρηrsr +

√
ρΨsr. (10)

The energy that R has harvested2 can be stated using (10) as

Er =
ΘρPs |gsr|2 T

2
, (11)

where 0 ≤ Θ ≤ 1 is the inverter circuitry’s energy conversion
efficiency at R, and the noise statistic [22] is ignored because
we were aiming for harvested energy with Pr ≪ Ps. The
power will be used for the remaining T/2 time and will
therefore be provided by

Pr =
Er

T/2
= ΘρPs |gsr|2 = βPs |gsr|2 , (12)

2It is worth mentioning hereby that the consideration of a linear EH
model, while not fully practical, have a simplification to establish a baseline
performance evaluation. Non-linear EH models [6], [20] would be more
realistic and shall be undertaken in future works.

where β = Θρ. Contrarily, the base-band signal that the
information receiver (IR) at R has received is represented by

y
′

sr =
√
(1− ρ)ysr

=
√
1− ρ gsr

(√
Psxs + ηts

)
+
√
1− ρ ηrsr

+
√

1− ρ Ψsr +ΨRF , (13)

where ΨRF denotes the sample AWGN owing to RF to
baseband signal conversion. Consequently, the overall AWGN
noise at IR is Ψsr =

√
1− ρ Ψsr + ΨRF . As a result,

the resulting SNDR through the DT-link at node R can be
expressed as

γDT
sr =

(1− ρ)∆s |gsr|2

(1− ρ)∆s |gsr|2λ2
sr + 1

, (14)

where λsr =
√
λ2
ts + λ2

rsr.
The DF relaying with OC-NOMA transmission using PS-

based EH protocol is described in the next section, and thereby,
the users U1 and U2’s corresponding SINDR expressions are
obtained.

C. DF Relaying with OC-NOMA Transmission

Here, R implements a DF-based relaying startegy during the
second transmission phase and hence first decodes the primary
signal xs. If R is successful in decoding, it applies the NOMA
principle to combine the decoded signal xs with its own signal
xr to produce a superimposed signal zDF

r . Consequently, the R
node’s transmit signal is provided by

zDF
r =

√
δPrxs +

√
(1− δ)Prxr + ηtr. (15)

where the transmit power at R is denoted as Pr, and the
distortion noise for transmit processing at R is represented
by ηtr ∼ CN (0, λ2

trPr). Following that, the corresponding
signals obtained at U1 and U2 from R can be represented by
yDF
ru1

and yDF
ru2

, being provided as

yDF
rj = grj z

DF
r + ηrrj +Ψrj , (16)

for j ∈ {u1, u2}. Herein, the distortion noise for re-
ceive processing at the j-th node is represented by ηrrj ∼
CN (0, λ2

rrjPr|grj |2), with λtr and λrrj being the severity

of the impairments such that λrj =
√

λ2
tr + λ2

rrj , and Ψrj

represents the AWGN variable. The SNDR expression at U1,
based on (15) and (16), can be stated as

γDF
ru1

=
δβ∆s |gsr|2|gru1

|2

β∆s |gsr|2|gru1
|2Ξp + 1

, (17)

where Ξp = (1 − δ) + λ2
ru1

with λru1
=
√

λ2
tu1

+ λ2
rru1

.
The U1 now exploits MRC to combine the source’s signal
components received in first transmission phase (via DT) and
in second transmission phase, subject to the source’s signal
being successfully decoded at R (via relay transmission).

The U2 implements SIC in accordance with the NOMA
principle. The U2 accomplishes this by first decoding the
source’s signal xs, removing xs from yDF

ru2
, and then decoding
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its own signal xr. The U2 first decodes source’s signal, while
considering the signal R’s as noise. In light of (15) and (16),
the resulting SINDR expression at U2 can be stated as

γDF
ru2→xs

=
δβ∆s |gsr|2|gru2

|2

β∆s |gsr|2|gru2 |2Ξs + 1
, (18)

where Ξs = (1 − δ) + λ2
ru2

with λru2 =
√

λ2
tr + λ2

rru2
.

Remembering that U2 picks up the source’s signal in the first
transmission phase, it is now possible for it to use the MRC
to decode xs during the SIC process. U2 can then decode
xs and take it out of the yru2 received NOMA signal. When
taking into account the iSIC scenario, the SINDR at U2 can
be written as

γDF
ru2

=
(1− δ)β∆s |gsr|2|gru2 |2

β∆s |gsr|2
(
λ2
ru2

|gru2 |2 + δ|hI |2
)
+ 1

, (19)

where hI is the residual interference signal (IS) [24] channel
coefficient at U2 and is subject to Nakagami-m fading with
fading severity mI and average power E[|hI |2] = ξΩI . Herein,
ξ (0 ≤ ξ ≤ 1) accounts for the level of residual IS due to iSIC,
i.e., ξ = 0 implies the case of pSIC.

Again, if decoding of the signal xs at R in the first
transmission phase is unsuccessful, it will not communicate
during the second transmission phase. In this scenario, U1

only receives xs from the S over the DT-link during the first
transmission phase.

III. PERFORMANCE ANALYSIS OF PRIMARY NETWORK

In this part, we analyse the accurate and asymptotic OP
performance for the primary network using the PDT and I-
CSST schemes. We also look at retrieving the NOMA power
allocation parameter’s effective value.

A. Accurate OP Analysis

1) PDT Scheme: We now take into consideration that PDT
just delivers communication through a DT-link only, with no
involvement from UAV-borne relay cooperation. We use this
scheme as a benchmark to assess the effectiveness of the
suggested I-CSST scheme. The OP of the primary network
utilising the PDT scheme for a pre-defined target rate rpth can
be given, by realising that PDT occurs for a single transmission
phase, as

P DT
Pri (r

p
th) = Pr

[
log2

(
1 + γDT

su1

)
< rpth

]
. (20)

Then, (20) can be re-expressed as

P DT
Pri (r

p
th) = Pr

[
γDT
su1

< τ ′p
]
= FγDT

su1
(τ ′p), (21)

where τ ′p = 2r
p
th − 1. The CDF in (21) can be represented

using (8) as

FγDT
su1

(τ ′p) = Pr

[
|hsu1 |2 <

τ ′p

∆s

(
1− λ2

su1
τ ′p
)] , (22)

and can be computed, with the condition on threshold τ ′p, as

FγDT
su1

(τ ′p) =

 Fγsu1

(
τ ′
p

∆s(1−λ2
su1

τ ′
p)

)
, if τ ′p < 1

λ2
su1

,

1, if τ ′p ≥ 1
λ2
su1

.

(23)

This allows for the computation of the required OP by apply-
ing (2) into (23). Note that, starting with (23), PDT induces
an outage whenever the threshold τ ′p exceeds the value 1

λ2
su1

.
2) I-CSST Scheme: Now, as described in Section II, we

examine the OP performance of the I-CSST scheme for
the primary network. The primary network’s OP formulation
under the I-CSST scheme can be given by considering the
target rate rpth as

P CSST
Pri (rpth) = Pr

[
γDT
sr ≥ τp,

(
γDT
su1

+ γDF
ru1

)
< τp

]
+ Pr

[
γDT
sr < τp, γ

DT
su1

< τp
]
, (24)

where τp = 22r
p
th−1. The OP expression in (24) can be further

expressed as

P CSST
Pri (rpth) =

(
1− FγDT

sr
(τp)

)
Pr
[ (

γDT
su1

+ γDF
ru1

)
< τp

]︸ ︷︷ ︸
P1

+ FγDT
sr
(τp)FγDT

su1
(τp). (25)

We must evaluate the CDF FγDT
sr
(τp) and the probability term

P1 in order to calculate (25). Using (14), it is possible to
extract the CDF FγDT

sr
(τp) as

FγDT
sr
(τp) =

{
Fγsr

(
τp

(1−ρ)∆s(1−λ2
srτp)

)
, if τp < 1

λ2
sr
,

1, if τp ≥ 1
λ2
sr
.

(26)

Next, P1 can be evaluated as

P1 =

∫ τp

0

(∫ τp−y

0

fγDF
ru1

(x) dx

)
fγDT

su1
(y) dy

=

∫ τp

0

(
FγDF

ru1
(τp − y)

)
fγDT

su1
(y) dy. (27)

In order to calculate (27), one needs the CDF FγDF
ru1

(·), which
can be determined by using (17) as in the following lemma.

Lemma 1: The Rician fading can be applied to determine
the CDF FγDF

ru1
(w) for the I-CSST scheme in the OC-NOMA

system as

FγDF
ru1

(w) =

{
A1(w)− A2(w), if w < δ

Ξp
,

0, if w ≥ δ
Ξp

,
(28)

where A1(w) and A2(w) are, respectively, given as

A1(w) =

∞∑
l=0

∞∑
f=0

(
(Kru1)

l+f

(l!)(f !)

)
e−2Kru1 (29)

and

A2(w) =

∞∑
l=0

l∑
a=0

∞∑
n=0

(
(Kru1

)l+n(bru1
)a+n+1

(l!)(a!)(n!)2

)
(T1)

a+n+1
2

× e−2Kru1 Kn−a+1

(
2
√
T1b2ru1

)
, (30)
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with T1 = w
β∆s(δ−Ξpw) .

Proof: See Appendix A.
Furthermore, by using the expression of FγDF

ru1
(w) from (28)

and inserting the PDF expression of γDT
su1

into (27), it is re-
alised that a closed-form solution for P1 would be intractable.
Therefore, we apply an L-stairways conjecture [44] to simplify
P1 as for the complicated integral sector in (27) to obtain

P1 ≈
L−1∑
n=0

{
FγDT

su1

(n+ 1

L
τp

)
− FγDT

su1

(n
L
τp

)}
× FγDF

ru1

(L− n

L
τp

)
. (31)

Finally, P CSST
Pri (rpth) can be evaluated by inserting the CDF

expressions from (23) and (28) into (31) and the resulting
expression together with (23) and (26) into (25).

B. Asymptotic OP Analysis
In order to determine the diversity order, we achieve an

asymptotic OP expression in (25) for high SNR (∆s,∆r →
∞). In the beginning, we exploit the fact that the lower
incomplete gamma function Υ(a, z) [40, eq. 8.354.1] can be
approximated as

Υ(a, z) =
∞∑

n=0

(−1)n za+n

n! (a + n)
≈

z→0

(
za

a

)
. (32)

At high SNR, we are able to alter CDF from (2) as

F|hij |2(z) ≈
1

Γ(mij + 1)

(
mij

Ωij
z

)mij

. (33)

It follows that the PDT scheme’s asymptotic OP can be
expressed as

P DT, asy
Pri (rpth) = F asy

γDT
su1

(τ ′p)

=
1

Γ(msu1 + 1)

(
msu1

T2

Ωsu1

)msu1

, (34)

where T2 =
τ ′
p

∆s(1−λ2
su1

τ ′
p)

. The asymptotic OP for the primary

network’s I-CSST scheme can be further assessed as

P CSST, asy
Pri (rpth) =

(
1− F asy

γDT
sr
(τp)

)
Pr
[ (

γDT
su1

+ γDF
ru1

)
< τp

]︸ ︷︷ ︸
P asy

1

+ F asy

γDT
sr
(τp)F

asy

γDT
su1

(τp). (35)

Asymptotic expressions of the relevant CDFs and the proba-
bility term are computed for the evaluation of (35) as follows.

Under Rician fading, the CDF F asy

γDT
sr
(τp) for I-CSST system

can be stated as

F asy

γDT
sr
(τp) =

∞∑
l=0

(Ksr)
l(bsrT3)

l+1

(l!)2(l + 1)
e−Ksr , (36)

where T3 =
τp

(1−ρ)∆s(1−λ2
srτp)

for τp < 1
λ2
sr

.
The CDF F asy

γDF
ru1

(τp) can be calculated, similar to condition
like (28), as

F asy

γDF
ru1

(τp) =

∞∑
l=0

∞∑
f=0

(Kru1bru1)
l+f

(bru1)
l−f+2(T1)

(l+1)

(l!)2(f !)2(l + 1)

× (f − l − 1)! e(−2Kru1 ), (37)

for τp < δ
Ξp

. Next, P asy
1 in (35) can be evaluated, similar to

condition (31), as

P asy
1 ≈

L−1∑
n=0

{
F asy

γDT
su1

(n+ 1

L
τp

)
− F asy

γDT
su1

(n
L
τp

)}
× F asy

γDF
ru1

(L− n

L
τp

)
. (38)

Finally, P CSST, asy
Pri (rpth) can be evaluated by inserting the CDF

expressions from (34) and (37) into (38) and the resulting
expression together with (34) and (36) into (35). Thus, on
applying [45] dDT

Pri = − lim
∆s→∞

log(PDT, asy
Pri (∆s))

log(∆s)
and dCSST

Pri =

− lim
∆s→∞

log(P CSST, asy
Pri (∆s))

log(∆s)
, the primary network’s diversity or-

ders for PDT and I-CSST schemes are dDT
Pri = msu1

and
dCSST

Pri = msu1
+ 1, respectively.

C. NOMA Power Allocation Parameter

To create the NOMA power allocation policy for R, it
is necessary to keep in mind that the QoS criterion for the
primary network must be met. To keep the primary network’s
QoS intact, we actually need to choose an appropriate value for
the NOMA power allocation parameter δ. As such, from (28),
iterating the conditions τp < δ

Ξp
, the permissible range of δ for

a given threshold τp can be calculated as
τp(1+λ2

ru1
)

1+τp
< δ < 1

for the I-CSST scheme. It is worth mentioning that a lower
value of δ can allocate more NOMA power for the secondary
communication and hence ascertain higher spectrum access
possibilities. However, U1 being a high priority NOMA user,
a higher value of δ is allocated correspondingly to U1.

IV. PERFORMANCE ANALYSIS OF SECONDARY NETWORK

Here, we provide an accurate and asymptotic OP analysis
of the secondary network for the I-CSST enabled OC-NOMA
system by taking into account the two SIC situations viz., iSIC
and pSIC.

A. Accurate OP Analysis

For a target rate of rsth, the OP formulation for the secondary
network under the I-CSST scheme can be expressed as

P CSST
Sec (rsth) = Pr

[
γDT
sr ≥ τp

](
1− Pr

[
γMRC
u2

≥ τp, γ
DF
ru2

≥ τs
]︸ ︷︷ ︸

P2

)
+ Pr

[
γDT
sr < τp

]
, (39)

where τs = 2 rsth − 1. We can evaluate (39) further as

P CSST
Sec (rsth) =

[
1− FγDT

sr
(τp)

](
1− P2

)
+ FγDT

sr
(τp). (40)

The joint probability term P2 needs to be calculated to evaluate
(40). It is deduced in the next subsections for the iSIC and
pSIC situations.



8

1) iSIC: In the subsequent theorem, we derive the expres-
sion of P2 for the instance of iSIC.

Theorem 1: The probability term P2 in (40) can be calcu-
lated under iSIC situation as

P2 =

{
P21 × P22, if τp > δ

Ξs
,

P22, if τp ≤ δ
Ξs

,
(41)

with

P21 ≈ 1−
L−1∑
n=0

{
FγDT

su2

(n+ 1

L
τp

)
− FγDT

su2

(n
L
τp

)}
× FγDF

ru2,xs

(L− n

L
τp

)
(42)

and

P22 =

{
C1(τs)− C2(τs), if τs < 1−δ

λ2
ru2

,

0, if τs ≥ 1−δ
λ2
ru2

,
(43)

where

C1(τs) =

∞∑
l=0

∞∑
f=0

f∑
b=0

∞∑
p=0

(
Kl+f+p

ru2

) (
bb+p+1
ru2

)
(l!)(f !)(b!)(p!)2

(b+ p)!

×
(
T6

T5

)b(
bru2T6

T5
+ bru2

)−(b+p+1)

e−3Kru2 , (44)

and

C2(τs) =

∞∑
l=0

l∑
a=0

∞∑
n=0

n∑
c=0

∞∑
q=0

(
Kl+n+q

ru2

) (
ba+n+q+2
ru2

)
(l!)(a!)(n!)2(q!)2

× (n− c+ q)!

(
n

c

)(
τs
T4

)a(
T6

T5

)n−c

(T5)
−(c+1)

×
(
bru2

T6

T5
+ bru2

)−(n−c+q+1)

e−3Kru2 , (45)

with T4 = β∆s, T5 = (1− δ)− λ2
ru2

τs, and T6 = δτs.
Proof: See Appendix B.

The relevant CDFs in (42) can be easily determined similar to
(23) and (28). The appropriate OP expression for the secondary
network can be obtained by putting the results from (26) and
(41) into (40).

2) P-SIC: In this scenario, P22 can be used to calculate the
OP of the secondary network while using k2 = 0.

P22 =

{
D1(τs)− D2(τs), if τs < 1−δ

λ2
ru2

,

0, if τs ≥ 1−δ
λ2
ru2

,
(46)

where

D1(τs) =

∞∑
l=0

∞∑
f=0

Kl+f
ru2

(l!)(f !)
e(−2Kru2 ), (47)

D2(τs) =

∞∑
l=0

l∑
a=0

∞∑
n=0

(Kru2
)l+n(bru2

)a+n+1

(l!)(a!)(n!)2
(T7)

ae(−2Kru2
),

(48)

where T7 = τs
β∆s[(1−δ)−λ2

ru2
τs]

. Now, on inserting (46) into

(41) and the result along with (26) into (40), one can fetch
the requisite OP expression.

B. Asymptotic OP Analysis

The secondary network’s asymptotic OP can be determined
using the formula

P CSST, asy
Sec (rsth) =

[
1− F asy

γDT
sr
(τp)

](
1− P asy

2

)
+ F asy

γDT
sr
(τp). (49)

To evaluate (49), we need to obtain the expression of the joint
probability term P asy

2 . We derive it in the next subsections for
the iSIC and pSIC situations.

1) iSIC: For the case of iSIC, we derive the expression of
P asy
2 as

P asy
2 =

{
P asy
21 × P asy

22 , if τp > δ
Ξs

,

P asy
22 , if τp ≤ δ

Ξs
,

(50)

with

P asy
21 ≈ 1−

L−1∑
n=0

{
F asy

γDT
su2

(n+ 1

L
τp

)
− F asy

γDT
su2

(n
L
τp

)}
× F asy

γDF
ru2,xs

(L− n

L
τp

)
(51)

and probability term P asy
22 in (50) can be evaluated as

P asy
22 =

∞∑
l=0

∞∑
f=0

f∑
a=0

∞∑
n=0

(Kru2
)l+f+n(bru2

)l+f+n+3

(l!)2(f !)2(n!)2(l + 1)
e(−3Kru2

)

×
(
τs
T4

)l+1

(T5)
−(f+1)(T6)

(f−a)

(
bru2

T5

)−(a−l)(
f

a

)
× (a− l − 1)!(f − a+ n)!

(
bru2

T6

T5
+ bru2

)−(f−a+n+1)

.

(52)

The relevant CDFs in (51) can be determined similar to (34)
and (37). The appropriate OP expression for the secondary
network can be obtained by putting the results from (36) and
(50) into (49). Hereby, we examine the diversity order diSIC

Sec =

− lim
∆s→∞

log(P CSST, asy
Sec (∆s))

log(∆s)
to illustrate that diSIC

Sec = 0. As a result,

the corresponding OP curves would attain error floors in the
high SNR region.

2) P-SIC: In this scenario, P asy
22 can be used to calculate

the OP of the secondary network while using k2 = 0 as

P asy
22 =

∞∑
l=0

∞∑
f=0

(Kru2
)l+f (bru2

)2(l+1)

(l!)2(f !)2(l + 1)
(f − l − 1)!

× (T7)
l+1e−(2Kru2

). (53)

Now, on inserting (53) into (50) and the result along with (36)
into (49), one can fetch the requisite OP expression. Hereby,
we examine the diversity order dpSIC

Sec = − lim
∆s→∞

log(P CSST, asy
Sec (∆s))

log(∆s)

to illustrate that dpSIC
Sec = 0. As a result, the corresponding OP

curves would attain error floors in the high SNR region.

V. OVERALL OC-NOMA SYSTEM PERFORMANCE

Based on the advancements in earlier parts, we examine the
throughput and energy efficiency performance for the entire
OC-NOMA system employing I-CSST scheme in this section.
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A. System Throughput

For the OC-NOMA system under consideration, the system
throughput is a critical performance indicator to evaluate
spectrum usage. It indicates the mean spectral efficiency for
cooperative communication-based wireless networks [24]. It
can be expressed quantitatively as the total of the individual
target rates for the primary and secondary communications
that can be successfully attained via the Rician and Nakagami-
m fading channels for the proposed OC-NOMA system. The
deduced OP expressions for both primary and secondary
networks allow us to derive the system throughput for the
I-CSST scheme as

SCSST
T =

[
(1− P CSST

Pri (rpth)) r
p
th + (1− P CSST

Sec (rsth)) r
s
th

]
. (54)

When rpth = rsth = R is used, the maximum system through-
put for the I-CSST scheme is R, which could be achieved
under optimal hardware and pSIC circumstances under a high
SNR environment.

B. Energy Efficiency

We can examine the energy efficiency of the EH-based OC-
NOMA system under I-CSST scheme by using the throughput
equations in (54). Such a study implies that it can assist in
designing an EH-aware OC-NOMA system to increase net-
work lifetime. Fundamentally, the system’s energy efficiency
is defined as the ratio between the amount of provided data and
the amount of energy used [24]. As stated in (54), the system
throughput for the I-CSST scheme implies the total amount
of data provided. In contrast, with the PS-based EH method
in the I-CSST scheme, the total energy spent in the system
equals the sum of the energy used by the source during the EH
phase (which lasts for T/2 of time) and its use during the first
transmission phase (T/2 of time). Notably, the energy used
in the second transmission phase is the energy obtained by
relay in the EH phase and does not contribute to the system’s
overall energy consumption. As a result, the energy efficiency
for the OC-NOMA system under consideration, using I-CSST
scheme, can be represented as

ECSST =
SCSST
T
∆s

2

, (55)

where SCSST
T in bps/Hz is given in (54).

VI. DEEP NEURAL NETWORK DESIGN

This section presents the DNN framework for estimating
the OP with minimum computational complexity and rapid run
time in order to get around the difficulty and time requirements
of mathematical analysis and Monte-Carlo simulations. As the
calculation of OP depends on various parameters as listed in
Table I, we can train a neural network to learn this relationship.

Hidden
Layer 1

Hidden
Layer 5

Inp
ut 

La
ye

r

Output
Layer

Fig. 3: DNN deployment architecture.

TABLE I: DNN training and testing input parameters.

Parameters (Input) Values Parameters (Input) Values
∆s [−10, 40] λ0 [0, 0.3]
δ [0.51, 0.99] rpth = rsth [0.1, 1]
ΩI [0,−40] ru [0.1, 20]
Hu [0.1, 35] φu [0, 2π]

(XsYsZs) [−20 0 20] (Xu1Yu1Zu1 ) [20−20 0]
(Xu2Yu2Zu2 ) [20 0 0] − −

A. Dataset Generation Technique

We use a DNN to model the regression problem of pre-
dicting the OP for various system conditions. The dataset for
this study is constructed using the OP expressions provided
in (24) and (39). The calculation of OP depends on various
parameters such as SNR (∆s), HIs level (λ0), power factor
(δ), target rates (rpth = rsth), level of residual interference
(ΩI), radius of UAV (ru), height of UAV (Hu), angular
motion of UAV (φu), locations of source (Xs,Ys,Zs), loca-
tion of U1(Xu1

,Yu1
,Zu1

), and location of U2(Xu2
,Yu2

,Zu2
).

Therefore, while constructing the dataset, we should consider
different values for each parameter in some defined ranges.
The parameters and their ranges are listed in Table I. It is
important to note that each system parameter is uniformly
sampled in the provided range and later various combinations
of these parameters are used with (24) and (39) to generate OP
values. Specifically, we picked 5 samples for each parameter.

The resulting dataset D has a row vector containing dataset
[d] = [X [d], Y sim] for each sample d, where X [d] is a feature
vector comprising of all the input variables specified in Table
I. Every feature vector X [d] is utilized to build actual OP sets
from (24) and (39), and each one is fed into simulation and
given a unique output Y sim. The total number of samples in the
created dataset (Ds) is 106, of which 80% are used for training
(Ds,trn), and the remaining 20% are split equally between
validation (Ds,val) and testing (Ds,tes). We have come to the
conclusion that most of the time, this amount of samples is
enough to get estimations that are fairly accurate.

Note that with an increase in the number of samples of each
parameters in their considered ranges, more data needs to be
generated. This is essential for better training of the DNN in
order to get high prediction accuracy.
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B. DNN Architecture

Our DNN architecture consists of a feed-forward neural
network comprising 1 input layer, 5 hidden layers, each
containing 150 neurons, and 1 output layer, as depicted in
Fig. 3. The eleven parameters given in Section VI-A have
corresponding neural counterparts in the eleven input layer
neurons. An exponential linear unit (eLU) activation function
is used to perform a threshold operation at the output of each
neuron in the hidden layers. Any value that is less than zero
gets scaled to zero. The eLU is defined mathematically as

eLU(x) =

{
ϱ (ex − 1), x < 0,
x, x ≥ 0,

(56)

where x is the input parameter, the constant ϱ has the value
1. Due to its almost linear nature, the eLU activation function
has a variety of advantages over the other activation functions.
As this is a regression problem to predict the OP value, the
output layer of our network contains only one neuron without
any subsequent modification or activation function. The output
Fm

n of the n-th neuron in the m-th layer is linked to the
outputs of all neurons in the (m−1)-th layer and is computed
as

Fm
n = eLU

( Um−1∑
j=1

Wm
j,n Fm−1

j + Cm
n

)
, (57)

where Um−1 is the (m−1)-th layer’s total number of neurons.
Wm

j,n denotes the weight of the link from neuron (j) in layer
(m − 1) to neuron (n) in layer (m), while Cm

n denotes the
scalar bias in the (m)-th layer.

C. Real-Time Prediction of OP

Training a DNN requires careful optimization of the weights
and biases of the network. We employ the Adam optimization
algorithm for this purpose. Adam uses a method of gradient
descent to update the network’s weights and biases during
backpropagation. Further, we use the mean squared error
(MSE) as the loss function to evaluate the accuracy of the
network’s predictions, and this value is used to adjust the
weights and biases during the optimization process. Let Yd

and Ȳd represent the true and predicted outputs of the DNN for
a certain training sample d then the MSE loss of the training
phase is calculated as

Loss
(
Yd, Ȳd

)
=

1

Ds,tes

Ds,tes∑
d=1

(
Yd − Ȳd

)2
. (58)

The Adam optimization algorithm is able to adjust the weights
and biases of the network to minimize the MSE and improve
the accuracy of the predictions generated by the network.

In the following part, we compare the DNN evaluation to
mathematical analysis and Monte-Carlo simulation to illustrate
how long it takes to execute an OP prediction.

VII. NUMERICAL AND SIMULATION RESULTS

In this section, we perform numerical analysis for the
proposed UAV relaying OC-NOMA system and make use
of Monte-Carlo simulations in MATLAB version R2022a in

TABLE II: Simulation Parameters [with j ∈ {1, 2}].

Parameters Values
Average fading powers (Ωsuj

) 0.1, 0.1
Fading severity parameters (msuj

) 1, 1
Average power gain of IS channel (ΩI) 0.1

Rician factor (K) 1
Environment parameters (ε, ξ) [43] 20, 0.5

Uplink and downlink environment (κ, ν) −1.5, 3.5
UAV parameters (φu, ru,Hu) [43] π, 20 m, 35 m

Location of Source (Xs,Ys,Zs) (−20, 0, 20) m
Location of U1 and U2

(Xu1 ,Yu1 ,Zu1 ), (Xu2 ,Yu2 ,Zu2 )
(20,−20, 0), (20, 0, 0)m

Path loss exponent (αsuj ) 2.2
Level of HIs [46]

(λsuj = λsr = λruj =
√
2λ0)

λ0 = 0, 0.3

PS parameter (ρ) 0.7
Energy conversion efficiency (Θ) 0.75

Block duration (T ) 1 sec
Level of stairways conjecture (H) 50

Noise variance (σ2) −114 dBm/Hz
Bandwidth (BW) 1 MHz

order to validate our theoretical aspects. Unless otherwise
specified, we set up a few system parameters, which are
depicted in Table II. While obtaining the path-loss model,
Ωij = d

−αij

ij , we utilise a 3-D network configuration. We also
set λts = λtr = λrsu1 = λrsr = λrsu2 = λrru1 = λrru2 =
λ0 as the level of HIs such that λsu1

= λsr = λsu2
= λru1

=
λru2

=
√
2λ0. These parameters are ascertained by the EVMs

[46].
A DNN model with five hidden layers and 150 neurons

per layer is created using Python 3.7.13 together with Keras
2.8.0 and Tensor-Flow 2.8.0. Throughout the course of 70
training epochs, the DNN’s weights are randomly initialised
using the Adam optimizer and a gradient decay value of
0.95. It begins with a learning rate of 10−3, which falls to
90% after 20 epochs. All tests are performed on a computer
with an i7 − 7700 processor, an 8 GB GeForce GTX 1080
GPU, and 16 GB of RAM. It is important to note that the
DNN prediction findings are discovered to be pretty well
aligned with the simulation and the analytical results produced
from the formulations in Section III-IV for all the subsequent
numerical investigations.

Fig. 4 depicts the OP versus source transmit power plots
for the primary network, using various target rate values
(rpth = 0.5 bps/Hz and rpth = 1 bps/Hz) for both ideal
hardware (λ0 = 0) and imperfect hardware (λ0 = 0.3).
In order to fulfill the I-CSST scheme criteria as stated in
Section III-C, we select acceptable values of δ. Additionally,
for comparison purposes, the OP curves are also produced
for the PDT scheme. To start, it is possible to confirm that
the simulated and analytical curves are both tightly wedged
over the whole power region. In the high power region, the
asymptotic curves are also well aligned with the analytical
and simulated curves. Additionally, at the fixed target rate,
the I-CSST scheme has a substantially lower OP than the
PDT scheme. It is noted that all of the curves for the I-CSST
scheme (with the specified fading parameters) have a higher
slope due to the diversity advantage of using cooperative
transmission for the primary network. Although the addition of
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Fig. 4: OP performance of the primary network.
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Fig. 5: OP performance of the secondary network.

HIs (λ0 = 0.3) reduces the primary network’s performance, its
effects are more apparent at higher target rates. Additionally,
at the high power regime, the HIs have a stronger impact on
the I-CSST scheme. Interestingly, as can be observed, both the
DNN prediction and the simulation curves exactly match the
analytical calculations given in (21) and (24).

The OP performance of the secondary network in the pSIC
and iSIC scenarios is shown in Fig. 5. For this, we set the
target rate at rsth = 0.5 bps/Hz and rsth = 1 bps/Hz for both
ideal hardware (λ0 = 0) and imperfect hardware (λ0 = 0.3).
To start, it is possible to confirm that the simulated and
analytical curves are perfectly aligned throughout the whole
power region. In the high power range, the asymptotic curves
match the analytical and simulated curves quite well. With
I-CSST scheme, the iSIC scenario has a substantially greater
OP than the pSIC case. Additionally, for the iSIC situation, an
outage floor happens as a result of the IS channel power gain
and associated fading severity parameter. The curves resulting
from the I-CSST scheme may be seen to stray more from
the ideal curve as the level of HIs increases. As evidence of
DNN’s superior prediction ability, the findings of the DNN
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Fig. 6: OP performance comparison of NOMA with OMA.
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Fig. 7: OP performance comparison of PS-EH with TS-EH.

prediction are nearly identical to those of the analytical and
simulation results.

The performance comparison between the I-CSST scheme
based OC-NOMA and OMA system is shown in Fig. 6.
As shown in the plot, U1 and U2 (pSIC) case of NOMA
outperforms OMA significantly for all power values, whereas
U2 (iSIC) case of NOMA outperforms OMA in regions with
low power values. It is because of that, OMA system requires
three time slots to run, therefore as a result, the correspond-
ing signal-to-interference-plus-noise ratio (SINR) threshold is
higher than its NOMA counterpart. While the imposition of
HIs (λ0 = 0.3) results in a decline in the OP performance of
the I-CSST scheme, its effects on the OMA scheme are more
noticeable. As a result, it can be concluded that the I-CSST
scheme with NOMA is more resistive to HIs than the OMA
counterpart.

Fig. 7 plots the curves for OP against transmit power of the
I-CSST scheme with the PS-EH and TS-EH protocols at target
rate (rpth = 0.5 bps/Hz) for both ideal hardware (λ0 = 0) and
imperfect hardware (λ0 = 0.3). Firstly, it is confirmed that the
simulated and analytical curves closely align throughout the
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Fig. 8: OP performance comparison of UAV relaying with
traditional fixed relaying OC-NOMA system.

entire power range. The plot clearly illustrates that the I-CSST
scheme, employing the PS-EH protocol, executes superior
outage performance compared to the TS-EH protocol [23].
Specifically, at the high power region, U1 exhibits improved
performance, while at the low power region, U2 showcases
enhanced performance. The inclusion of HIs (λ0 = 0.3) results
in a degradation in the network’s performance. Additionally,
in the high power regime, the impact of HIs on the I-CSST
scheme becomes more significant for U1. On the other hand,
in the low power regime, the pSIC case for U2 exhibits
performance degradation attributed to HIs.

Fig. 8 illustrates the curves depicting the OP versus transmit
power of the OC-NOMA system with UAV relaying and
traditional fixed relaying. The target rate is set at rpth = 0.5
bps/Hz. The plot includes results for both ideal hardware
conditions (λ0 = 0) and imperfect hardware conditions
(λ0 = 0.3). Specifically, two scenarios are considered for
UAV relaying: Scenario−1 (φu = π, ru = 20,Hu = 35)
and Scenario−2 (φu = π, ru = 11,Hu = 19). These
scenarios are analyzed to demonstrate the advantages of UAV
relaying over the traditional relaying system [21]. Firstly, it
is evident that the simulated and analytical curves exhibit a
close alignment across the entire power range. As shown in
the plot, it is clear that the outage performance of the I-CSST
scheme using the UAV relaying system surpasses that of the
traditional fixed relaying system. More precisely, in the high
power region, U1 using UAV relaying system demonstrates
improved performance, whereas in the low power region, U2

exhibits enhanced performance. By increasing the radius and
height of the UAV, the performance of the system improves
significantly. This is because increasing the radius expands
the coverage area of the relay, while increasing the height of
the UAV enables the relay to cover users at greater distances.
Consequently, the combined effect of increased radius and
height enhances the overall performance of the system. The
inclusion of HIs (λ0 = 0.3) results in a degradation in the
network’s performance.

In order to get insight into the mean spectral efficiency of
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Fig. 9: Throughput plots for OC-NOMA system.
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Fig. 10: Energy efficiency plots for OC-NOMA system.

the I-CSST scheme for OC-NOMA system, Fig. 9 highlights
the system throughput curves based on the deduced analytical
expression in Section V-A. Here, we plot the system through-
put versus source transmit power at two different target rates
i.e., rpth = rsth = rth = 0.5 and 1 bps/Hz for both ideal
hardware (λ0 = 0) and imperfect hardware (λ0 = 0.3). The
relevant graphs show that, in the low power region, system
throughput declines as the target rate increases. In contrast, for
the set target rate, the system throughput grows until a specific
power value, at which point it becomes saturated. The greatest
throughput that can be achieved for the specified target rate is
illuminated as this saturated value. This throughput saturation
happens significantly at a high power for higher target rate
values. This is because outage performance at higher target
rates is generally worse than outage performance at lower
target rates. Furthermore, it is clear from the two separate
HIs values that system throughput declines as HIs levels rise.
Additionally, we can also see that the system throughput of
the pSIC OC-NOMA system is significantly higher than that
of the iSIC OC-NOMA system for the fixed target rate.

Fig. 10 sheds light on the OC-NOMA system’s energy effi-
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ciency. For two different target rates at rpth = rsth = rth = 0.5
and 1 bps/Hz under the I-CSST scheme, we draw curves with
and without HIs for the system’s energy efficiency against
source transmit power. The relevant graphs show that as the
target rate is raised, the system’s energy efficiency decreases
at mid power values. It is clear from looking at two distinct
levels of HIs (λ0 = 0, 0.3) that, in contrast to the ideal
scenario, HIs cause a drop in the system’s energy efficiency.
This demonstrates that the performance of energy efficiency
suffers when HIs are imposed. Additionally, it is clear from
the pertinent curves that the system achieves optimal energy
efficiency at a specific power value for a given target rate and
levels of HIs. The power value at which the system operates
at its most energy-efficient level likewise fluctuates when the
desired rate and levels of HIs change. It is important to note
that when the power value rises, the energy efficiency of the
system under consideration falls. The main cause of this is
increased power consumption compared to system throughput
at higher power.

Above all, the execution times of the DNN assessment,
mathematical analysis, and Monte Carlo simulation for the
suggested system are compared. The results demonstrate that
the DNN prediction approach needs just 0.0227 seconds to
produce OP values. The mathematical evaluation takes 0.0519
seconds, however the Monte Carlo simulation took 7.1965
seconds to produce the OP values.

VIII. CONCLUSION

We evaluated the effectiveness of an OC-NOMA system
using EH-based I-CSST scheme while considering the effects
of practically created iSIC and HIs at the transceiver nodes.
In particular, we adopted Rician and Nakagami-m fading
channels to quantify the total OC-NOMA system performance
in terms of OP of primary and secondary networks, system
throughput, and energy efficiency. Additionally, we provide
some guidance on selecting the NOMA power allocation
factor’s value for effective spectrum sharing. It is demonstrated
that I-CSST scheme outperforms the benchmark PDT scheme.
Above all, the I-CSST scheme with NOMA is shown to outper-
form OMA for the high data rate requirements. Our theoretical
results in this paper help in providing the design guidelines
for ameliorating spectral efficiency and energy efficiency in
future wireless networks. According to numerical findings,
the outputs of the DNN prediction for OP tightly matched
the outcomes of the Monte-Carlo simulation and analysis. In
light of this, using a DNN as a black box could be a new,
promising, and efficient way for assessing system performance
using a low-latency estimation procedure that does not require
the formulation of challenging complicated equations in actual
network scenarios.

APPENDIX A

The CDF FγDF
ru1

(w)=Pr
[
γDF
ru1

< w
]

is expressed, using (17),
as

FγDF
ru1

(w) = Pr
[

δβ∆s |gsr|2|gru1 |2

β∆s |gsr|2|gru1
|2Ξp + 1

< w

]
= Pr

[
|gsr|2 <

w

β∆s(δ − Ξpw)|gru1
|2

]
, (59)

which can be further simplified as

FγDF
ru1

(w) =

∫ ∞

0

(∫ T1y
−1

0

f|gsr|2(x)dx

)
f|gru1 |2(y)dy.

(60)

On substituting the expression of PDFs using (5) and solving
using [40, eq. 1.111], one can reach at the desired result in
(28).

APPENDIX B

Now taking P2 = Pr
[
τp − γDF

ru2,xs
≤ γDT

su2
, τs ≤ γDF

ru2

]
,

inserting the appropriate SNDR expressions from (8), (18), and
(19) and retrieving the |hru2

|2 condition to get the expression
in (41), we can perform an analysis for τp < γDF

ru2,xs
and

τp > γDF
ru2,xs

. The term P21 = 1−Pr[γDT
su2

< τp−γDF
ru2,xs

] can
be evaluated in this case utilising the L-stairways conjecture
to get the result in (42). In contrast, the P22 = Pr

[
γDF
ru2

≥
τs
]
= 1− FγDF

ru2
(x) can be assessed for T5 > 0 as

P22 = 1−
∫ ∞

0

∫ ∞

T6z
T5

∫ τs
T4(T5y−T6z)

0

f|gsr|2(x)f|gru2 |2(y)

× f|hI |2(z) dxdydz. (61)

On substituting the expression of PDF f|gsr|2(x) and solving
the inner integral using [40, eq. 3.351.1], (61) can be simplified
as P22 =

∫∞
0

(B1(τs)− B2(τs)) f|hI |2(z) dz, where

B1(τs) =

∫ ∞

T6z
T5

∞∑
l=0

Kl
ru2

(l!)
e−Kru2 f|gru2 |2(y)dy (62)

and

B2(τs)=

∫ ∞

T6z
T5

∞∑
l=0

l∑
a=0

Kl
ru2

baru2

(l!)(a!)

(
τs
T4

)a

e−Kru2 f|gru2 |2(y)dy.

(63)

Thus, on invoking the expression of PDFs f|gru2 |2(y) and
f|hI |2(z), and solving the associated integral with the help
of [40, eq. 3.351.2] and [40, eq. 3.351.3], we obtain P22 as
presented in (43).
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