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Abstract—Open radio access network (O-RAN) has been recog-
nized as a revolutionized architecture to support the multi-class
wireless services required in fifth-generation (5G) and beyond
5G networks. The openness and the distributed nature of the
O-RAN architecture have created new forms of threat surfaces
than the conventional RAN architecture and require complex
anomaly detection mechanisms. Moreover, with the introduction
of RAN intelligent controllers (RICs), it is possible to utilize
advanced Artificial Intelligence (AI)/ Machine Learning (ML)
algorithms based on closed control loops to detect anomalies in
a data-driven manner. In this paper, we particularly investigate
the use of Federated Learning (FL) for anomaly detection
in the O-RAN architecture, which can further preserve data
privacy. We propose a peer-to-peer (P2P) FL-based anomaly
detection mechanism for the O-RAN architecture and provide
a comprehensive analysis of four variants of P2P FL techniques.
Moreover, we simulate the proposed models using the UNSW-
NB15 dataset.

Index Terms—5G, 6G, Network automation, Security, Privacy,
O-RAN, RAN Intelligent controllers, Federated learning

I. INTRODUCTION

With the advent of 5G and beyond 5G (B5G) wireless
systems, the radio access network (RAN) infrastructure needs
to adhere to new technologies and varying customer require-
ments, which will increase the capital expenditure (CAPEX)
and operational expenditure (OPEX) costs [1]. Since the most
significant percentage of the total network cost is accounted
for by RAN deployments and operations, the motivation to
reduce CAPEX and OPEX has been significantly increased [2].
In Cloud-RAN (C-RAN), the digital processing functional
part of the typical base station is moved to a regional cloud
or edge data center. However, there is a significantly high
communication overhead in the fronthaul link between the
data center and radio units for maintaining the required low
latency. Virtualized RAN (vRAN) is another approach that vir-
tualizes RAN functions by replacing Baseband Units (BBUs)
with Commercial Off-the-Shelf (COTS) hardware. Although
these two approaches reduce costs and simplify maintenance
overhead, the dependency on a single vendor remains a major
disadvantage [3]. To overcome the limitations of C-RAN and
V-RAN, a standard Open RAN (O-RAN) solution has been
proposed by the O-RAN alliance. This new O-RAN archi-
tecture supports multi-vendor interoperability and is based
on disaggregated, virtualized, and software-based components
connected via open, standardized interfaces [2].

With the increased threat surface due to its inherently open
and modular architecture, the risks are significantly higher in
O-RAN than in conventional RAN [4]. Anomaly detection is
a significant security measure for O-RAN in 5G, which is
a large-scale heterogeneous system with varying latency and
privacy requirements [5]. Although there is some machine
learning (ML) research about anomaly detection in RAN,
only a few of them are focused on O-RAN [6]. Federated
Learning (FL) is a distributed form of ML that preserves data
privacy and improves communication efficiency by training
models locally and communicating only the parameters for
aggregation [7]. In the O-RAN architecture, when performing
AI-based operations in a large-scale, complex environment
with sensitive data, FL is more suitable than conventional
ML models. FL-based anomaly detection mechanisms are
proposed for the Internet of Things (IoT) [8], and Zero-Touch
Network and Service Management (ZSM) [9] architecture.
Peer-to-peer (P2P) FL is also identified as a good match for
detecting anomalies in a complex O-RAN environment [7]
due to the hierarchical closed-loop architecture of RICs and
data-driven inputs via open interfaces [5].

In this paper, we use P2P FL with secure average com-
putation (SAC) [10] to create a distributed anomaly detection
mechanism that can be applied to the O-RAN architecture. P2P
FL eliminates the single point of failure, and the parameters
are not required to be transmitted to a centralized cloud [11].
In addition, we consider two variations of the P2P FL, one
being a clustered P2P FL model where each cluster maintains a
separate FL model, which is desired when the data is localized,
as in RAN. And the other is a hierarchical version of the
mentioned clustered P2P FL model, where almost the same
model can be derived in each cluster while maintaining a
relatively smaller number of communications in training than
the normal P2P FL method. In addition to those, a P2P FL
method based on multiparty communication via thresholded
fully homomorphic encryption (FHE) is suggested to achieve
a higher level of security both in communication as well
as parameter average calculation [12]. To the best of our
knowledge, this is the first research study that proposes and
evaluates a P2P FL-based anomaly detection technique to
support intelligent automated security management in the O-
RAN architecture. The UNSW-NB15 [13] which is a labeled
dataset, is used for training the models, and a pre-separated



testing dataset from the same dataset is used for testing.
The remainder of the paper is organized as follows: Sec-

tion II outlines the existing literature on O-RAN security and
FL-based anomaly detection. Section III describes the pro-
posed anomaly detection mechanisms, and Section IV explains
the simulations and evaluation results in detail. Section V
discusses the simulation results, and Section VI concludes
the paper with future research directions.

II. BACKGROUND AND RELATED WORK

A. O-RAN security

As shown in Figure 1, the architecture proposed by the O-
RAN alliance further disaggregates the radio protocol stack
processing at Next Generation NodeB (gNB) into three main
units, namely the Control Unit (CU), Distributed Unit (DU),
and Radio Unit (RU), by utilizing the 3rd Generation Part-
nership Project (3GPP) New Radio (NR) 7.2x lower layer
split [14].

Fig. 1: Logical Architecture of O-RAN [14]

The O-RAN architecture includes two logical controllers
called RAN intelligent controllers (RICs). These components,
which are based on software-defined networks (SDN), per-
form particular radio resource management tasks. Near-real-
time RIC (Near-RT RIC) operates the control loops with a
periodicity between 10 ms and 1 s, and it is the core of the
control and optimization of the RAN. The main component
of Near-RT RIC is xApps, which are microservices. Non-real-
time RIC (Non-RT RIC) is a part of the Service Management
and Orchestration (SMO) framework and operates on control
loops larger than 1 s. Near-RT RIC utilizes micro-services
called rApps, to provide value-added services to support and
facilitate the RAN optimizations and operations [14]. Due to
the network infrastructure’s data streams via open interfaces,

RICs have a centralized and abstract perspective on the net-
work. AI and ML techniques are used for the selection and
implementation of control rules and actions in O-RAN.

RICs can be deployed in any of the cloud locations, such as
the core cloud, regional cloud, or edge cloud. The RIC plat-
form can be used to deploy external RAN control applications
created by outside vendors. Compared to earlier proprietary
RAN systems, the O-RAN architecture has a substantial ben-
efit because these third-party apps can incorporate many types
of cutting-edge RAN control algorithms [15].

Despite the benefits of O-RAN architecture, the new archi-
tectural changes significantly alter the RAN attack surface due
to additional functions, interfaces, decoupling, virtualization,
and the use of open-source codes [16]. The effect of diversity
of user equipment (UE), diversity of third-party applications,
and the integration of AI and ML has to be analyzed in terms
of security threats [3]. The O-RAN specific or general po-
tential vulnerabilities can be exploited through attacks against
confidentiality, integrity, and availability. As stated in [16] O-
RAN threats can be grouped into seven categories: threats
against the O-RAN system, threats against O-cloud, threats
against the ML system, threats against 5G radio networks,
threats to open source code, and physical threats.

B. FL-based anomaly detection

When performing AI and ML-based operations, data pri-
vacy is a major concern. FL is a distributed ML technique
introduced by Google to perform privacy-preserving model
training [17]. At each trainer location in the federation, a local
model is trained using the training dataset, which is retained
locally. Only the model parameters are sent to the central
aggregator site after the local model training. The aggregator
uses the received parameters to create a common global model
and returns it to the local trainers. Since actual data is not
explicitly accessed or shared, each local trainer can benefit
from the datasets of other local trainers without affecting
privacy and while reducing the communication cost [18].

As mentioned before, the centralized FL method has some
considerable drawbacks, such as a single point of failure due to
the central aggregator and the imbalance of data distributions
in different local trainers [11]. Peer-to-peer (P2P) FL is a novel
technique that eliminates the need for a centralized aggregator.
There are several proposed techniques in the current state-of-
the-art for P2P FL model training. One is Split Learning (SL),
which splits the model into two parts, server and node,
for training. The training process is relatively slower when
multiple nodes are involved. However, SL methods are difficult
to parallelize, and they should be running sequentially by
design [19]. BrainTorrent is a decentralized P2P FL environ-
ment [20]. At any given training round, only one participant
updates its local model weights by taking into account its prior
weights and model weights received from peer models that are
apparently newer. This may introduce a risk that malicious or
semi-honest participants are undetectable. In [10], a variant
of the P2P FL method is proposed based on secure average
computation (SAC), which utilizes an n-out-of-n secret parti-



tioning method and average calculation technique to mitigate
the effects of semi-honest participants. However, this model
is not optimal when there is a larger number of trainers since
the communication cost is significantly higher.

Both Near-RT RIC and Non-RT RIC in the O-RAN ar-
chitecture can host the AI/ML training by using xApps and
rApps respectively. Since RICs are deployed in a hierarchical
manner, there is a good motivation to use FL as a ML tool
to perform the automated operations. As shown in Figure 2,
the Near-RT RIC resides in the regional or central cloud and
can act as the central aggregator, whereas Non-RT RICs are
located in edge or regional clouds and can serve as distributed
local trainers [21]. In P2P FL, only the Near-RT RICs do the
training and can communicate via inter-regional or inter-edge
cloud connections. The models can be deployed as xApps or
within a xApp instance, and deployment can be done image-
based or file-based [21].

Fig. 2: Federated learning among Non-RT RIC and Near-RT RICs

By default, the communication channel between the UE and
the remote radio head unit has not changed significantly from
the conventional RAN to O-RAN with respect to the utilized
radio frequency (RF). Therefore, O-RAN is vulnerable to some
known RF attacks similar to those against conventional RAN.
Furthermore, the diversity and pervasiveness of UE types are
expanded in O-RAN, increasing the chance that the attack
surface will be a target of new threats. There is the risk of
Denial of service (DoS) and Distributed DoS (DDoS) attacks
on cellular service and control plane, and also DDoS flooding
attacks on network/transport layers [3]. Therefore, anomaly
detection is an important security measure to be considered
in O-RAN. Particularly, a data-driven FL technique suits
well when considering a complex system like a RAN in 5G
architecture, where there are many ways to cause anomalies.

Going through all the related work discussed above, in
the current state-of-the-art, there is no work presented with
P2P FL in anomaly detection. In general, FL is also not
particularly used for securing O-RAN architecture and its
automated security management. Due to the distributed nature
and openness of O-RAN architecture, we concluded from the
current work that FL-based algorithms are more appropriate
for O-RAN architecture. Moreover, we identify that typically
FL-based algorithms are applicable for anomaly detection in
hierarchical networks whereas P2P FL algorithms are more
resilient to a single point of failure. Therefore, we propose
our solution of using P2P FL in O-RAN to identify anomalies

so that the attacks can be prevented before propagating to the
core network. The use of FL also significantly protects data
privacy and maximizes communication efficiency.

III. P2P FL BASED ANOMALY DETECTION MECHANISM
FOR O-RAN

In this section, we comprehensively describe how P2P
FL can be applied for anomaly detection in the O-RAN
architecture and four variants of P2P FL models that can be
mapped with the proposed anomaly detection mechanism.

Fig. 3: Proposed anomaly detection mechanism for O-RAN architecture.

The proposed P2P FL anomaly detection model for O-RAN
architecture is illustrated in Figure 3. Accordingly, the local
trainers of the FL model are hosted at Near-RT RICs, which
may reside in the edge clouds, whereas the P2P communica-
tion may occur via inter-edge cloud connections. The training
model and the detector can be deployed as dedicated xApps,
or they can be parts of the same xApp, which can include
other functions. These deployments can be image-based or
file-based [21]. Moreover, when an anomaly is detected, the
detector or the additional xApp hosted at the Near-RT RIC
can transmit control actions to the relevant CUs and DUs via
the E2 interface. The network flow data stored in the database
can be used for model training. After the model is trained, it
can be utilized by the anomaly detector in the same Near-RT
RIC. Then the security control actions related to the detected
anomalies are communicated to the E2 nodes.

Following are the four variants of P2P FL models that can
be mapped with the same anomaly detection mechanism:



A. Model 1: Normal P2P FL

The first normal P2P FL model is derived from [10] and
designed by locating local models in the Near-RT RICs. As
demonstrated in Figure 4, every trainer communicates with
every other trainer to calculate average model weights using
secure average computation.

Fig. 4: Secure weight average computation in P2P FL.

When a local trainer trains its model, it randomly partitions
the model parameter into partial weights equal to the number
of local trainers in the network (wi =

∑
k∈Trainers wik).

Then each trainer keeps one partial weight and transmits the
rest of the partial weights to other local trainers, one per
trainer. Thereafter, the local subtotal is calculated by each
trainer with its own and the received partial weights (tpartiali =∑

j∈Trainers wji). One full round is completed after comput-
ing the new weight, which is derived as the average of the
total previously calculated weights (Equation 1).

wavg =

∑
i∈Trainers t

partial
i

total number of trainers
(1)

B. Model 2: Clustered P2P FL

In actual RAN deployments, it is highly likely to encounter
unbalanced data and localization (in edge or regional clouds).
Hence parameter averaging between all Near-RT RICs in a
massive base station deployment will cost higher. In such a
scenario, a clustered model is more appropriate, where the
clients in the same cluster share the parameters for averaging.
Each cluster may have different FL models where the local
trainers can be clustered using location-based K-means clus-
tering. The communication in this environment is shown in
Figure 5, and within each cluster, the averaging steps will be
the same as in Figure 4.

C. Model 3: Hierarchical P2P FL

In Model 3, we present a hierarchical clustered model where
a master trainer is selected for each cluster. The communica-
tion in this environment is shown in Figure 6 and the averaging
steps within the cluster are similar to Figure 4.

Fig. 5: Parameter sharing of Clustered P2P FL.

Fig. 6: Parameter sharing of Hierarchical P2P FL.

The selection of the master trainer is performed based on
resource availability. After a fixed number of global rounds,
parameter values are shared and averaged between masters
of each cluster. Here the ratios correspond to the number of
clients in each cluster, as shown in Equation 2. Then, the
master client will share those average values with other clients
in its own cluster. This may increase the probability of having
the same model in each cluster while maintaining a relatively
smaller number of communications compared to Model 1, the
normal P2P FL model.

wmaster
avg =

∑
k∈Clusters

number of trainers in k
total number of trainers

wkthmaster

(2)

D. Model 4: Homomorphic P2P FL

In Model 4, we consider a parameter averaging method with
secure communication and the threshold Fully Hormomophic
Encryption (FHE) method as explained in [12]. A key gen-
eration protocol can be used to generate a common public
key (Pk) and secret shares of the private key (Sk), and each
trainer receives Pk and a share of Sk. Thereby, each trainer can
encrypt; nevertheless nobody can decrypt without the consent
of other trainers. Hence, for parameter averaging in P2P FL,
each trainer can encrypt parameter values and share them with
each other. Then each trainer performs homomorphic addition
to compute the encrypted total values, followed by partial
decryption using an individual secret key share. After that,
these partial decryption values are shared with each other, and
the final decryption of the total is performed at each trainer,
and the average can be calculated. As illustrated in Figure 7,
this provides secure communication of parameter values and
protection against semi-honest trainers in the network.



Fig. 7: Weight average computation using FHE.

IV. SIMULATION AND RESULTS

In this section, we present the simulated results in a concise
manner. The three models based on SAC (Model 1, Model 2,
and Model 3) are extensively compared, and the performance
of Model 4 is observed in terms of accuracy. For compar-
ison purposes, a Centralized FL model and a General ML
model (where each trainer’s model is trained separately) are
simulated. The UNSW-NB15 dataset is selected for model
training and testing. This data set consists of nine types of
attacks, such as DoS, backdoors, and worms, along with
normal network traffic [13]. Out of all the features, 42 are
selected for the model training.

For the simulations, a common Multilayer Percep-
tron (MLP) model, which is a fully connected feed-forward
Artificial neural network (ANN) was used. It had four lay-
ers, including two hidden layers. TensorFlow libraries were
used for the simulations. An independent and identically
distributed (IID) data distribution was considered, where each
trainer has a training dataset with the same number of anoma-
lies.

First, we simulated the behavior of the P2P SAC-based
models when the training anomaly percentage is varied while
keeping all the other parameters fixed, as shown in Table I.
Figure 8 illustrates how the overall accuracy and F1-score of
each method behave when the training anomaly percentage is
varied.

TABLE I: Simulation parameters for varying training anomaly percentage.

Parameter Value
Number of trainers 100
Number of clusters 5
Number of epochs 10
Number of rounds 50
Batch size 100
Training sample size 100000
Testing sample size 10000
Testing anomaly percentage 60%

Then the number of training rounds was varied while other
parameters were kept the same, as depicted in Table II. Fig-
ure 9 shows how accuracy and the F1-score behave when the
number of training rounds is varied in the Normal P2P model
compared to the reference Centralized FL model and General
ML model. Moreover, the accuracy and F1-score of the three
SAC-based P2P FL models are illustrated in Figure 10. The

(a) Accuracy vs Anomaly percentage. (b) F1-score vs Anomaly percentage.

Fig. 8: Accuracy with varying anomaly percentage.

(a) Accuracy vs Number of rounds. (b) F1-score vs Number of rounds.

Fig. 9: Performance of the Normal P2P model vs Number of rounds.

accuracy of the Clustered and Hierarchical P2P FL models is
compared in Figure 11. Moreover, as illustrated in Figure 12,
the transmission (Tx) communication costs of considered FL
methods in model training are compared.

TABLE II: Fixed parameters for the simulations with varying training rounds.

Parameter Value
Number of trainers 100
Number of clusters 5
Number of epochs 10
Batch size 100
Training sample size 150000
Training anomaly percentage 60%
Testing sample size 10000
Testing anomaly percentage 60%
Cluster anomaly proportions [0.6, 0.5, 0.4, 0.7, 0.6]

Finally, Homomorphic P2P FL method performance is
compared with Centralized FL and Normal P2P FL method
as shown in Figure 13.

V. DISCUSSION

When the number of anomalies is varied, the maximum
accuracy and F1 score values are achieved when the training
anomaly percentage is around 60% in all models. As depicted

(a) Accuracy vs Number of rounds. (b) F1-score vs Number of rounds.

Fig. 10: Performance of the SAC-based P2P FL models vs Number of rounds.



(a) Accuracy in Clustered P2P FL. (b) F1-score in Clustered P2P FL.

(c) Accuracy in Hierarchical P2P FL. (d) F1-score in Hierarchical P2P FL.

Fig. 11: Performance of Clustered and Hierarchical P2P Fl models with
varying Number of rounds.

Fig. 12: Comparison of Tx communication costs vs Number of rounds.

(a) Accuracy vs Number of rounds. (b) F1 score vs Number of rounds.

Fig. 13: Homomorphic P2P FL model performance with varying Number of
rounds.

in Figure 8, when the anomaly percentage is considerably
lower, training is not accurate because there are not enough
anomalies. When the anomaly percentage is quite high, the
normal data captured in the training set is not enough. Hence,
there can be over-fitting, which leads to somewhat decreased
performance.

For the varying training rounds, the Centralized FL model
and the Normal P2P FL model have similar accuracy and F1
score values, which is expected. As illustrated in Figure 9, the
accuracy of these two FL models is higher than that of general
ML model training after about 45 training rounds. After 80
rounds, the accuracy of the Normal P2P FL model is 90.8%
which is about 0.5% greater than the General ML model.

When the three types of P2P models are compared, the
average accuracy and F1 curves of the Clustered P2P FL
model are similar to the Normal P2P model. However, the
Hierarchical P2P FL model’s performance is relatively worse.
Nevertheless, due to parameter averaging between the clusters,
the clusters have quite similar accuracy and F1-score values in
the hierarchical FL model scenario compared to the clustered
FL model, which can be observed in Figure 11.

As shown in Figure 12, the number of transmissions for
training gradually increases with the number of rounds in all
FL methods. However, the total number of Tx communications
in a particular round is significantly high in the Normal P2P
FL model, which is (number of clients - 1) times more than
the centralized FL model. This is due to the SAC method used
for averaging, which provides protection against semi-honest
clients. However, Clustered and Hierarchical P2P FL models
have about five times smaller total communication cost than
the Normal P2P FL model due to clustering.

As shown in Figure 13, the Homomorphic P2P FL model
performs the same as the Centralized FL and Normal P2P FL
models. However, some degradation of performance can be ob-
served due to higher precision errors in the averaging process
due to encryption and decryption. Moreover, the computation
cost is significantly higher in Homomorphic P2P FL. However,
this performance penalty can be neglected because of the
additional security it offers in terms of secure communication
and security against semi-honest clients.

When comparing SAC and HE-based average computation,
a semi-honest client receives a partial weight value of an
honest client in the SAC-based P2P FL methods. If the actual
weight value is negative, then the partial weight values must
be negative, and vice versa. Therefore, the semi-honest client
can reduce the search range by half, unlike the Homomorphic
P2P FL method.

VI. FUTURE DIRECTIONS AND CONCLUSION

FL is a distributed ML technique that improves privacy as
well as communication efficiency. P2P FL is a novel variation
of FL and is more suitable for complex systems like O-
RAN in 5G. In this paper, we present a Normal P2P FL
model, a Clustered P2P model, and a Hierarchical clustered
P2P FL model with SAC to detect anomalies in the O-
RAN architecture. Furthermore, a more secure approach to



P2P FL training called the Homomorphic P2P FL model is
proposed, where FHE with secret key sharing is used for
average computation. The UNSW-NB15 networking dataset
was used for the simulation of the mentioned models. It is
visible from the results that the accuracy and F1-score values
are higher in FL methods compared to the general ML method,
and P2P FL achieved similar performance as the centralized
FL method. However, there is a penalty of high communication
costs when using P2P FL instead of centralized FL.

In future work, we expect to increase the accuracy and F1
score of the proposed models and use more advanced federated
reinforcement learning to support the online training of the
models. Moreover, we plan to simulate different sub-optimal
scenarios in training, such as offline trainers and semi-honest
trainers, and finally implement the models in the O-RAN
architecture.
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