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Abstract—Many forms of machine learning (ML) and artifi-
cial intelligence (AI) techniques are adopted in communication
networks to perform all optimizations, security management,
and decision-making tasks. Instead of using conventional black-
box models, the tendency is to use explainable ML models that
provide transparency and accountability. Moreover, Federate
Learning (FL) type ML models are becoming more popular
than the typical Centralized Learning (CL) models due to the
distributed nature of the networks and security privacy concerns.
Therefore, it is very timely to research how to find the explain-
ability using Explainable AI (XAI) in different ML models. This
paper comprehensively analyzes using XAI in CL and FL-based
anomaly detection in networks. We use a deep neural network as
the black-box model with two data sets, UNSW-NB15 and NSL-
KDD, and SHapley Additive exPlanations (SHAP) as the XAI
model. We demonstrate that the FL explanation differs from CL
with the client anomaly percentage.

Index Terms—6G, Security, Privacy, Explainable AI, Central-
ized Learning, Federated Learning.

I. INTRODUCTION

5G and Beyond 5G (B5G) paves the way to virtualize
existing network functions (NFs) which provide differenti-
ated services across several administrative domains achieving
guaranteed service performances. Also, it is easier to create
adaptable, programmable, and self-managing infrastructures
that meet the demanding performance requirements of new
and emerging services. Artificial Intelligence (AI) is a key
enabler of network automation, lowering operating expenses,
increasing productivity, and reducing the risk of human error.
Significant security and privacy issues will arise from this pro-
posed ecosystem due to reduced human engagement in service
and network administration. With the rise of edge computing
capabilities and applications, existing Machine Learning (ML)
algorithms face many challenges. More training data is needed
in these use cases. Centralized Learning (CL) performance
have constrained by cloud processing and storage capacity.
Federated Learning (FL) is suggested to be deployed as a
secure ML algorithm in future networks. FL outperforms
CL in terms of privacy and cost-effectiveness but has yet to
attain the needed accuracy in comparison [1]. The challenge

is understanding how the FL model behaves and building trust
in its decisions.

Network anomaly detection is a crucial area of interest
in developing future networks. Researchers are focusing on
using FL-based mechanisms to detect anomalies in networks.
However, the growing interest in utilizing AI in anomaly
detection should pay attention to the possible drawbacks and
risks, including threats in FL, data integrity, and AI models.
Because of its reasonably accurate and autonomous detection,
anomaly detection using ML techniques based on Deep Neural
Networks (DNNs) is becoming increasingly popular. These
black-box AI systems cannot explain the significant features
that affect behavior or the effect of change in input features
on the outcome. By incorporating explanation techniques with
AI, the trust between the domain expert and AI algorithms
can be increased. The automation of future networks requires
understanding this discrepancy between AI’s potential and its
practical applications.

Using unique or modified ML techniques Explainable AI
(XAI) adds explainability to black-box models. Explainabil-
ity will enable the end users to trust the black-box model
decision using XAI’s practical explanation approaches. This
is a primary objective of XAI [2]. It is also possible to
use XAI output to analyze the trained model and improve
it further. There are comprehensive surveys carried out in
integrating XAI into future networks while bridging the gap
between them, outlining the roles XAI plays in the network,
and demonstrating how to integrate XAI [3]–[6]. It is evident
from these surveys that it is vital to integrate explainability
into anomaly detection to improve the trust and accountability
of AI/ML models. Different stakeholders which interact with
multiple verticals and services may require an explanation of
how and why the AI/ML models take certain decisions.

We aim to compare how explainability changes in a black-
box FL environment. Thus, we used SHapley Additive exPla-
nations (SHAP) as the XAI model to compare the explainabil-
ity between CL and FL. We used DNN as the black-box model
and the datasets UNSW-NB15 and NSL-KDD. We showed



(a) Explainable Centralized Model (b) Explainable Federated Model

Fig. 1: Anomaly detection models added with explainability layer.
that the FL explanation differs from the CL explanation, and
this difference is higher with the anomaly percentage in the
network. We observed that the top features in the SHAP
summary plot show a linear relationship with the percentage
difference between CL and FL for the feature Standard Devi-
ation (SD) and the percentage difference between CL and FL
for the Shapley value. This was accurate for considered attack
categories.

The rest of this paper is organized as follows. Section II
presents related work about XAI, FL-based anomaly detection,
and XAI-based anomaly detection frameworks. Section III
describes the explainable models of CL and FL anomaly
detection. Section IV describes the experimental setup and
results obtained from NSL-KDD and UNSW-NB15 datasets.
Sections V and VI compare results and concludes the paper.

II. RELATED WORK

There has been a considerable surge of research in recent
years toward improving the explainability of AI models. As
depicted, the current state-of-the-art design of XAI models can
be categorized into two main aspects;

(1) Model-based XAI: build interpretable ML models
restricting complexities of such algorithms such as Linear
regression, Logistic regression, Decision Trees (DTs), Naive
Bayes, k-Nearest Neighbors.

(2) Post-hoc XAI: derive explanations for complex ML
models by applying methods to analyze the model after train-
ing such as Local Interpretable Model-agnostic Explanations
(LIME) [7], SHAP [8], Counterfactual Explanations (CE) [9],
Layer-wise Relevance Propagation (LRP) [10].

It is important to note that these XAI techniques offer differ-
ent explainability modes that can be employed appropriately,
following the expectations of various stakeholders.

Numerous studies have been conducted on enhancing the
efficacy of data-driven anomaly detection algorithms, FL
performance enhancement, and techniques for enhancing FL

model interpretability. Zhao et al. [11] proposed a Multi-Task
Deep Neural Network in Federated Learning (MT-DNN-FL) to
simultaneously handle the tasks of network anomaly detection,
anonymous traffic recognition, and traffic categorization. Since
the shared layers can cut back on the number of network
parameters, this suggested solution is more effective and
superficial. When compared to several single-task models, this
multi-task technique can cut down on training time overhead
and give domain experts more information regarding network
anomalies. Mothukuri et al. [12] have presented a FL based on
gated recurrent units (GRUs) models for AI-enabled anomaly
detection in IoT networks. The accuracy of the global ML
model is improved by using the ensemble learning method,
which combines updates from several sources. In terms of
protecting user data privacy and offering the best accuracy rate
for attack detection, the proposed method has excelled over the
non-FL variants. Jayasinghe et al. [13] have proposed a FL
based model incorporating the Zero-touch Network and Ser-
vice Management (ZSM) architecture for anomaly detection.
This is a multi-stage anomaly detector composed of DNNs
that performs exceptionally under different compositions of
anomaly percentage.

Haffar et al. [14] introduced the Random Forests algorithm
as a surrogate model to explain FL black-box model mis-
behavior. Based on updated statistics, this method surpasses
existing attack detection systems and has demonstrated high
detection rates on several attacks. By identifying the attributes
that have been affected by the attack and being able to describe
how such attacks work on the peers’ end, the surrogate model
has increased the explainability of the system. Carletti et al.
[15] have developed the Depth-based Isolation Forest Feature
Importance (DIFFI) algorithm to assess the importance of
features for the Isolation Forest (IF) ML model providing a
straightforward Root Cause Analysis (RCA). This evaluation
method improves the explainability of anomaly detection by
allowing stakeholders to gain a profound understanding of



TABLE I: List of Symbols

Symbol Definition

F Set of all features
F A particular feature
S Subset of features
fS Model trained from feature subset S
fS∪{F} Model trained from feature subset S ∪ {F}
xS Input with only features from the subset S
xS∪{F} Input with only features from the subset S∪{F}
fS(xS) fS model prediction of input xS

fS∪{F}(xS∪{F}) fS∪{F} model prediction of input xS∪{F}
ϕ(F ) Shapley value for feature F
N Number of features
k Rank in the SHAP summary plot
p% Anomaly percentage in local data
RankSHAP

CL (F ) The rank of the feature F in the CL SHAP
summary plot

RankSHAP
Anomaly p(F ) The rank of the feature F in the SHAP summary

plot for the client with anomaly percentage p
σAnomaly p(F ) SD of the feature F in FL client data with

anomaly percentage p
σCL(F ) SD of the feature F in CL data
ϕAnomaly p(F ) Shapley value of the feature F in FL client data

with anomaly percentage p
ϕCL(F ) Shapley value of the feature F in CL data

the information given by IF. Huong et al. [16] leveraged
a Federated learning-based Explainable Anomaly Detection
(FedeX) for Industrial Control Systems (ICSs). Variational
Auto Encoder (VAE) is used to improve detection efficiency.
FL is used to circumvent the lack of centralized training
data. SHAP is used to explain the black-box learning model.
To the best of our knowledge, this is the only research
publication we identified that incorporates XAI in a FL-based
anomaly detection technique. This framework improves the
model’s interpretability while achieving excellent detection
performance, learning new data patterns quickly, and being
lightweight. On ICSs-weak edge devices, this hybrid model
can function effectively. Anomalies or threats may be swiftly
detected and contained in each distributed zone thanks to the
FL architecture, enabling future ICSs to deal with big data
produced by various devices. Integrating XAI increases the
system’s reliability, enabling specialists to assess and react to
abnormalities in distributed ICS environments proactively.

The existing literature shows that there needs to be research
on the behavioral change of explainability from CL to FL. It
is a vital aspect to focus on with the emergence of FL-based
anomaly detection in future networks. It is essential to identify
false alarms in anomaly detection systems. Adequate explana-
tions will enable the critical assessment of the decisions of
the inference engine. Explanations can be used to overcome
the autonomy issues in the network so that system owners
can identify how and where to deploy AI. Thus we focus on
comparing explanations between the two learning methods.

III. ADDING EXPLAINABILITY IN CENTRALIZED AND
FEDERATED LEARNING MODELS

This section describes centralized and federated learning-
based explainable anomaly detection models and their ap-
plicability in a networking use case. Figure 1a illustrates
the explainable anomaly detection framework with CL. As

illustrated in the figure, conventional ML algorithms train the
model using the data in a trustable data collector. For instance,
this data can be security related to the users and events that
occur in the network. Once the model is trained, XAI is
applied to analyze the model and its predictions to identify and
describe the anomalies in the network flows or the violations
of the Security Service Level Agreement (SSLA). Then these
explanations are saved in the data services for future use
of the network administrators. An end-user who requires
an explanation for its existing security policies can obtain
the saved explanation for the CL model’s predictions. After
obtaining the required authorization, the system administrator
can retrieve the saved explanation data. The administrator can
use these explanations to investigate the model’s efficiency or
network troubleshooting.

Fig. 2: SHAP summary plot for one client.
The explainable FL-based anomaly detection model is de-

picted in Figure 1b. Accordingly, the parameter server is
placed in the master security domain, whereas other security
domains act as FL clients/workers. These are the security
services deployed at different locations in the network, which
can be considered security domains. The objective is to use
FL to detect anomalies in each security domain. This is done
by anomaly detection service function. It contains the local
model, whereas each security domain interacts with the master
security domain via the inter-domain communication bus.
The parameter server and anomaly detection service use the
inter-domain communication bus to exchange model updates.
Anomaly detection service is responsible for deriving insights
and predictions based on data collected and entities of the
domain. Each of the security domains contains a trustable
data collector. These data sources are not visible to the master
security domain. It is the reason for integrating XAI in the
anomaly detection service with the local model. Integration is
done using a post-hoc XAI model since it will be easier to fit in
over any black-box model. However, this mechanism can also
be applied to model-based XAI, replacing the FL local and



TABLE II: Performance comparison of trained CL and FL models

Dataset Learning Model Precision (%) Recall (%) F1 score (%) Accuracy (%)
UNSW-NB15 CL 95.66 94.48 95.07 93.75

FL 86.43 99.41 92.47 89.67
NSL-KDD CL 98.99 99.03 99.01 99.04

FL 96.79 96.03 96.41 96.54

Fig. 3: Comparing identical features between CL and FL explanations in UNSW-NB15 dataset.

Fig. 4: Comparing identical features between CL and FL explanations in NSL-KDD dataset.

XAI models with interpretable FL local models. End-user or
the administrator is able to retrieve the explanation for current
service policies at any point of the session as the explanations
are saved in the data services.

We were interested in generating a global explanation from
the train set. Thus, we used SHAP as the XAI tool in the given
CL and FL models. SHAP provides a global summary view of
the subjected dataset as an explanation. Only some of the XAI
algorithms come with this capability. For example, we did not
consider LIME for this experiment since it only provided local
explanations. Therefore, it is vital to consider the scope of
explainability when adopting the XAI model. When auditing
for system fairness by the administrator or other external stake-
holders, it is beneficial to have an oversight of the system’s
behavior. The FL model is trained in every iteration using
local data in the security domain. XAI would then generate
an explanation for each security domain, which is saved in
the client’s data collector. Furthermore, Table I summarizes
the different symbols we used in the paper hereafter.

A. SHAP

The SHAP method comes from cooperative game theory. It
provides a feature importance value called the Shapley value
for each input feature. Input features are taken as players.
Shapley values give players cooperation to win the game,
which is the model outcome. It has a nice characteristic as
an expected marginal contribution to the model outcome. If a
feature is significant toward the outcome of model prediction,
the higher the Shapley value is. fS(xS) implies the model
prediction of input xS with only the features of subset S.
The missing feature values are replaced with the values from
background data. To calculate the Shapley value of feature
F , the model outcome is calculated with subset S with
feature F as fS∪{F}(xS∪{F}). Then the effect of feature F
is calculated from the difference between these two model
outcomes. Finally calculates the average importance value
through perturbation of all feature subsets S ⊆ F\{F}.



TABLE III: Performance based on the percentage of anomalies in the client data

Dataset Anomaly Percentage Precision (%) Recall (%) F1 score (%) Accuracy (%)
UNSW-NB15 20% 48.57 99.43 65.26 78.08

30% 61.91 99.42 76.30 80.87
40% 71.72 99.42 83.33 83.59
50% 79.38 99.41 88.27 86.38
60% 85.45 99.41 91.9 89.17
70% 90.30 99.41 94.64 91.88
80% 94.42 99.41 96.85 94.68
90% 97.75 99.41 98.58 97.35

NSL-KDD 20% 88.31 96.00 92.0 96.82
30% 93.58 95.97 94.76 96.67
40% 95.36 95.98 95.67 96.60
50% 97.03 96.01 96.52 96.50
60% 98.16 96.04 97.09 96.40
70% 98.70 96.06 97.36 96.34

(a) proto feature in UNSW-NB15 for client with anomaly
percentage 90%

(b) Swin feature in UNSW-NB15 for client with anomaly
percentage 90%

(c) Protocol type feature in NSL-KDD for client with
anomaly percentage 70%

(d) Same srv rate feature in NSL-KDD for client with
anomaly percentage 70%

Fig. 5: Relationship between SD variation and SHAP value variation as a percentage between CL and FL model.

For a feature F , the Shapley value can be defined as in (1).

ϕ(F ) =
∑

S⊆F\{F}
|S|!(|F|−|S|−1)!

|F|! [fS∪{F}(xS∪{F})

− fS(xS)] (1)

IV. EXPERIMENTS AND RESULTS

This section describes the setup we used to compare expla-
nations between CL and FL models. We used two datasets
for model training, testing, and explanation comparison in
the experiment. UNSW-NB15 [17], which consists of 257673
flows with 42 features, belongs to 9 different attack categories.

NSL-KDD [18] dataset with 148517 flows with 40 features
linked with four major attack categories. TensorFlow and
TensorFlow-Federated libraries were used to train and test the
models. SHAP library was used as the post-hoc XAI model
to derive the explanations. The experiment was conducted in
three parts: data preprocessing, model training, and deriving
explanations. Three categorical features in the used datasets
were encoded using the target encoding library in the scikit-
learn. Selected 80% of the flows from the datasets randomly to
train the models, and the remaining flows were used for testing
the models. We used the complete training set for CL model
training. This training set was divided between 10 clients for



the FL model training. FL Clients with different anomaly
percentages were sampled from the entire training set, ranging
from 20%−90% in the UNSW-NB15. This was possible since
the original dataset contained 64% anomaly percentage. NSL-
KDD original dataset had 48% anomaly percentage. Therefore
client anomaly percentage varied between 20%− 70%.

Flows in client training samples have been repeated ten
times to run several epochs (i.e., small number of local
rounds). In the model training phase, the CL model consists
of five layers, with three hidden layers. The same keras model
was also used in the FL model, which was aggregated using the
FedAvg algorithm. FL model was trained with ten rounds. For
both cases, adam optimizer was used for compiling the models.
In the explanation part of the experiment, Kernel SHAP was
used as the explainer as it is more efficient, consistent, and has
low bias compared to other existing SHAP explainer types. As
the background dataset for the explainer, the entire training set
was used in the CL model, and the complete client training
set was used for the FL model. SHAP summary plots were
generated for each of the attack categories. The CL model
provided one global summary plot for one attack category,
while the same was generated for each client in the FL model
case. This is convenient in FL as the central server does not
have access to client data, which is necessary for producing
Shapley values. The Shapley value generation for the FL
client was done at the client using local data. This experiment
was conducted for 100 monte-carlo rounds. Each monte-carlo
round included a random sampling of the client dataset with
the described distribution. Finally, obtained Shapley values are
averaged over all the rounds.

After training ML models for two datasets, the model
performance results are shown Table II. Comparatively, models
trained from the NSL-KDD dataset showed good classification
accuracy. FL model reached an accuracy of 89% and 96% for
UNSW-NB15 and NSL-KDD datasets, respectively. In both
instances, it is performing less than the CL model.

Figure 2 represents the summary plot achieved for one client
at the end of the simulation. This summary plot provides the
important features related to the Analysis attack category in
that client more elegantly. This summary plot explains how
the FL model identified the anomaly type using the behavior
of its input features. The top feature affecting the decision of
the FL model is the dttl feature. Its feature description is the
destination to source time to live value. SHAP explains that
if the dttl value is high, it produces positive Shapley values
and obtains the highest absolute Shapley values among other
features. Hence it is ranked top in the summary plot. Positive
Shapley values indicate that FL model predictions are driving
towards classifying that flow as an anomaly and vice versa.

Features ranked order differed from the CL SHAP summary
plot to the FL SHAP summary plots. We attempted to sum-
marize results by calculating the percentage of features that
are identical up to the kth ranking of the summary plot. At
each round, we counted the instances where identical features
were observed at the kth ranking of the summary plot for
the FL client with anomaly percentage p% and CL. This can

be formulated as RankSHAP
CL (F ) = RankSHAP

Anomaly p(F ) = k
and the results for k = 1, 2, 3 are shown in the Figure 3
and Figure 4. To explain the ranking order differences in CL
and FL summary plots, we evaluated FL model performance
with local data. Table III shows the accuracy, precision, recall,
and F1 score metrics for local data with different anomaly
percentages.

Figure 5 shows how the SD change of a feature from CL
to FL affects the Shapley value change. Figure 5 provides the
regression plot with confidence intervals for the percentage
values in axis calculated as in (2) and (3), respectively.

Standard Deviation Difference (%) =
σAnomaly p(F )− σCL(F )

σCL(F )
× 100 (2)

SHAP Difference (%) =
ϕAnomaly p(F )− ϕCL(F )

ϕCL(F )
× 100 (3)

Only SD could show such behavior among other statistical
parameters we tested, such as correlation coefficient and mean.
Results shown in Figure 5 are for the top two features of the
SHAP summary plots for FL clients with the highest anomaly
percentage in the network. Figure 5 shows regression lines for
various attack categories in the dataset.

V. DISCUSSION

The FL clients provided a different feature ranking order
than the CL SHAP summary plot. Figure 3 and Figure 4
indicate that for k = 1, there is an excellent chance to have
the same feature as the top feature in CL and FL explanations.
The percentage of having the same top feature in both CL and
FL explanations is significantly lower in the UNSW-NB15
dataset compared to the NSL-KDD dataset. Table III show
a significant variation in F1 score and accuracy for UNSW-
NB15 clients with different anomaly percentages. This is not
the case for the NSL-KDD dataset. The original NSL-KDD
dataset contains 48% anomalies.The original UNSW-NB15
dataset contains 64% of anomalies, which causes there to
be more anomalous nodes in the network compared to the
NSL-KDD setup. This data imbalance has caused UNSW-
NB15’s performance to deteriorate compared to NSL-KDD.
This indicates that even the top features tend to be dissimilar
when the network is more anomalous.

Results from Figure 5 showed that an SD change in a
feature affects the Shapley value shift differently from feature
to feature. This kind of linear relationship was observable only
in the top 4 features of the SHAP summary plot and with the
clients with the highest anomaly percentage in the network. We
believe a high number of anomaly data points helped provide
crucial information on the considered attack to identify the
linear relationship. The adaptive sampling process in Kernel
SHAP with higher dimensional feature sets uses a subset with



lower cardinality to approximate the Shapley values when the
feature count is high. This has a significant adverse effect on
Shapley value in the lower ranks. Hence, we believe this is why
lower-ranked features do not show a similar linear relationship
as the top-ranked features.

Typically, SHAP is a computation-intensive method (e.g.,
for N features, it computes around 2N subsets). Therefore,
computing Shapley values for a more significant number of
anomalies in CL is putting strains on the central server’s
processing capacity and is also time-consuming. Due to the
reduced dataset size in FL, this calculation is improved well.
Hence we can expect more efficient usage of resources and a
real-time explainable FL-based anomaly detection mechanism.

VI. CONCLUSION

In this paper, we compared SHAP-based explanations for
centralized and federated learning models and obtained results
using UNSW-NB15 and NSL-KDD datasets. FL clients were
created with different percentages of anomalies in the local
data. From that, we could show that explanation changed from
CL to FL as the anomaly percentage increased. We showed
that the most significant features in the summary plot exhibit a
relationship between the Shapley value difference and the SD
difference of the feature. In future work, we intend to extend
our work and improve explainability in FL-based anomaly de-
tection framework for automated security management in ZSM
architecture. FL has been the most efficient ML technique to
deploy in different network management (i.e., authentication
and mobility) functions in Unmanned aerial vehicles (UAVs).
Adding explainability for UAV networks is considered future
work as well.
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