Exploring the Impact of Locations and Activities in
Person-wise Data Mismatch in CSI-based HAR
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Abstract—Over the past decade, research has demonstrated
the potential of Wi-Fi Channel State Information (CSI) in
Human Activity Recognition (HAR). However, its real-world
implementation is lacking due to the inability of CSI-based
HAR to generalize across different domains (persons, locations,
etc.). This inability of CSI can be attributed to the dynamic
nature of CSI, leading to the issue of data mismatch. Therefore,
in order to efficiently employ CSI-based HAR in real-world
applications, a comprehensive understanding of the interplay
between various data mismatch domains is essential. In that
direction, the presented work aims to gain analytical insights
into the impact of varying locations and activities in the person-
wise data mismatch in realistic scenarios. To understand the
person-wise data mismatch, three different analysis types namely
subject-specific, mixed-subject, and generic-subject were defined.
To assess the impact of locations in person-wise data mismatch,
two activity locations and four receiver locations were considered.
Whereas to assess the impact of the type of activities, four
different activity sets, including full-body activities, fine-grained
hand and leg activities, only fine-grained hand activities, and a
mix of all activities, were evaluated. F1 score degradation by
43% for full-body activities, 72% for only fine-grained hand
activities, and 76% for a mix of all activities in the person-wise
domain indicate that person-wise data mismatch has a significant
impact on the performance of CSI-based HAR. Furthermore, the
impact of receiver location and activity location varied based on
the activity set but was found comparatively insignificant when
observed individually.

Index Terms—Realistic scenarios, Channel state information,
Human activity recognition

I. INTRODUCTION

In the past decade, Human Activity Recognition (HAR)
technology for healthcare and home automation has gained
significant attention, especially with device-free sensing [1]
[2]. It minimizes the disadvantages of other sensing solu-
tions such as privacy risks, continuous wearing, and line-
of-sight monitoring [3]. Among other existing device-free
technologies for HAR, Wi-Fi Channel state information (CSI)
is intriguing because it utilizes readily available Wi-Fi routers
in households. CSI contains the propagation characteristics of
transmitting signals including scattering, fading, and power
decay along the way [3] which change dramatically due to
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the human body. Thus, human activities can be recognized by
detecting the change in amplitude attenuation and phase shift
of the radio signal.

The available research demonstrates the use of CSI for
recognizing physical activity such as falling, walking, sitting,
and hand gestures; physiological activity such as heart and
breathing rate; and behaviors such as sleep patterns, eating-
drinking habits, and physical fitness [3] [4] [5]. Though the
achieved success of CSI in HAR is fascinating, its inability
to generalize across domains due to data mismatch hinders
its real-world implementation [6] [7]. Data mismatch occurs
when there is a significant difference between the distributions
of trained and testing data.

Recent works in CSI have tried to identify and propose
solutions to overcome the data mismatch in various domains.
For example, the work by Zinys et al. [6] proposes the use
of GAN-based architecture to improve performance when
different environments or persons data is used for training and
testing. In another study, a novel approach using a wavelet
template and stretch-limited dynamic time wrapping was pro-
posed to overcome the impact of distance and orientation on
the performance of CSI-based HAR [7]. Since the majority
of available studies were conducted in labs or in controlled
setups, a clear understanding of the domains causing data
mismatch (individually or when combined) as expected in CSI-
based HAR in real-world scenarios cannot be drawn.

In that direction, this work presents a step-by-step analytical
understanding of the data mismatch due to persons when
varying activity performance locations, receiver locations,
and activities sets in realistic (close to real-world) scenarios
on the performance of CSI-based HAR. To understand the
impact of persons, three different analysis methods subject-
specific (when train-validation-testing occurs subject-wise),
mixed-subject (when train-validation-testing occurs on the
same group of subjects), and generic-subject (when train-
validation-testing occurs on different groups of the subject)
were proposed. These analyses were utilized to evaluate the
impact of two different activity performance locations and
four receiver locations. Four different activity sets including,
full-body activities, fine-grained hand and leg activities, fine-
grained hand activities, and all activities together were defined
to assess the impact of types of activities on these domains.
Along with gaining an understanding of the interplay between



multiple factors in person-wise data mismatch, these analyses
can also help in underlining the potential and limitations of
CSI technology for HAR in realistic settings.

Briefly, the contributions of these exploratory analyses are:

« Explored person-wise data mismatch by defining
and evaluating three types of analysis namely, subject-
specific (when train-validation-testing occurs subject-
wise), mixed-subject group (when train-validation-testing
occurs on the same group of subjects), and generic-
subject group (when train-validation-testing occurs on
different groups of the subjects) in a realistic scenario.

« Highlighted the impact of different activity sets in
person-wise data mismatch with the help of four differ-
ent activity sets namely full-body activities, fine-grained
hand and leg activities, fine-grained hand activities, and
all activities together. Analyses based on activity sets
can help in understanding the impact of the size or
combination of different activities on the classification
performance of CSI-based HAR.

« Highlighted the impact of different locations in
person-wise data mismatch by using two different ac-
tivity locations and four different receiver locations (also
beyond the wall). A rough estimation of the placement of
receivers in houses can be made by knowing the impact
of activity performance and the receiver’s locations.

II. RELATED WORK

Mathematically, the CSI can be represented by a 3D matrix
of complex values, consisting of amplitude attenuation and
phase shift of channels at any given time. CSI signals, when
captured over a time period, can predict the behavior of
the signal in the time, frequency, and spatial domains with
respect to the surrounding objects and persons. This predictive
property makes CSI useful for wireless HAR [3]. However,
due to multipath propagation, CSI signals are susceptible to
dynamic indoor environmental cues. This means that along
with human movements, a change in signal properties can
be expected because of any other (slight) changes in the
surrounding environment (such as moving chairs or having
a visitor) [3] [6]. Therefore, if HAR signals are captured from
different domains (different persons, locations, etc.), they will
suffer from the data mismatch issue, which means that there
will be a significant difference between the distribution of the
training data and test data.

Recent research has highlighted and proposed solutions to
overcome data mismatch for various domains influencing the
performance of CSI-based HAR systems. These domains are
quite diverse, ranging from the time of day to hardware, data
quality, environmental cues, a person’s physical characteristics,
etc. In the study by Gao et al. [8] it was shown that the
location of activity performance impacts the quality of data
and to overcome that a novel error of dynamic phase metric to
accurately quantify the sensing quality was proposed. Another
study by Nguyen et al. [9] focused on hardware impairments
and demonstrated that they can reduce not only the system’s

performance but also the self-interference cancellation capa-
bility of full-duplex devices.

In a study by Brinke et al. [10], the impact of participants
and even the time of the day on HAR performance were iden-
tified and evaluated by using the cross-participant validation
method followed by transfer learning to solve the degraded
performances. Zheng et al. [11] highlighted the performance
variability in a gesture recognition system due to changes in
orientation and location with respect to the sensing device.
Zhang et al. [12] studied the impact of distance and orientation
on HAR performance and proposed a novel approach that
utilized a wavelet template and stretch-limited dynamic time
wrapping to overcome these issues. In another similar study
to identify sign language gestures, the impact of different
physical properties of participants or a slight difference in
movement patterns on the performance has been underlined
[13]. In a recent study, the problem of domain change due
to environment and person was identified, and to mitigate
that a domain-independent generative adversarial network was
proposed and evaluated for gesture recognition [7].

III. GAP IN RESEARCH

While the use of advanced algorithms or analysis to ad-
dress data mismatch in CSI is motivating, their effectiveness
in real-world scenarios remains uncertain. First, the impact
of the above-discussed domains was identified in controlled
setups either in lab environments or by tightly controlling the
experiment protocol (such as defined participant’s position or
orientation, etc.). Thus, there is a need to cross-examine the
identified domains in realistic scenarios. Second, in the real-
world, multiple factors can impact the data mismatch in CSI
at once, requiring a thorough analysis of the interplay between
multiple factors impacting CSI. Third, the performance of
CSI-based HAR across studies varies due to differences in
study setups, environmental conditions, activity types, and
analysis approaches in the literature. These analyses can help
in underlining the reasons behind varied performances. Lastly,
understanding the behavior of raw CSI data is crucial before
proceeding with advanced signal or data analytical approaches
as it might provide new insights into the behavior of CSI or
might open up new challenges. Considering these gaps, the
work aims to conduct step-by-step exploratory analyses to gain
an analytical understanding of the person-wise data mismatch
while considering different locations (activity performance and
receiver) and activity sets (fine-grained and full-body) in a
realistic setup.

IV. DATASET USED AND ANALYSIS PROTOCOL

For this work, a realistic dataset (named Wi-Gitation) col-
lected in a fully-furnished one-bedroom apartment (Figure 1)
by using a semi-protocolized experiment paradigm was used.
Here, participants were given certain degrees of freedom, such
as participants were not strictly instructed on the exact place of
sitting (they were asked to sit on the sofa but not at the same
spot); they were allowed to choose the orientation of sitting
(which side they want to face); they were asked to choose their
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Fig. 1. Layout of eHealth house [14].

own the path of walking across kitchen and living room; they
were free to improvise the way of performing the fine-grained
activity (speed or use of any or both hands or legs). The other
important characteristics of the dataset are explained below in
accordance with its organization for exploring the impacts of
different data mismatch domains:

To explore person-wise data mismatch: In general, the
impact of data mismatch due to persons on classification per-
formance is very evident in CSI-based HAR. The used dataset
is collected from twenty-three healthy participants (age: 25.26
+ 9.49) in a simulated one-bedroom apartment. Thus, it helps
in cross-examining the impact of data mismatched caused
by different persons in real-world scenarios. Therefore, here
we define three cases showing different splits in training-
validation-testing data.

« Subject-specific data analysis (train-validate-test on the
same or another person): It means that individual par-
ticipants are taken for training, validation, and testing.
Within the subject-specific analysis, two possibilities can
be observed. First, when the algorithm was trained and
tested on the same subject to observe the behavior of the
system when it has an opportunity to train on the test
subject (Case 1.1). Contextually, it represents the case
when monitoring needs to be done on only one person
living alone. Second, when the algorithm was trained on
one individual and tested on other individuals (Case 1.2).
This type of analysis is used when training data is limited
but testing will be done on wider audiences.

o Mixed-subject data analysis (train-validate-test on
mixed data): It means data from all participants are mixed
and then sliced into training (68%), validation (17%), and
testing (15%) (Case 2). Here, all three splits can have
data from the same person but different samples. It can
be useful for scenarios when the system is expected to
predict only the seen participants.

« Generic-subject data analysis (train-validate-test on dif-
ferent groups of participant data): It means data from

different groups of persons are used for training (12
participants), validation (4 participants), and testing (4
participants) (Case 3). This is the most common scenario
as more data is used for training and testing is done on
unseen individuals.

Table I presents the overview of these cases with the possible
scenarios where these cases can be used in a future real-world
implementation. These cases were applied for all types of
activities, both locations, and all receivers so that a fair idea
of the interplay between different factors can be drawn.

To highlight the impact of different activity sets in
person-wise data mismatch: From the used dataset, two
full-body (normal walking and disturbed walking), one fine-
grained leg activity (kicking on the leg of a table), and four
fine-grained hand activities (rubbing hands on a table, hand
wringing, tapping on a table, flipping objects) were utilized
to define four different activity sets by considering the kind
of activities. Here each activity was conducted for two min-
utes. The rationale was to see the difference in classification
performances for similar (for example, only hand activities)
or mixed (full-body and fine-grained hand/leg) activity types
when performed by different participants, at different loca-
tions, and measured from different receivers i.e. different data
mismatch domains. These activity sets are illustrated in Table
II.

« Full-body activities (A1 set): It includes two full-body
activities: normal and disturbed walking. In disturbed
walking activity (usually identified in older adults) par-
ticipants used a cane, showed different paces of walking
(slow/fast), and were also limping whereas participants
were asked to walk normally as they do for normal walk-
ing activity. This could also be helpful when disturbed
walking needs to be recognized from normal walking in
older adult care. Note these activities are not location-
dependent as they were performed across the kitchen and
living room areas.

« Fine-grained hand and leg activities (A2 set): A com-
bination of fine-grained hand activity (Tapping, wringing
hands, rubbing tables, flipping objects) and leg activity
(Kicking) were used in this set. This activity set can
provide insights when the aim is to classify fine-grained
but different activities into broader categories without
going into more specific classifications.

o Fine-grained hand activities (A3 set): Fine-grained
hand activities (Tapping, wringing hands, rubbing tables,
flipping objects) were used to see the individual classifi-
cation performance within a group of similar fine-grained
activities, adding evidence for exploring the limits of CSIL.

« All activities together (A4 set): This set utilizes a mix of
full-body, fine-grained hand, and leg activities. Usually,
for a context-based HAR system, it is common to have
different types of activities and this set can give insight
into the behavior of CSI in such cases.

To highlight the impact of different locations in person-
wise data mismatch: A system can be ubiquitous if it can



TABLE I
TYPE OF ANALYSIS, CORRESPONDING CASES, AND POSSIBLE SCENARIOS ENCOUNTERED IN REAL-WORLD IMPLEMENTATION

Analysis type Cases

Possible scenarios

Case 1.1:Training and testing on

Subject-specific | " ame participant

is living alone

The model has an opportunity to train on the person to be tested, for example when an individual

Case 1.2: Training on one and test-

Subject-specific ing on the different participants

The model is trained on a different person than the test person. This is usually the case when
less data is available for training.

Case 2: Mixed data split into 68%

Mixed data Train, 17% validation, 15% test

for testing.

The model has the opportunity to learn from a group of persons that will be used in the future

Case 3: Using different 12P for

Generic data Train, 4P for validation, 4P for test

users.

The model is trained on a group of persons with testing on an unseen group of users. For
example, a product is developed with the aim to deploy in different households with unknown

TABLE II
FOUR DEFINED ACTIVITY SETS: Al, A2, A3, AND A4

Activity Activities includes
sets
Al Full body activities: Normal walking (NW), Disturbed walk-

ing (DW)

Fine-grained hand and leg activities: Hand activity (Tapping
A2 (TA), Hand wringing (HW), Rubbing table (RT), Flipping
objects (FO)) and leg activity (Kicking on the table (KA))
Fine-grained hand activities: All hand activities (Tapping
A3 (TA), Hand wringing (HW), Rubbing table (RT), Flipping
objects (FO))

All activities together: Mix of full-body, fine-grained hand,
and leg activities (Disturbed walking (DW), Sitting down
standing up (SS), Kicking (KA), Tapping (TA), Hand wring-
ing (HA), Rubbing tables (RT), Flipping objects (FO))

A4

monitor activities at all possible locations in a given area or
house. For example, if a system can recognize kicking activity
at location L1 then ideally it should also recognize when the
same activity is happening at location L2. But due to the
vulnerable nature of CSI with changes in activity location, a
variation in classification performances can be observed [12].
But its impact in realistic scenarios within the same house is
unknown. Thus, to demonstrate this, the work utilizes the CSI
data of different activities at Locations L1 (on a sofa) and L2
(on a dining chair) from all four receivers (see Figure 1).

It is also important to understand the impact Rx location
can have on HAR when considering the wider implementation.
Particularly, due to the varied distance between the Tx-Rx and
when the receiver is placed beyond the wall. Upon gaining this
understanding, an idea for strategies concerning the placement
of Tx-Rx as per the size/shape of a house can be determined.
Therefore, four different Rx placed at different distances from
a Tx 2.7m (Rx0), 3.3m (Rx0), 6.7m (Rx3, beyond the wall),
and 6.3m (Rx4) respectively in a simulated real-world one-
bedroom apartment, when the persons were performing the
activity at L2 were utilized (see Figure 1). One location is
chosen to zoom in on the impact of Rx locations in person-
wise data mismatch.

V. DATA ANALYSIS

After exploring multiple networks, ResNet-50 was chosen
to conduct these analyses. ResNet-50 is a 50-layer deep con-
volutional neural network widely used for image classification.

The untrained network architecture of ResNet-50 was obtained
from Matlab and adapted as per the required input and output
size. In the Wi-Gitation dataset, a three-dimensional channel
state matrix, H = 3(Ntx) x 3(Nrz) x 30(Nsc), where Ntz is
the number of Tx antennas, Nrx is the number of Rx antennas,
and Nsc the number of sub-carriers was obtained. This
means 270 channels for each sample were present in the raw
data. Moreover, each activity was conducted for two minutes
thus a total of 12000 samples (120 sec x 100 Hz) were
expected (without packet loss). Thus, a matrix of dimension
270 channels x 12000 samples (only CSI amplitude) were
obtained for each activity and each participant. Since the aim
of this paper is to showcase exploratory analysis, minimum
pre-processing steps including nearest neighbor interpolation
to make samples consistent [15] and sliding window with
50% overlap to overcome the information loss, if any, during
segmentation in further processing [16] were applied.

VI. RESULTS

In this section, the obtained results are presented to show
the person-wise data mismatch when activities, activity perfor-
mance, and receiver locations are varied. Here, F'1 — scores
(harmonic mean of precision and recall) being a better eval-
uation matrix (than accuracy) for trained models specifically
when the dataset is imbalanced is used to report these results.

A. Person-wise Data Mismatch

Figures 2 and 3 show that subject-specific data analysis
when trained and tested on the same person (case 1.1) and
mixed-subject data analysis (case 2) gave higher and compa-
rable performances for all the activity sets. It can be because in
case 1.1 algorithm is trained and tested on the same person and
thus might be highly overfitted to the person’s physical traits.
Similarly, in case 2, the model had an opportunity to see the
samples from the same person thus it again gets trained well
on the given persons. Note that, there was no data mismatch
in these two cases, thus yielding better performances. Further-
more, the degraded performance due to data mismatch can
be observed in generic-subject (case 3) and subject-specific
data analysis when trained and tested on a different person
(case 1.2). Case 3 performed slightly better than case 1.2 as it
had more data for training thus maybe it is able to generalize
better in comparison to case 1.2 where only one person’s data
is given for training which might lead to overfitting on the



person it was trained on. The F'1 — scores presented in figure
2 and 3 are averaged over both locations and all receivers.
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Fig. 2. F'1 — scores for person-wise data mismatch in (A) Al Activity
set: Disturbed walking (DW) & Normal walking (NW); (B) A2 Activity set:
Leg activity (LA) & Hand activities (HA) corresponding to subject-specific,
mixed-subject, and generic-subject analysis.

B. Impact of Activities in person-wise Data Mismatch

To demonstrate the impact of activities in person-wise data
mismatch, we zoom in on the generic-subject analysis (case
3) and compare it with mixed-subject data analysis (case 2)
as it is a more prevalent type of analysis. In generic-subject
analysis, higher F'1 — scores were observed for fine-grained
hand and leg activities when classified broadly (Figure 2B),
followed by full-body activities (Figure 2A), only fine-grained
hand activities (Figure 3A), and all activities together (Figure
3B). This could be because fine-grained hand and leg activities
might have distinct variations in CSI signal as they were
performed by using different limbs (either hands or legs). Here,
in comparison to mixed-subject data analysis,F'1 — scores
dropped by 0.16 (on average) (Figure 2B). It is also worth
noticing that the number of samples for hand activities was
higher in training as it comprised of four activities namely
tapping, hand wringing, rubbing hands, and flipping objects
whereas, in the leg activity category, only one activity namely
kicking was there. This might create a classification bias.
Whereas used full-body activities normal and disturbed walk-
ing are quite close to each other as they require similar limb
movement, thus might have more similarity in CSI signal.
However, when compared to mixed-subject data analysis,
F1 — scores dropped by 0.43 (on average) (Figure 2A).

Despite that, the obtained F'1 — scores shows the possibility
that these two activities can be classified.
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Fig. 3. F'1 — scores for person-wise data mismatch in (A) A3 Activity set;
(B) A4 Activity set for subject-specific, mixed-subject, and generic-subject
analysis. (Abb: TA (Tapping), Hand Wringing (HW), RT (Rubbing Table),
FO (Flipping Objects), Kicking (KA), SS (Sitting Standing), DW (Disturbed
Walking))

Moreover, in generic-subject analysis for all the fine-grained
hand activities (Tapping, Hand wringing, Rubbing hands,
Flipping objects) F'1 — scores were degraded by 0.72 (when
compared to mixed-data analysis) but they were comparable
between the activities of this set (Figure 3 A). This could
be because when the number of classes using similar limb
movements increases, the model becomes incapable to classify
closely related classes. Lastly, when all the activities i.e. a
mix of full body, fine-grained hand, and leg activities are
classified together, a significant drop in F'1 — scores (by 0.76)
in comparison to mixed-subject data analysis was observed
(Figure 3 B). Though a comparable F'1 — scores can be
observed for full-body activities and fine-grained leg activity.
Overall, it can be understood that the chances of correctly
classifying full-body activities are more compared to fine-
grained hand activities in person-wise data mismatch.
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Fig. 4. F'1 — scores for (A) A2 activity set; (B) A3 Activity set; (C) A4
Activity set at L1 & L2 location for genric-subject analysis. (Abb: LA (Leg
Activity), HA (Hand Activities) TA (Tapping), Hand Wringing (HW), RT
(Rubbing Table), FO (Flipping Objects), Kicking (KA), SS (Sitting Standing),
DW (Disturbed Walking))

C. Impact of Locations in person-wise Data Mismatch

All four analysis cases and activity sets (except Al set in
the activity location as it is location independent) were used.
In subject-specific data analysis when trained and tested on
the same person (case 1.1) and mixed-subject data analysis
(case 2) F'1 — scores were significantly high (between 0.97
to 1), hence it does not deliver insights on the impact of
locations or placement of receivers. Among subject-specific
data analysis when trained and tested on a different person
(case 1.2) and generic-subject data analysis (case 3), the latter
is more commonly used. Thus, for both activity performance
and receiver locations the results from only generic-subject
analysis are presented and compared.

Within the generic-subject analysis, both locations gave
comparable performances for individual activity sets (Figure
4). This indicates that when training and testing are done by
using the same location’s data similar performances can be ex-
pected despite varied distances from transmitter-receiver pairs.

For the A2 activity set, Figure 4 A, the average F'1—scores for
L1 and L2 were 0.83 and 0.85 respectively. In A3 activity set
Figure 4 B, the average F'1 — scores dropped to 0.25 and 0.26
for L1 and L2 respectively. Lastly, for A4 activity set Figure
4 C, the average F'1 — scores further dropped to 0.21 for both
locations. Note that, L2 was closer to the transmitter but not
much differences in individual performances were observed.
The F'1 — scores presented in Figure 4 are averaged along
the receivers to specifically demonstrate the impact of activity
performance location.

Furthermore, in receiver location-wise data mismatch, dif-
ferent placements of receivers do impact the activity classifi-
cation but not very significantly (F'1 — score were 0.45, 0.48,
0.44, and 0.46 for Rx0, Rx1, Rx3, and Rx4 respectively, av-
eraged over activity sets). Though significant differences with
respect to different activity sets were observed. In the full-body
activity set, participants were walking all around the house
thus all the receivers gave varied performances (Figure 5A).
Disturbed walking was best monitored by Rx4 (F'1 — score:
0.63) whereas normal walking was by Rx0 (¥'1 —score: 0.59).
This might be because for normal walking activity participants
were walking more in the closer proximity of Rx0 and Rx4
for disturbed walking activity. Interestingly, in the fine-grained
hand and leg activities set, the closest receiver (Rx0) gave the
comparatively worst performance with F'1 — score of 0.80
(Rx0 is the closest receiver as data from L2 is used here)
whereas other receivers (including one placed beyond the wall)
gave comparatively better results with F'1 — scores 0.87, 0.87,
and 0.85 for Rx1, Rx3, and Rx4 respectively (Figure 5B). It
could be because this placement location of the receiver was
not able to obtain good reflected signals from leg activities.
Nevertheless, the classification performance for only fine-
grained hand activities degraded with an average F'1 — scores
between 0.25 and 0.28 with respect to different receivers.
This could be because these movements were of very small
scale (Figure 5C). Lastly, similar degraded performances were
observed when classifying all the activities together (Figure
5C). Interestingly, the performance of Rx3 (beyond the wall)
was also at par with other receivers.

VII. DISCUSSION & CHALLENGES

A perspective on the interplay between different factors im-
pacting CSI in person-wise data mismatch in realistic scenarios
can be drawn on the basis of conducted exploratory analyses.

In a nutshell, the person-wise data mismatch (due to varied
physical traits) is evident and dominant in realistic scenarios.
For example, no significant differences were obtained between
subject-specific analysis when trained and tested on the same
person and mixed-subject analysis with respect to all activity
sets, both locations and all receivers (Figure 2 and Figure
3). In these two cases model was trained on the samples
of the person(s) to be tested i.e. no or less data mismatch,
giving the model an opportunity to learn the (specific) way a
person is performing an activity in combination with his/her
physical traits. Whereas the performance degrades drastically
in cases when a model is tested on the unseen person(s)
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Fig. 5. F1 — scores for (A) Al activity set; (B) A2 activity set; (C) A3 activity set and; (D) A4 activity set for different receiver locations corresponding
to generic-subject analysis. (Abb: NW (Normal Walking), DW (Disturbed Walking), LA (Leg Activity), HA (Hand Activities), TA (Tapping), Hand Wringing
(HW), RT (Rubbing Table), FO (Flipping Objects), Kicking (KA), SS (Sitting Standing)).

(subject-specific when trained and tested on different persons
and generic-subject analysis). Every person impacts the CSI
signals differently which creates a variation in training and
testing data. The ML algorithm tends to learn the patterns
in training data, expecting similar patterns in testing data.
Thus for unseen persons in testing data, it is highly likely
that testing performance will decline. This is a classic case of
data mismatch in CSI-based HAR.

From this, it could be interpreted that the raw CSI signals
pertaining to activities show less variation as compared to
the combined variation due to physical traits such as height,
weight; the way of performing the activity (some participants
used their right hand some used their left hand for tapping
on the surface); the pace of performing the activity; or way
of sitting, etc. This makes it very difficult for the model to
identify these small movements in raw data and the model
gets trained on the overpowering variation due to the other
person-dependent factors. Thus, it can be implied that the
trained models are over-fitted to the physical traits of the
person(s) in the training data hence yielding very poor testing
performance with an unseen person(s) like in the generic-
subject analysis. Nevertheless, the same person-specific factors
will be present when CSI-based HAR will be deployed in real-
world scenarios.

Another, interesting aspect outlined from these exploratory
analyses is the varied impact of the type of activities used
in data mismatch domains. Full-body activities like disturbed
walking and normal walking showed almost similar F'1 —
scores when trained and tested on the different person(s).

In the leg and hand activity set, F'1 — scores in generic-
subject group analysis were better and interesting to note. It
supports the argument that varied data leads to generalization
across unseen persons thus yielding better and more stable
classification results. Overall, the set of hand activities always
performed better than the kicking activity. While this could be
because of classification bias due to higher training samples
in hand activities, it does indicate that CSI has the potential
to classify wider activity categories.

A level deeper when aiming to classify individual activ-
ities within the group of hand activities, the classification
performances dropped drastically. It is because these activities
were very similar and small in nature thus making it more
difficult for a model to identify them among the similar
set of activities in the raw CSI signals which are already
varied due to the physical traits of the person(s). In addition,
the increased number of classification categories in the only
hand and all activities together set might have impacted the
performance negatively. To prevent the degradation due to the
type of activities, a step-by-step activity classification method
can be used, where at first different activities are classified
into broader categories followed by classifying individual
activities.

Moreover, the activity locations do play a role in CSI-based
HAR but not very significant differences were obtained at in-
dividual locations (i.e. training-testing on one location’s data),
for example, in generic-subject analysis, the performance of
both locations was found comparable within each activity set
(Figure 4). CSI data obtained from one particular location is



a combination of reflections of multiple objects in the way
along with the person performing activities. Upon changing
the location multiple objects might impact in a different order
(in terms of reflection), but since the same objects were
in the house the obtained final signal might contain similar
components but in different order hence giving comparable
performances. The study by Wang et al. also indicates the
limited impact of the activity performance locations [12].

Interestingly, the impact of the different receivers was com-
paratively more evident among different activity sets (Figure
5), with the receiver beyond the wall giving comparable
performances. It might be because some receivers might not
be able to get activity information in the CSI signal because
of the angle or way some activities are performed. Overall,
among individual activity sets the performances of different
receivers do not degrade significantly despite a reasonable
distance between Tx and Rx. This could possibly indicate the
ubiquitous nature of CSI. While these are speculations, more
rigorous testing is needed to conclude.

Altogether, these analyses demonstrate the increased person-
wise data mismatch challenges when realistic setups are used
as there are multiple factors impacting the CSI at once.
For example, if an algorithm is designed with an aim to
tackle person-wise data mismatch, varied performances with
variations in activity sets or receiver locations can be expected.
Therefore, to ensure the robustness of a novel algorithm
developed for person-wise data mismatch, it should be tested
on realistic datasets where multiple factors are impacting
CSI at once. This also explains the varied performances of
different datasets even though the same algorithms are used,
each dataset has its own degree of variations in participants,
activities, locations, the hardware used, etc. However, CSI
also presents opportunities for HAR, such that if activities
are performed at different locations or observed by different
Tx-Rx pairs in a house, there are chances that almost similar
performances might be obtained. In the current state, CSI-
based sensing systems can be found comparatively reliable in
cases when training and testing are done on the same person(s)
and broader activity sets.

VIII. CONCLUSION & FUTURE WORKS

This analysis highlights the challenges associated with
implementing CSI-based HAR in real-world scenarios. It
emphasizes the much greater negative impact of person-wise
data mismatch on its performance in comparison to testing in
controlled environments. The type of activities used also sig-
nificantly affects the classification performance of CSI-based
HAR, with full-body or broader sets of activities performing
better than fine-grained activities. However, developing dif-
ferent algorithms for different activity sets or overcoming the
impact of different domains is impractical, necessitating the
need for more robust and inclusive algorithms. Furthermore,
this study reveals that the limited impact of locations within
the same house when observed individually presents opportu-
nities for further development of CSI-based HAR.

To advance the field, future work should focus on identi-
fying domain-independent features by removing the physical
traits of individuals from the CSI data and testing them
in environments that closely resemble the real-world. Addi-
tionally, exploring the impact of persons in data mismatch
due to locations and the impact of dynamically changing
environments would be valuable for realizing the real-world
implementation of CSI-based HAR.
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