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A B S T R A C T

Uniaxial compressive strength (UCS) of rock is an essential parameter in geotechnical engineering. Point load
strength (PLS), P-wave velocity, and Schmidt hammer rebound number (SH) are more easily obtained than UCS
and are extensively applied for the indirect estimation of UCS. This study collected 1080 datasets consisting of SH,
P-wave velocity, PLS, and UCS. All datasets were integrated into three categories (sedimentary, igneous, and
metamorphic rocks) according to lithology. Stacking models combined with tree-based models and linear
regression were developed based on the datasets of three rock types. Model evaluation showed that the stacking
model combined with random forest and linear regression was the optimal model for three rock types. UCS of
metamorphic rocks was less predictable than that of sedimentary and igneous rocks. Nonetheless, the proposed
stacking models can improve the predictive performance for UCS of metamorphic rocks. The developed predictive
models can be applied to quickly predict UCS at engineering sites, which benefits the rapid and intelligent
classification of rock masses. Moreover, the importance of SH, P-wave velocity, and PLS were analyzed for the
estimation of UCS. SH was a reliable indicator for UCS evaluation across various rock types. P-wave velocity was a
valid parameter for evaluating the UCS of igneous rocks, but it was not reliable for assessing the UCS of meta-
morphic rocks.
1. Introduction

Uniaxial compressive strength (UCS) is a crucial rock index exten-
sively applied in mining, underground tunnels, reservoirs, and other rock
engineering projects. Blasting, excavation, support, etc. need UCS to
guide project construction and ensure production safety in the field.
Additionally, many rock mass classification systems are built on the UCS,
including rock mass rating (RMR) (Bieniawski, 1974), rock mass index
(RMi) (Palmstr€om, 1996), Hoek–Brown failure criterion (Hoek et al.,
2002). These investigations suggest that UCS is an indispensable rock
parameter in geotechnical engineering.

The rock mechanics test is a direct approach to measure the UCS
(Hatheway, 2009). Rock blocks are made into standard specimens, which
are loaded on the test machine until they break. The failure load and
cross-section of the specimen are recorded, and the UCS is obtained by
calculation. Nevertheless, this process consumes considerable time to
prepare the rock specimens. In particular, with the mining of deep
mineral resources, it is challenging to acquire intact rock samples from
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highly stressed and fractured rock masses in deep strata (Xiao et al.,
2021). Fig. 1 shows the drilling cores at different depths in a deepmine in
China. Core disking makes it almost impossible to obtain intact rock
blocks. In this case, it is very difficult to measure the UCS directly.
Accordingly, it is significant to develop indirect evaluation methods for
obtaining the UCS of rock in engineering sites (Aladejare et al., 2021).

Physical and easily obtained mechanical parameters have been
considered to evaluate UCS indirectly. Physical parameters include the
Equotip hardness number (L) (Corkum et al., 2018), Schmidt Hammer
rebound number (SH) (Heidari et al., 2018), Shore hardness (Dinçer
et al., 2008), density (ρ) (Aliyu et al., 2019), porosity (n) (Fereidooni,
2016), P-wave velocity (VP) (Rahman and Sarkar, 2021), S-wave velocity
(VS) (Uyanık et al., 2019), unit weight (γ) (T€or€ok and V�as�arhelyi, 2010),
slake durability index (SDI) (Sharma et al., 2017), etc. Mechanical pa-
rameters utilized to estimate the UCS are more readily measurable than
the UCS. These parameters comprise the block punch index (BPI) (Hei-
dari et al., 2018), Young's modulus (E) (Najibi et al., 2015), Poisson ratio
(ν), Brazilian tensile strength (BTS) (Aliyu et al., 2019), point load
eptember 2023
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Fig. 1. Drilling cores at different depths in a deep mine in China: (a) 1050 m; (b) 1150 m; (c) 1200 m; (d) 1250 m.
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strength (PLS) (Aliyu et al., 2019; Fereidooni, 2016), and other
properties.

Among the physical and mechanical parameters, PLS, VP, and SH are
easily measured on-site (Armaghani et al., 2016a). They have a close
relationship with rock properties. For instance, PLS has been recom-
mended as an indirect measure of UCS owing to its testing ease,
simplicity of specimen preparation, and field applications (Kahraman,
2001). VP represents the propagation velocity of elastic waves in rocks,
which is closely associated with rock properties (Wei et al., 2022). SH is
implemented to test the quality of rock, which can be measured by the
Schmidt hammer (Wang and Wan, 2019). PLS, VP, and SH frequently
serve to indirectly evaluate UCS owing to their practicality and
simplicity.

Numerous intelligent algorithms have been extensively applied to
predict UCS based on physical and easily obtained mechanical parame-
ters. Table 1 lists intelligent techniques for predicting UCS of rock in
recent years. Neural network models (ANN, ANFIS, RBFN, and ELM) are
popular for UCS prediction owing to their ability to simulate complex
relationships (Barham et al., 2020; Cao et al., 2022; Miah et al., 2020;
Teymen and Mengüç, 2020), but training and optimizing them are
computationally intensive. Hybrid models (such as ANN-GA) employ
optimization algorithms to enhance model performance by optimizing
parameters (Ebdali et al., 2020). Ensemble models combine predictions
from multiple models to improve performance by reducing errors and
generating a more accurate final output (Barzegar et al., 2020). Support
vector machines effectively handle high-dimensional data and produce
reliable results, even with small training datasets (Shahri et al., 2022).
Tree-based models (RF and XGB) are also quite useful in UCS prediction
(Abdelhedi et al., 2023; Wang et al., 2023), and they are easy to use and
can get good performance without hyperparameter tuning. Deep learning
methods (CNN and LSTM) extract features and capture complex patterns
automatically, and they are suitable for complex datasets (Mahmoodza-
deh et al., 2021; Sun et al., 2021). Additionally, some other models (GEP
and GPR) are also applied for the estimation of UCS (Mahmoodzadeh
et al., 2021; Zhao et al., 2022).

Intelligent techniques have demonstrated a marked advantage in
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predicting the UCS of rock due to their ability to capture complex re-
lationships between variables. Nevertheless, intelligent techniques are
based on data-driven methods, and their capabilities mainly rely on the
characteristics of the datasets (such as size, complexity, and quality).
Many existing studies used limited datasets to develop predictive models
of UCS. The size and quality of the datasets dictate that the developed
predictive models are only suitable for specific cases and are not uni-
versally applicable. Moreover, lithology also has an impact on the
assessment of UCS (Aladejare et al., 2021; Rahman and Sarkar, 2021).
Incorporating lithology and multiple parameters (such as PLS, VP, and
SH) can improve the performances and applicabilities of predictive
models. However, most current studies do not consider the effect of li-
thology on the prediction of UCS. Not only that, the datasets related to
rock parameters, used in developing the predictive model of UCS,
frequently exhibit both linear and non-linear patterns (Mahmoodzadeh
et al., 2021, 2022; Moussas and Diamantis, 2021; Parsajoo et al., 2021).
The inherent complexity of the datasets requires powerful modeling
techniques. To address these limitations, this study considered the effect
of lithology on rock strength and used multiple variables (PLS, VP, and
SH) to predict UCS. Meanwhile, a comprehensive database with 1080
datasets composed of PLS, VP, SH, and UCS were collected. Large data
size can provide comprehensive information about rock characteristics
and reduce the randomness of the predictions. Additionally, novel
stacking models suitable for rock parameter datasets that present both
linear and non-linear trends were proposed to process PLS, VP, and SH to
predict UCS of different lithologies.

These collected datasets were integrated into three databases (sedi-
mentary, igneous, and metamorphic rocks) according to lithology. For
each database, the optimal distributions of PLS, VP, SH, and UCS were
determined through the Kolmogorov-Smirnov (K–S) test. Simple regres-
sion analysis was conducted to analyze the relationship between PLS, VP,
SH, and UCS. Moreover, stacking models combining tree-based models
and linear regression were developed based on the collected datasets of
three rock types. These stacking models were then evaluated and
compared. Finally, the importance of PLS, VP, and SH was analyzed for
predicting UCS in three rock types.



Table 1
Intelligent algorithms for the prediction of UCS in recent years.

No. Model Input variables

1 ANN (Barham et al., 2020) VP, SH, BTS, ρdry, SDI, and PLS
2 Ensemble models (Barzegar et al.,

2020)
VP, SH, n, and PLS

3 ANN-GA, ANN-ICA, ANN-PSO
(Ebdali et al., 2020)

ρ, VP, Vs, and BTS

4 ANN and SVM (Miah et al., 2020) Resistivity, gamma ray, bulk density, n,
and sonic time

5 SVM-FMA (Shahri et al., 2022) ρ, n, VP, water absorption, and PLS
6 ANN, ANFIS, and GEP (Teymen

and Mengüç, 2020)
γ, BTS, SH, L, PLS, and VP

7 RF (Wang et al., 2020) SH and VP

8 ANN, ANFIS, and SVM (Gowida
et al., 2021)

Rate of penetration, mud pumping rate,
standpipe pressure, rotary speed in
revolution per minute, torque, and
weight on bit.

9 ANFIS-SFS (Jing et al., 2021) VP, PLS, and SH
10 LSTM, DNN, KNN, GPR, SVM, DT

(Mahmoodzadeh et al., 2021)
n, SH, VP, and PLS

11 ANN and ALPS-GP (€Ozdemir,
2022)

n, SH, and VP

12 CNN (Sun et al., 2021) CT image data
13 XGB-FA, SVM, and RBFN (Cao

et al., 2022)
ρdry, VP, quartz, plagioclase, chlorite,
alkali feldspar, and mica

14 GPR (Zhao et al., 2022) SH, VP, PLS, n
15 PSO-RF (Wang et al., 2023) SH, VP, PLS, ρ
16 TSO-RF (Li et al., 2022b) SH, VP, PLS, ρ, n
17 ANN (Li et al., 2022b) ρ
18 DFNN (Zhao et al., 2023) Drilling jumbo measurement data
19 GWO-ELM (Jin et al., 2022) SH, VP, PLS, n
20 XGB (Abdelhedi et al., 2023) VP, ρ, n

Note: ANN ¼ artificial neural network; GA ¼ genetic algorithm; ICA ¼ imperi-
alist competitive algorithm; PSO ¼ particle swarm optimization; SVM ¼ support
vector machine; FMA ¼ firefly metaheuristic algorithm; ANFIS ¼ adaptive neuro
fuzzy inference system; GEP ¼ gene expression programming; RF ¼ random
forest; SFS ¼ stochastic fractal search algorithm; LSTM ¼ long short term
memory; DNN ¼ deep neural networks; KNN ¼ k-nearest neighbors; GPR ¼
Gaussian process regression; DT ¼ decision tree; ALSP ¼ artificial intelligence-
based age-layered population structure; GP ¼ genetic programming; CNN ¼
convolutional neural network; XGB ¼ extreme gradient boosting; FA ¼ firefly
algorithm; RBFN ¼ radial basis function neural network; TSO ¼ transient search
optimization; DFNN ¼ deep feedforward neural network; ELM ¼ extreme
learning machines; GWO ¼ grey wolf optimization.

Fig. 2. Scatter distributions among PLS, VP, SH, and UCS.
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2. Data

2.1. Data collection of rock samples

This study collected 1080 rock samples from 18 studies published
between 1999 and 2022 (Armaghani et al., 2016b; Çobano�glu and Çelik,
2008; Dehghan et al., 2010; Diamantis and Moussas, 2021; Dinçer et al.,
2008; Güneyli et al., 2022; Heidari et al., 2018; Kahraman, 2001; Kallu
and Roghanchi, 2015; Kılıç and Teymen, 2008; Kurtuluş et al., 2016;
Mahmoodzadeh et al., 2021; Mishra and Basu, 2013; Momeni et al.,
2015; Ng et al., 2015; Tandon and Gupta, 2015; Teymen and Mengüç,
2020; Tu�grul and Zarif, 1999). PLS, VP, SH, and UCS were measured for
each sample. The detailed data and rock type can be found in the sup-
plemental data. In the collected datasets, SH was measured by L and
N-type Schmidt hammers, in which the impact energy was different.
Asteris et al. (2021) applied the least square methods to fit the rela-
tionship between L and N-type SH in rocks. Eq. (1) displays the result,
which receives a correlation coefficient (R) of 0.96. This study employs
Eq. (1) to convert N-type SH to L-type SH. Fig. 2 displays the scatter
distributions among PLS, VP, L-type SH, and UCS in different rocks.

SHðLÞ¼ � 2:9154þ 1:1658SHðNÞ � 0:0071ðSHðNÞÞ2 þ 0:000043ðSHðNÞÞ3
(1)
3

2.2. Lithologic classification

Rocks can be categorized into three categories: igneous, sedimentary
and metamorphic rocks according to their genesis. Igneous rocks are
solidified from molten material known as magma. Sedimentary rocks are
formed by the accumulation and cementation of mineral and organic
particles. Metamorphic rocks result from the alteration of existing rock
(either igneous, sedimentary, or older metamorphic rock) due to heat,
pressure, or chemically reactive fluids. Different rocks have different
physical and mechanical properties due to their different diagenetic
characteristics. For example, igneous rocks are harder and denser
compared to other rock types. Sedimentary rocks generally have higher
porosity than igneous and metamorphic rocks, and they tend to be less
compact and weaker than igneous and metamorphic rocks due to their
clastic nature. Metamorphic rocks, undergoing mineralogical and
textural changes from their original state, display wide-ranging varia-
tions in density and strength. All collected datasets were classified into
sedimentary, igneous, and metamorphic rocks based on the distinctive
physical and mechanical attributes arising from their individual forma-
tion processes. Table 2 lists the classification results of different rocks.
There are 494 sedimentary, 494 igneous, and 92metamorphic samples in
the collected datasets. The number of metamorphic rocks is less
abundant.

Granite, sandstone, limestone, travertine, schist, and peridotite
occupy the largest proportion of all collected datasets. There are 353
granite rock samples in the database. Granite belongs to igneous rock and
is a common rock that occurs in quarries, mining, tunnels, slopes, civil



Table 2
Lithologic classification results of different rocks.

No. Category Detailed rock type

1 Sedimentary
(494)

Akveren limestone (22), Altered sandstone (1),
Boundstone (28), Caliche (19), Clayed limestone (1),
Claystone (21), Derince sandstone (10), Dolomite (15),
Grainstone (28), Gravelled limestone (1), Gypsum (10),
Limestone (95), Marl (28), Sandstone (100), Sedimentary
(28), Silty marl (26), Sopalı Arkose (8), Travertine (39),
and Wackestone-mudstone (14)

2 Igneous (494) Andesite (1), Basalt (6), Deformed granite (4), Diabase
(4), Diorite (1), Dolerite (4), Gabbro (1), Gneisses (12),
Granite (353), Granodiorite (1), Harzburgite (1),
Peridotite (35), Plutonic (14), Pyroclastic (10), Rhyolite
(3), Subvolcanic (8), Trachyte (1), Tuff (5), and Volcanites
(30)

3 Metamorphic
(92)

Amphibolite and meta-dolerite (5), Higher Himalayan
quartzites (12), Lesser Himalayan metabasics (7), Lesser
Himalayan quartzite (9), Metamorphic (13), Schist (36),
and Slate (10)

Fig. 3. Technique flowchart of this study.
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construction, etc. Granite has different weathering grades (Ng et al.,
2015). Granite rocks with fresh, slightly weathered, and moderately
weathered degrees were collected in this study. Sandstone is a typical
clastic sedimentary rock composed of various sand cementations. 100
sandstone samples are contained in the database. Limestone (95 samples)
is a carbonate sedimentary rock mainly used for concrete aggregates,
cement, paving stones, etc. Travertine (39 samples) is a form of terrestrial
limestone. Schist (36 samples) is a metamorphic rock with pronounced
schistosity. Peridotite (35 samples) is a dense, coarse-grained igneous
rock consisting mostly of the silicate minerals olivine and pyroxene. In
addition to the rocks described above, some other rocks are also
considered, as shown in Table 2.

2.3. Step-by-step study flowchart

The collected datasets consisting of a variety of rocks were divided
into three categories, i.e., sedimentary, igneous, and metamorphic rocks,
based on lithology. According to Fig. 3, statistical analysis was performed
on the collected datasets. The optimal distributions of parameters and the
correlation among parameters were determined in different rock types.
The tree-basedmodels and linear regression were combined by a stacking
strategy to establish stacking models. The stacking models were devel-
oped by training datasets and evaluated by testing datasets. Moreover,
the validation datasets were employed to compare the advantages of the
proposed stacking models. Finally, the sensitivity analysis was conducted
for the developed stacking models.

3. Statistical analysis

3.1. Statistical description

Table 3 presents some statistical indicators to describe the PLS, VP,
SH, and UCS in different rocks. According to the mean value, it can be
found that igneous rocks have the highest average value of UCS. Meta-
morphic rocks have the lowest mean value of UCS. Additionally, four
parameters in igneous rocks have a large degree of dispersion in terms of
standard deviation (Std). Skewness is applied to measure the symmetry
of the data distribution. When the distribution is symmetric, the skew-
ness is 0. The skewness of PLS in three types of rock is more than 1, which
indicates that the PLS is highly skewed. The correlation coefficient be-
tween PLS, VP, SH, and UCS was calculated for each of three rock types,
as depicted in Fig. 4. UCS has the strongest correlation with SH in sedi-
mentary and metamorphic rocks. The strongest correlation is observed
between VP and UCS in igneous rock.
4

3.2. Distribution determination

The K–S test was applied to determine the optimal probability dis-
tribution satisfying for the PLS, VP, SH, and UCS in the three rock types.
The K–S test is a nonparametric hypothesis test used to determine
whether a set of samples is drawn from a specific probability distribution.
Normal, log-normal, genlogistic, exponent, right-skewed Gumbel (gum-
bel_r), and fisk were considered as the potential probability distributions.
Eqs. (2)–(7) present the probability density functions of the six candidate
distributions. Fig. 5 presents the flowchart to perform the K–S test. First,
the null hypothesis (H0) and the alternative hypothesis (H1) are estab-
lished. The distribution function for datasets is chosen. Then, the statistic
D is built. When D < Dn,α, (i.e., p-value > α, where α is the significant
level), H0 is accepted. In this study, Scipy (Virtanen et al., 2020), a Python
library, is adopted to perform the K–S test to find the appropriate prob-
ability distribution of the PLS, VP, SH, and UCS in sedimentary, igneous,
and metamorphic rocks. Scipy can return the statistic D and p-value. The
satisfactory probability distribution is determined according to p-value
and α. The p-value > α indicates that the samples satisfy the given dis-
tribution. A large p-value is accompanied by a great performance of the
distribution model.

fnormalðxÞ¼ expð�x2=2Þffiffiffiffiffi
2π

p (2)

flog�normalðx; cÞ¼ 1

cx
ffiffiffiffiffi
2π

p exp
�
� log2ðxÞ

2c2

�
(3)

fgenlogisticðx; cÞ¼ c
expð�xÞ

ð1þ expð�xÞÞcþ1 (4)



Table 3
Statistical description of four parameters in different rocks.

Indicators PLS/(MPa) VP/(km/s)

Metamorphic Sedimentary Igneous Metamorphic Sedimentary Igneous

Number 92 494 494 92 494 494
Mean 6.33 4.15 5.42 4.95 4.68 4.96
Std 4.48 2.76 3.34 1.24 1.39 1.39
Min 0.86 0.53 0.36 1.48 0.38 0.85
25% 3.29 2.4 2.99 4.43 3.78 4
50% 4.56 3.27 4.83 5.24 5.05 4.98
75% 7.26 4.96 7.12 5.83 5.67 5.9
Max 23.1 14.2 20 7.94 7.85 7.98
Skewness 1.69 1.5 1.11 �0.94 �0.91 �0.05
Kurtosis 2.48 1.86 1.22 0.68 0.62 �0.13

Indicators SH UCS/(MPa)

Metamorphic Sedimentary Igneous Metamorphic Sedimentary Igneous

Number 92 494 494 92 494 494
Mean 42.12 37.61 45.52 71.37 74.99 92.52
Std 11.69 10.41 12.23 41.84 46.27 53.06
Min 8.08 12.63 10.13 9 2.03 6.2
25% 33.51 30 37.53 41.55 36.31 51.42
50% 45.36 35.44 45.6 62.44 68.06 77.95
75% 50.87 45.37 54 92.45 110.6 123.5
Max 61 67.07 72 230.21 236.19 303.67
Skewness �0.57 0.5 �0.2 1.29 0.53 0.84
Kurtosis �0.53 �0.42 �0.39 2.37 �0.41 0.13

Note: 25% represents the 25% quantile, 50% represents the 50% quantile, and 75% represents the 75% quantile.

Fig. 4. The correlation among PLS, VP, SH, and UCS for (a) Sedimentary; (b) Igneous; (c) Metamorphic rocks.
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fexp onentðxÞ¼ expð�xÞ (5)

fgumbel rðxÞ¼ expð � ðxþ e�xÞÞ (6)

ffiskðx; cÞ¼ cxc�1

ð1þ xcÞ2 (7)

where c is the shape parameter.
In this study, α is set to 0.05. The probability distributions with p-

values greater than 0.05 are considered. The distribution with the largest
p-value is determined to be the optimal distribution. Table 4 presents the
optimal distributions of PLS, VP, SH, and UCS and their corresponding p-
values. Fig. 6 displays the probability distribution histogram for PLS, VP,
SH, and UCS in sedimentary, igneous, and metamorphic rocks. The fisk
distribution is applicable to the PLS of sedimentary and metamorphic
rocks. Most PLS values in sedimentary and metamorphic datasets are
skewed towards lower values, with a tail that extends to higher values.
The log-normal distribution of PLS in igneous rocks indicates a wide
range of PLS values in igneous rocks. The genlogistic distribution for SH
across all rock types indicates a wide span of SH values for these rocks.
The gumbel_r distribution of UCS in sedimentary rocks suggests a high
dominance of low UCS values, with sporadic occurrences of instances
5

with high UCS values. Conversely, the fisk distribution for igneous and
metamorphic rocks suggests comparatively uniform UCS values with rare
instances of extreme values.
3.3. Simple regression analysis

Simple regression analysis was implemented to describe the rela-
tionship between PLS, VP, SH, and UCS. Three functions, namely linear,
exponent, and power, were employed to fit the relationship in PLS-UCS,
VP-UCS, and SH-UCS. The coefficient of determination (R2) was utilized
to evaluate the performances of obtained equations, as shown in Eq. (8).
The equation with a larger R2 was selected. Fig. 7 shows the best-fitted
equations in three rock types. R2 of linear formulas fitted by SH and
UCS is the highest in sedimentary rocks, and it is 0.494. R2 of power
formulas fitted by VP and UCS is the highest in igneous rocks, and it is
0.516. R2 of exponential formulas fitted by SH and UCS is the highest in
metamorphic rocks, and it is 0.38. R2 is low for the fitted formula be-
tween a single variable and UCS in three rock types. This phenomenon
indicates that a single parameter is not a strong predictor of UCS in three
rocks. Simple regression formulas cannot describe the relationship be-
tween PLS, VP, SH, and UCS. Therefore, further research is needed to
employ more powerful modeling techniques for improving the



Fig. 5. Flowchart to perform K–S test.

Table 4
Optimal marginal distributions of PLS, VP, SH, and UCS.

Sedimentary

Parameter Distribution P-value c loc scale

PLS Fisk 0.138 2.551 0.314 3.047
VP Genlogistic 0.133 0.232 5.951 0.321
SH Genlogistic 0.134 11.817 12.686 8.313
UCS Gumbel_r 0.054 53.136 37.657

Igneous

Parameters Distribution P-value c loc scale

PLS Log-normal 0.678 0.527 �0.87 5.499
VP Fisk 0.768 64967183 �51466890 51466895
SH Genlogistic 0.815 0.849 47.507 6.650
UCS Fisk 0.236 3.172 �9.196 89.19

Metamorphic

Parameters Distribution P-value c loc scale

PLS Fisk 0.251 2.541 0.512 4.443
VP Genlogistic 0.973 0.202 6.082 0.245
SH Genlogistic 0.539 0.289 52.569 3.393
UCS Fisk 0.893 3.322 �7.833 70.068

Note: loc and scale represent shifting and scaling the distribution in scipy,
respectively.
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estimation of UCS according to multiple variables.
Moreover, the R2 values of PLS-UCS, VP-UCS, and SH-UCS in meta-

morphic rocks are notably lower compared to sedimentary and igneous
rocks. The low R2 values are mainly attributed to the data size and data
quality of metamorphic rocks. Compared to sedimentary and igneous
rocks, the data size of metamorphic rocks is less, and more outliers exist.
The limited size of the datasets and the presence of outliers contribute to
the lower R2 values in the fitted equations for metamorphic rocks.

R2 ¼ 1�
Pn
i¼1

�
UCSi � UCSpi

�2
Pn
i¼1

ðUCSi � UCSÞ2
(8)

where UCSpi represents the estimated UCS, UCS is the mean of measured
UCS, and n is the number of all samples.
6

4. Predictive model building

4.1. Tree-based models

Tree-based models are introduced to estimate UCS based on the
collected databases in different rock types. Tree-based models combine
the outputs of multiple regression trees. Four tree-based models are
considered in this study. These four tree-based models include adaptive
boosting (AdaBoost), gradient boosting machine (GBM), light gradient
boosting machine (LightGBM), and RF. These four models are easy to use
and less prone to overfitting compared to other tree-based models.
Moreover, these four models have good performance on the default
hyperparameters. It does not take too much time to tune the hyper-
parameters of these models. It is easy to use these four tree-based models
and other regression models to build ensemble models (Li et al., 2022a).

RF (Breiman, 2001) integrates several regression trees to make pre-
dictions. Each tree is built on a random subset of the training data and
features. The predictions from all trees are integrated as the final pre-
diction. RF can deal with large datasets, capture non-linear relationships,
and reduce variance. However, the development of the RF model is
computationally expensive and time-consuming.

AdaBoost (Freund and Schapire, 1997) is a boosting algorithm that
focuses on sequentially improving the performance of weak learners. In
AdaBoost, a weak learner (regression tree) is initially trained on the
original training data. A high weight is assigned to the misclassified
instance, and another weak learner is established by the modified data.
This process is repeated iteratively, and each subsequent weak learner
pays more attention to the previously misclassified instances. AdaBoost is
a robust model suited for regression tasks and exhibits flexibility. It can
be combined with any regression model. However, AdaBoost is sensitive
to noisy data.

GBM (Friedman, 2001) is another boosting method integrating
regression trees to create a powerful model. GBM works by iteratively
training weak learners on the residuals of the previous learners. In each
iteration, the weak learner is trained to minimize the loss function. The
final prediction is obtained by aggregating the predictions of all weak
learners. GBM does not require excessive data preprocessing, and it is
adaptable to various problems. However, GBM often results in a complex
ensemble of trees that can be hard to interpret.

LightGBM (Ke et al., 2017) is the variation of gradient boosting that
introduces several optimizations to enhance training speed and memory
usage. It uses a histogram-based approach to compute the gradients and
performs leaf-wise tree growth instead of level-wise (as done by tradi-
tional GBM). These optimizations make LightGBM faster and more
memory-efficient compared to GBM, especially for large datasets.
LightGBM retains the accuracy and flexibility of GBM and is widely used
in various applications. However, LightGBM might suffer from over-
fitting on small datasets.

4.2. Stacking model development

Rock parameter datasets used to develop the predictive model for
UCS are usually characterized by both linear and non-linear trends. In
this study, previous simple regression analysis also showed that the
relationship between PLS, VP, SH, and UCS presented a mix of linear and
non-linear patterns. Tree-based models excel at capturing non-linear re-
lationships between variables. Linear regression can effectively process
variables with linear trends. The combination of the tree-based model
and linear regression by stacking strategy can combine the advantages of
both models, which are suitable for the collected datasets that present
both linear and non-linear trends. Therefore, the stacking model
combining the tree-based model and linear regression was proposed to
predict UCS based on PLS, VP, and SH. Additionally, the stacking models
have greater robustness, which can handle outliers. Furthermore, the
stacking model contributes to reducing overfitting, enabling the model to
more effectively generalize to new data (Koopialipoor et al., 2022;



Fig. 6. Probability distributions of four parameters in three rock types.
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Pavlyshenko, 2018; Zhou, 2019).
The stacking model is an ensemble learning technique that uses base

models to predict output and then employs another model (called meta-
model or second-level model) to predict the final output based on the
predictions of base models. The basic principle behind stacking is to
combine the strengths of different models to improve the final predictive
performance. In this study, the tree-based model was used as the base
model. Linear regression (LR) was used as the meta-model. Fig. 8 pre-
sents the schematic diagram to build the stacking model. Tree-based
models are trained using the original training datasets. Once the tree-
based models are trained, they output the predicted results of the orig-
inal training datasets. New datasets are composed of the predicted results
by tree-based models and actual UCS values. The LR model is trained
based on the new datasets. Stacking models are developed when the
training of the tree-based model and LR model is completed. When
predicting, the tree-basedmodel first makes a prediction, and then the LR
model takes the prediction as input and makes the final prediction.
Stacking often leads to better predictive performance compared to indi-
vidual base models, and it can combine the strengths and mitigate the
weaknesses of individual base models. Moreover, stacking can mitigate
the overfitting of individual models.
7

The open-source Python library, Scikit-learn (Pedregosa et al., 2011),
was used to develop the stacking models. The developed stacking models
are composed of tree-based models and LR models. LR model does not
have hyperparameters to tune. The parameter setting of stacking models
is only related to the hyperparameter setting of tree-based models. These
four models (RF, AdaBoost, GBM, and LightGBM) have good perfor-
mance on the default hyperparameters. Therefore, the hyperparameters
of tree-based models used the default parameters in Scikit-learn. Table 5
shows the key hyperparameters of the four tree-based models. Finally,
four stacking models, RF-LR, AdaBoost-LR, GBM-LR, and LightGBM-LR,
were constructed.

4.3. Modeling results

R2, root mean square error (RMSE), mean absolute error (MAE), the
variance accounted for (VAF), and the A-20 index are calculated to
evaluate the developed models. Eqs. (9)–(12) present these calculation
equations. When VAF and A-20 are large, the capability of the developed
model is better. Small RMSE and MAE indicate the great capacity of the
model.



Fig. 7. The best-fitted equations and curves in three rock types: (a) Sedimentary; (b) Igneous; (c) Metamorphic rocks.
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RMSE¼ 1 Xn �
UCSi � UCSpi

�2 (9)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n i¼1

s

MAE¼ 1
n

Xn

i¼1

��UCSi �UCSpi
�� (10)

VAF¼
�
1� var

�
UCSi � UCSpi

�
varðUCSiÞ

	
� 100 (11)
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A� 20 ¼ m20
n

(12)
where m20 depicts the number of samples whose forecasted UCS is be-
tween 0.8 and 1.2 times the actual UCS.

Three databases of sedimentary, igneous, and metamorphic rocks
were applied to train the proposed stacking models. These databases
were divided into two parts, one part (80%) was applied to develop
stacking models, and the other (20%) was used to evaluate these models.
Eq. (13) was applied to process the input parameters.



Fig. 8. The schematic diagram to build the stacking model.

Table 5
The hyperparameter value of tree-based models.

Model Hyperparameter Value

RF The number of trees 100
The minimum sample number of internal nodes for splitting 2
The minimum sample number of leaf nodes 1

AdaBoost The number of trees 50
Learning rate 1

GBM The number of boosting iterations 100
Learning rate 0.1

LightGBM Number of boosted trees 100
Learning rate 0.1
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V
0 ¼V � V :mean

V :std
(13)
where V.mean stands for the mean of rock parameters, and V.std depicts
the standard deviation of rock parameters.

Tables 6–8 list the training and testing performances of developed
stacking models in sedimentary, igneous, and metamorphic rocks,
respectively. Additionally, ranking systems are implemented to select the
best model for three rock types. Stacking models are ranked according to
Table 6
Ranking system to compare the capabilities of stacking model in sedimentary rocks.

Model R2 MAE RMSE

Value Rank Value Rank Value

Training
RF-LR 0.93 4 9.575 4 12.35
AdaBoost-LR 0.71 1 21.16 1 25.106
GBM-LR 0.863 2 13.91 2 17.24
LightGBM-LR 0.883 3 12.101 3 15.974
Testing
RF-LR 0.816 4 15.036 4 19.148
AdaBoost-LR 0.704 1 19.976 1 24.304
GBM-LR 0.795 3 15.805 3 20.209
LightGBM-LR 0.774 2 17.077 2 21.234
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their performances in each regression indicator. Great performance is
associated with a high rank. The ranks of five regression indicators are
summed to get the total rank, as shown in Tables 6–8. Considering the
training and testing performances, the total ranks in training and testing
sets are summed to obtain the final rank. Themodel with the highest final
rank is the best. Fig. 9 exhibits the final rank of stacking models in three
rock types. It can be found that RF-LR performs best in three rock types.
Compared to sedimentary and igneous rocks, stacking models developed
by metamorphic datasets perform poorly in the testing set due to the
small size and quality of data.

5. Discussion

5.1. Model validation and comparison

Four stacking models are developed to predict UCS based on collected
databases in sedimentary, igneous, and metamorphic rocks. The best
models are determined according to ranking systems. To compare the
superiority of the proposed stacking models, datasets including PLS, VP,
SH, and UCS in three rock types are applied to train RF, AdaBoost, GBM,
and LightGBM. An additional validation database is collected to compare
the capabilities of stacking models and tree-based models. The validation
database includes 110 datasets, which are from Armaghani et al. (2015),
Güneyli et al. (2022), and Jalali et al. (2017). 50 granite samples, 11
grainstone samples, 21 boundstone samples, 1 gypsum sample, 6 silty
marl samples, 11 mudstone samples, 3 metagabbro samples, 1 ophi-
calcite sample, 5 marble samples, and 1 serpentine sample are compiled.
There are 50 igneous, 50 sedimentary, and 10 metamorphic samples in
the database. The detailed datasets can be found in the supplement.

Fig. 10 shows the validation performances (R2) of stacking models
and tree-based models in sedimentary, igneous, and metamorphic rocks,
respectively. For sedimentary rocks, the stacking models have the same
performance as the tree-based models. Even the performances of RF-LR
and LightGBM-RF are worse than those of RF and LightGBM. For
igneous rocks, except for AdaBoost-LR, the other stacking models
perform better than their base models (RF, GBM, and LightGBM). For
metamorphic rocks, all stacking models perform better than tree-based
models. This suggests that the combination of tree-based models and
linear regression by stacking strategy can significantly improve the per-
formances of the tree-based models, which are beneficial to estimating
the UCS of metamorphic rocks. Overall, the stacking models proposed in
this study are helpful to predict the UCS of metamorphic and igneous
rocks, and the tree-based models are more suitable for the evaluation of
UCS in sedimentary rocks.

Uncertainty analysis is conducted on the developed stacking models
and tree-based models to estimate their uncertainty for estimating UCS.
Firstly, the error of each dataset (ei) is computed (Eq. (14)). After that, the
mean error (e) and deviation of the error (Se) are calculated, as shown in
Eqs. (15) and (16). e > 0 suggests the overestimation of the stacking
model, and e < 0 implies the underestimation of the stacking model. A
Large Se is accompanied by a large discreteness of errors, which increases
VAF A-20 Total rank

Rank Value Rank Value Rank

4 93.505 4 0.669 4 20
1 71.3 1 0.351 1 5
2 86.806 2 0.553 2 10
3 88.768 3 0.616 3 15

4 82.166 4 0.541 4 20
1 70.381 1 0.367 1 5
3 79.62 3 0.51 3 15
2 77.693 2 0.49 2 10



Table 7
Ranking system to compare the capabilities of stacking model in igneous rocks.

Model R2 MAE RMSE VAF A-20 Total rank

Value Rank Value Rank Value Rank Value Rank Value Rank

Training
RF-LR 0.952 4 9.282 4 11.731 4 95.472 4 0.821 4 20
AdaBoost-LR 0.764 1 21.198 1 26.014 1 77.246 1 0.457 1 5
GBM-LR 0.875 2 15.273 2 18.91 2 87.74 2 0.586 2 10
LightGBM-LR 0.888 3 13.655 3 17.944 3 89.159 3 0.684 3 15
Testing
RF-LR 0.794 4 18.585 3 22.991 4 81.495 4 0.469 1 16
AdaBoost-LR 0.728 2 21.317 1 26.464 1 75.452 1 0.48 2 7
GBM-LR 0.791 3 18.889 2 23.179 2 80.42 2 0.49 3 12
LightGBM-LR 0.794 4 18.397 4 23 3 81.009 3 0.541 4 18

Table 8
Ranking system to compare the capabilities of stacking model in metamorphic rocks.

Model R2 MAE RMSE VAF A-20 Total rank

Value Rank Value Rank Value Rank Value Rank Value Rank

Training
RF-LR 0.808 4 13.031 4 17.916 4 80.791 4 0.575 4 20
AdaBoost-LR 0.664 2 19.338 1 23.683 2 66.506 2 0.397 1 8
GBM-LR 0.791 3 14.508 3 18.664 3 79.149 3 0.548 3 15
LightGBM-LR 0.64 1 18.172 2 24.52 1 64.021 1 0.479 2 7
Testing
RF-LR 0.629 4 20.278 4 26.687 4 63.657 4 0.368 4 20
AdaBoost-LR 0.458 2 23.263 2 32.243 2 46.733 2 0.316 3 11
GBM-LR 0.515 3 22.933 3 30.508 3 51.801 3 0.368 4 16
LightGBM-LR 0.308 1 26.684 1 36.428 1 30.94 1 0.368 4 8
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the uncertainty of the model. Additionally, 1:96Se is considered as the
95% confidence interval, representing the width of uncertainty band
(Jamei et al., 2021).

ei ¼UCSi � UCSpi (14)

e¼
Xn

i¼1

ei (15)

Se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðei � eÞ2

n� 1

vuut
(16)

Fig. 11 exhibits e, Se, and width of uncertainty band of stacking
models and tree-based models in different rock types. The UCS values of
metamorphic rocks tend to be overestimated by these models. The ab-
solute values of e in metamorphic rocks are larger than those of other
rock types, and UCS values of metamorphic rocks are less predictable
than those of other rock types. The stacking models have less absolute
values of e in metamorphic rocks compared to tree-based models. This
suggests that the stacking models can reduce the predicted error and
improve predictive performance for UCS of metamorphic rocks. The
models developed by igneous rocks have the largest uncertainty, which is
due to the wide range distribution of UCS values of igneous rocks, as
shown in Table 3. The RF-LR models in igneous and metamorphic rocks
and the RF model in metamorphic rocks have lower uncertainty in terms
of the width of the uncertainty band, and they are suitable for the esti-
mation of UCS.
5.2. Significance analysis of parameters

PLS, VP, and SH are easily obtained, and they are widely utilized to
evaluate the UCS of rocks indirectly. In different lithologies, the corre-
lation between these three parameters and UCS is different. Therefore, it
is necessary to study key variables for the estimation of UCS in different
rock types. The permutation feature importance algorithm (PFIA) is
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implemented to compute the importance of PLS, VP, and SH in four
stacking models. The mean importance values of PLS, VP, and SH in four
stacking models are calculated. Fig. 12 presents the important scores of
input parameters in stacking models for sedimentary, igneous, and
metamorphic rocks. In the developed models, SH has more contribution
for the evaluation of UCS in sedimentary and metamorphic rocks
compared to PLS and VP. VP has more contribution for the estimation of
UCS in igneous rocks compared to SH and PLS.

SH has a highly important score among the three types of rocks. The
Schmidt rebound value measures the rebound hardness of the rock sur-
face. The Schmidt rebound value is not sensitive to the inherent prop-
erties of rock, such as saturation, porosity, and microfractures
(Buyuksagis and Goktan, 2007), which can be an excellent proxy for the
overall strength and hardness of rocks. SH can provide the direct and
reliable estimation of UCS in three rock types.

Igneous rocks form from the solidification of magma or lava, resulting
in tightly packed crystalline grains that contribute to their high density.
Igneous rocks often contain harder minerals, such as quartz and feldspar,
which further increase their overall hardness. Compared to other types of
rocks, igneous rocks (such as granite and peridotite) are characterized by
being harder and denser. Moreover, VP represents the speed at which
compression waves travel through the rock material. The propagation of
compressionwaves in rocks is related to the density and elastic properties
of rocks. As such, VP can offer valuable insights into the structures and
properties of igneous rocks, which makes it a valid parameter for esti-
mating UCS in igneous rocks.

Metamorphic rocks are formed through the transformation of other
rocks under extreme heat and pressure. The transformation process in-
volves extreme heat and pressure that significantly alters the mineral
composition and structure of the parent rock. However, it is important to
note that metamorphic processes can lead to an enormous variety in the
characteristics of the resulting rock. The variations may result in different
relationships between VP and UCS within various metamorphic rocks, as
shown in Fig. 13. There is no consistent relationship between VP and UCS
for all metamorphic rock samples, which causes the VP to be not a valid
variable for UCS prediction compared to PLS and SH.



Fig. 9. Final rank of stacking models in three rock types: (a) Sedimentary; (b)
Igneous; (c) Metamorphic rocks.

Fig. 10. The validating performance of stacking models and tree-based models:
(a) Sedimentary; (b) Igneous; (c) Metamorphic rocks.

Z. Liu et al. Rock Mechanics Bulletin 2 (2023) 100081

11
The point load test is an effective method to measure the strength of
rocks. PLS is directly related to the UCS, and they have the same unit
dimension. However, for the developed stacking models, the contribu-
tion of PLS to the prediction of UCS is smaller than that of SH and VP in
igneous and sedimentary rocks. This phenomenon is attributed to the
dispersion of the collected datasets. In different works of literature, the
relationship between PLS and UCS is different, as shown in Figs. 14 and
15. Taking igneous rock as an example, in the collected datasets from



Fig. 11. Uncertainty analysis of stacking models for the estimation of UCS: (a)
Sedimentary; (b) Igneous; (c) Metamorphic rocks.

Fig. 12. Important scores of input parameters for estimation of UCS: (a) Sedi-
mentary; (b) Igneous; (c) Metamorphic rocks.

Fig. 13. The relationship between VP and UCS in different metamorphic rocks.
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Kallu and Roghanchi (2015), the relationship between UCS and PLS was
found to be represented by the equation UCS ¼ 86.9 PLS þ 8.9.
Conversely, the datasets from Tandon and Gupta (2015) yielded a
different formula for UCS, specifically UCS ¼ 4.63 PLS þ 12.6. The
predictive models developed by these collected databases are influenced
by the dispersion of the data, with PLS showing less significance
compared to VP and SH. However, PLS is still an important indicator for
evaluating UCS in geotechnical engineering.

6. Limitations and future works

One thousand eighty datasets consisting of PLS, VP, SH, and UCS were
collected and integrated into three categories according to the lithologic
character. Stacking models based on tree-based models and linear
regression were developed by the collected datasets to estimate UCS in
sedimentary, igneous, and metamorphic rocks. The utilization of a
stacking strategy, combining tree-based models and linear regression,
exhibits significant improvement in predicting the UCS of metamorphic
rocks. However, since the datasets were collected from other literature,
the sources of the outliers and dispersion of the datasets were unknown.
Therefore, there is no way to deal with outliers and discreteness of data.
Additionally, the size of the collected metamorphic database is small, and
the mechanical properties of different metamorphic rocks are different.
Compared to sedimentary and igneous rocks, the predictive models of
UCS in metamorphic rocks are misleading because the data quality is not
good enough. The stacking models in metamorphic rocks have poor
performances during the testing phase. In the future, increasing the data
size of metamorphic rock will be conducive to the development of the
stacking models. Finally, dividing rock into more detailed categories
12



Fig. 14. The relationship between PLS and UCS in igneous rocks from different
sources of literature.

Fig. 15. The relationship between PLS and UCS in sedimentary rocks from
different sources of literature.
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(such as sandstone, granite, etc.) is more suitable for some actual
projects.

7. Conclusions

(1) One thousand eighty datasets were collected and classified into
sedimentary, igneous, and metamorphic rocks according to li-
thology. K–S test determined the optimal distributions for PLS, VP,
SH, and UCS in three rock types, which can be used for geotech-
nical reliability analysis. Simple regression analysis determined
the relationship between PLS, VP, SH, and UCS in three rock types.
The analysis results revealed the underlying dependencies be-
tween PLS, VP, SH, and UCS in three rock types. Additionally, the
collected datasets can be used as a substantial resource to build a
predictive model of UCS according to engineering needs in the
future.

(2) Stacking models based on tree-based models and LR were pro-
posed to predict UCS in different rock types. The RF-LR model is
the most optimal stacking model for UCS estimation in three rock
types. Model validation shows that the stacking models exhibit
superior performance in predicting UCS in metamorphic and
igneous rocks, while tree-based models show better suitability for
sedimentary rocks. The developed predictive models can be
13
employed to estimate UCS on site, which contributes to the rapid
classification of the engineering rock masses.

(3) The contributions of PLS, VP, and SH for the estimation of UCS
were analyzed across different rock types. SH is a valid parameter
in predicting UCS across all rock types, particularly in sedimentary
and metamorphic rocks. VP can be used as an indicator to evaluate
the UCS of igneous rocks due to its effectiveness and simplicity of
the testing procedure. However, VP is not a reliable variable to
evaluate the UCS of metamorphic rocks. This phenomenon is
mainly due to the large difference in the properties of different
metamorphic rocks, which leads to an inconsistent relationship
between VP and UCS of different metamorphic rocks.
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