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Face2PPG: An Unsupervised Pipeline for Blood
Volume Pulse Extraction From Faces

Constantino Álvarez Casado and Miguel Bordallo López

Abstract—Photoplethysmography (PPG) signals have
become a key technology in many fields, such as medicine,
well-being, or sports. Our work proposes a set of pipelines
to extract remote PPG signals (rPPG) from the face robustly,
reliably, and configurably. We identify and evaluate the pos-
sible choices in the critical steps of unsupervised rPPG
methodologies. We assess a state-of-the-art processing
pipeline in six different datasets, incorporating important
corrections in the methodology that ensure reproducible
and fair comparisons. In addition, we extend the pipeline
by proposing three novel ideas; 1) a new method to sta-
bilize the detected face based on a rigid mesh normal-
ization; 2) a new method to dynamically select the differ-
ent regions in the face that provide the best raw signals,
and 3) a new RGB to rPPG transformation method, called
Orthogonal Matrix Image Transformation (OMIT) based on
QR decomposition, that increases robustness against com-
pression artifacts. We show that all three changes intro-
duce noticeable improvements in retrieving rPPG signals
from faces, obtaining state-of-the-art results compared with
unsupervised, non-learning-based methodologies and, in
some databases, very close to supervised, learning-based
methods. We perform a comparative study to quantify the
contribution of each proposed idea. In addition, we depict a
series of observations that could help in future implemen-
tations.

Index Terms—Remote Photoplethysmography, rPPG,
Signal Processing, Pulse rate estimation, Biosignals, Face
Analysis.

I. INTRODUCTION

PHOTOPLETHYSMOGRAPHY (PPG) signals have be-
come a key technology in many fields, such as medicine,

well-being, or sports. The technique, first introduced by Alrick
Hertzman in 1938 [1], utilizes a light source and photodetector to
measure blood volume pulse (BVP) through variations in light
absorption and reflection in skin tissues [2], [3]. In medicine,
PPG analysis is a basic and common tool in healthcare ser-
vices to monitor vital signs such as heart rate (HR) or oxygen
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Fig. 1. Typical unsupervised based methodology for remote photo-
plethysmographic (PPG) imaging using a RGB camera. It comprises
several steps: 1) Face detection and alignment 2) Skin segmentation
3) ROI selection 4) Extraction of the raw signals from ROIs 5) Filtered
signals 6) RGB to PPG transformation 7) Spectral analysis and post-
processing.

saturation (SpO2) [4]. In well-being, it became increasingly
important thanks to the success of wearable devices that analyze
sleep disorders [5], cardiovascular diseases [6], or detection of
stress and meditation [7]. In sports, PPG analysis became an
important tool to improve the intrinsic and extrinsic athletes’
performance [8].

Remote PPG (rPPG) imaging is a contactless version of this
technology that uses video cameras, usually consumer-grade
RGB or near-infrared cameras, and ambient light sources. It
works by recording a subject’s face or body parts with visible
skin areas and analyzing the subtle color variations or motion
changes in skin regions [9]. The remote PPG technique allows
for non-invasive evaluation and monitoring of users in services,
such as healthcare. Hence, the technology could offer significant
advantages compared to contact-based devices if it becomes
reliable [10].

Current approaches for recovering physiological signals from
videos fall into two categories mainly: unsupervised non-
learning-based methods, and deep learning approaches [9]. Deep
learning-based methods propose end-to-end solutions utilizing
training datasets, while unsupervised methods employ computer
vision and signal processing in a structured pipeline, as illus-
trated in Fig. 1.

Most of the unsupervised rPPG methods proposed in the
literature focus on recovering PPG signals mostly from static
faces, disregarding challenges under real scenarios in real-world
applications such as fast face and head movements, extreme light
conditions, facial expressions, illumination changes, occlusion,
or distance from the camera to the subject. This article focuses
on improving the performance of state-of-the-art rPPG unsu-
pervised, non-learning-based methods, emphasizing all system
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components. We tackle the improvement of the process by
proposing a set of changes across the whole pipeline that result
in a noticeable global improvement, performing an extensive
evaluation and a framework to recover physiological signals
from faces.

A. Contributions

This article depicts different performance problems and chal-
lenges to recovering PPG signals from faces reliably. We im-
prove several components of the rPPG pipeline with novel ideas.
The main contributions can be summarized as follows:

� We provide a new method to stabilize the movement and
facial expression based on a rigid mesh normalization,
ensuring that the raw RGB signals are measured from the
same facial location regardless of the pose and movement.

� We provide a new method based on statistical and fractal
analysis to dynamically select only the facial regions that
supply the best raw signals, discarding those with higher
noise or prone to artifacts.

� We propose a novel rPPG method to transform the RGB
signal into a PPG signal based on QR decomposition,
named Orthogonal Matrix Image Transformation (OMIT),
which proves to be robust to video compression artifacts.

To prove the usefulness of our approach, we extensively
evaluate a set of rPPG methods with four different pipelines
across several datasets. Our experiments include modifications
to the original evaluation pipeline to increase the fairness and
reproducibility of the comparative results.

II. RELATED WORK

In the last few years, rPPG research has progressed from the
filtering and simple processing of the variation of the facial
skin color to sophisticated multi-step processing pipelines and
end-to-end supervised learning methods with dedicated archi-
tectures.

A. Unsupervised Methods

Unsupervised non-learning-based methods focus on recover-
ing physiological signals by applying computer vision and signal
processing techniques as a system with several steps. These
methods focus on obtaining the BVP signal by finding skin areas
suitable to extract the raw RGB signals, using face detection,
tracking, and segmentation techniques. After that, these methods
carefully process these raw RGB signals to separate the physio-
logical signals contained in the subtle variations of the skin color
from the rest of the information (motion, illumination changes,
or facial expressions, among others) by applying filtering and
different ways of combining the RGB signals into an rPPG
signal. Most of the studies focus mainly on this transformation
component using similar approaches and components for the
rest of the process [9].

[11] proposed the first study on extracting remote PPG signals
using an inexpensive consumer-grade RGB camera. The study
showed how the green channel of the camera contains rich
enough, significant information to recover signals such as the
heart pulse. [12] proposed the recovery of physiological signals
by applying the blind source separation (BSS) technique to re-
move the noise. Concretely, they used Independent Component

Analysis (ICA) to uncover the independent source signals. Sim-
ilar to this work, [13] proposed Principal Component Analysis
(PCA) to reduce the computational complexity in comparison to
Independent Component Analysis with similar accuracy perfor-
mance. [14] proposed a chrominance-based method (CHROM)
to separate the specular reflection component from the diffuse
reflection component, which contains pulsatile physiological
signals, both reflected from the skin and based on the dichro-
matic reflection model. [15] define a Blood-Volume Pulse (PBV)
vector that contains the signature of the specific blood volume
variations in the skin, removing noise and motion artifacts. In
the same year, [16] focused on removing the human motions and
artifacts from the RGB signals by applying Normalized Least
Mean Square (NLMS) adaptive filter. They perform this rectifi-
cation step by assuming both the face ROI and the background
as Lambertian models that share the same light source. [17]
proposed a data-driven algorithm by creating a subspace of skin
pixels and the computation of the temporal rotation angle of the
computed subspace between subsequent frames to extract the
heart rate pulse. [18] proposed the CIELab color space (LAB)
transformation as a more robust color space to extract pulse
rate signals due to the high separation between the intensity and
chromaticity components, less sensitive to human body move-
ments. The study also demonstrates that the a channel has a better
signal-to-noise ratio (SNR) than the green channel in RGB color
space. [19] proposed a new plane-orthogonal-to-skin (POS)
algorithm that finds pulsatile signals in an RGB normalized
space orthogonal to the skin tone. [20] proposed the Local Group
Invariance (LGI) method, a stochastic representation of the pulse
signal based on a model that leverages the local invariance of the
heart rate as a quasi-periodical process dynamics and obtained
by recursive inference to remove extrinsic factors such as head
motion and lightness variations. [21] proposed an unsupervised
method with an emphasis on motion suppression and novel
filtering based on the head orientations (FaceRPPG). Recently,
deep learning methods have been developed that do not rely on
reference signals, which could be considered unsupervised [22],
[23]. However, they remain specifically tailored to each dataset
and its unique characteristics.

Unsupervised non-learning-based methods present signifi-
cant advantages, as they do not rely on specific training data,
enabling better generalization across different datasets and mea-
surement setups. These methods focus on measuring the BVP
signal as it manifests in various facial regions. However, the per-
formance of unsupervised methods can be influenced by several
factors, such as sensitivity to noise and artifacts, dependency
on user-defined parameters, and limited adaptability to varying
skin types and lighting conditions.

Unsupervised non-learning-based method’s efforts have fo-
cused on finding suitable ways of transforming noisy RGB
signals into reliable PPGs. In contrast, the impact of other
system components, such as face detection and tracking, has
been mainly disregarded. Our contribution addresses the unsu-
pervised rPPG process as a system with multiple components
that can be improved separately.

B. Supervised Methods

Deep Neural Networks (DL) and especially Convolutional
Neural Networks (CNN) approaches have gained attention and
become popular tools in computer vision and signal process-
ing tasks, including healthcare-related tasks. Before the advent
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of deep-learning based methods, there were two primary ap-
proaches to estimate heart rate using machine learning methods,
including support-vector regression [24] and adaptive hidden
Markov models [25]. Since 2018, supervised deep learning-
based methods to compute HR or other vital signs started to
arise increasingly in the literature. Among the most relevant
learning-based remote PPG methods, [26] proposed a two-step
convolutional neural network to estimate a heart rate value from
a sequence of facial images. HR-CNN is a trained end-to-end
network composed of two components, an Extractor and an HR
Estimator. The same year, [27] proposed DeepPhys, another
end-to-end solution based on a deep convolutional network that
estimates HR and breathing rate (BR). The approach performs
a motion analysis based on attention mechanisms and a skin
reflection model using appearance information to extract the
physiological signals. [28] proposed RhythmNet, an end-to-end
solution based on spatial-temporal mapping to represent the
HR signals in videos. The approach also exploits temporal
relationships of adjacent HR estimations to perform continuous
heart rate measurements. The same year, [29] proposed a two-
stage end-to-end solution. The first part of the network, named
STVEN, is a Spatio-Temporal Video Enhancement Network to
improve the quality of highly compressed videos. The second
part of the approach, called rPPGNet, is the 3D-CNN network
that recovers the rPPG signals from the enhanced videos. The
authors claim that the proposed rPPGNet produces rich rPPG
signals with curve shapes and peak locations. [30] further pro-
posed another end-to-end approach for remote HR measurement
based on Neural Architecture Search (NAS). AutoHR is com-
prised of three ideas: a first stage that discovers the best topology
network to extract the physiological signals based on Temporal
Difference Convolution (TDC); a hybrid loss function based on
temporal and frequency constraints; and Spatio-temporal data
augmentation strategies to improve the learning stage. The same
year, [31] proposed a transductive meta-learner based on an
LSTM estimator and Synthetic Gradient Generator that adjusts
network weights in a self-supervised manner. Recently, [32]
proposed a two-stage hybrid method called PulseGAN. It starts
with the unsupervised extraction of noisy PPG signals using
CHROM as a first stage, followed by a generative adversarial
network (GAN) that generates realistic rPPG pulse signals from
the signals recovered in the first stage. In 2021, [33] proposed a
novel denoising-rPPG method called AND-rPPG, based on the
utilization of Action Units (AUs) and Temporal Convolutional
Networks (TCNs) for denoising temporal signals to mitigate
facial expression noises effectively.

Supervised rPPG methods, predominantly employing deep
learning techniques, boast remarkable accuracy by utilizing end-
to-end solutions. With minimal intermediate steps required be-
yond essential preprocessing, these methods learn to recognize
facial noise patterns in relation to reference contact-based PPG
ground-truth signals obtained from the finger [34]. However,
this approach results in a black-box model that recovers rPPGs
from video frames without understanding the underlying mech-
anisms, posing significant challenges in critical domains such as
healthcare [35], e.g. for cardiovascular conditions. Their reliance
on training data limits their generalizability to new scenarios,
subjects, or recording conditions and raises concerns regarding
data acquisition and cost. Moreover, supervised methods may
need substantial computational resources.

III. UNSUPERVISED BLOOD VOLUME PULSE

EXTRACTION METHODOLOGY

Our work uses a standard methodology in unsupervised rPPG
approaches to extract the blood volume changes from facial
videos and derive essential parameters. We follow a modular
pipeline with several components, as depicted in Fig. 1. The
pipeline is roughly divided into three big blocks: the selection of
measuring regions of the face, the extraction of rPPG biosignals
from natural variations in color or texture, and the computa-
tion of the heart rate or other parameters using the extracted
signals.

The pipeline comprises of 8 main modules sequentially con-
nected:

1) Database interface: Provides interfaces to read data from
various public databases, including videos, images, and
reference signals.

2) Face detection and alignment: An initial step for detecting
and aligning faces in each frame. This process obtains
face coordinates and facial points, which are crucial for
selecting regions of interest, patches, or segmentation
coordinates.

3) ROI selection: step to select the regions of interest of the
face based on a color skin segmentation or selection of
patches based either on face location or the coordinates
of the landmarks.

4) RGB extraction: Retrieves raw signal from a window of
multiple RGB frames, computing the mean value of pixels
within the mask or patches selected earlier.

5) Pre-processing: Block mainly to filters raw RGB signal
to focus on the band of interest. Filtering is essential for
accurate BVP signal recovery, as remote PPG signals
often exhibit trends and noise. The heart-related signal
lies between 0.75 and 4.0 Hz.

6) RGB to PPG transformation (rPPG): crucial and core
step in remote PPG methods as it converts skin color
variations into physiological signals. This step involves
transforming the RGB signal into a PPG signal using a
transformation method that combines the RGB channels
to generate a pulse signal.

7) Frequency analysis: spectrum analysis of the rPPG and
reference ground-truth (BVP or ECG) signals to estimate
the heart rate.

8) Evaluation: it includes an error and statistical analysis to
compare the estimated heart rate from the rPPG and the
estimated heart rate from the ground-truth signals.

A. Baseline Pipeline

In our work, we start from an open-source framework for the
evaluation of remote PPG methods, implemented in Python and
called pyVHR (short for Python tool for Virtual Heart Rate) [36].
This framework includes an extensible interface to integrate
several datasets, multiple methods, choices for each processing
step, and extensive assessment and visualization tools. We use
version 0.0.4 of the PyVHR framework, which we will refer to
as Baseline pipeline onward.
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Fig. 2. Facial landmark detection using DAN model under extreme
head poses and frontal faces.

IV. FACE2PPG PIPELINES

The Baseline pipeline presents a few shortcomings that might
result in inaccurate or unfair assessments. We incrementally
improve it by introducing several changes in multiple steps, and
propose three new versions that we name Improved, Normalized
and Multi-region pipelines.

These pipelines focus on handling the face in unconstrained
conditions since it is one of the critical parts of extracting
remote photoplethysmograms. It has to be noted that most of
the unsupervised approaches have focused mainly on developing
RGB to PPG conversion methods (sometimes called just rPPG
methods), but they have not paid much attention to other steps
of the pipeline. This article emphasizes the importance of every
step when extracting and evaluating remote PPG signals from
faces. Moreover, we have devised a novel method, Orthogonal
Matrix Image Transformation (OMIT), which employs QR de-
composition to convert raw RGB signals into BVP signals.

A. Improved Pipeline

To mitigate its shortcomings, we modified the Baseline
pipeline to incorporate a few minor changes that increase re-
producibility and enable a fairer comparison of different meth-
ods. We name this modified version as Improved pipeline. We
enumerate and describe these changes as follows:

Face detection: The Baseline pipeline includes two well-
know face detectors: one based on convolutional neural networks
known as MTCNN [37] and a Dlib implementation based on
Histogram of Oriented Gradients (HOG) features [38]. We use
instead a new deep learning-based face detection method based
on a Single Shot Multibox Detection network (SSD) [39], im-
plemented in OpenCV library. This face detector outperforms
the Baseline pipeline detectors in terms of accuracy, size of the
models, and computational speed [40].

Face alignment: The Baseline pipeline includes two well-
know face landmark detectors, the MTCNN detector [37] that
computes 5 landmark points in the face (eyes, nose and mouth
corners) and the Dlib implementation of the ERT method [41],
[38]. We use instead a deep learning approach named DAN
(Deep Alignment Network) [42] which gives exceptional perfor-
mance in terms of accuracy, even in challenging conditions [43]
as shown in Fig. 2. For a faster, real-time face alignment, we
have added a more accurate, faster, and smoother model for the
ERT Dlib face landmarks detector [43]. These models both infer
68 landmark points defined by the Multi-PIE landmark scheme.

Filtering: The Baseline pipeline only considers a pre-
filtering scheme before the RGB to PPG transformation. The
pipeline offers three types of filters: detrending (Scipy or Tar-
vainen methods), bandpass filtering (FIR filter with Hamming
window and Butterworth IIR filter), and a Moving average filter

Fig. 3. Delay between reference BVP and remote PPG signals from
proposed pipelines, induced by factors like filtering, blood perfusion
differences, or camera distance.

(MA) that removes various base noises and motion artifacts
of the signals. We have added the possibility of using Kaiser
windows when applying FIR filtering. A Kaiser-Besel window
maximizes the energy concentration in the main lobe, and it is
highly recommended to filter biosignals [44]. In addition, we
have introduced the possibility of applying also post-filtering,
performed after the RGB to PPG conversion, since the litera-
ture suggests that some conversion methods perform better this
way [45].

RGB to PPG transformation (rPPG): The Baseline pipeline
includes several reference methods such as POS [19],
CHROM [14], GREEN [11], PCA [13], ICA [12], SSR [17],
LGI [20] and PVB [15]. We have added one method based on
selecting the chroma channel a after applying a CIE Lab color
space transformation. CIE Lab separates the lightness informa-
tion (channel L) from the chroma information (channels a and b).
The chrominance components have a more significant dynamic
range than the red, green, and blue channels in RGB color
space [18]. In addition, it correlates with skin color and related
parameters and describes better the subtle changes occurring in
them [46].

Spectral analysis: In the original framework, the ground-
truth pulse rate is estimated using Short Time Fourier Transform
(STFT) when the ground-truth signal is a BVP signal, and R-
Peak detection and RR interval analysis when the ground-truth
signal is an ECG signal. In the Baseline pipeline, the recovered
PPG signals are processed instead of using Welch’s spectral
density estimation. This mismatch introduces the possibility of
unfair evaluation. We modified the pipeline, so the ground-truth
BVP signal and the rPPG signal are processed using the same
spectral analysis algorithm and similar parameters such as the
overlap or FFT length.

Evaluation: It can be expected that the reference BVP (PPG)
signals taken in the finger and the rPPG signals extracted from
the face are not perfectly synchronized or show the same dy-
namic range. We show an example in the Fig. 3. We can also
observe asynchrony in the heart rate estimation, as shown in
Fig. 4.

Technical and physiological factors can produce time shifts
and morphological differences in the signals. These effects
can be attributed to the distance between the optical sensors,
the contact force effect of the finger PPG oximeter [47], dif-
ferent filtering parameters [48], individual variations among
subjects [49], variability in the measurement site [50], and
even blood perfusion differences in different body regions [51],
among others. We mitigate some of the effects caused by
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Fig. 4. Estimated HR from the reference BVP signal and the extracted
facial rPPG signal using the Baseline pipeline. We can observe the
asynchrony due to the different signal sources.

comparing fundamentally different signals by adding a new
parameter in the dataset interface that aligns both signals in
terms of time and dynamic range, resulting in a fairer estimation
of the error between ground-truth HR estimation and rPPG HR
estimation. The parameter has been adjusted for each dataset
globally using a mostly empirical approach due to the lack of
detailed information on the measurement setups. This approach
ensures the consistency of signal alignment while maintaining
the overall integrity of the data.

B. Normalized Pipeline

Our Normalized pipeline introduces two significant changes
compared to the previous ones, a segmentation approach based
on geometric normalization, and a novel RGB to PPG transfor-
mation method, robust to compression artifacts.

1) Geometric Segmentation and Normalization: One of the
critical steps in the non-contact PPG extraction is the process
related to skin segmentation, since it is the source to recover the
desired physiological signals. Most of the unsupervised methods
and pipelines rely on simple thresholding of different color
spaces for skin color segmentation [36], from inefficient fixed
RGB segmentation to adaptive HSV segmentation. These pixel-
level techniques suffer from generalization due to the variability
of skin tones, skin paint, illumination changes, and complex
backgrounds. It is not easy to define clear boundaries between
the skin and non-skin pixels, mainly due to the variability of
the facial regions measured across frames of a single video.
Framewise skin segmentation based on neural networks (e.g.,
uNET) suffers similar problems, sometimes caused by the small
number of annotated facial skin masks, resulting in underfitted
models [52].

We propose using a geometrical segmentation scheme that
uses fiducial landmark points detected in the face. Although
some interframe jittering due to the landmark variability remains
and produces changes in the skin mask across the video frames,
this is noticeably lower than using skin color segmentation. To
perform this segmentation, we have extended the set of landmark
points from 68 to 85 landmark points by interpolation and
created a fixed facial mesh composed of 131 triangles and fix
their coordinates as a typical frontal face, as shown in Fig. 5.

Our segmentation approach normalizes the face in each frame
by mapping every triangle in the current detected face to the
triangles in the normalized shape as shown in Fig. 5. This
approach generates a spatio-temporal matrix of normalized faces
that ensures that we measure the signals in the same facial

Fig. 5. Face normalization process. Left to right: detected landmark
points, fixed triangle face mesh, and normalized face after mapping
triangles to fixed coordinates.

regions consistently across frames, regardless of the pose and
movement.

C. Multi-Region Pipeline

Extracting only one signal from the whole face or skin mask
can result in a very noisy signal. However, the previously
described skin segmentation produces a set of facial regions that
can be analyzed separately. Due to partial occlusions, extreme
head poses, illumination variations, or shades, among others,
some of these regions might present very noisy signals with low
dynamic ranges. Previous methods have proposed to select fixed
patches in the face, where a priori, the blood perfusion should
be more observable (e.g., forehead and cheeks). This approach
works relatively well when the videos show quasi-static indi-
viduals in fixed environments but fails when presented with fast
movements or strong face rotations. To mitigate the impact of
these challenges, we propose to modify the pipeline by introduc-
ing a dedicated block that automatically and dynamically selects
those regions that contain the raw signals with higher quality.
We name the resulting framework as Multi-Region Pipeline.

1) Dynamic Multi-Region Selection: We propose a novel Dy-
namic Multi-Region Selection (DMRS) method to select the best
facial regions dynamically. This approach extracts signals in a
fixed set of facial regions and statistically analyzes their quality
to choose whether each one of them should contribute to the
final rPPG signal or if it should be discarded.

The DMRS process starts just after obtaining a segmented and
normalized face in the previous block of the pipeline by dividing
the normalized face into a matrix of nxn rectangles (regions of
interest) that contains a spatio-temporal representation of the
face, as depicted in Fig. 6. Each area in the grid represents a
signal in a sequence of frames.

Next, the process continues the analysis by computing several
statistical parameters on each candidate region and the global
face. These statistical parameters are computed using windows
of t seconds, both in time and frequency domains. We extract the
mean, standard deviation, variance, signal-to-noise ratio (SNR),
Katz Fractal dimension (KFD), number of zero-crossings (Zc),
sample entropy, detrended fluctuation analysis (DFA), and the
energy in terms of local power spectral density (PSD). The
dynamic selection is loosely based on fractal analysis, which
portrays the scale of the randomness or how unpredictable a
stochastic process is [53].

The first step is an initial pruning that removes those regions
that do not contain valuable information. We check the variance
changes of every candidate rectangle along the time t and discard
those that have zero variance.
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Fig. 6. Comparison of candidate regions of interest in a frontal face
under good lighting conditions (top row) and a non-frontal face under
suboptimal lighting conditions (bottom row). The system selects 32
regions in the frontal face and 20 regions in the non-frontal face. Grey
regions are discarded.

Then, the regions are discarded based on the thresholding
of Katz’s Fractal Dimension (KFD). KFD computes the fractal
dimension (FD) of a signal based on the morphology, measuring
the degree of irregularity and the sharpness of the waveform [53].
KFD gives an index DKFD for characterizing the complexity
of the signal. This value is computed as shown in the following
equation:

KFD =
log10(L/a)

log10(d/a)
=

log10(n)

log10(d/L) + log10(n)
(1)

whereL is the total length of the PPG time series, a is the average
of the Euclidean distances between the successive points of the
sample, d is the Euclidean distance between the first point in the
series and the point that provides the maximum distance with
respect to the first point, and n is L/a. We calculate then the
relative DKFD value by dividing the KFD index of a specific
facial region by the global KFD index derived from the entire
face. This relative value plays an important role in identifying
the regions that contribute meaningful information to the final
rPPG signal while addressing the inherent challenges posed by
facial regions, such as occlusions, low light conditions, blur,
and other factors that could adversely affect signal quality and
the complexity of the signal. By selecting regions with a relative
DKFD value of 0.85 or greater, we ensure the inclusion of regions
that exhibit complexity levels comparable to the global PPG
signal. This approach is based on the assumption that the primary
source of complexity in the global rPPG signal stems from the
heart, and regions with similar complexity levels are more likely
to provide valuable information for rPPG analysis, despite the
presence of factors that could potentially compromise the signal
quality. Through this selection process, we effectively discard
regions that introduce noise and artifacts in the final rPPG signal.
This method provides a good balance between discarding low-
quality regions and retaining meaningful information.

The analysis continues by using Detrended Fluctuation Anal-
ysis (DFA), a statistical method widely used to detect intrinsic
self-similarity in non-stationary time series, especially in fractal
signals. DFA is a modified root mean square analysis of a random
walk, designed to compute long and short-range non-uniform

correlations in stochastic processes [54]. The method tells if
each region rPPG signal shows the expected correlation with
the signal from the global face signal and if they are very noisy
or contain artifacts of extrinsic trends [55]. The DFA exponent
α is interpreted as an estimation of the Hurst parameter, and it is
calculated as the slope of a straight line fit to the log-log graph
from the fluctuation function. ifα = 0.5, the time series is uncor-
related. If 0.5 < α < 1 then there are positive correlations in the
time series. If α < 0.5 then the time series is anti-correlated. We
discard those regions as uncorrelated and negatively correlated.

Upon completing the analysis of each facial region in a
frame sequence (window of t seconds), we obtain a set of valid
regions (2 to 32) for the energy-based final selection. If more
than rmax regions pass the analysis, we choose the top rmax

regions with the highest energy, reducing noise and improving
the signal-to-noise ratio [56], [57]. If there are fewer than rmax

but more than one valid regions, all are selected. If only one
or none qualify, we revert to selecting the best rmax regions
by energy content from the initial candidates. This strategy
optimizes rPPG signal quality across scenarios. Lastly, the rPPG
signals from chosen regions are combined by summing in the
time domain, generating the final rPPG signal for heart rate
computation during spectral analysis.

V. ORTHOGONAL MATRIX IMAGE TRANSFORMATION

We introduce a novel, robust, and efficient RGB to PPG
transformation method called Orthogonal Matrix Image Trans-
formation (OMIT), that we integrated in the previous proposed
pipelines.

OMIT leverages matrix decomposition techniques, generat-
ing an orthogonal matrix with linearly uncorrelated RGB com-
ponents. It employs reduced QR factorization [58] and House-
holder Reflections [59] for finding linear least-squares solutions
in the RGB space. The thin QR factorization offers memory
efficiency and computational speed, especially for tall and
skinny matrices [58], while the Householder Orthogonalization
Algorithm provides better numerical stability, computational
efficiency, and conditioning compared to the Gram-Schmidt
process [58], [59]. These advantages make OMIT well-suited
for handling noisy data matrices and extracting rPPG signals
with greater accuracy and efficiency.

The mathematical foundation of OMIT is based on the QR
decomposition as shown in (2):

A = QR (2)

where A ∈ IRn×3 represents the input RGB matrix, Q ∈ IRn×3

denotes the orthonormal basis for the column space of A, and
R ∈ IR3×3 is an upper triangular matrix that contains the coef-
ficients to express the columns of A as linear combination of
the basis vectors in Q. We then use the orthogonal matrix Q to
compute a projection matrix that allows us to extract the BVP
signal from the input matrix A.

The OMIT method is composed of the following key steps,
illustrated in Fig. 7:

1) Reduced QR decomposition using Householder Reflec-
tions: Compute the thin QR decomposition of the input
RGB matrix [58], [60]. After k iterations (in our case,
k = 3), the product of the Householder Reflectors (Hi)
matrices forms the semi-orthogonal matrix Q, and the
transformed A becomes the upper triangular matrix R.
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Fig. 7. Process steps to convert a RGB signal to BVP signal using
OMIT method.

The first column of Q captures the most significant vari-
ations in the input data.

2) Subspace projection matrix calculation: The first column
of Q, denoted as S, is used to compute the projection
matrix P, which is calculated as P = In − SST . This
matrix is designed to project the input data onto a subspace
orthogonal to S, effectively removing the contributions
associated with the dominant variations in the input data.

3) Orthogonal Projection and BVP extraction: The input
data (RGB matrix) is projected onto a subspace orthog-
onal to S using the calculated projection matrix P, repre-
sented by the equation Y = PA. This step separates the
BVP signal from the raw RGB data while suppressing
noise and artifacts. The BVP signal is extracted from
the second column of the Y matrix after removing the
dominant variations.

QR decomposition has been extensively applied across vari-
ous domains such as communications, signal processing, im-
age processing, and machine learning to address challenges
associated with corrupted input data matrices due to noise or
artifacts [61], [62].

QR decomposition has shown superior performance over
alternative techniques such as Principal Component Analysis
(PCA), Eigenvalue Decomposition (EVD), and Singular Value
Decomposition (SVD) in terms of mathematical stability, com-
putational efficiency, and robustness [63]. OMIT utilizes these
benefits to produce an orthogonal matrix with linearly uncor-
related components, effectively isolating the rPPG signal from
RGB data. This allows for more accurate and efficient blood
pulse signal extraction, enhancing rPPG signal processing and
analysis.

VI. BENCHMARK DATASETS AND EVALUATION METRICS

We evaluate our methodology using an extensive assess-
ment based on the literature [36] and six publicly avail-
able datasets: PURE [64], COHFACE [65], LGI-PPGI-Face-
Video-Database [20], UBFC-RPPG Video dataset [66], and
MAHNOB-HCI [67]. These datasets consist of videos captured
under various conditions and setups, as well as reference phys-
iological data recorded using medical-grade equipment such as
fingertip pulse oximeters and ECG sensors.

PURE contains 10 subjects performing controlled head mo-
tions with 60 uncompressed sequences and uses a fingertip pulse
oximeter as ground truth. COHFACE includes 160 videos of
40 subjects synchronized with heart rate and breathing rate and
uses medical-grade equipment for reference data. LGI-PPGI-
Face-Video-Database comprises four different scenarios with
25 subjects, using an uncompressed format and a fingertip pulse
oximeter as ground truth. UBFC-RPPG Video dataset has two
sub-datasets: UBFC1 with 8 uncompressed videos and UBFC2
with 42 uncompressed videos, presenting diverse ethnicities
and facial skin tones, and uses a fingertip pulse oximeter for
reference data. MAHNOB-HCI contains 27 participants with
527 compressed facial videos and corresponding physiological
signals, using ECG as ground truth. For our evaluation, we used
a smaller subset of 36 videos from the MAHNOB-HCI database
to ensure a fair comparison with the results in [36] and the full
dataset of 527 videos for comparing our pipeline with other
state-of-the-art approaches.

The evaluation of the datasets is done by comparing the esti-
mations of the heart rates of both the extracted rPPG signal and
the reference ECG or PPG signal. The evaluation includes both
error and statistical analysis. We use three standard metrics that
measure the discrepancy between our predicted heart rate ĥ(t)
and the reference heart rate h(t). The standard metrics used to
compute it are Mean Absolute Error (MAE), Root-Mean-Square
Error (RMSE), and Pearson Correlation Coefficient (PCC) of the
heart-rate envelope. Our primary objective is to advance unsu-
pervised rPPG extraction techniques in challenging conditions,
rather than pursuing waveform similarity with ground truth
PPG signals, as is the case with deep learning-based methods.
Given the anatomical differences in blood perfusion waveforms
between the face and finger [68], we employ PCC between heart
rate envelopes as a more suitable evaluation metric, instead of
direct waveform comparisons.

A. Reference Data, Ground-Truth and
Evaluation Protocol

The most common source of BVP reference data in the
datasets is PPG data from contact-based pulse oximeters. In
most of the cases, these data is already filtered and does not
require further preprocessing. In order to extract heart rate or
other HRV parameters, the reference signals are processed using
spectral analysis.

In the evaluation, we compute the error by comparing the heart
rate and HRV parameters extracted from the reference (ground-
truth) signals and the recovered PPG signal. Although direct
comparison of signals (e.g. morphology) would be also possible,
the fundamental differences between the extracted rPPG and the
reference signals in terms of delay and scale due to different
body measurement points and diverse collection devices make
this comparison not very meaningful [68].
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Fig. 8. Reference PPG signal from a fingertip contact-based pulse
oximeter, showing a ≈2-second error, likely due to finger movement and
signal tracking loss.

We have observed that the reference data offered in the
datasets is not completely free of problems. For example, Fig. 8,
shows an example reference signal with a gap of approximately
2 seconds. These issues, caused by small deficiencies in data
collection can lead to unfair disagreements in terms of error,
especially for unsupervised methods.

VII. EXPERIMENTAL RESULTS

We evaluate and analyse the proposed methodologies and
pipelines to extract remote photoplethysmography signals from
all benchmark databases. We compare the results across different
improved processing pipelines and compare them with the state
of the art for both supervised and unsupervised methods.The
experiments are performed using a computer that includes an
AMD Ryzen(TM) 3700X 8-core processor at 3.6 GHz.

A. Hyperparameters and Configuration

Our framework is based on separate configuration files, in a
similar manner as other frameworks [36]. These files contain the
parameters that govern the pipeline and its components. In our
experiments, we set the values for of each pipeline component
as follows: Face detection uses a DNN OpenCV face detector
with the default Tensorflow model. Face alignment uses the
DAN algorithm with one of the default models provided by the
authors (DAN-Menpo.npz) [42]. Real-time configurations can
use a modified ERT model [43]. DMRS uses a grid matrix ofn =
9x9. For DKFD, we have selected the signals with a threshold
of more than 0.85, and for DFA we set an α threshold between
0.75 and 1.0. We set the maximum number valid of regions
rmax = 32. Filtering is performed using FIR filters with Kaiser
windows, with the parameterβ = 25. The filters use a bandpasss
configuration between 0.75 and 4 Hz (corresponding to 45–240
bpms). Signal Windowing uses sliding windows of 10 seconds
and 1 s steps (9 seconds overlap).

B. Quantitative Results

We provide an extensive evaluation of our three proposed
pipelines and compare them with those of the baseline [36] with
the standard configuration. We obtain results in six datasets.
All datasets are comprised by videos with VGA resolution,
but in two of them are heavily compressed (MAHNOB and
COHFACE).

We measure the performance by computing the average of
the MAE, the standard deviation of the MAE, and the median of

Fig. 9. Comparison of HR estimation using four rPPG methods with
the Multi-region pipeline. Estimated heart rate (red) is extracted from the
face, and the contact-based reference PPG signal (blue) is computed on
a single PURE dataset video.

the Pearson Correlation Coefficient of the envelope of the heart
rate. We evaluate the pipelines using ten rPPG methods (RGB to
PPG signal conversion methods), including our proposed OMIT
conversion. The results detail the impact of the improvements
in each pipeline as shown in Table I.

The Multi-region pipeline, with our proposed improvements,
achieves the best results across all six datasets, improving MAE,
error standard deviation, and Pearson Correlation Coefficient of
the heart rate envelope.

Analyzing different rPPG conversion methods, CHROM
and POS perform best in uncompressed databases across all
pipelines, with OMIT closely following. OMIT works well in
highly compressed pipelines, obtaining the best results for the
challenging MAHNOB dataset.

Comparing results across datasets, the mean average error
varies significantly depending on the data nature. Good quality
and static datasets like UBFC or PURE have an error below 2
bpms, with minor differences across videos. For the LGI-PPGI
dataset with natural movement, the best average error reaches
nearly 4 bpms, with a reasonably high standard deviation. Worst
results correspond to lower resolution datasets like MAHNOB
and COHFACE, with average errors between 8 and 12 bpms.
Heavy video compression and low illumination can cause low
SNR and loss of signal subtleties [69].

Although some variations across methods, dataset, and
pipelines exist, it is possible to conclude that the modification
introduced in the pipelines shows a consistent improvement,
although those databases with faces mostly still in front of the
camera (PURE and UBFC), show only modest improvements
when compared with those achieved in complicated datasets
(LGI-PPGI, COHFACE, MAHNOB).

We argue that the proposed multi-region pipeline shows better
performance when presented with videos collected in a more
natural environment, especially when they show varied facial
expressions, head movements, or illumination changes. To il-
lustrate this, we evaluate results on the LGI-PPGI dataset across
four scenarios: resting (still subjects with no head or facial move-
ments), rotation (head motions and rotations), talking (street
video conference with sudden head motions and low dynamic
range), and gym (exercise on a static bicycle), using our pro-
posed OMIT method for RGB to PPG conversion. Baseline and
Multi-region pipelines perform similarly in resting and rotation
scenarios. However, in challenging scenarios like talking and
gym, errors significantly reduce and the Pearson Correlation
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TABLE I
ERROR COMPARISON BETWEEN THE BASELINE PIPELINE AND OUR THREE PROPOSED IMPROVED PIPELINES

TABLE II
PERFORMANCE OF THE BASELINE AND MULTI-REGION PIPELINES

(LGI-PPGI DATASET) FOR DIFFERENT HUMAN ACTIVITIES

Coefficient improves, particularly in the gym scenario. Detailed
results are presented in Table II.

C. Qualitative Results

We provide a visual representation of heart rate estima-
tions from various pipelines and methods in Fig. 9. It shows
the performance of four rPPG methods (CHROM, OMIT,
POS, and GREEN) using the Multi-region pipeline on a
PURE dataset video. CHROM, OMIT, and POS have simi-
lar performance, while GREEN struggles to track pulse rate

TABLE III
IMPACT OF THE NUMBER OF REGIONS IN RPPG EXTRACTION USING

FACE2PPG-MULTI PIPELINE AND CHROM

during certain segments. The PCC metric reflects the simi-
larity between the estimated (red) and ground-truth (blue)
envelopes.
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TABLE IV
COMPARISON OF FACE2PPG-MULTI PIPELINE WITH STATE OF THE ART SUPERVISED LEARNING-BASED (ORANGE) AND UNSUPERVISED

NON-LEARNING-BASED (BLUE) METHODS

Fig. 10. Comparison of HR estimation using four rPPG methods with
the Multi-region pipeline. Estimated heart rate (red) is extracted from the
face, and the contact-based reference PPG signal (blue) is computed on
a single MAHNOB video.

Fig. 10 shows the performance of four rPPG methods using the
Multi-region pipeline on a MAHNOB database video. Despite
the subject being static, high compression causes a loss of detail
in raw RGB signals. CHROM and OMIT handle compression
challenges better than GREEN and POS.

D. Evaluation of the Number of Regions

To evaluate the impact of the DMRS module in the Multi-
region pipeline, we have designed a complementary experiment
that measures how the results are affected depending on the
number of facial regions used in the initial grid. We use CHROM
as the RGB to rPPG conversion method, while all parameters
remain the same except the number of initial available regions
to select. In the comparison, in addition to region grids, we also
include the typical fixed regions of the face, such as the forehead
and cheeks.

For this experiment, the results are depicted in Table III.
They show how generally, a moderately large number of regions
results in smaller errors. The approach using fixed patches shows
comparable results to configurations with low number of regions
and proved to be still useful in some cases.

E. Comparison With the State of the Art

We compare our proposed pipeline with other supervised
learning-based and unsupervised non learning-based methods as
presented in the state of the art. We compare the results in terms
of both MAE and RMSE and show them in Table IV. Table IV,
shows two sets of results. Face2PPG-Multibest results represent
the best performance achieved using our multi-region pipeline



5540 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 27, NO. 11, NOVEMBER 2023

with various RGB to PPG transformation methods (CHROM,
POS, LGI, or OMIT) showing the flexibility of our pipeline.
Face2PPG-Multiomit results display the outcomes applying just
the OMIT method, to highlight its generalizability across diverse
datasets.

It can be seen that our method, relying on the multi-region
pipeline obtains better results that all unsupervised non-learning-
based methods across all six benchmark datasets. Our results are
also comparable to some recent supervised methods that require
training on videos taken in similar conditions. Additionally, as
shown in article [71], our method is highly efficient, taking only
17 ms per frame, and under 33 ms with face detection and align-
ment. This outperforms deep learning methods, which generally
require longer processing times per frame, underscoring our
approach’s computational advantage.

VIII. CONCLUSION

In this article, we proposed a new supervised (“comparable
results to other supervised methods”) pipeline for the extrac-
tion of BVP signals from facial videos (rPPG). To enable a
fair comparative evaluation among methods, we solved a set
of smaller technical challenges such as problems with signal
synchronization, use of different spectral analysis methods in
extracted and reference signals, or inconsistent use of pipeline
modules such as face detection and tracking or filtering. We
proposed three novel contributions that improve the extraction
of rPPG signals, especially in challenging conditions. First, we
included a face normalization module, based on facial landmarks
and a fixed triangle mesh that allowed the extraction of signals
from exactly the same facial regions in a consistent manner.
Second, we added the dynamic selection of facial regions that
allowed to statistically discard those regions showing noise and
artifacts. Finally, we proposed a novel RGB to PPG conversion
method that increased the robustness of the extraction against
compression artifacts. Our enhanced pipeline works in a purely
unsupervised manner, and it is directly applicable in datasets
collected in multiple conditions without any need of training
data. The proposed pipeline achieves state-of the-art results
across multiple databases when compared with other unsuper-
vised methods and shows comparable results to other supervised
methods.
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