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� Infra-slow fluctuations (ISF) and respiration are both coupled with fast neuronal oscillation amplitudes.
� ISF and respiration drive amplitude dynamics of fast oscillations in sleeping and waking states, with different contributions.
� Our findings suggest these slow physiological phases have significant role in determining the dynamics of cortical oscillations.
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Objective: Infra-slow fluctuations (ISF, 0.008–0.1 Hz) characterize hemodynamic and electric potential
signals of human brain. ISFs correlate with the amplitude dynamics of fast (>1 Hz) neuronal oscillations,
and may arise from permeability fluctuations of the blood–brain barrier (BBB). It is unclear if physiolog-
ical rhythms like respiration drive or track fast cortical oscillations, and the role of sleep in this coupling is
unknown.
Methods: We used high-density full-band electroencephalography (EEG) in healthy human volunteers
(N = 21) to measure concurrently the ISFs, respiratory pulsations, and fast neuronal oscillations during
periods of wakefulness and sleep, and to assess the strength and direction of their phase-amplitude cou-
pling.
Results: The phases of ISFs and respiration were both coupled with the amplitude of fast neuronal oscil-
lations, with stronger ISF coupling being evident during sleep. Phases of ISF and respiration drove the
amplitude dynamics of fast oscillations in sleeping and waking states, with different contributions.
Conclusions: ISFs in slow cortical potentials and respiration together significantly determine the dynam-
ics of fast cortical oscillations.
Significance: We propose that these slow physiological phases play a significant role in coordinating cor-
tical excitability, which is a fundamental aspect of brain function.
� 2023 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction and when dealing with Gaussian variables, these two measures
An increasing focus has been directed toward establishing the
link between slow physiological signals and neuronal rhythms as
recorded using various neuroimaging modalities. Quasiperiodic
infra-slow fluctuations (ISFEEG, 0.008–0.1 Hz) (Hughes et al.,
2011; Palva and Palva, 2012; Vanhatalo et al., 2004) comprise the
strongest signal in full-band electroencephalography (fbEEG)
(Niedermeyer et al., 2011). In awake state, the ISFEEG are correlated
with statistically independent ISFs in connected networks of the
blood-oxygenation-level dependent (BOLD) signal during func-
tional magnetic resonance imaging (fMRI) (Hiltunen et al., 2014;
Leopold et al., 2003). ISFEEG are also coherent with near infrared
spectroscopy measurements of brain oxygenation levels (Nikulin
et al., 2014). Magnitude of ISFs in the EEG (Marshall et al., 1998,
1996) and the neurovascular BOLD signal (Fukunaga et al., 2006;
Fultz et al., 2019, Helakari et al., 2022) are greater during sleep
than in the awake state.

The ISFs are commonly high-pass filtered in conventional EEG
setups, as they have been thought to arise from non-neuronal
sources such as alterations in cerebral blood flow (CBF) (Besson
et al., 1970; Held et al., 1964; Tschirgi and Taylor, 1958). Recent
studies with animal models (Nita et al., 2004) and humans
(Kiviniemi et al., 2017) show that the dynamics of blood–brain bar-
rier (BBB) permeability could be a major contributor to the ISFEEG
signal in addition to blood volume changes. ISFEEG have been sug-
gested to couple with cortical excitability during wakefulness
(Monto et al., 2008) and sleep (Vanhatalo et al., 2004).

In addition to the relationship between ISF and fast brain
rhythms, there is also a link between EEG respiration related activ-
ity (RESPEEG) and fast neuronal changes. For example, intracranial
electrophysiological studies with mice linked respiration and neu-
ronal changes, claiming that respiratory phase modulated the
power of gamma oscillations (Biskamp et al., 2017; Ito et al.,
2014; Yanovsky et al., 2014). In humans, the respiratory cycle also
correlates with corticospinal excitability (Li and Rymer, 2011), and
sensory perception (Flexman et al., 1974). Subsequent human
intracranial EEG studies showed that oscillations extending from
theta to gamma frequencies were modulated in amygdala and hip-
pocampus by respiration, with additional associations emerging in
various cortical and subcortical sites in epileptic patients (Herrero
et al., 2018; Zelano et al., 2016). Also, fMRI study of patients with
epilepsy found increased respiratory power and synchrony
(Kananen et al., 2022, 2020). Finally, findings from EEG and magne-
toencephalography (MEG) studies conducted in healthy individu-
als have indicated that spontaneous brain activity is phase-
locked and modulated by respiration during wakefulness (Kluger
and Gross, 2021; Perl et al., 2019). Additionally, both the ISF and
respiratory phase have shown correlations with behavioral perfor-
mance in a stimulus-detection in humans, suggesting that the EEG
signal derives functionally significant contributions from these
slow, non-neuronal physiological signals (Johannknecht and
Kayser, 2022; Monto et al., 2008).

While it is true that causality can sometimes be inferred from
the timing of events, relying solely on the time difference between
two events to infer causality can be problematic. There may be
other factors, such as common underlying causes, that could
explain the observed time difference. Although some studies have
used non-directional correlative metrics to infer causal effects,
these approaches are not generally reliable for establishing causal-
ity. In order to determine the direction of the studied interactions,
we utilized phase transfer entropy (PTE) (Lobier et al., 2014). This
novel metric offers a sensitive way to assess the direction of infor-
mation flow. PTE is similar to the well-known Granger causality,
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are, in fact, equivalent. EEG signals are always linear mixtures of
neural and non-neural sources, which are volume conducted to
the scalp, and are generally highly correlated with each other
(Nunez et al., 1997). PTE is a robust connectivity estimator for
large-scale EEG scalp recordings, even in the presence of noise
and linear mixing (Lobier et al., 2014). It can provide frequency-
specific information about the direction of causality between phase
time-series, independent of shared history.

Altogether, multiple lines of evidence suggest a connection
between slow physiological phases and fast (>1 Hz) neural poten-
tials (Kluger and Gross, 2021; Monto et al., 2008; Vanhatalo et al.,
2004). However, the causal nature of the ISF coupling as well as its
spatial distribution, remains undetermined. With respiration,
directionality of the coupling along with effect of sleep call for
more fundamental investigation. In this regard, our first objective
in the present study was to assess how the low frequency charac-
teristics of the EEG alter in the transition from waking to sleep.
Second, we asked whether the ISFs (ISFEEG) and respiration
(RESPEEG) induced EEG signals arise as a ‘‘byproduct” of emergent
slow dynamics (Palva et al., 2013) of fast neuronal oscillations, or
rather play a causal role in modulating the fast neuronal oscilla-
tions per se. To further elucidate the underlying mechanistic basis
of these interactions, our final objective was to uncover whether
coupling between fast neuronal processing and non-neuronal slow
processes would be altered during non-rapid eye movement
(NREM) sleep. To test these conjectures, we assessed spectral
power, phase-amplitude coupling, and directional drive between
ISFEEG and fast oscillations in human brain using a 256-channel
EEG during wakefulness and sleep. Our results show that slow
physiological oscillation phases both couple and drive fast neuro-
physiological rhythm amplitudes across awake and sleep states
in healthy human volunteers.
2. Methods

2.1. Experimental setting

The study received approval from the Regional Ethics Commit-
tee of the Northern Ostrobothnia Hospital District. Written
informed consent was obtained from all participants in accordance
with the principles outlined in the Declaration of Helsinki. All the
subjects were healthy non-smokers, with no continuous medica-
tion, neurological or cardio-respiratory diseases.

In our previous research using multimodal measurement tech-
niques, we observed a dynamic relationship between brain cortex
BOLD and ISFEEG signals (Keinänen et al., 2018; Korhonen et al.,
2014). The sleep induced changes of ultrafast BOLD signal spectral
power and entropy have been recently released in a publication by
(Helakari et al., 2022) in the same group of participants. However,
due to the complexity of analyzing ISF and respiratory band infor-
mation across the entire brain using advanced phase analytics, our
current study focused only on assessing the effects of sleep on
multiband EEG. With the causality measures established in this
study, our future goal is to integrate BOLD, ISFEEG, and fNIRS data
to comprehensively infer causal relationships in sleep-induced
brain changes.

Thirty subjects were scanned twice in the study. One scanning
session with eyes fixated on a cross was obtained at 4–6 PM on
the day after a full night of sleep, and another scan starting at 7–
9 AM followed upon a night of sleep deprivation. Generally, the
awake scans were conducted prior to the sleep scans, specifically
on Tuesdays and Wednesdays. Sleep deprivation scanning was car-
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ried out on Saturdays. Both sets of scans were performed within
one week, except for one subject who had a two-week gap
between the scans. Additionally, there was one instance where a
sleep deprivation scan occurred on Sunday. Each session consisted
of two consecutive scans each lasting 10–15 minutes. Sleep depri-
vation was intended to enable the subjects to enter more quickly a
deeper sleep state during the recordings (Horovitz et al., 2009;
Kaufmann et al., 2006). Subjects were instructed not to drink any
caffeinated beverages in the four hours before the awake resting
state scan, and were requested to abstain for eight hours prior to
the sleep deprivation scans. Consumption of alcohol was also pro-
hibited in these intervals. Three subjects who, according to their
sleep scores, did not fall asleep during the sleep deprived session,
were excluded from the study (Table S1). Three subjects were also
excluded due to suspicion of sleep apnea. Recordings were also dis-
regarded in cases of insufficient signal quality. The resulting sizes
of the groups were 21 awake (mean ± SD, age 29.2 ± 6.8 years, 8
females) and 21 (28.4 ± 6.3 years, 11 females) sleep subjects. We
recorded the fbEEG recordings using the GES 400 (Electrical Geode-
sics) system, which consisted of a direct current (DC)-coupled
amplifier (Net Amps 400) and a high-density 256-channel net
(HydroCel Geodesic Sensor MR net). All the systems were compat-
ible with magnetic resonance imaging (MRI). We used a sampling
rate of 1 kHz (250 Hz for three sleep and five awake subjects, due
to human error). Our recording setup used the ‘‘Cz” electrode as the
reference channel. Prior to the recordings, signal quality and elec-
trode impedances were carefully examined. End-tidal carbon diox-
ide (ETCO2) was also measured in synchrony with the EEG and
fMRI.
2.2. Data preprocessing

We used template subtraction (Allen et al., 2000) implemented
in Brain Vision Analyzer (v.2.1, Brain Products) to remove gradient
artifacts arising from MRI gradient switching. Template subtrac-
tion was also used to remove ballistocardiographic artefacts
(Allen et al., 1998). The remaining signal processing and calcula-
tions were designed and performed in Matlab (v.R2018b-2019b,
MathWorks). First, we segmented the EEG recordings to a match-
ing duration of ten minutes. To mitigate stable baseline drift
caused by conductivity changes between the electrode and skin,
we removed linear trends (Huigen et al., 2002), which are known
to affect the performance of various pre-processing steps.

We used amplitude threshold and visual confirmation to deter-
mine bad channels for awake (0–8, average 2.4 bad channels) and
sleep (0–4, average 1.3 bad channels) measurements. We used
independent component analysis (ICA) (FastICA (Hyvarinen,
1999)) along with principal component analysis dimension reduc-
tion (150 components) to transform datasets into independent
components, in which artifactual ICs were identified and removed.
Fig. 1. Effect of sleep on oscillation power and phase-amplitude coupling (PAC) with co
frequency scale. Shadings around the mean lines represent standard deviations of aw
significance (p < 0.05) in ascending order of rank: no statistical significance, permutation
relative power difference (awake-sleep) in infra-slow fluctuations (ISF < 0.01 Hz), slow-w
of PAC using an EEG trace. The full-band EEG trace is initially filtered into low- and h
extracting its envelope and further filtering it to the low frequency range. Both signals
Bottom left: Median phase-locking values (PLV) taken over electrodes. Asterisks indicate
strength between awake and sleep states. Gray lines connect paired subjects. Bottom rig
scaled to percentiles. The fast frequency bands are denoted by Greek letters. c) The diffe
testing (p < 0.05) are highlighted using a p-value mask. A stricter significance criterion
Probability estimates of the average phase difference in radians between ISF phase and
bands. Channels on the y-axis are sorted in ascending order following the median phase d
bands and subjects.
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Artifactual ICA components were detected using SASICA toolbox
(Chaumon et al., 2015) for EEGLAB (Delorme and Makeig, 2004),
based on autocorrelation of the components and correlation with
electrooculogram channels. Focal components were also removed.
Our primary focus here was on removing ocular components,
which can also appear as low-frequency events (<1 Hz). During
the awake scans, subjects were specifically instructed to maintain
fixation on a cross, which is a known technique for reducing the
occurrence of saccadic eye movements. To maximize the perfor-
mance of ICA and minimize non-linearities, we employed a custom
spike detection algorithm aimed at eliminating artificially gener-
ated spikes characterized by significantly high amplitudes. To
address the gaps that arose as a result, we employed a two-
phase process resembling inpainting (de Cheveigné and
Arzounian, 2018). In the first phase, we interpolated the trend
within the gaps, ensuring a smooth transition edges. Next, we uti-
lized intact signal to generate real data mimicking injections,
which was then added to the interpolated trend. This approach
enabled a seamless transition with properties consistent with gen-
uine data, as opposed to abrupt edges that would result from sim-
ply removing the artifactual segments. The previously identified
bad channels were excluded from the ICA. Following that, spherical
interpolation was applied to replace the excluded channels.
Regarding referencing, the recordings were referenced to linked
mastoid electrodes. These mastoid electrodes were positioned in
close proximity to other electrodes however, they capture lower
levels of brain activity. Recordings were sleep-scored manually
by experienced clinical neurophysiologists (JP, MK) following
American Academy of Sleep Medicine guidelines (Table S1).
2.3. Spectral analysis

We performed time–frequency spectral analysis (Fig. 1a) by
employing wavelet convolution in the frequency domain, which
offered faster computation in contrast to time domain. We used
complex Morlet wavelets (Eq.1) together with mirrored time-
series to mitigate the edge effects commonly arising in temporal
filtering processes. Conventional Fourier transform assumes signal
stationarity, meaning that statistics of the signal, including mean,
variance and frequency structure of the signal, do not change over
time (Cohen, 2014). However, the stationarity assumption is vio-
lated by long EEG data, leading to decreased accuracy of frequency
estimates. This, along with the potential to generate time-resolved
frequency representations with computational efficiency, led us to
use wavelets. Fourier transform and Morlet wavelets both employ
sine waves as kernels, but in the latter case the sine wave is not the
full length of the recording and is tapered by a Gaussian window
(Cohen, 2014). The Gaussian window is preferred over a rectangu-
lar window due to its smooth transition edges, whereas the sharp
rtical rhythms. a) The relative amplitude of EEG signals is shown on a logarithmic
ake (red) and sleep (blue) states. The width of the solid lines indicates statistical
tested, permutation test + maximum statistics correction. Topography plots of the
ave (0.2–2 Hz) and fast frequency bands. b) The top section provides an illustration
igh-frequency signals separately. The high-frequency signal is then processed by
have their phases extracted, allowing for the application of phase-based metrics.
statistically significant differences (adjusted p < 0.05*, 0.01**, 0.001***) in coupling
ht: Box plot describing the number of significantly coupled electrodes per subject,
rence in average PLV (awake-sleep) is shown. Significant values after permutation
using maximum statistic correction (p < 0.05) is visualized with yellow circles. d)
fast rhythm phases. The probability estimate was combined over all fast frequency
ifference. Topography plots display the median phase difference taken over the fast
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edges in simple rectangular windowing gives rise to artifactual rip-
ple effects (Cohen, 2019).

In this analysis, we selected 70 frequency points within a loga-
rithmic frequency range spanning from 0.008 to 100 Hz. We kept
the number of wavelet cycles constant (N = 7), which controls
the temporal and frequency precision (Eq. 2). The time–frequency
power estimates were obtained by calculating the squared magni-
tude of the convolution results. To categorize the time–frequency
power estimates into epochs of wakefulness and sleep (N1-N3),
we utilized sleep scores as a reference. These sleep scores served
to discard awake epochs from the sleep samples, and vice versa,
thus affording even more accurate spectral estimates. We then
averaged over the time dimension and then formulated power to
relative amplitudes (Eq. 3), thus reducing individual variability in
power. To compute the relative band power topographies, we cal-
culated the sum of power within specific frequency bands. This
summed power was then divided by the total power across all
recorded frequencies. The resulting relative expression answers
the question of how much of the total power is attributed to a par-
ticular frequency band.
2.4. Phase-amplitude coupling

To ensure full coverage of ISF frequencies without overlap with
respiration frequencies, we selected ISF frequencies ranging from
0.008 Hz to 0.1 Hz. We separated two distinct ISF bands
(ISF1-EEG: 0.008–0.05 Hz & ISF2-EEG: 0.05–0.1 Hz), each extracted
using finite impulse response (FIR) filters. For the design of these
FIR bandpass filters, we used Hamming window function and
determined the filter kernel length based on one cycle of the low-
est frequency of interest. Since edge artifacts are prominent partic-
ularly during temporal filtering of the lowest frequencies, we used
a mirroring technique to extend the time-series x nð Þ; ðn ¼ 1; :::;NÞ
at both ends. This allowed us to create buffer zones around the sig-
nals, which were later discarded. Additionally, to avoid potential
phase distortions and offsets that can occur with conventional
one-way filtering methods, we utilized zero-phase filtering. This
way the signals were filtered in the forward and reverse directions
xISF nð Þ, effectively reducing any phase distortions or offsets. As for
the ISF, we designed FIR bandpass filter for the fast frequency
bands (delta: 1–4 Hz, theta: 4–8 Hz, alpha: 8–13 Hz, beta: 13–
30 Hz, gamma: 30–40 Hz). To gain even sharper frequency
response, we increased the filter kernel length to six times the per-
iod of the lowest frequency. We then applied zero-phase filter to
produce xfast nð Þ signals.

Phase-amplitude coupling refers to a type of cross-frequency
coupling in which the phase of a slower frequency is coupled to
the amplitude of a faster rhythm. Here, we evaluated phase locking
value (PLV) (Lachaux et al., 1999), to quantify the strength of cou-
pling between the phase of the ISF and the amplitudes of the faster
oscillations. Our methodology for assessing this coupling was
based on previous studies conducted by (Monto et al., 2008;
Palva et al., 2005; Vanhatalo et al., 2004). First, to acquire the
instantaneous phase time-series of the ISF we calculated analytical
signals zISF nð Þ (Eq.4) using Hilbert transform. The phase was
extracted as an argument of the analytical signal
hISF ¼ argðzISF nð ÞÞ. For fast frequency bands, Hilbert transform was
applied twice: first to compute Hilbert amplitude envelope as a
complex magnitude of the analytical signal a nð Þ ¼ zfast nð Þ�

�
�
�, which

was then filtered to ISF bands with same FIR filter as described
before. Since the temporal resolution required for phase-
amplitude coupling analysis is dependent on the slower ISF phase,
we performed down-sampling of the signals to 3 Hz. This resam-
pling allowed for faster computation while still capturing the
dynamics of the ISF phase. We then applied second Hilbert trans-
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form to the envelopes AfastðnÞ to compute instantaneous phase as
an argument of the analytical signal h0fast ¼ argðzAfast

ðnÞÞ. Finally,

we calculated 1:1 phase locking between hISF and h0fast to quantify
the phase-amplitude coupling. We calculated PLV (Eq.5) for each
electrode and combinations of ISF and fast frequency bands. We
present a diagram of the workflow in Supplementary Figure S1.

The respiratory frequency phase-amplitude coupling with fast
oscillations was calculated following same principles as with ISF.
ETCO2 recordings were used to assess individual respiration fre-
quencies which were recorded simultaneously with the EEG mea-
surements. We calculated spectrograms for the ETCO2 signals with
short-time Fourier transform. We used 50 second Hamming-
tapered windows and 50 % overlap with each other. The peaks of
the spectra, representing dominant respiration frequencies, were
then used for defining the center frequency of complex Morlet
wavelets (N = 5). For three subjects in the awake group and two
subjects in the sleep group we used median frequency of the group
for calculations, as ETCO2 signals were not recorded. We imple-
mented the wavelet convolution in frequency domain as before
to perform filtering to the respiration frequencies. For faster fre-
quency bands the Hilbert amplitude envelopes were computed
from analytical signals and then filtered to respiratory frequency.
Second Hilbert transform was then utilized to extract instanta-
neous phase time-series and phase-amplitude coupling was quan-
tified again as phase locking between hRESP and h0fast .

2.5. Phase transfer entropy

To resolve the yet unanswered question concerning direction of
the drive between the slow and fast rhythms we used recent infor-
mation theory-based measure PTE (Lobier et al., 2014). It is an
effective connectivity measure describing information flow
between two phase time-series. PTE results can be interpreted as
if the observation of source signal helps to predict the transitions
of the target signal. It is derived from real-valued transfer entropy
and is also used in similar way, with a distinction that is applied to
instantaneous phase signals.

We used the same instantaneous phase time-series hslow and h0fast
as with PLV calculations, now with 125 Hz sampling. First, we uti-
lized the state space transition to generate discrete probability dis-
tributions, and from these distributions, we computed Shannon
entropies. Reduction in uncertainty of the variable is described
by Shannon’s entropy, which in this context defines the informa-
tion content. To determine the adequate number of bins for the cal-
culations we used Scott’s choice (Scott, 1979) (Eq. 6). In order to
calculate PTE as described in (Eq.7) we first had to compute the
joint and individual entropy probabilities in equations 8–10. To
express information in units of bits, we used a logarithm base of
2 (Bossomaier et al., 2016; Timme and Lapish, 2018). Subsequently,
we transformed the PTE values into their directional form, known
as dPTE (Eq.11), where the sign of the metric indicates the direc-
tion of net information flow. While performing the PTE analysis,
we made an a priori assumption of the analysis lag, setting it to
one cycle of the slow phase. However, PTE values are not sensitive
to the analysis lag, allowing accurate estimate of connectivity over
a wide range of delays (Lobier et al., 2014).

2.6. Statistical analysis

No statistical methods were used to pre-determine sample
sizes. For spectral estimate (Fig. 1a), we constructed the null
hypothesis distribution using a nonparametric permutation test,
where we iteratively shuffled the condition labels (groupwise dif-
ference) over the subjects 10,000 times. For each frequency point,
our null hypothesis held that wakefulness and sleep have an equal
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contribution on spectral power (two-tailed). We then transformed
this distribution of test statistics generated under the null hypoth-
esis to standard Z values (Eq.12), from which we obtained the p-
value by assessing its position on a Gaussian probability density
function. We addressed the multiple comparison problem using a
maximum statistic correction. In each iteration, we gathered the
maximum and minimum values of the differences and used them
to construct null distributions. These null distributions were then
used to determine the statistical significance (p < 0.05), of maxi-
mum statistic correction. The significance thresholds were then
given by 2.5th and 97.5th percentiles (two-tailed). Similarly, we
used a nonparametric permutation test by shuffling the condition
labels over subjects for average PLV difference topographies and
dPTE topographies (Fig. 1c, 2c, 3c, 3f). Here, we tested each elec-
trode with the null hypothesis that PLV and dPTE are not affected
by change in vigilance state (two-tailed). As before, we permuted
condition labels 10,000 times to generate the distribution of test
statistics under the null hypothesis, from which the significance
could be determined (Eq.12). We then used maximum statistic cor-
rection (two-tailed) to take into account the multiple comparisons
problem, and extracted the statistical significance (p < 0.05) over
the 2.5th to 97.5th percentile range.

We performed groupwise comparisons for the median PLV
taken over electrodes using Wilcoxon rank sum test (Figures: 1b,
left & 3b, left). Our null hypothesis held that vigilance does not
affect PLV (two-tailed). We used false discovery rate (FDR) correc-
tion (Benjamini and Hochberg, 1995) to decrease the false discov-
ery rate otherwise arising from multiple comparisons. Similarly,
for ETCO2 (Fig. 3a) we used the two-tailed Wilcoxon rank sum test,
with null hypothesis that median frequency of respiration does not
change with respect to arousal state.

In order to evaluate the significance of phase-amplitude cou-
pling on the subject level (Fig. 1b, right & 3b, right), we employed
a method of time shifted surrogate data (Arnulfo et al., 2020;
Lachaux et al., 1999; Theiler et al., 1992). Surrogate data reflects
properties of the real signal as the autocorrelation structure is pre-
served, but effectively destructing correlations between two sig-
nals. First, we constructed the surrogate data by splitting the
phase of time-series x(t = 1,. . .,T) from a random time-point k into
x1 = x(1,. . .,k) and x2 = x(k,. . .,T), thus constructing the surrogate
time-series xs = [x2,x1]. We built the surrogate PLV null distribu-
tion, using 100 surrogate time-series. Using surrogate distribution,
we accepted or rejected the null hypothesis stating that PLV comes
from the null distribution (Eq.13). In all of the statistical tests, the
adjusted significance threshold was set as p < 0.05 for rejection of
the null hypothesis.

We used one sample sign test to assess whether the median
dPTE differed from zero, which would indicate the presence of
directionality in the phase-amplitude interaction. To correct for
false positives, we adjusted the p-values using FDR-correction
(Benjamini-Hochberg) with 95 % confidence level (Fig. 2b & 3e).
For groupwise two-tailed comparisons, we used two sample Wil-
coxon rank sum to test if the medians of awake and sleep groups
were equal (Fig. 2b & 3e). Similar to previous tests, we used FDR-
correction to obtain adjusted p-values with 95 % confidence level
Fig. 2. The phase of infra-slow fluctuations (ISF1) drives amplitudes of fast cortical oscilla
amplitudes in both directions: ISF->fast (solid line) and fast->ISF (dashed line) for wakef
and the units are in bits. b) The probability density estimate depicts the average directio
upon a sign change. Asterisks indicate statistical significance (adjusted p < 0.05*, 0.01**
while black asterisks represent two-sample groupwise comparisons. c) The topograph
difference (bottom). The difference topography is overlaid with a significance mask (
statistics correction (p < 0.05) are highlighted with yellow circles.
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(p < 0.05). We utilized previously calculated z-values to estimate

the effect sizes (g2) as defined by the equation: g2 ¼ ðZ= ffiffiffiffi

N
p Þ2,

where the total sample size is denoted by N (Fritz et al., 2012).
3. Results

3.1. Infra-slow frequency power increases during sleep

We hypothesized that EEG low frequency power should
increase in sleep in concert with previously described increases
in ISF BOLD signal power. To determine how the frequency charac-
teristics of the electrophysiological signal change in NREM sleep,
we used spectral analysis to assess the differences in the power
in infra-slow and higher frequency bands between sleep and
awake states (Fig. 1a). During sleep, whole head spectral power
was higher (2-sample permutation test) in the ISFEEG and RESPEEG
frequency band between 0.02–0.25 Hz (DRA = -0.519 %, p < 0.05,

Z
�
=-3.687), and on the other hand was decreased in frequencies

above 1.9 Hz (DRA = 0.328 %, p < 0.05, Z
�
=3.544). Slow-wave (0.2–

2 Hz) EEG topography revealed increased spectral power during
sleep, which was evident throughout most of the cortical surface,
except for the frontal electrodes. Consistent with our hypothesis,
the power of the ISF showed significant enhancement across broad
cortical regions during sleep, particularly in the frontal areas. Con-
versely, there was a decrease in high-frequency power when tran-
sitioning to sleep, indicating a shift in the dominant cortical
oscillation power from high to low frequencies during NREM sleep.

3.2. Sleep increases the synchronization between infra-slow
fluctuations and fast cortical amplitudes

We next tested the prediction that the coupling between the
physiological slow brain fluctuations and neuronal oscillations
would increase in sleep. To specifically investigate the connection
between the phase of ISF and the amplitudes of fast oscillations, we
utilized a phase-amplitude coupling estimator that relied on the
PLV (Vanhatalo et al., 2004). This estimator allows for the identifi-
cation of phase-amplitude coupling effects linked to specific ISF
frequencies in the amplitude signal. The oscillation period of ISFs
exhibits considerable variability, ranging from as short as ten sec-
onds to well over a hundred seconds. This poses a challenge since
phase is a characteristic of narrow-band signals, and thus phase-
based metrics need to be computed specifically for narrow-band
signals. To address this issue, we divided the ISFEEG data into two
distinct frequency ranges: ISF1-EEG (0.008–0.05 Hz) and ISF2-EEG
(0.05–0.1 Hz). It is worth noting that ISFs are commonly observed
around 0.02 Hz in both mice and humans (Watson, 2018). There-
fore, we present the results related to ISF2-EEG in the Supplemen-
tary section (Figures S2 & S3).

In line with our hypothesis, the phase-amplitude coupling
between ISF1-EEG phase and the fast amplitudes was increased in
sleep (mean ± SD, PLV=0.211 ± 0.022) compared to awake
(PLV = 0.178 ± 0.014) recordings (Fig. 1b, left). Groupwise differ-
tions. a) The box plot illustrates phase transfer entropy (PTE) between ISF1 and fast
ulness (red) and sleep (blue). The fast frequency bands are denoted by Greek letters
nal PTE (dPTE). As dPTE is a directional metric, the net prediction direction changes
, 0.001***): colored asterisks denote significant non-zero drive in one-sample tests,
y displays the average dPTE topography for awake (top), sleep (middle), and the
permutation testing, p < 0.05). Electrodes exhibiting significance after maximum
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ences in phase-amplitude coupling were significant (Wilcoxon
rank sum, FDR) between the ISF1-EEG phase and the amplitude of
delta (DPLV = -0.029, padj = 0.031, Z = -2.742), alpha (DPLV = -
0.081, padj = 0.002, Z = -3.773), and beta (DPLV = -0.023, padj = 0.037,
Z = -2.440) bands. The main emphasis of the differences were on
central brain regions (Fig. 1c), where blue areas correspond to
stronger PLV during sleep. Theta (DPLV = -0.017) and gamma
(DPLV = -0.018) frequencies contained no significant differences.
To evaluate the significance of coupling at the individual electrode
level, we created a surrogate phase-locking value PLV distribution
for each PLV by employing time-shifted surrogate data. We
observed a similar trend in the PLV compared to the surrogates,
as we did with the raw PLVs (Fig. 1b, right). The interquartile range
for scalp electrodes showing significant (p < 0.05) phase-amplitude
coupling was lower during wakefulness, with 5–15 % of channels
exhibiting significant coupling effects. Similarly, during sleep, sig-
nificant effects were observed in 5–35 % of electrodes.

To examine how the phase differences were distributed and
whether they were coherent or not, we computed probability dis-
tributions for the average phase-amplitude coupling phase differ-
ences between the ISF1-EEG and fast oscillations and across all
frequency bands (Fig. 1d & Figure S6). In wakefulness, the phase
differences exhibited a relatively uniform distribution. During
sleep, there was a substantial deviation in the pattern, primarily
affecting frontal, parietal and central electrodes. This change was
characterized by a clear inclination towards phase differences of
p⁄2, which corresponded to the falling phase of the ISF cycle.

Collectively, these findings demonstrate a significant coupling
between ISFs and the amplitude dynamics of fast neuronal oscilla-
tions in both awake and sleep states. Moreover, the strength and
extent of this coupling are notably enhanced across the cortical
surface during sleep.
3.3. Electrophysiological brain rhythms are predicted by infra-slow
phase

We next asked whether there was any directed net drive, such
that ISFs were driving the cortical amplitude fluctuations, rather
than emerging as their consequence. To resolve this question, we.

calculated directed phase-amplitude coupling according to PTE
between the phase of ISFs and the fast amplitudes. Upon assessing
PTE in both possible directions of interaction (Fig. 2a), we found
increased correlations for both directions and in all frequency
bands during the awake state in comparison to sleep.

To identify whether the slow physiological or fast neuronal
oscillations were the driver of the other, we configured PTE into
a directional form. This approach revealed significant (Sign test,
FDR) dPTE in all frequency bands during waking state: delta
(dPTE = 0.099 bit, padj < 0.001), theta (dPTE = 0.093 bit, padj < 0.001),
alpha (dPTE = 0.110 bit, padj < 0.001), beta (dPTE = 0.090 bit,
padj < 0.001) and gamma (dPTE = 0.103 bit, padj < 0.001) and like-
wise in sleep: delta (dPTE = 0.038 bit, padj < 0.001), theta
(dPTE = 0.052 bit, padj < 0.001), alpha (dPTE = 0.062 bit, padj = 0.001),
Fig. 3. EEG respiratory frequency coupling and drive. a) Probability estimates of the indiv
of phase-amplitude coupling showing median phase-locking values (PLV) between res
statistically significant differences (adjusted p < 0.05*, 0.01**, 0.001***) in coupling stren
On the right, Box plot describing the number of significantly coupled electrodes per sub
Difference in average PLV (awake-sleep) overlaid with permutation testing (p < 0.05)
(p < 0.05) is visualized with yellow circles. d) Phase transfer entropy (PTE) for both directi
interquartile range (IQR) and whiskers 1.5*IQR in units of bits. On the left side, PTE bet
fluctuations (ISFEEG) and RESPEEG similarly for both directions (solid and dashed lines). e)
is a directional metric, the net prediction direction changes upon a sign change. Asterisks
in one-sample tests, while black asterisks represent two-sample groupwise comparison
(permutation testing, p < 0.05). Electrodes exhibiting significance after maximum statis
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beta (dPTE = 0.053 bit, padj = 0.004) and gamma (dPTE = 0.054 bit,
padj = 0.014) (Fig. 2b). Of particular importance, the ISF phase
demonstrated a higher degree of predictability for the fast rhythms
than vice versa, thus providing compelling evidence that ISFs drive
the amplitude dynamics of fast oscillations.

We found an increase in the median dPTE (Wilcoxon rank sum,

FDR) during wakefulness (dPTE = 0.099 ± 0.008), in contrast to

sleep (dPTE = 0.052 ± 0.009): delta (D dPTE = 0.061 bit, padj = 0.003,
Z = 3.195), theta (D dPTE = 0.041 bit, padj = 0.018, Z = 2.616), alpha
(D dPTE = 0.048 bit, padj = 0.003, Z = 3.371), beta (D dPTE = 0.037 bit,
padj = 0.003, Z = 3.295) and gamma (D dPTE = 0.049 bit, padj = 0.001,
Z = 3.975). The magnitudes of dPTE remained stable across fre-
quency bands, with minimal variation.

The lowered net drive during sleep, arose from decreased corre-
lation in the direction from ISF to fast oscillations, and a simultane-
ous smaller decrease for the correlation in the opposite interaction
direction (Fig. 2a). Scalp topography of the groupwise difference in
dPTE (Fig. 2c) highlights the involvement of spatially overlapping
regions, which was least evident in the theta frequency band.
These findings establish the initial causal link between ISFs and
the drive of fast cortical brain rhythms during wakefulness and
sleep states.

In general, increased coupling should reflect increased informa-
tion transfer between coupled oscillators (Ceguerra et al., 2011).
We initially hypothesized that the increased phase-amplitude cou-
pling observed during sleep (see Fig. 1b) was accompanied by low-
ered directional drive, since the phase difference tends to remain
more constant with higher coupling (see Fig. 1d).

To test this conjecture, we quantified the relationship between
phase locking strength and prediction magnitudes. This analysis
revealed no linear correlation (awake: R2 = 0.013, sleep:
R2 = 4*10-5) between the two factors (Figure S4a).

We next asked whether the spectral power increase of ISF dur-
ing sleep pointed to elevated autocorrelations, which might
thereby underlie the changes in directional drive. However, the
autocorrelations in terms of transfer entropy did not correlate with
power (Wilcoxon rank sum, FDR) in ISF1 (Z = -2.767, padj = 0.068),
delta (Z = -1.233, padj = 0.610), theta (Z = -0.629, padj = 0.635), alpha
(Z = -1.987, padj = 0.188), beta (Z = -2.038, padj = 0.188), gamma
(Z = -0.730, padj = 0.621), and thus did not explain the difference
in dPTE between arousal states (Figure S5), leading us to reject that
hypothesis. Study utilizing the Kuramoto model, revealed that
information transfer precedes coupling in such a way that
decreased information transfer was observed before the oscillators
were fully synchronized (Ceguerra et al., 2011). Thus, the
decreased information transfer we observed with transition to
sleep could indicate an approach towards such a stable state.

3.4. EEG respiratory phase is a driver for fast oscillation amplitudes

Our recent study showed that respiratory brain pulsations
increase in the magnetic resonance encephalography (MREG)
BOLD signal and overlap with fronto-parietal slow-wave electro-
idual respiratory frequencies taken from end-tidal CO2. b) On the left, the scatter plot
piration frequency EEG signal (RESPEEG) and fast frequency bands. Asterisks mark
gth between awake (red) and sleep (blue) states. Gray lines connect paired subjects.
ject, scaled to percentiles. The fast frequency bands are denoted by Greek letters. c)
p-value mask. A stricter significance criterion using maximum statistic correction
ons: RESPEEG ->fast (solid line) and fast-> RESPEEG (dashed line). The box contains the
ween RESPEEG and fast frequency bands. On the right side, PTE between infra-slow
The probability density estimate depicts the average directional PTE (dPTE). As dPTE
indicate statistical significance: coloured asterisks denote significant non-zero drive
s. f) Topography shows median dPTE difference overlaid with a significance mask
tics correction (p < 0.05) are highlighted with yellow circles.
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physiological changes in sleep (Helakari et al., 2022). The increased
role of respiration in current research led us asking if respiration in
EEG exhibits coupling with fast cortical amplitude oscillations, and
if sleep has any effect on this association. To address this, we
designed the same calculations as above with ISF, aiming to assess
phase-amplitude coupling using subject specific individual respira-
tion frequency EEG.

We found respiration frequencies to be higher (Wilcoxon rank

sum, Z = 1.99, p < 0.05) during wakefulness (mean ± SD, f
�
=0.26 ±

0.041 Hz) compared to sleep (f
�
= 0.23 ± 0.035 Hz) (Fig. 3a). The

average level of phase-amplitude coupling was stronger during
wakefulness (PLV = 0.185 ± 0.029) in contrast to sleep (PLV =
0.167 ± 0.006) (Fig. 3b), but we found no significant differences
(Wilcoxon rank sum, FDR) between arousal states in any of the
tested frequency bands. As before, we generated a surrogate PLV
distribution for each PLV. Comparison with surrogate distributions
showed that fast oscillation amplitudes are widely coupled with
RESPEEG phase across the cortex. In the awake state recordings,
the interquartile range of significantly (p < 0.05) coupled elec-
trodes spanned from 15 % up to 80 %. However, during sleep, this
range was narrower, ranging from 15 % to just 60 %. Even though
whole head differences were non-significant, we found significant
PLV differences for individual electrodes with the slowest delta
band in frontal regions, and for theta frequencies in occipital areas
(Fig. 3c).

As described above, to investigate further the directional drive
between the RESPEEG and fast rhythms we quantified PTE and its
directional form dPTE. Correlations were similar in both directions
with respect to frequency band (Fig. 3d) with elevated PTE in the
RESPEEG ? fast direction. The baseline of RESPEEG PTE magnitudes
was lower in comparison to the ISF-fast prediction. There was a
robust dPTE between RESPEEG and fast brain rhythms (Fig. 3e) as
indicated also by PTE. A net drive was present in almost every fre-

quency band tested during wakefulness (dPTE = 0.049 ± 0.007),
except for the delta rhythm, which was unaltered by sleep

(dPTE = 0.085 ± 0.010). The slower RESPEEG drove fast oscillation
amplitudes (Sign test, FDR) during wakefulness in all, except delta
frequency band: delta (dPTE = 0.051 bit, padj = 0.189), theta
(dPTE = 0.047 bit, padj = 0.002), alpha (dPTE = 0.060 bit, padj < 0.001),
beta (dPTE = 0.041 bit, padj < 0.001) and gamma (dPTE = 0.048 bit,
padj = 0.002). In sleep, we found the same slow phase driven net
directionality: delta (dPTE = 0.073 bit, padj = 0.030), theta
(dPTE = 0.093 bit, padj < 0.001), alpha (dPTE = 0.096 bit, padj = 0.002),
beta (dPTE = 0.080 bit, padj < 0.001) and gamma (dPTE = 0.084 bit,
padj < 0.001). Topographical mapping (Fig. 3f) separated occipital-
parietal electrodes from the rest of the scalp, where there were
only non-significant differences.

We also wanted to know if there was any interaction between
the slow physiological ISFEEG and RESPEEG. With slower ISF1 fre-
quency range (0.008–0.1 Hz) we found increased (Wilcoxon rank
sum, FDR) phase-amplitude coupling in sleep (DPLV = -0.03,
padj = 0.008, Z = -3.245) (Fig. 3b). When PLVs were compared with
surrogate distribution, we found that only 10 % of the electrodes
were significantly coupled. Nonetheless, we still detected a signif-
icant drive (Sign test, FDR) directed from ISF1-EEG to RESPEEG for
both awake (dPTE = 0.089 bit, padj < 0.001) and sleep (dPTE = 0.046
bit, padj < 0.001) (Fig. 3e). We found the drive of respiration by the
ISF1-EEG phase decrease (Wilcoxon rank sum, FDR) during sleep (D
dPTE = 0.043 bit, padj < 0.001, Z = 4.352) across the majority of the
scalp (indicated by red areas), with no differences in frontal elec-
trodes (Fig. 3f).

Taken together, these results confirmed our prediction that res-
piration phase would couple with cortical amplitudes extending
from slow delta oscillations to the fast gamma range, and on a spa-
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tial scale even larger than for the ISF. We further showed, using
directional metrics, that respiration phase also drives neuronal
amplitudes. This was the first study to demonstrate that sleep state
does not influence the coupling strength or mediate changes in net
directionality between respiration and fast rhythms, despite respi-
ration rhythm slowed down while showing increased spectral
power.
4. Discussion

In this electrophysiological study of healthy humans across
awake and sleeping states, we have uncovered multiple novel
interactions with directional coupling, namely infra-slow physio-
logical oscillations, respiration, and fast cortical activity. We estab-
lished that the phases of ISFs and respiration were mutually
coupled and together exhibited directional phase-amplitude mod-
ulation of the amplitudes of fast neuronal activities over a wide
range of frequencies and cortical areas during wakefulness and
sleep. The slow modulations of fast activities were independent
of the power of the slow oscillations and were obtained through
phase-amplitude coupling. Moreover, we found that a transition
in arousal state from wakefulness to sleep was followed by low-
ered net drive of infra-slow phase. Our findings thus show that
spontaneous brain activity is coordinated by the phases of respira-
tion and infra-slow physiological oscillations in a manner depen-
dent on the arousal state.
4.1. Infra-slow phase contributes to the drive of cortical excitability

A comparison of wakefulness and sleep conditions showed that
ISFEEG power increased during sleep, along with a concurrent
reduction in fast oscillation amplitudes (see Fig. 1a). This increase
of infraslow frequency power during sleep is in line with earlier
observations (Helakari et al., 2022; Marshall et al., 1998, 1996).
Previous work has indicated that ISF phase could be coupled at
least locally with amplitudes of fast neuronal activities during
detection-task performance (Monto et al., 2008) and during sleep
(Vanhatalo et al., 2004), albeit based on studies with limited elec-
trode coverage and cohort sizes. We herein used high-density 256-
channel fbEEG in a group of 21 subjects to provide the most exten-
sive view yet of ISF coupling in a direct comparison between sleep
and waking states.

We found that fast oscillation amplitudes were phase-
amplitude coupled with ISFs during wakefulness, and to an even
great extent during sleep. For the first time, we showed that not
only the magnitudes but also the spatial extent wherein ISFEEG
phase couples with fast neural oscillation amplitudes increased
during sleep (see Fig. 1 b-c) via distinct coupling patterns (see
Fig. 1 d). In conventional understanding, human sleep EEG is char-
acterized by increased power of slow delta waves and the presence
of sleep spindles occurring in the overlapping beta band (Erwin
et al., 1984). In addition to these features of sleep, alpha rhythm
can be suppressed during the period of drowsiness preceding sleep
(Erwin et al., 1984). Interestingly, the most conspicuous of the pre-
sent ISF phase-amplitude coupling changes occurred in these same
frequency bands, all of which are well-linked to sleep, thus
strengthening the association between ISFs and sleep.

While prior studies have demonstrated a phase-amplitude
interaction of ISFs with fast neuronal activity, they relied upon cor-
relative, undirected measures, which do not support the drawing of
causal inferences. To resolve whether ISFs modulate the fast activ-
ities, or if ISFs are rather a consequence of the emergent slow
dynamics of fast activities, we used a novel directional phase-
amplitude coupling analysis. In this approach, phase transfer
entropy (PTE) quantifies in a history-controlled manner the mutual
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predictive powers of, respectively, ISF phase, and the amplitudes of
fast neural rhythms. Using PTE, we found that the ISFEEG phase was
a robust driver of the amplitude fluctuations of fast oscillations.
Moreover, this directional phase-amplitude coupling was fre-
quency dependent, such that the slowest frequencies (ISF1-
EEG > ISF2-EEG > RESPEEG) were the strongest drivers.

One might reasonably expect the directional drive to be stron-
ger during sleep than in wakefulness, given the precedents set by
the circumstance of undirected phase-amplitude coupling and ISF
power. Surprisingly, the present analysis revealed that net drive
was lower in sleep. We deduced that an increased bidirectionality
of the interaction between fast and infraslow oscillations would
have a cancelling effect on the net drive. Nonetheless, prediction
values dropped to a similar degree in both (fast ? ISF &
ISF ? fast) directions during sleep (see Fig. 2a), with a reduced
net drive, suggesting that the interaction does not become more
bidirectional as compared to the awake state. We also showed that
reduced ISF drive was not linearly related to phase locking (see Fig-
ure S4a) or autocorrelation (see Figure S5).

By exclusion, we suppose that the directed ISF drive may thus
arise through mechanisms that are partially independent from
the pathways that achieve the instantaneous, correlative phase-
amplitude coupling and that establish the overall signal power
levels. This proposal seems to require invoking a new model in
which some undefined driver could coordinate the phase transi-
tions both of ISF and fast neural oscillations during sleep. Such a
model might necessarily require including additional factors such
as brain water dynamics (Borchardt et al., 2021; Myllylä et al.,
2018).

4.2. Respiration phase operates on wide spatial extent during
wakefulness and sleep

Studies conducted several decades ago showed that responses
in several brain regions to olfactory stimulus couple with nasal res-
piration (Adrian, 1942; Fontanini et al., 2003; Kay and Freeman,
1998). The first evidence of coupling between breathing and brain
was found in mice during local field potential recordings (Biskamp
et al., 2017; Ito et al., 2014; Yanovsky et al., 2014; Zhong et al.,
2017). Fluctuations of brain activity co-varied with the respiratory
envelope when monitored as oscillatory electrophysiological activ-
ity recorded using intracranial EEG (Herrero et al., 2018) and like-
wise in fMRI BOLD signals (Raitamaa et al., 2021). Furthermore,
respiration phase and rate has been shown to couple with different
brain regions during sleep in anesthetized mice (Girin et al., 2021;
Hammer et al., 2021; Tort et al., 2021). Even though respiration
have been studied extensively, only a few human studies have
been conducted, exploring the effect of respiration to brain neu-
ronal rhythm amplitude dynamics. During rest, Perl et al. (2019)
discovered that respiration is accompanied by EEG changes linked
to attention. Later, Kluger and Gross (2021) suggested that resting
state MEG amplitudes are coupled across a wide range (2–150 Hz)
by respiratory phase.

Considering the previous studies, it seems plausible that respi-
ration has a role in organizing spontaneous brain activity. Still,
there were hitherto no studies considering the effect of sleep on
respiratory coupling with brain oscillations in humans. Present
findings prompted us to delve deeper into the potential influence
of respiration on neurophysiological rhythms, whether through
direct or indirect means by affecting ISF drive. Our results suggest
that the amplitude dynamics of fast neuronal activity are phase-
amplitude coupled and are driven by the respiration phase of
RESPEEG, rather than exclusively by the phase of ISFEEG. Interest-
ingly, in contrast to ISFEEG, the phase-amplitude coupling and
directional drive did not exhibit significant differences between
sleep and waking states. However, the transition from wakefulness
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to sleep revealed a link between respiratory rate and coupling
strength, where slower breathing was associated with stronger
coupling (see Figure S4c). These findings provide the initial evi-
dence of respiration drive in human brain during sleep.

Previous work involving full night fMRI recordings showed that
(<0.1 Hz) vasomotor waves increase in sleep (Chang et al., 2016;
Liu et al., 2018). A recent ultrafast MREG BOLD study in humans
indicated that increased EEG slow-wave power during sleep was
accompanied with increased physiological brain pulsations,
namely: vasomotor, respiratory and cardiovascular pulsations
(Helakari et al., 2022). In the light of this, we suppose that the
physiological pulsations could be linked to diurnal neurophysio-
logical changes. The several physiological pulsations affecting both
blood and cerebrospinal fluid (CSF) dynamics could in theory be a
unifying external factor to explain the reduced drive of neuronal
activity by the electrical gradient across the BBB during sleep,
which is a matter requiring further investigation. As an index of
BBB permeability (Nita et al., 2004; Voipio et al., 2003), EEG ISFs
may emerge as an object of study in a variety of brain injury and
disease contexts. The generalization of this concept calls for further
investigation of ISF dynamics with cortical rhythms in various clin-
ical conditions.

4.3. Limitations directing future work

Although our study design had limited recording time, we were
able to make the most of the time we had available. We were able
to record light sleep by using sleep deprivation to encourage sleep
in the scanner, as demonstrated by the sleep scores in Table S1. For
deeper sleep stages and rapid eye movement (REM) sleep, longer
scan times would be required to achieve more comprehensive
results. The awake and sleep scans were performed at different
times of the day, such that circadian rhythms could have con-
founded the study. Additionally, after excluding various measure-
ments, six of the 21 volunteers ended up providing unpaired
measurements. We addressed this by using only unpaired statisti-
cal testing. Overall, we have leveraged these limitations to obtain
valuable insights into the relationship between slow physiological
and fast brain oscillations.

BBB permeability scans in conjunction with fbEEG recordings
might eventually confirm the occurrence of change in hydrody-
namics over BBB glia limitans in sleep. However, there is not yet
any technology affording sufficiently fast recordings of BBB perme-
ability changes across the sleep-wake cycle. Indeed, current exper-
imental approaches are limited to invasive intracranial procedures,
which are apt to perturb the flow of interstitial fluid and CSF (Plog
et al., 2019; Shoffstall et al., 2018). The development of a non-
invasive, multimodal neuroimaging method might eventually
establish whether physiological CSF/blood pulsations are introduc-
ing hitherto undetected driving effects on sleep-related electro-
physiological activity changes.
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