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Abstract

The adverse health effects of sedentary behavior and prolonged sedentary bouts are well-known.
However, it is still unknown how physical activity can modify adverse health impacts related to
sedentary behavior. The purpose of this study was to develop signal analysis methodology for
sedentary behavior and physical activity classification from raw data of a hip-worn accelerometer
and to investigate associations of patterns of sedentary behavior with lipid and glucose
metabolism.

A machine learning model was developed and validated using acceleration data, which
included nine predefined and controlled typical daily activities ranging in intensity from sedentary
to vigorous physical activity. Acceleration data was collected from 22 Finnish adults using a
triaxial accelerometer attached to an elastic belt on a hip. The data were classified into five
categories (lying down, sitting, and light, moderate, and vigorous physical activity). Thirty-six
middle-aged Finnish adults wore an accelerometer for 14 days, and their sedentary behavior and
sitting characteristics were determined. In addition, associations of sedentary behavior, sitting, and
physical activity with glucose and lipid metabolism were investigated in the Northern Finland
Birth Cohort 1966 46-year follow-up (n=5,832). Participants completed health and lifestyle
questionnaires and attended clinical examinations and two weeks of sedentary behavior and
physical activity measurements. Isotemporal substitution modeling was used for investigating
time reallocations from sedentary to physical activities.

The developed machine learning model provided acceptable accuracy for sedentary behavior
and physical activity classifications. The method can be used for describing characteristics of
sedentary behavior and sitting separately. Patterns of SB were more consistently associated with
lipid metabolism than those of sitting. Associations between sedentary behavior and
cardiometabolic health depended on moderate-to-vigorous physical activity levels. Replacement
of sedentary behavior and prolonged sedentary bouts by at least light physical activity improved
glucose metabolism. The results of this study can be used for planning evidence-based
interventions to decrease sedentary behavior in midlife.

Keywords: accelerometer, cardiometabolic health, glucose metabolism, insulin
resistance, machine learning, physical activity, sedentary behavior





Tjurin, Petra, Paikallaanolo keski-iässä. Mittausmenetelmän kehittäminen ja
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Tiivistelmä

Runsaan paikallaanolon ja pitkien paikallaanolojaksojen haitalliset vaikutukset terveyteen ovat
hyvin tiedossa, mutta edelleen puuttuu tietoa, kuinka fyysinen aktiivisuus voi muokata paikallaa-
nolon haitallisia vaikutuksia terveyteen. Työn tarkoituksena oli kehittää signaalinkäsittelymene-
telmä paikallaanolon ja fyysisen aktiivisuuden luokittelemiseksi lantiolla pidettävän aktiivisuus-
mittarin raakakiihtyvyyksistä sekä tutkia paikallaanolon piirteiden yhteyksiä rasva- ja sokeriai-
neenvaihduntaan.

Koneoppimismalli kehitettiin ja validoitiin käyttämällä kiihtyvyysdataa, joka sisälsi yhdek-
sän ennalta määriteltyä ja kontrolloitua tyypillistä arkiaktiviteettia, joiden intensiteetti vaihteli
paikallaanolosta raskaaseen fyysiseen aktiivisuuteen. Kiihtyvyysdata kerättiin 22 suomalaisen
aikuisen lantiolta elastiseen vyöhön kiinnitetyllä kolmiakselisella kiihtyvyysanturilla, jonka raa-
kadata luokiteltiin viiteen eri luokkaan (makaaminen, istuminen sekä kevyt, keskiraskas ja ras-
kas fyysinen aktiivisuus). Kolmekymmentäkuusi keski-ikäistä suomalaista käyttivät kiihtyvyy-
santuria 14 päivän ajan ja heidän paikallaanolonsa ja istumisensa piirteet määritettiin. Paikallaa-
nolon, istumisen ja fyysisen aktiivisuuden yhteyksiä rasva- ja sokeriaineenvaihduntaan tutkittiin
Pohjois-Suomen vuoden 1966 syntymäkohortin 46-vuotistutkimuksessa (n = 5832). Tutkittavat
täyttivät terveys- ja elämäntapakyselyitä ja osallistuivat kliinisiin tutkimuksiin sekä kahden vii-
kon mittaisiin paikallaanolon ja fyysisen aktiivisuuden mittauksiin. Isotemporaalisella korvaus-
mallilla tutkittiin paikallaanoloajan korvaamista fyysisellä aktiivisuudella.

Kehitetyllä koneoppimismenetelmällä voidaan riittävällä tarkkuudella luokitella paikallaa-
noloa ja fyysistä aktiivisuutta. Menetelmää voidaan käyttää paikallaanolon ja istumisen piirtei-
den kuvailussa erikseen. Paikallaanolon piirteet olivat selvemmin yhteydessä rasva-aineenvaih-
duntaan kuin istumisen piirteet. Paikallaanolon yhteydet rasva-aineenvaihduntaan olivat riippu-
vaisia keskiraskaan ja raskaan fyysisen aktiivisuuden tasosta. Paikallaanolon ja pitkien paikal-
laanolojaksojen korvaamisella vähintään kevyellä fyysisellä aktiivisuudella oli suotuisia vaiku-
tuksia sokeriaineenvaihduntaan. Tutkimuksen tuloksia voidaan hyödyntää näyttöön perustuvien
keski-ikäisten paikallaanoloa vähentävien interventioiden suunnittelussa.

Asiasanat: fyysinen aktiivisuus, insuliiniresistenssi, kiihtyvyysanturi, koneoppiminen,
paikallaanolo, sokeriaineenvaihdunta, sydänterveys
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1 Introduction 

The leading causes of death globally are cardiometabolic diseases, such as 

cardiovascular diseases (CVDs), diabetes, and chronic kidney failure (de Waard et 

al., 2019; World Health Organization [WHO], 2022). Unhealthy lifestyles, 

including physical inactivity, an unhealthy diet, obesity, smoking, and the harmful 

use of alcohol, increase the risk for cadiometabolic diseases. Although the health-

enhancing benefits of physical activity (PA) are well-known (Lear et al., 2019), the 

growing number of adults aged 18–64 years old do not meet the current PA 

guidelines of at least 150 to 300 minutes of moderate-intensity PA (MPA), at least 

75 to 150 minutes of vigorous-intensity PA (VPA), or an equivalent combination of 

moderate-to-vigorous PA (MVPA) throughout the week (Guthold et al., 2018; 

WHO, 2020). In addition, adults spend most of their waking time being sedentary 

(López-Valenciano et al., 2020). 

Sedentary behavior (SB) and prolonged uninterrupted bouts of SB are widely 

recognized as lifestyle risk factors for cardiometabolic diseases and all-cause 

mortality worldwide (Chastin et al., 2015a; Diaz et al., 2017; Lavie et al., 2019). 

The recent PA guidelines recommend that adults aged 18-64 sit less and replace 

sedentary time with any intensity of PA (WHO, 2020). Nevertheless, it is still 

unclear which is the maximum daily amount of SB and how SB should be 

interrupted to avoid its unfavorable health effects (Dempsey et al., 2020). 

The PA and SB guidelines have traditionally been based on self-reported 

amounts of total time engaged in MVPA and sitting per day or week. Recently, the 

use of accelerometers to measure daily PA and SB has markedly increased, and 

accelerometers have enabled the recording of PA and SB patterns in a free-living 

environment over the whole 24-h cycle (Owen et al., 2020). Although 

accelerometers have been stated to be more accurate, reliable, and representative 

for measuring PA and SB than self-reported methods (Skender et al., 2016), 

accelerometers have also been associated with limitations, such as the dependency 

on the attachment site and analysis methods. As a result, the use of raw acceleration 

signals with a detailed description of the data analysis methods used has been 

proposed (Wijndaele et al., 2015). 

Traditionally, SB has been considered an independent risk factor for 

unfavorable health conditions despite the amount of PA. Still, recent research has 

recognized that all PA behaviors have an influence on health, and health-related 

associations of SB may be modified by PA (Rosenberger et al., 2019; Stamatakis et 

al., 2019a). For instance, an increase in MVPA may attenuate health risks related 
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to high volumes of SB (Ekelund et al., 2016). The development of more advanced 

methods to measure and analyze PA has enabled us to find multidimensional 

behavioral patterns of PA over the whole 24-h cycle. However, more evidence is 

needed on the combined relationships between the patterns of SB and PA with 

cardiometabolic health (Rosenberger et al., 2019). 

This study aimed to develop and validate data analysis methodology for 

classifying SB and PA from raw triaxial accelerometer data and to use this 

methodology for analyzing associations of characteristics of free-living SB with 

cardiometabolic health in middle-aged Finnish adults. 
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2 Review of the literature 

2.1 Definition of sedentary behavior and physical activity 

Physical activity is defined as any bodily movement produced by skeletal muscles 

with energy expenditure (EE) over the resting metabolic rate (Caspersen et al., 

1985). PA includes all daily activities and exercises requiring a physical effort with 

the intensity of at least light physical activity (LPA). Physical inactivity means the 

lack of the required amount of MVPA described in the health-enhancing PA 

guidelines (WHO, 2020). In addition, sedentary behavior is defined as any waking 

time behavior spent in a sitting, reclining, or lying posture with low energy 

expenditure ≤ 1.5 metabolic equivalent of task (MET) (Tremblay et al., 2017). SB 

and PA can coexist, meaning that the same person can have high amounts of MVPA 

and still spend most of the day being sedentary (Owen et al., 2010). 

The metabolic equivalent of task is widely used for describing the intensity of 

daily activities. The standard MET is defined as the oxygen consumption of 3.5 

ml/kg/min and is equal to 1 kcal/kg/h regardless of body size. One MET 

corresponds to resting EE while sitting quietly, and a higher MET value describes 

a higher EE of a physical task. A wide range of typical physical activities have been 

coded based on their intensity in a Compendium of Physical Activities (Ainsworth 

et al., 2000; Ainsworth et al., 2011).  

Regular PA has several well-known health benefits, such as the reduced risk 

for chronic disease morbidity and mortality worldwide (Guthold et al., 2018). The 

recommendations of health-enhancing PA so far have primarily been based on 

MVPA. The unfavorable effects of excessive SB on health have been widely 

acknowledged, and SB recommendations have been added to the latest health-

enhancing PA guidelines (WHO, 2020). Recent research has also shown that 

replacing sedentary time even with LPA, such as light-intensity household tasks 

and slow walking, has favorable effects on health (Chastin et al., 2019; Healy et al., 

2007). Especially the most inactive individuals can feasibly achieve health benefits 

by increasing the amount of LPA at the expense of SB (Van der Berg et al., 2017). 

In addition to excessive sedentary time, prolonged bouts of SB have been 

shown to be detrimental to health (Diaz et al., 2017; Healy et al., 2008; Owen et al., 

2020; Saunders et al., 2018). However, a wide range of estimations is used to 

determine SB bout or break. A sedentary bout is determined as a period of 

uninterrupted sedentary time typically lasting at least 1–10 minutes and ending with 
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standing up or any intensity PA (Tremblay et al., 2017). A sedentary break is 

determined as a non-sedentary bout in between two sedentary bouts and is typically 

a PA bout or transition from sedentary to standing or stepping with a duration of at 

least one minute (Husu et al., 2016; Sardinha et al., 2017; Tremblay et al., 2017; 

van der Velde et al., 2017). In addition, the definition of a prolonged bout of SB 

varies and is often at least 20 to 60 minutes long (Diaz et al., 2017; Healy et al., 

2008; Tremblay et al., 2017). Consequently, there is a lack of consensus on how SB 

should be interrupted to avoid its detrimental health effects. 

2.2 Measurement of sedentary behavior and physical activity 

Accurate and reliable measurements of sedentary behavior and physical activity are 

key factors in determining SB and PA patterns and their associations with health 

markers. SB and PA can be assessed using subjective or objective methods. 

Subjective methods are based on the subjects’ own estimations of their SB and PA, 

which usually are collected using questionnaires and diaries. Conversely, objective 

methods are based on the information given by another person or device, and the 

information can be collected using direct observation, device-based, or EE-based 

methods. Device-based methods measure at least one biomechanical or 

physiological parameter, typically collected using wearable monitors like 

accelerometers, pedometers, and heart rate monitors. Wearable monitors can 

contain one type of sensor, or they can be multi-sensor devices. In addition, the EE 

of PA and SB can be measured using doubly-labeled water (DLW) and indirect 

calorimetry. (Ainsworth, 2009; Aunger & Wagnild, 2022; Butte et al., 2012; Sylvia 

et al., 2014) 

2.2.1 Questionnaires and diaries 

Questionnaires and diaries have traditionally been used as self-reporting methods 

for assessing SB and PA (Ainsworth, 2009). They can be used both in short-term 

(e.g., weeks or days) and long-term (participant’s usual habits) estimation of SB 

and PA in large epidemiological samples since they are cost-effective and easy to 

implement. The advantages of self-reports are that the type and context of the SB 

can be easily collected (Aunger & Wagnild, 2022). Various questionnaires are 

validated, have very good reliability and reproducibility, and are accepted measures 

of SB and PA, such as the International Physical Activity Questionnaire (IPAQ) and 
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Global Physical Activity Questionnaire (GPAQ) (Bull et al., 2009; Graiq et al., 

2003).  

However, subjective methods have some limitations. The validity of subjective 

methods has been questioned in studies that compared self-reporting methods 

against objective methods. Self-reporting methods have been reported to 

underestimate the amount of SB and LPA and overestimate the amount of MVPA 

compared to objective methods (Prince et al., 2008; Steene-Johannessen et al., 

2016). In addition, intensive self-monitoring may decrease the amount of 

participants' SB and self-reporting methods can be burdensome to participants and 

researchers (Aunger & Wagnild, 2022; Shephard, 2003). The results of self-

reporting methods can be affected by recall, social desirability bias, and 

misinterpretation (Aunger & Wagnild, 2022). 

2.2.2 Direct observation 

Direct observation is one of the most basic and long-used methods for measuring 

SB and PA. Currently, the method is typically used to validate other SB and PA 

measurement techniques, such as accelerometers, since it can accurately 

differentiate static postures and measure the context of SB and PA (Kozey-Keadle 

et al., 2011). In addition, the method is feasible for assessing SB and PA in 

participants with cognitive restrictions since the observation is done by a trained 

observer without requiring an effort from participants.  The observer records 

predetermined features of a participant’s sedentary and physical activity behaviors, 

e.g., time spent in different postures, SB context, or the number of SB bouts, in 

real-time or from a video recording. Direct observation does not require expensive 

equipment. However, some limitations must be noted. The results of direct 

observation depend on the observer, and continuous observation can change the 

participant’s behavior. In addition, direct observation is associated with limits to 

measure free-living SB and PA over lengthy periods due to the loss of privacy and 

high use of time. (Aunger & Wagnild, 2022; Loprinzi & Cardinal, 2011; Sylvia et 

al., 2014). 

2.2.3 Energy expenditure-based techniques 

Doubly-labeled water is widely acknowledged as the gold standard technique for 

measuring energy expenditure in free-living conditions. DLW technique is typically 

used to calibrate and validate other SB and PA measurement techniques. Doubly-
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labeled water is a non-invasive and accurate technique to measure free-living EE 

over a measurement period. Still, it cannot provide information about patterns or 

daily fluctuation of SB and PA. In addition, DLW requires the use of expensive 

isotopes and mass spectrometry. 

The first application of DLW in humans was reported in 1982 (Schoeller & van 

Santen, 1982), and it is well-validated to date (Westerterp, 2017). The technique is 

based on enriching the body's water with isotopes of hydrogen (2H) and oxygen 

(18O) by a dose of ingested doubly-labeled water (2H2
18O) and their different 

turnover rates from the body as a function of carbon dioxide production. The 

dilution spaces of isotopes are assessed from blood, saliva, or urine samples, 

collected at the start and end of the measurement period of 1–3 weeks. The length 

of the measurement period depends on the biological half-lives of the isotopes. It 

is typically one week in children and endurance athletes, two weeks in adults, and 

three weeks in older adults (Westerterp, 2017). The samples are analyzed by isotope 

ratio mass spectrometry.  

Indirect calorimetry estimates EE from the measured pulmonary gas exchange 

(O2 and CO2). During the measurement, the subject can be inside a metabolic 

chamber or wear a facemask connected to a portable pulmonary gas analyzer. The 

concentrations of O2 and CO2 are measured by O2 and CO2 sensors from expired 

air and are converted into EE, e.g., one liter of consumed O2 equals about 5 

kilocalories. (Hills et al., 2014). Indirect calorimetry can accurately determine 

minute-by-minute energy consumption, and it is currently the most common 

criterion measure for validating wearable PA monitors (de Almeida Mendes et al., 

2018). However, some limitations must be noted. The utilization of indirect 

calorimetry in long-term free-living measurements is limited since the device is 

burdensome to wear for a participant. In addition, measuring devices require 

frequent calibration. 

2.2.4 Accelerometer-based devices 

Accelerometer-based activity monitors are the most common wearable monitors 

for free-living measurements of SB and PA (Strath et al., 2013). They are non-

invasive wireless electromechanical devices that mechanically measure the 

acceleration of motion or gravity and convert it to an electrical signal. 

Accelerometers can measure and store high-frequency raw acceleration 

continuously over long periods, which can vary from days to years, depending on 

the monitor. Therefore, accelerometers can capture more precisely short bouts of 
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SB and PA than subjective methods and provide more information about SB and 

PA patterns. Micro-electro-mechanical systems (MEMS) have enabled the 

availability of inexpensive, small, and light-weight accelerometers (Yang & Hsu, 

2010). Accelerometers can be uniaxial (often aligned vertically), biaxial (often 

aligned vertically and mediolaterally), or triaxial (vertical, mediolateral, and 

anterior-posterior). Accelerometers can be attached at different body sites. (Aunger 

& Wagnild, 2022; Troiano et al., 2014). 

The operating principle of accelerometers is theoretically described as a spring-

mass system based on a combination of Hooke’s and Newton’s second laws. In 

brief, the motion of the spring-mass system produces an extending or compressing 

force on the system, and the spring generates a restoring force (Kavanagh et al., 

2008). When the stiffness of the spring and mass are controlled, the resultant 

acceleration of the mass element can be mathematically determined from its 

displacement as follows: 

 𝐹 𝑘𝑥 𝑚𝑎, 𝑡ℎ𝑢𝑠 𝑎    (1) 

where F is force (kg*m/s2), k is the stiffness of the spring (N/m), x is the 

displacement (m), m is the mass of the mass element (kg), and a is acceleration 

(m/s2).  

Acceleration can be measured using several techniques, and the most common 

acceleration sensors are piezoelectric, piezoresistive, and capacitive. Piezoelectric 

and piezoresistive acceleration sensors are based on similar principles and voltage 

generation. However, a piezoresistive or cantilever beam sensor consists of a 

seismic mass attached at the end of a piezoelectric element, and acceleration 

produces bending in the element. In contrast, a piezoelectric or compression-based 

acceleration sensor has a seismic mass on top of the piezoelectric element, and 

acceleration produces compression of the element and further changes the element's 

shape. Capacitive acceleration sensors consist of fixed electrodes and seismic mass 

with floating electrodes. Acceleration changes the distance between floating and 

fixed electrodes and further induces a change in capacitance. Piezoresistive and 

capacitive acceleration sensors can measure constant acceleration, such as gravity, 

and therefore are the most common accelerometers in SB and PA measurements 

(Lowe & ÓLaighin, 2014; Yang & Hsu, 2010). 

Although accelerometers are the most popular devices for SB and PA 

measurements, some limitations must be noted. Accelerometers cannot recognize 

extra muscle work or carried loads (e.g., hill climbing or lifting heavy weights), 
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and they do not provide information about the context of the SB and PA. The 

accelerometer’s output depends on the monitor's placement and data analysis 

methods. As a result, different accelerometer-based activity monitors are not 

interchangeable with each other and hip-worn accelerometers’ ability to accurately 

recognize body postures, e.g., differentiating sitting from lying down or standing, 

has been questioned. However, novel analysis methods, such as convolutional 

neural network hip accelerometer posture (CHAP) and angle for posture estimation 

(APE), have enabled accurate and reliable posture recognition from hip-worn 

accelerometers (Aunger & Wagnild, 2022; Butte et al., 2012; Greenwood-Hickman 

et al., 2021; Matthews et al., 2012a; Troiano et al., 2014; Vähä-Ypyä et al., 2018). 

Accelerometer placement 

Accelerometer-based activity monitors were used initially for measuring PA, but 

later, they became popular for measuring SB. Thus, the accelerometers are most 

often worn on the wrist as a watch or are attached to an elastic belt or a clip and 

worn on the hip or the waist. The accelerometer attached at the hip has been thought 

to provide a more accurate measurement of human motion and posture than the 

accelerometer attached to the wrist due to the close location from the center of mass 

of the body (Rosenberger et al., 2013). In addition, accelerometers can be placed 

on the thigh, which has been suggested as the most accurate wear site to detect body 

postures (Aunger & Wagnild, 2022; Janssen & Cliff, 2015). Nevertheless, the 

attachment site on the thigh demands the use of adhesives directly on the skin, 

which may produce dermal irritation and shorten the measurement period. 

Accelerometers can be worn on different body sites and combined with 

physiological measures to form multi-sensor devices (Chen & Basset Jr., 2005). 

Posture detection has traditionally been based on static accelerations and the 

inclination of the accelerometer (Lowe & ÓLaighin, 2014). The inclination is 

typically calculated as follows: 

 𝜃  cos  (2) 

where θ is the angle from the vertical (°), a is the acceleration from the sensor (m/s2), 

and g is 9.81 m/s2 (Lowe & ÓLaighin, 2014).  

The thigh has been thought to be the most accurate attachment site to separate 

sitting and lying down from standing (Aunger & Wagnild, 2022). Thigh-worn 

accelerometers may have more homogeneity in the data collection and analysis 

methods than accelerometers attached to other wear sites (Stevens et al., 2020). In 
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addition, the use of multisite assessment (e.g., thigh and trunk) has been proposed 

to improve the accuracy of posture detection (Lowe & ÓLaighin, 2014). When 

acceleration sensors are attached to both the thigh and the trunk, the different static 

accelerations can be seen at the thigh and the trunk in different postures. For 

example, a person is lying down when both sensors are horizontal. The person is 

sitting when the trunk is vertical and the thigh is horizontal, and the person is 

standing when both the trunk and thigh are vertical (Figure 1). The magnitude of 

the measured gravitational force depends on the direction of the acceleration sensor 

axis and varies ideally between -1 to 1 gravitational units (g, approximately 9.81 

m/s²). As a result, the accurate detection of sitting, lying down, and standing is 

possible solely using simple gravitational thresholds of the sensors, and even the 

uniaxial accelerometers can be used. This enables the use of algorithms that do not 

require a high computational power meaning lower costs and power consumption 

requirements (Chen & Basset Jr., 2005; Lowe & ÓLaighin, 2014). 

 

Fig. 1. Operating principles of posture detection using two accelerometers (modified 

from Lowe & ÓLaighin, 2014). 

Traditionally, using a single accelerometer has been considered a limitation and the 

accuracy of the method to detect postures has been questioned (Chen & Basset Jr., 

2005; Lowe & ÓLaighin, 2014). However, a single accelerometer attached to the 

thigh has shown excellent validity against direct observation (Edwardson et al., 

2016; Kozey-Keadle et al., 2011), and it can accurately separate sedentary from 

standing posture (O'Brien et al., 2022). In addition, almost negligible differences in 
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the duration of PAs and body postures have been observed between different thigh-

worn accelerometer brands (Crowley et al., 2019).  

Recently, the use of triaxial accelerometers and more advanced data analysis 

methods have become more popular and enabled more accurate posture detection 

than the traditional threshold-based posture detection methods (Aunger & Wagnild, 

2022; Lowe & ÓLaighin, 2014). Sitting can be reliably separated from standing 

using an advanced data analysis method with a single triaxial accelerometer, even 

attached at the hip (Greenwood-Hickman et al., 2021; Vähä-Ypyä et al., 2018) or 

to the wrist (Rowlands et al., 2016). For instance, the CHAP method which is a 

machine learning (ML) based posture recognition method for a single hip-worn 

triaxial accelerometer has offered excellent validity to recognize postures and 

postural transitions against thigh-worn accelerometer (Greenwood-Hickman et al., 

2021). 

2.3 Accelerometer data analysis 

The measured acceleration signal consists of gravity, body movement, and noise 

caused by vibrations from the environment or weak attachment of the sensor. 

Therefore, the acceleration signal needs to be filtered to eliminate the noise from 

the signal. Typically, human movement causes accelerations that have low 

frequency and amplitude. The frequencies of the human movement depend on the 

measurement site, and general frequencies during typical non-impact PAs located 

close to the center of mass in humans are at the greatest 8 Hz (Chen & Bassett Jr., 

2005). Still, some upper limb movements can achieve 25 Hz (Chen & Bassett Jr., 

2005). The Nyquist criterion states that the sampling frequency of the 

accelerometer must be at least twice the highest frequency of human movement to 

accurately capture human motions (Arvidsson et al., 2019). Thus, the sampling 

frequencies of accelerometers usually range between 30 Hz to 100 Hz (Migueles et 

al., 2017). In addition, the measuring range of the accelerometers is typically 

somewhere between ± 2-16 g-units (Sievänen & Kujala, 2017). 

Filtering is based on removing certain frequency noise from the acceleration 

signal. Typically, electrical noise has a high frequency ( 60 Hz), and artifacts 

caused by temperature changes and aging of piezo elements have a very low 

frequency (< 0.1 Hz) (Chen & Bassett Jr., 2005). The noise and artifacts can be 

attenuated using a band-pass filter, which allows the frequencies between cut-off 

limits to pass. The selected cut-off frequencies of the band-pass filter may affect 

the output of the PA monitor. For instance, an excessively wide bandwith may 
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include noises such as external vibrations or electrical artifacts in the signal, and a 

narrow bandwith may eliminate part of the human movement from the signal (Chen 

& Bassett Jr., 2005). In addition, the static accelerations based on the gravitational 

force can be separated from the dynamic accelerations caused by body movements 

using high-pass filtering with low frequencies typically lower than 1 Hz (Andreu-

Perez et al., 2017). Another method to remove gravity component from the dynamic 

accelerations is Euclidean norm minus one (ENMO) that first calculates resultant 

acceleration and then subtracts one gravitational unit from the resultant acceleration 

at each time point. Negative ENMO values are rounded up to zero and ENMO 

values can further be classified into PAs by using specific thresholds (Bakrania et 

al., 2016; van Hees et al., 2013). 

Before the acceleration signals can be transformed into more presentative 

metrics about SB and PA, wear time needs to be detected, and acceleration signals 

need to be windowed into specific time segments called epochs. The epoch length 

varies from seconds to several minutes and influences classified PA data. The 

commonly used epoch lengths are between 1 and 60 seconds (Arvidsson et al., 

2019). However, the epoch length of less than ten seconds is considered the most 

accurate to capture the variation in PA intensity (Matthews et al., 2012a). Wear time 

detection means that the non-wearing time needs to be eliminated from the 

acceleration signal. It is usually done by eliminating periods of at least 60 

consecutive minutes of zero output with a different allowance of non-zero values 

(Janssen & Cliff, 2015; Troiano et al., 2008). However, several wear time 

algorithms are used, recognizing different amounts of SB (Janssen et al., 2015; 

Janssen & Cliff, 2015; Migueles et al., 2017; Stevens et al., 2020). The actual SB 

and PA metrics can be calculated from the epochs of the pre-processed acceleration 

data. 

Several data analysis approaches are used for classifying acceleration data into 

SB and PA parameters. Traditional approaches typically classify acceleration data 

into, e.g., activity counts or METs using statistical data analysis methods and 

thresholds, and accelerometers have provided these integrated units as output 

(Migueles et al., 2017; Troiano et al., 2014). Recently, more advanced data analysis 

methods, such as mean amplitude deviation (MAD), APE, and ML based 

approaches, have become alternative data analysis methods for SB and PA 

classifications. In addition, the use of raw acceleration data has been proposed 

instead of accelerometers’ integrated activity units (Wijndaele et al., 2015). 



28 

2.3.1 Traditional signal processing techniques 

Several approaches for calculating counts from raw acceleration data have been 

used, and they can be divided broadly into three categories: time-above-threshold, 

zero-crossing, and digital integration (Neishabouri et al., 2022). In the time-above-

threshold method, the activity count is calculated within an epoch as the amount of 

time when the acceleration signal is above a predefined threshold, such as a specific 

g-unit that is thought to indicate motion. In contrast, the zero-crossing method 

calculates the number of times the acceleration signal crosses the predefined 

reference point, which can be zero or another threshold describing the low-level 

activity. The most used analysis method to determine count is digital integration 

that calulates the area under the activity curve. The digital ingration method is the 

simpliest completed by summing the integral values within an epoch (Chen & 

Bassett Jr., 2005). The digital integration method accounts for the amplitude of the 

acceleration being an advantage over the zero-crossing and time-above-threshold 

methods. The advantage of the count-based methods is that they are simple to 

implement and, therefore, widely used for assessing PA behaviors. 

Accelerometers designed for measurements of human physical behavior were 

originally used to measure PA, and activity counts were transformed into activity 

intensities using many different sets of cut-points derived from regression analysis 

(Bassett Jr. et al., 2012). One of the most common sets of cut-points is Freedson’s 

cut-points for hip-worn accelerometers. It classifies activity counts into different 

categories based on the EE of the activity: SB ( 1.5 METs), LPA (1.51–2.99 METs), 

MPA (3–5.99 METs), and VPA (≥ 6 METs) (Freedson et al., 1998). However, many 

different cut-points have also been used to classify PAs into intensity categories, 

e.g., 4-6.99 METs for MPA (Esliger et al., 2011). Typically, sedentary time has been 

detected from accelerometer data as periods of non-movement using different 

activity count-based methods (Freedson et al., 1998; Matthews et al., 2008; Trost 

et al., 2011). Later, the need to separate sitting from standing and lying down 

emerged, and accelerometers began to be used as inclinometers (Aunger & Wagnild, 

2022). More recently, more advanced data analysis methods to detect body posture 

have been established, and the use of raw acceleration data instead of proprietary 

integrated activity counts has been proposed (Wijndaele et al., 2015). 

Transition-based posture detection is one of the posture detection methods. 

Using different parameters (e.g., vertical velocity), it detects the transitions 

between static postures instead of the postures themselves (Lowe & ÓLaighin, 

2014). Sedentary Sphere is another method to detect static postures, and it is 
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developed for wrist-worn accelerometer data (Rowlands et al., 2016). The method 

classifies posture as sitting or reclining when the activity level is low and the wrist 

is elevated higher than 15° below the horizontal. If the wrist is elevated lower than 

15° below the horizontal, the arm hangs more vertically, and the posture is 

classified as standing. Sedentary Sphere can be used for SB classifications from 

raw accelerations regardless of a wrist-worn accelerometer brand (Rowlands et al., 

2016).  

In addition, a novel and universal APE method for posture detection from hip-

worn accelerometer data has been developed (Vähä-Ypyä et al., 2018). Initially, the 

method detects the accelerometer’s orientation during walking from raw 

acceleration data and uses it as a reference value. Before setting the reference value 

for the upright posture within an epoch, the walking is detected based on activity 

intensity, activity step rate, and movement steadiness. Activity intensity is 

classified using MAD, which describes the variation in amplitude between the 

mean value and the data points of the resultant acceleration within an epoch and is 

calculated as follows:  

 𝑀𝐴𝐷  ∑|𝑟 𝑟| (3) 

where n is the number of samples in the epoch of interest, 𝑟  is the is the ith resultant 

sample within the epoch, and 𝑟 is the mean resultant value of the epoch (Vähä-

Ypyä et al., 2015). Furthermore, MAD-like parameters are used to determine 

movement steadiness as previously described elsewhere (Vähä-Ypyä et al., 2018). 

After the reference value for an epoch is determined, the APE is calculated. APE 

describes the angle between the measured value (e.g., standing) and reference value 

(walking) within an epoch (Figure 2). The APE-MAD method can be used for 

classifying PA and SB from raw triaxial accelerations irrespective of hip-worn 

accelerometer brand. 
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Fig. 2. Angle for posture estimation (APE) and triaxial acceleration data representing 

walking and standing still. The axis-specific mean values are 1.059, −0.045, and −0.113 

g for walking and 1.059, −0.029, and −0.075 g for standing; thus, APE is 2.2° (modified 

from Vähä-Ypyä et al., 2018). 

Monitor-Independent Movement Summary unit (MIMS) is another method to 

detect postures and PAs from raw acceleration data of triaxial accelerometer 

irrespective to accelerometer brand. The method first uses digital signal processing 

techniques to harmonize raw data from different accelerometers with different 

dynamic range and sampling rates, and then aggregates the raw data to yield 

MIMS-units that are based on area under the curve calculations to detect human 

motion and posture. The method enables accurate posture detection, since the 

MIMS-units are calculated from raw accelerations for each triaxial axes separately 

rather than computing resultant acceleration (John et al., 2019). 

2.3.2 Machine learning 

Machine learning is a new approach for SB and PA classification with the ability to 

extract nonlinearities and complex dependencies from the acceleration data. ML-

based methods are advanced statistical techniques that can learn to recognize SB 

and PA patterns from acceleration data using complicated mathematical algorithms 

(Bassett Jr. et al., 2012; de Almeida Mendes et al., 2018). Compared to traditional 

statistical approaches, the advantages of ML approaches are that several input 

features in both time and frequency domains without predetermined thresholds can 
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be included in the classification model (Preece et al., 2009). The features can 

describe different acceleration signal characteristics and can be used for predicting 

activity types, activity intensities, EE, and body postures in the same model 

(Troiano et al., 2014). In contrast, the traditional statistical approaches typically use 

one to a few features which are linearly related to EE to determine threshold values 

(Bassett Jr. et al., 2012). 

Although ML models can be used for classifying activity types and body 

posture, the PA data has primarily been analyzed according to activity intensity 

categories (SB, LPA, and MVPA) in the previous PA literature. The number of 

predicted activity classes influences the performance of the prediction models (Ellis 

et al., 2016). Typically, the performance of the prediction models decreases with 

the increasing number of activity classes. Therefore, predicting SB and PA data 

directly into interest categories may be reasonable. In addition, the variations in the 

performance of the ML models can be influenced by the amounts of signal, noise, 

activity types, extracted features, and the used prediction model that are most often 

artificial neural networks, decision trees, support vector machines, and random 

forests (de Almeida Mendes et al., 2018; Ellis et al., 2016). However, the consensus 

about the most feasible ML technique and set of features is still missing, although 

time-domain features have been proposed to be sufficient and provide high 

accuracy for activity intensity predictions (Chong et al., 2021; Montoye et al., 

2018a). The ML models trained with properly selected 20 to 45 time-domain 

features describing variation and change rate of the acceleration signal may be 

relevant and provide high performance for activity class prediction (Chong et al., 

2021).  

The ML approaches have offered improved classification accuracy compared 

to traditional cut-point methods, and the use of raw acceleration data has enabled 

the development of accelerometer brand-independent ML methods (Ellis et al., 

2016; Kerr et al., 2017; van Hees et al., 2016; Wijndaele et al., 2015). Nevertheless, 

some limitations concerning ML methods need to be noted. Although ML models 

are device-independent data analysis methods, accelerometers providing count data 

have been shown to be more highly comparable than raw data between 

accelerometers (Montoye et al., 2018b). The output and performance of the ML 

models are dependent on many factors (e.g., wear site, filtering methods, wear time 

detection, epoch length, extracted features, prediction model, activity types and 

classes), which may explain the challenges in the comparability of ML-based 

studies (Preece et al., 2009). In addition, ML models may be associated with limited 

generalization capability if the ML model is applied to different populations than 
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the population used in the model development (Bassett Jr. et al., 2012; de Almeida 

Mendes et al., 2018). However, the generalization performance of the ML models 

can be enhanced by using heterogeneous study samples in large training datasets 

involving a wide range of activities (Farrahi et al., 2020). 

2.4 Associations of sedentary behavior with cardiometabolic 

health 

An extensive literature has shown that SB and prolonged SB bouts are unfavorably 

associated with cardiometabolic health (Bellettiere et al., 2019; Benatti et al., 2015; 

Brocklebank et al., 2015; Carson et al., 2014; Cavallo et al., 2022; Henson et al., 

2013; Patterson et al., 2018; Sjöros et al., 2020; Vaara et al., 2022; Vasankari et al., 

2017). Traditionally, SB and prolonged sedentary bouts have been thought to have 

independent associations with cardiometabolic health despite the amount of PA 

(Brocklebank et al., 2015; Healy et al., 2008; Matthews et al., 2012b; Owen et al., 

2010). However, recent research has recognized that daily PAs and SBs are 

interrelated (Rosenberger et al., 2019), and associations of SB with cardiometabolic 

health may be modified by PA (Cavallo et al., 2022; Ekelund et al., 2016; Huang et 

al., 2021; Stamatakis et al., 2019b) 

2.4.1 Independent associations 

Several free-living studies have found that total sedentary time and prolonged SB 

bouts are associated with poorer glucose metabolism independently of MVPA 

(Biswas et al., 2015; Brocklebank et al., 2015; Carson et al., 2014; Healy et al., 

2008). In addition, it has been proposed that independently of total sedentary time 

and mean intensity of breaks, regular breaks in SB attenuate metabolic risk in adults 

(Healy et al., 2008). In free-living studies, independent associations have mostly 

been found using single activity statistical models that do not account for the fact 

that sedentary and physical activity behaviors form a continuum, and an increase 

in one behavior causes a decrease in other behaviors (Healy et al., 2008; Matthews 

et al., 2012b; Owen et al., 2010; Rosenberger et al., 2019). For instance, regression 

analysis can be done using different models, such as single activity, partition, and 

isotemporal models. The free-living observational studies using different linear 

regression models have shown that independent associations of SB with 

cardiometabolic health markers can be found using partition modeling. Still, 
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interdependent associations can also be found using isotemporal modeling (Healy 

et al., 2015). 

In experimental studies studying the acute effects of breaking up SB, 

uninterrupted SB has also been associated with impaired glucose metabolism 

independently of the subject’s PA level (Saunders et al., 2018; Stephens et al., 2011). 

One day of SB considerably reduced insulin action, whereas limiting SB by 

participating in daily LPA had a favorable effect on insulin action (Stephens et al., 

2011). Interrupting prolonged SB with short bouts of LPA or MPA improved 

glucose metabolism in obese adults (Dunstan et al., 2012). In addition, interrupting 

SB every 15 minutes rather than every 30 minutes or 60 minutes with light-intensity 

walking may provide more favorable effects on glucose metabolism (Paing et al., 

2019). Although experimental studies have provided considerable evidence about 

the favorable effects of breaking up prolonged SB on cardiometabolic health, PA 

type, intensity, and frequency counteract SB (Benatti et al., 2015). Currently, the 

evidence about the independent effects of SB is scarce, and the subject’s habitual 

PA level and acute changes in PA may modify the associations of SB with 

cardiometabolic health (Benatti et al., 2015). 

2.4.2 Interrelation with physical activity 

The recent research has shown that PA may modify associations of SB with 

cardiometabolic health and independent associations of SB have been questioned 

(Cavallo et al., 2022; Ekelund et al., 2016; Rosenberger et al., 2019; Stamatakis et 

al., 2019b). Previous studies have examined the associations between sedentary 

time and cardiometabolic health at different MVPA levels, and high sedentary time 

has been shown to be the most adversely associated with cardiometabolic 

biomarkers when combined with a low MVPA level (Ekelund et al., 2016; Huang 

et al., 2021; Stamatakis et al., 2019b). Health risks related to high volumes of SB 

can be attenuated by increasing MVPA, especially among the least physically active 

adults (Matthews et al., 2015; Mossavar-Rahmani et al., 2020; Stamatakis et al., 

2019b; von Rosen et al., 2020). In addition, the importance of LPA on 

cardiometabolic health has been noted (Chastin et al., 2019; Healy et al., 2015; 

Länsitie et al., 2021; Swindell et al., 2018). It has been proposed that substituting 

SB with light-intensity walking and standing could have even more positive effects 

on insulin and lipid levels than one hour of daily VPA (Duvivier et al., 2013). 

More advanced statistical analysis methods, such as traditional isotemporal 

substitution modeling (Mekary et al., 2009) and compositional data analysis 
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(Dumuid et al., 2018), have enabled investigating time reallocations between 

different sedentary and physical activity behaviors. Recent research has shown that 

SB and PA form a continuum, and an increase in one behavior causes decreases in 

another (Rosenberger et al., 2019; Dumuid et al., 2019; Mekary et al., 2009). In 

practice, a decrease in SB needs to be done by increasing PA unless SB is replaced 

by sleep. (Biddle et al., 2021). The previous studies using traditional isotemporal 

substitution modeling or compositional data analysis have consistently found that 

replacing SB with any intensity PA is favorably associated with cardiometabolic 

health (Cavallo et al., 2022; Del Pozo-Cruz et al., 2018; Farrahi et al., 2021b; 

Galmes-Panades et al., 2019; Grgic et al., 2018; Healy et al., 2015; Yates et al., 

2015). However, a more positive health effect may be achieved when SB is replaced 

with MVPA compared to LPA (Chastin et al., 2015; Farrahi et al., 2021b). 

In addition, previous studies have observed a significant interrelation between 

free-living sedentary bout duration and total sedentary time (Diaz et al., 2017; 

Hibbing et al., 2022). A recent systematic review reported that adults with more 

time spent in prolonged sedentary bouts also have more sedentary time overall than 

adults with interrupted sedentary profiles (Hibbing et al., 2022). A recent 

observational study investigated sedentary profiles and showed that profiles with 

high total sedentary time or with high sedentary bout duration have no different 

associations with cardiometabolic biomarkers (Farrahi et al., 2021a). In addition, 

total sedentary time and prolonged sedentary bouts seem to be jointly associated 

with glucose metabolism (Diaz et al., 2017). Consequently, there is no definite 

evidence whether the prolonged bouts of SB independently of total sedentary time 

are associated with cardiometabolic health. 

Previous long-term experimental studies have shown that an increase in PA and 

a decrease in SB combined positively affect cardiometabolic health (Kozey-Keadle 

et al., 2014; Sjöros et al., 2022). However, separately reducing SB or increasing 

MVPA showed no changes in insulin action (Kozey-Keadle et al., 2014). It is still 

unclear how daily sedentary and physical activity behaviors should be distributed 

to improve cardiometabolic health. More studies using advanced data analysis 

methods are needed, especially to investigate time reallocations from prolonged SB 

bouts to short SB bouts. 



35 

3 Aims of the study 

Physical inactivity and a sedentary lifestyle are global public health problems. 

Although the guidelines for health-enhancing PA are well-established, accurate 

recommendations for breaking up sedentary behavior are still missing. There is a 

need for studies that examine the associations between cardiometabolic health and 

the accelerometry-based patterns of sedentary and physical activity behaviors in 

free-living conditions. 

This study aimed to develop a method for measuring accumulation patterns of 

sedentary behavior and sitting separately in free-living conditions and investigating 

associations between sedentary behavior characteristics and cardiometabolic health 

in middle-aged Finnish adults. The specific aims of this study were: 

1. To develop and validate a machine learning-based method for classifying 

physical activity and sedentary behavior data among Finnish adults. 

2. To determine the characteristics of overall sedentary behavior and sitting 

among middle-aged Finnish adults using raw data from a hip-worn triaxial 

accelerometer and a novel machine learning-based signal processing method. 

3. To investigate the associations of patterns of accelerometry-based overall SB 

and sitting in different MVPA categories with serum lipid biomarkers. 

4. To study time reallocations from sedentary behavior and prolonged sedentary 

bouts to LPA, MVPA, and short sedentary bouts and their associations with 

glucose metabolism. 
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4 Materials and methods 

4.1 Study design 

This thesis consists of four sub-studies utilizing three datasets. Sub-study I 

developed and validated a machine learning model of physical activity and 

sedentary behavior. Sub-study II was a pilot study of the 46-year data collection of 

the Northern Finland Birth Cohort 1966 (NFBC1966) (University of Oulu, 1966). 

Sub-studies III–IV consisted of the 46-year follow-up data collection of the 

NFBC1966 study. A summary of the participants, study setup, and methods used in 

each sub-study is presented in Table 1. 

All participants were volunteers who had the right to decline to participate in 

or withdraw from the study. The participants were given oral and written 

information about the study and asked to provide written consent to participate. All 

sub-studies followed the ethical principles for medical research involving human 

participants in Finland and the Declaration of Helsinki. Personal identity 

information was replaced with identification codes. The sub-studies II–IV were 

approved by the Ethical Committee of the Northern Ostrobothnia Hospital District 

in Oulu, Finland (94/2011).  

Table 1. Study setup, participants, and methods in sub-studies I–IV. 

Sub-study Study setup Study sample Measurements 

I Development and validation 

of machine learning model 

for PA and SB 

Working-aged adults (n = 22) Laboratory-based 

accelerometry, indirect 

calorimetry, direct observation 

II Accelerometer-based 

characteristics of overall SB 

and sitting 

A pilot study of the 46-year 

follow-up of the NFBC1966 

study (n = 36) 

Free-living accelerometry, 

anthropometric measurements 

III Cross-sectional associations 

between patterns of SB and 

sitting with cardiometabolic 

health by MVPA category 

46-year follow-up study of the 

NFBC1966 (n = 3,272) 

Free-living accelerometry, 

health and lifestyle 

questionnaires, clinical 

examinations  

IV Time reallocations from SB 

and prolonged SB bouts to 

LPA and MVPA and their 

cross-sectional associations 

with glucose metabolism 

46-year follow-up study of the 

NFBC1966 (n = 2,991) 

Free-living accelerometry, 

health and lifestyle 

questionnaires, clinical 

examinations 

Abbreviations: PA = physical activity, SB = sedentary behavior, MVPA = moderate-to-vigorous physical 

activity, LPA = light physical activity, NFBC1966 = the Northern Finland Birth Cohort 1966. 
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4.1.1 Development and validation study (I) 

The participants of sub-study I were 22 working-age (17–58 years old) healthy 

volunteers living in Finland. They participated in laboratory-based PA and SB 

measurements in 2016. Before measurements, the participants abstained from 

unaccustomed strenuous activity or exercise and alcohol for 24 hours. The gender 

and age of the participants were inquired about through a questionnaire, and height 

and body mass was measured prior to measurements. Body mass index (BMI) was 

calculated by dividing weight in kilograms by height in meters squared from the 

measured height and weight data. The demographic characteristics of the 

participants are presented in Table 2.  

Table 2. Demographic characteristics of the participants. Modified from publication I 

with permission of Springer Nature. 

Variable Women (n = 11) Men (n = 11) Total (n = 22) 

Age (years) 26.0 (11.3) 29.0 (11.6) 27.5 (11.2) 

Height (cm) 165.8 (3.2) 180.1 (3.5) 173.0 (8.0) 

Weight (kg) 66.8 (8.2) 84.5 (6.7) 75.7 (11.7) 

BMI (kg/m2) 24.2 (2.4) 26.0 (1.6) 25.1 (2.2) 

Values are mean (SD). BMI = body mass index. 

4.1.2 Northern Finland Birth Cohort 1966 studies (II-IV) 

Initially, the NFBC1966 study included all newborns in the two northernmost 

provinces in Finland whose expected date of birth was in the year 1966 (n = 12,058 

live births). Information about the study participants’ health condition, social-

economic status, and lifestyle has been recorded regularly through healthcare 

records, questionnaires, and clinical examinations. The most recent follow-up was 

conducted in the years 2012–2014, when the participants were approximately 46 

years old. 

NFBC1966 pilot (II) 

The 46-year data collection of the NFBC1966 study was piloted in 2012. The study 

participants of the NFBC1966 pilot study (II) were volunteers 47–49 years old from 

the city of Oulu and neighboring municipalities (Leinonen et al., 2017). In total, 

150 study participants were selected randomly from the national population register 

and invited to participate in the pilot study. Of these adults, 41 participants agreed 
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to participate in the baseline visit and free-living PA and SB measurements. In the 

baseline visit, participants’ height and weight were measured, and the 

accelerometers were given to the participants. The descriptive characteristics of the 

participants are shown in Table 3. 

Table 3. Descriptive characteristics of the participants. Modified from publication II with 

permission of Informa UK Limited, trading as Taylor & Taylor & Francis Group. 

Variable Women (n = 24) Men (n = 12) Total (n = 36) 

Age (years) 47.5 (0.6) 47.8 (0.7) 47.6 (0.6) 

Height (cm) 163.2 (6.9) 177.7 (5.8) 168.0 (9.5) 

Weight (kg) 72.6 (13.9) 80.1 (10.5) 75.1 (13.3) 

BMI (kg/m2) 27.2 (4.8) 25.4 (3.0) 26.6 (4.3) 

Values are mean (SD). BMI = body mass index. 

NFBC1966 study (III–IV) 

The study population of the sub-studies III–IV is the 46-year follow-up of the 

NFBC1966 study (Nordström et al., 2021). The living cohort members in Finland 

were invited for the follow-up during 2012–2014 (n = 10,331). The data collection 

included health- and lifestyle-related questionnaires, clinical examinations, and PA 

and SB free-living measurements (Figure 3). 
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Fig. 3. Flowchart of the sub-studies III–IV. 
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4.2 Methods 

4.2.1 Physical activity and sedentary behavior measurements (I–IV) 

Protocol for development and validation study (I) 

The study protocol included a predefined set of nine controlled and supervised 

typical daily free-living activities (hanging out on a sofa, sitting at a computer, 

standing/poster viewing, wiping and setting up the kitchen table, floor cleaning, 

slow walking, fast walking, soccer passing drills, and jogging). Activities ranged in 

intensity from sedentary to vigorous and were performed for four minutes each, 

with a 0.5–4 minute resting period between activities depending on the intensity of 

the previous activity. Fast walking, soccer, and jogging were conducted on an 

outdoor track, and the rest were conducted indoors. Fast walking and jogging were 

performed at a self-selected speed. A trained supervisor controlled the 

measurements to be conducted according to the predefined study protocol. The 

participants were instructed orally during the measurements and were not allowed 

to speak during activities. The participants performed activities wearing a hip-worn 

triaxial accelerometer (Hookie AM20, Traxmeet Ltd, Espoo, Finland) and an 

indirect calorimetry device (COSMED K4 b2, Cosmed Ltd, Rome, Italy), which 

was worn as a vest with a rubber facemask. A Hookie AM20 -accelerometer was 

worn on the participant’s right hip on an elastic belt, and acceleration data were 

collected in raw mode at 100 Hz with a range of ±16g. 

Physical activity and sedentary behavior measurements in NFBC1966 

pilot (II) and NFBC1966 study (III–IV) 

Physical activity and sedentary behavior measurements were performed similarly 

in the NFBC1966 pilot (II) and the NFBC1966 study (III–IV) in 2012 and 2012–

2014, respectively. The participants who attended the baseline visit were invited to 

participate in PA and SB measurements and wear a triaxial accelerometer (Hookie 

AM20) for 14 consecutive days during all waking hours except during water-

related activities. The accelerometers and prepaid-postage padded envelopes for 

returning the monitors, were given to the participants during the baseline visit. The 

participants were asked to wear the accelerometer for at least 14 days with an elastic 

belt on the right posterior side of the hip. Raw triaxial acceleration signals were 
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collected at a sampling frequency of 100 Hz with a range of ±16g. The 

accelerometer was used as a datalogger and did not provide feedback to the 

participants. The criterion for the valid measurements was using the accelerometer 

for at least four days, including a wear time of at least 600 minutes per day which 

is a commonly used criterion (Arvidsson et al., 2019). 

4.2.2 Questionnaires (III–IV) 

The participants of the NFBC1966 studies (III–IV) filled out postal questionnaires 

about their health condition, socioeconomic background, lifestyle, and work 

(Nordström et al., 2021; University of Oulu, 1966). Inquiries were made about their 

employment, education, marital status, and prevalence of diagnosed diseases and 

medication. Information about smoking habits was recorded using many questions, 

and smoking status was dichotomized (current smoker and non-smoker or former 

smoker). Drinking habits were inquired about using beverage-specific questions on 

the usual frequencies of consumption and amounts of beer, wine, and spirits per 

drinking occasion. The average volume of ethanol consumed per day was 

calculated. The threshold values for heavy users of alcohol were set at ≥ 40 g/day 

for men and ≥ 20 g/day for women. 

A question about mobility from the 15D instrument was used to determine the 

participants’ ability to walk (Sintonen, 2001). The question included five 

alternative responses, which were “I am able to walk normally (without difficulties) 

indoors, outdoors, and on the stairs,” “I am able to walk without difficulty indoors, 

but outdoors and on the stairs, I have slight difficulties,” “I am able to walk without 

help indoors (with or without a device) but outdoors and on the stairs only with 

considerable difficulty or with help from others,” “I am able to walk indoors only 

with help from others,” and “I am completely bedridden and unable to move about.” 

The participants were asked to select one alternative which best describes their 

current health condition. The normal ability to walk was used as a criterion for 

inclusion. 

4.2.3 Clinical examinations (III–IV) 

The NFBC1966 studies (III–IV) included clinical examinations conducted by a 

trained study nurse (Nordström et al., 2021; University of Oulu, 1966). The 

participants’ height, weight, and waist circumference from the midway point 

between the iliac crest and the lowest ribs were measured. The waist circumference 
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was divided into three equal-sized groups using tertiles as cut points for men and 

women. The participants' visceral fat area and skeletal muscle mass were measured 

using the bioelectrical impedance measurement device Inbody 720 (Inbody Co., 

Ltd., Seoul, Korea). 

Venous blood samples were collected after overnight fasting (at least 12 hours) 

and abstaining from drinking coffee and smoking on the clinical examination day. 

Total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), 

triglycerides, fasting plasma glucose, and fasting serum insulin were analyzed from 

the collected fasting blood samples as previously dercribed elsewhere (Kiviniemi 

et al., 2017). On a different day, the participants who were not diagnosed with 

diabetes and whose fasting glucose was < 8.0 mmol/l measured with a quick test 

participated in a standardized 75 g oral glucose tolerance test (OGTT) with 0-, 30-, 

60-, 90-, and 120-minutes measurement points after overnight fasting (WHO, 

2006). 

Total cholesterol to high-density lipoprotein (Total/HDL) and low-density 

lipoprotein to high-density lipoprotein (LDL/HDL) ratios were calculated from the 

fasting samples to obtain stronger predictors for CVD risk than the isolated lipid 

biomarkers (Millán et al., 2009; Prospective Studies Collaboration et al., 2007). 

The serum lipid and lipoprotein biomarkers were dichotomized using the threshold 

values from the Finnish Current Care Guidelines: triglycerides < 1.7 mmol/l, total 

cholesterol < 5.0 mmol/l, LDL cholesterol < 3.0 mmol/l, HDL cholesterol for men > 

1.0 mmol/l and women > 1.2 mmol/l, total/HDL cholesterol ratio < 4, and 

LDL/HDL cholesterol ratio < 3. Beta-cell function (HOMA-B) and insulin 

resistance (HOMA-IR) were calculated from the fasting glucose and insulin levels 

(Matthews et al., 1985; Wallace et al., 2004). The Matsuda index was calculated 

from the glucose and insulin levels during OGTT with 0-, 30-, 60-, and 120-minute 

measurement points to obtain insulin sensitivity (Matsuda et al., 1999). The 

participants were classified for impaired fasting glucose (IFG), impaired glucose 

tolerance (IGT), and diabetes based on the WHO’s recommended threshold values 

of fasting glucose 6.1–6.9 mmol/l, and 2-h glucose < 7.8 mmol/l for IFG, fasting 

glucose < 7.0 mmol/l and 2-h glucose 7.8–10.9 mmol/l for IGT, and fasting glucose 

 7.0 mmol/l or 2-h glucose  11.1 mmol/l for diabetes (WHO, 2006). If the 

participant was identified for both IGT and IFG, the participant was assigned to the 

IGT group. 
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4.3 Accelerometer data analysis 

4.3.1 Development and validation for machine learning model of 

physical activity and sedentary behavior (I) 

The raw triaxial acceleration data of Hookie AM20 from the nine daily activities 

were used for developing and validating a machine learning-based prediction 

model for the classification of PAs and SBs. The data processing was conducted 

using MATLAB R2016b (The MathWorks, Inc). 

The raw acceleration data were transformed into g-units, and the resultant 

acceleration 𝑟   was calculated from triaxial acceleration data as follows: 𝑟
𝑎𝑐𝑐_𝑥 𝑎𝑐𝑐_𝑦  𝑎𝑐𝑐_𝑧   where acc_x is medio-lateral acceleration (m/s2), 

acc_y is vertical acceleration, and acc_z is anterior-posterior acceleration. The 

acceleration signals were filtered with a 4th-order Butterworth lowpass filter with 

a cut-off frequency of 20 Hz to filter high-frequency noise from human movement. 

The resultant acceleration was filtered with a 4th-order Butterworth highpass filter 

with a cut-off frequency of 0.5 Hz to eliminate the influence of gravity from the 

signal. The acceleration signals were windowed with a 5 s window size and 2.5 s 

slide between two adjacent windows. 

PA and SB classifications were performed using five different supervised ML 

classifiers (bagged trees, boosted trees, k nearest neighbors, support vector 

machines, and linear discriminant analysis), and in total, 21 features (mean, 

minimum, maximum, zero crossing rate, peak-to-peak amplitude, and MAD 

(Vähä-Ypyä et al., 2015), extracted in all three axes, and the resultant acceleration 

except MAD that was extracted only in the resultant acceleration). Direct 

observation and indirect calorimetry were used as a criterion measures for PA 

classifications. Based on the movement patterns and METs of activities, the 

activities were classified into five activity and sedentary behavior classes: lying 

down (lying on a sofa), sitting (sitting at a computer), LPA (standing/poster viewing, 

table wiping, floor cleaning, and slow walking), MPA (fast walking), and VPA 

(soccer and jogging). 

Leave-one-subject-out cross-validation was used to validate the prediction 

models to receive user-independent results and find the most accurate classifier. In 

brief, each ML model was trained using the accelerometer data from other subjects 

except one subject whose data was used as test data for validation. The procedure 

was repeated so many times that the accelerometer data of each subject was used 

as test data. Total accuracy for models was obtained from confusion matrix by 
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dividing the number of correct predictions by the total number of predictions. 

Sensitivity was obtained as the true positive rate and spesicifity as true negative 

rate for each classes. 

The mean value of MET for each activity was calculated from the steady-state 

data collected with indirect calorimetry to ensure that activity and sedentary 

behavior classes align somewhat with the Compendium of Physical Activities 

(Ainsworth et al., 2000; Ainsworth et al., 2011). The breath-by-breath oxygen 

consumption data of 12 participants were filtered with a 15 s average filter using 

the K4 b2 software and transformed to METs using the standard conversion of 1 

MET = 3.5 ml O2/min/kg.  

4.3.2 Data analysis in NFBC1966 studies (II–IV) 

The data analysis was performed using MATLAB R2016b (The MathWorks, Inc). 

Initially, wear time was recognized from the raw acceleration signals by removing 

non-wear periods, defined as at least 30 minutes of consecutive zero values. One-

minute periods from the beginning and the end of the wear time acceleration signals 

were removed to eliminate the noise caused by dressing and undressing the 

accelerometer. Light, moderate, and vigorous PA, lying down, and sitting were 

recognized from the steady-state acceleration signals using the ML model 

developed in sub-study I. Wear time was limited to a maximum of 20 hours/day to 

eliminate the error from participants who may have used the accelerometer during 

sleeping at night. The exceeding wear time was removed from the lying down time. 

Lying down and sitting bouts were observed from the classified accelerometer data 

and combined to form SB bouts. A sedentarybout was defined as a minimum of 30 

seconds of continuous lying down or sitting with EE ≤ 1.5 METs. A break in SB 

was defined as a PA bout at any intensity with a minimum of 30 seconds between 

two successive SB bouts. In addition, sitting bouts were analyzed separately and 

defined as a minimum of 30 seconds of continuous sitting. Several patterns of SB 

were observed from the extracted sedentary and sitting bouts separately since they 

are the commonly studied sedentary behaviors. Moderate and vigorous PA were 

summed up to form MVPA. The analyzed SB, sitting, and PA variables in each sub-

study are presented in Table 4. 
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Table 4. Physical activity, sedentary behavior, and sitting pattern variables (II–IV). 

Variable Definition Sub-study 

Wear time (min/d) The total wear time of the accelerometer per day II, III, IV 

Sedentary behavior and sitting   

Total time (min/d) Total SB/sitting time per day II, III, IV 

Median bout length (min) The median length of SB/sitting bouts per day II 

50% median bout length (min) Length of SB/sitting bout corresponding to half of the 

daily cumulatively accumulated SB/sitting time when 

bouts are ordered from the shortest to the longest 

II 

Maximum bout length (min) The maximum length of sedentary/sitting bouts per day II 

Number of bouts (bouts/d) Total number of SB/sitting bouts per day II 

Fragmentation index (number 

of bouts/h) 

The number of sedentary/sitting bouts divided by total 

hours spent in SB/sitting per day 

II 

Fraction of the SB/sitting time 

accumulated in bouts longer 

than the median bout (%) 

Time spent in SB/sitting bouts longer than the median 

bout divided by total SB/sitting time per day 

II 

Number of SB/sitting bouts of 

< 15, 15–29.99, 30–59.99, 60–

119.99, and ≥ 120 minutes 

(number of bouts/d) 

Number of SB/sitting bouts per day of < 15, 15–29.99, 

30–59.99, 60–119.99, and ≥ 120 minutes 

II, III, IV 

Total time in SB/sitting bouts 

of < 15, 15–29.99, 30–59.99, 

60–119.99, and ≥ 120 minutes 

(min/d) 

Total time per day accumulated in SB/sitting bouts of < 

15, 15–29.99, 30–59.99, 60–119.99, and ≥ 120 minutes 

II, III, IV 

Breaks in sedentary behavior   

Median break length (min) The median length of sedentary breaks per day II 

Number of breaks  1 minute 

(breaks/d) 

Number of at least 1-minute sedentary breaks per day II 

Physical activity   

LPA (min/d) Total LPA time per day III, IV 

VPA (min/d) Total VPA time per day III 

MVPA (min/d) Total MVPA time per day III, IV 

Abbreviations: SB = sedentary behavior, LPA = light physical activity, MPA = moderate physical activity, 

VPA = vigorous physical activity, MVPA = moderate-to-vigorous physical activity. 

4.4 Statistical analysis 

All statistical analyses were performed using IBM SPSS Statistics for Windows 

(IBM Corp., Armonk, USA), version 24.0 (II) or version 25.0 (III–IV). The 

descriptive characteristics of the participants were presented for categorical 

variables in counts and proportions, for normally distributed continuous variables 
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in means and standard deviations (SD), and for skewed continuous variables in 

medians and 25th and 75th percentiles or interquartile ranges (IQR). The statistical 

significance was set to p < 0.05. 

4.4.1 Characteristics of sedentary behavior and sitting (II) 

The average and median values of the SB and sitting pattern variables were 

calculated through the personal median values of the participants. Statistical 

differences between men and women were examined using an independent samples 

t-test (normal distribution) or a Mann-Whitney U-test (non-normal distribution). 

Histograms were created to describe the mean number of and total time in SB and 

sitting bouts per day of < 15, 15–29.99, 30–59.99, 60–119.99, and ≥ 120 minutes 

with 95% confidence intervals (95% CI). 

4.4.2 Associations of sedentary behavior and sitting patterns with 

serum lipid biomarkers (III) and glucose metabolism (IV) 

The NFBC1966 46-year follow-up study participants with valid data from 

questionnaires, clinical examinations, and PA and SB measurements, and reporting 

normal walking ability were included in the statistical analyses. For finding a 

possible interaction between SB and MVPA, the participants were grouped into 

three categories based on their measured MVPA level: low activity (total MVPA 

time < 150 min/week and total VPA time < 75 min/week), moderate activity (total 

MVPA time = 150–300 min/week and total VPA time < 150 min/week or total 

MVPA time < 300 min/week and total VPA time = 75–150 min/week), and high 

activity (total MVPA time > 300 min/week or total VPA time > 150 min/week). 

Univariate associations between continuous variables and MVPA categories 

(III) were analyzed using analysis of variance (ANOVA) with Tukey’s post hoc test 

for normally distributed data or the Kruskal–Wallis test with the Mann–Whitney 

U-test pairwise comparison for skewed data. Likewise, univariate associations 

between continuous variables and sexes (IV) were analyzed using the Mann–

Whitney U-test for skewed data. For analyzing differences in categorical variables 

between MVPA categories (III) or sexes (IV), the chi-square (χ2) test and Z-test 

with Bonferroni correction for post hoc were used. All serum lipid and glucose 

metabolism biomarkers and PA and SB variables with non-Gaussian distribution 

were natural log-transformed prior to regression analyses to obtain a normal 

distribution. MVPA time and time spent in SB and sitting bouts of ≥ 30 minutes 
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had several zero values, which were eliminated before natural log transformation 

by adding a constant value of 1. 

Multivariable linear regression analyses were conducted between SB and 

sitting variables and serum lipid biomarkers for the whole study population and in 

each MVPA category separately (III). The analyzed SB and sitting variables were 

total SB time (min/day), time spent in SB bouts of 15–29.99 and ≥ 30 minutes 

(min/day), total sitting time (min/day), and time spent in sitting bouts of 15–29.99 

minutes (min/day). The linear regression analyses were performed using five 

models, each including one SB or sitting variable. The linear regression models 

were adjusted for potential confounders, including sex, education (no professional 

education, vocational/college level education, university/polytechnic degree), 

employment status (employed/unemployed/studying/other), marital status 

(married/cohabiting, divorced/widowed, unmarried), smoking status (non-

smoker/current smoker), heavy alcohol consumption (men ≥ 40g/day, women ≥ 20 

g/day), abdominal obesity (men > 102 cm, women > 88 cm), diagnosis or 

medication for diabetes or CVD (coronary artery disease, heart failure, myocardial 

infarction, stroke), accelerometer wear time (min/day), and MVPA (min/day). SB 

variables that were most significantly associated with serum lipid and lipoprotein 

levels were entered into receiver operating characteristic (ROC) analyses with 

dichotomized serum lipids and lipoproteins to determine the threshold values of the 

SB and sitting variables. 

Multivariable associations between SB variables and biomarkers of glucose 

metabolism were performed using the enter method in linear regression analysis 

(IV). The analyzed SB variables were total SB time (min/day) and time spent in SB 

bouts of ≥ 30 minutes (min/day). The linear regression models were adjusted for 

the most significant confounders, including sex, waist circumference in tertiles, 

accelerometer wear time (min/day), and MVPA (min/day). SB variables, LPA, 

MVPA, and covariates had a linear relationship with serum lipid and glucose 

metabolism biomarkers. They had no significant autocorrelation (Durbin–Watson 

statistics 1.5 < d < 2.5), multicollinearity (variance inflation factor < 5), or 

heteroscedasticity based on the variance and distribution of residuals. 

4.4.3 Associations of isotemporal substitution of sedentary behavior 

with glucose metabolism (IV) 

Isotemporal substitution regression modeling was used to analyze hypothetical 

time reallocations from SB to LPA or MVPA and from sedentary bouts  30 minutes 
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to sedentary bouts < 15 minutes, LPA, or MVPA (Mekary et al., 2009). In traditional 

isotemporal substitution modeling, wear time and all activity behaviors 

(minutes/day) except the activity that is replaced are entered in the linear regression 

model. Time reallocations were performed by dividing the activities in minutes by 

the amount of time replaced and dropping SB or time spent in sedentary bouts  30 

minutes out of the model. The non-standardised regression coefficient of the 

activity represents the estimated change in the outcome variable when that activity 

replaces the activity excluded from the model. Two models were created, one 

including wear time, LPA, and MVPA and another including wear time, LPA, 

MVPA, and sedentary bouts of < 15 minutes and 15-29.99 minutes. The substituted 

amounts of time for replacing SB and sedentary bouts  30 minutes with LPA or 

MVPA were 15, 30, 45, and 60 minutes/day and for replacing sedentary bouts  30 

minutes with sedentary bouts < 15 minutes were 30, 60, 90, and 120 minutes/day, 

respectively. The confounding variables in the isotemporal substitution modeling 

were sex and waist circumference in tertiles. 
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5 Results 

5.1 Physical activity and sedentary behavior classification using 

machine learning method (I) 

The performance of the prediction models is presented in more detail in sub-study 

I. In brief, the bagged trees prediction model provided the best results (total 

accuracy of 96.5%) and was chosen to be used in the final classification process. 

The specificity and sensitivity of the bagged trees classifier for each activity are 

presented in Table 5. The mean sensitivity for the model was 95.5%, and the mean 

specificity was 99.1%. For MVPA, the mean sensitivity was 95.3% and specificity 

99.0%. PA classification and METs of different activities are shown in Table 6. 

Table 5. Sensitivity and specificity for detecting physical activity and sedentary 

behavior. Modified from publication I with permission of Springer Nature. 

Physical activity classification Sensitivity (%) Specificity (%) 

Lying down 96.4 99.2 

Sitting 92.2 99.2 

LPA 98.5 99.0 

MPA 91.5 99.7 

VPA 99.0 98.3 

Abbreviations: LPA = light physical activity, MPA = moderate physical activity, and VPA = vigorous 

physical activity. 

Table 6. Physical activity classification and metabolic equivalents. Modified from 

publication I with permission of Springer Nature. 

Physical activity classification Activity METs 

Mean SD 

Lying down Lying on a sofa - - 

Sitting Sitting at a computer 1.23 0.16 

LPA Standing/poster viewing 1.51 0.11 

 Table wiping 2.85 0.37 

 Floor cleaning 3.25 0.37 

 Slow walking 2.25 0.26 

MPA Fast walking 5.02 0.54 

VPA Soccer 6.42 1.27 

 Jogging 7.53 1.05 

Abbreviations: LPA = light physical activity, MET = metabolic equivalent of task, MPA = moderate 

physical activity, and VPA = vigorous physical activity. 
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5.2 Characteristics of sedentary behavior and sitting (II) 

In total, 36 (87.8%) participants wore the accelerometer for at least four days, 

including at least 600 minutes of wear time per day. The median number of valid 

days was 13 (IQR 1), and the median wear time of the accelerometer was 804.3 

min/d (IQR 116.6). The participants spent 557.6 min/day (69.3%) of waking time 

in SB, of which 290.8 min/day (52.2%) was performed in a sitting posture (Table 

7). 

Table 7. Characteristics of sedentary behavior and sitting among the study participants 

(n = 36). Modified from publication II with permission of Informa UK Limited, trading as 

Taylor & Taylor & Francis Group. 

Variable Women (n = 24) Men (n = 12) p-value All (n = 36) 

Sedentary behavior     

Total time (min/d) 537.0 [146.9] 592.0 [125.7] 0.37a 557.6 [143.3] 

Median bout length (min) 4.3 [1.5] 5.6 [2.7] < 0.05a 4.4 [2.1] 

50% median bout length (min) 26.4 [12.9] 39.5 [44.9] < 0.05a 28.9 [22.6] 

Number of bouts (bouts/d) 78.8 [50.1] 90.0 [110.0] 0.09a 82.2 [57.0] 

Maximum bout length (min) 58.6 (15.2) 42.0 (14.2) < 0.01b 53.0 (16.7) 

Fragmentation index (number of bouts/h) 6.1 (2.3) 4.1 (1.8) < 0.05b 5.4 (2.3) 

Fraction of daily SB time accumulated in 

bouts > median bout (%) 

90.0 [2.5] 91.0 [3.2] 0.30a 90.7 [2.8] 

Sitting     

Total time (min/d) 340.4 (112.7) 191.5 (93.9) < 0.001b 290.8 (127.2) 

Median bout length (min) 3.7 [1.6] 3.9 [2.1] 0.62a 3.8 [1.7] 

50% median bout length (min) 17.3 [9.4] 18.8 [13.8] 0.92a 17.4 [9.9] 

Maximum bout length (min) 58.1 [24.7] 44.0 [27.2] 0.27a 49.4 [25.0] 

Number of bouts (bouts/d) 44.1 (15.6) 25.7 (12.2) < 0.001b 37.9 (16.8)  

Fragmentation index (number of bouts/h) 7.6 (2.5) 7.6 (2.4) 0.81b 7.6 (2.5) 

Fraction of daily sitting time accumulated in 

bouts > median bout (%) 

88.6 [2.0] 88.0 [3.5] 0.55a 88.4 [2.2] 

Breaks in sdentary behavior     

Median break length (min) 2.4 [0.5] 2.5 [0.4] 0.64a 2.4 [0.4] 

Number of breaks  1 minute (breaks/d) 47.1 (14.0) 33.5 (12.4) < 0.01b 42.6 (14.8) 

Abbreviations: SB = sedentary behavior, values are mean (SD) or median [IQR], a = Mann–Whitney U-

test, b = Independent-Samples T-test. 

A comparison of the characteristics of SB and sitting between the sexes showed no 

significant difference in the total amount of daily SB between men and women 

(592.0 vs. 537.0 min/day, p = 0.37). However, women broke up their sedentary time 
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more often than men (6.1 vs. 4.1 breaks/hour, p < 0.05). On average, women had 

148.9 minutes more daily sitting (p < 0.001) compared to men. However, sitting 

time was broken up as often in men and women (7.6 breaks/hour). 

The number of and total time in a day spent in sedentary and sitting bouts < 15, 

15–29.99, 30–59.99, 60–119.99, and ≥ 120 minutes among men and women are 

shown in Figure 4. Women had a significantly greater number of and total time in 

sedentary bouts < 15 minutes and sitting bouts < 15, 15–29.99, 30–59.99, and 60–

119.99 minutes compared to men. 

Fig. 4. The number of (left) and the total time spent (right) in sedentary behavior (upper) 

and sitting (lower) bouts < 15, 15–29.99, 30–59.99, 60–119.99, and ≥ 120 minutes per day 

among men and women (II). Data are shown as means with error bars representing 95% 

CI. Significant differences between men and women are indicated with p-values. 
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Reprinted with permission of Informa UK Limited, trading as Taylor & Taylor & Francis 

Group. 

5.3 Associations of sedentary behavior and sitting patterns with 

serum lipid biomarkers (III) and glucose metabolism (IV) 

Characteristics of the participants 

Anthropometric, demographic, and behavioural characteristics of the study 

participants are presented in Table 8 (n = 3,272).  

Table 8. Characteristics of study participants (n = 3,272). Modified from publication III. 

Variable All (n = 3,272) 

Sex  

Men, n (%) 1,395 (42.6) 

Women, n (%) 1,877 (57.4) 

Height, cm 170.3 (163.9–177.7) 

Weight, kg 75.6 (65.4–86.6) 

BMI, kg/m2  

<18.5, n (%) 20 (0.6) 

18.5–24.99, n (%) 1,372 (41.9) 

25–29.99, n (%) 1,319 (40.3) 

≥ 30, n (%) 561 (17.2) 

Waist circumference, cm 89.5 (80.5–98.0) 

Abdominal obesity, n (%) 1,047 (32.0) 

Education  

No professional education, n (%) 171 (5.2) 

Vocational/college level education, n (%) 2,062 (63.0) 

Polytechnic/university degree, n (%) 1,039 (31.8) 

Employment status  

Employed, n (%) 3,182 (97.2) 

Unemployed, n (%) 28 (0.9) 

Studying, n (%) 16 (0.5) 

Other, n (%) 46 (1.4) 

Smoking  

Nonsmoker, n (%) 2,708 (82.8) 

Current smoker, n (%) 564 (17.2) 

Alcohol consumption, g/d 4.6 (1.2–13.1) 

Heavy user (men ≥ 40 g/d, women ≥ 20 g/d), n (%) 241 (7.4) 

CVD or diabetes diagnosis or medication, n (%) 573 (17.5) 

Values are median (25th–75th percentiles) unless otherwise stated. BMI = body mass index, CVD = 

cardiovascular disease (coronary artery disease, heart failure, myocardial infarction, stroke). 
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Accelerometer-measured physical activity and sedentary behavior by 

physical activity categories (III) 

The mean accelerometer measurement period was 14 days, and the median wear 

time was 903.4 (25th–75th percentiles 859.3–945.5) min/day. The mean 

accelerometer-measured PA, SB, and sitting variables by MVPA categories are 

presented in Table 9. Daily sedentary time and time spent in sedentary bouts  30 

minutes were greater in the low-activity category compared to the moderate or 

high-activity categories (p < 0.001). However, the participants in the high-activity 

category had more daily sitting time and time spent in sitting bouts  30 minutes 

than those in the low or moderate-activity categories (p < 0.001). No statistically 

significant difference in LPA time between the activity categories was found. 
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Associations of sedentary behavior and sitting patterns with serum lipid 

biomarkers by physical activity categories (III) 

Sedentary behavior and sitting variables having statistically significant linear 

associations with serum lipid and lipoprotein levels by MVPA categories are 

summarized in Table 10. Daily sedentary time and time spent in sedentary bouts ≥ 

30 minutes were adversely associated with HDL and LDL cholesterol, total/HDL 

and LDL/HDL cholesterol ratios, and triglycerides in the low-activity category. In 

addition, time spent in sedentary bouts of 15–29.99 minutes was adversely 

associated with total/HDL and LDL/HDL cholesterol ratios in the low-activity 

category. In the moderate-activity category, daily sedentary time had adverse 

associations with HDL cholesterol and total/HDL cholesterol ratios, and time spent 

in sedentary bouts of 15–29.99 minutes had adverse associations with HDL 

cholesterol, total/HDL ratios, LDL/HDL cholesterol ratios, and triglycerides. Daily 

sedentary time and time spent in sedentary bouts of 15–29.99 and ≥ 30 minutes 

were adversely associated with HDL cholesterol and LDL/HDL cholesterol ratios 

in the high-activity category. MVPA time was most consistently associated with 

total/HDL and LDL/HDL cholesterol ratios and triglycerides in the low-activity 

category. In contrast, MVPA time had no association with lipid and lipoprotein 

biomarkers in the moderate and high-activity categories. 

Based on the linear regression analyses, the total sedentary time (min/day) and 

the time spent in sedentary bouts  ≥ 30 minutes (min/day) were most often 

associated with serum lipid biomarkers and entered into ROC analyses to examine 

the threshold values for excessive time spent in SBs. The area under the curve 

(AUC) values of the daily sedentary time and the time spent in sedentary bouts ≥ 

30 minutes were 0.60 for total/HDL and LDL/HDL cholesterol ratios, and 0.59 for 

triglycerides. The risk for adverse serum lipid and lipoprotein levels was increased 

with daily sedentary time exceeding around 582.5 min/day (with 61.1–63.5% 

sensitivity and 45.0–48.8% specificity), and the time spent in sedentary bouts ≥ 30 

minutes was approximately 190 min/day (with 62.9–64.0% sensitivity and 48.5–

50.6% specificity).
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Associations of isotemporal substitution of sedentary behavior with 

glucose metabolism (IV) 

In the linear regression analyses of sedentary behavior with biomarkers of glucose 

metabolism (IV), 30 minutes more sedentary time and time spent in sedentary bouts 

≥ 30 minutes were inversely associated with fasting insulin, 2-hour insulin, 

HOMA-IR, HOMA-B, and the Matsuda index (Table 11). Sedentary time (min/d) 

and time spent in sedentary bouts ≥ 30 minutes (min/d) explained on average 33.5% 

(p < 0.001) of the variance in the Matsuda index showing the highest coefficient of 

variation. SB variables were not associated with fasting glucose and 2-hour glucose. 

Table 11. Associations of adding 30 minutes of sedentary behavior or time spent in 

sedentary bouts ≥ 30 minutes with biomarkers of glucose metabolism according to 

linear regression analyses (n = 2,991) (IV). 

Biomarkers of glucose metabolism 
R2 p-value β (95% CI) p-value 

Sedentary behavior variables 

Fasting glucose     

Sedentary time, min/d 0.210 < 0.001 0.000 (0.001, 0.001) 0.763 

Time spent in SB bouts ≥ 30 min, min/d 0.211 < 0.001 0.000 (0.000, 0.001) 0.395 

Fasting insulin     

Sedentary time, min/d 0.303 < 0.001 0.016 (0.011, 0.021) < 0.001 

Time spent in SB bouts ≥ 30 min, min/d 0.302 < 0.001 0.013 (0.008, 0.017) < 0.001 

2-hour glucose     

Sedentary time, min/d 0.117 < 0.001 0.002 (0.000, 0.005) 0.075 

Time spent in SB bouts ≥ 30 min, min/d 0.117 < 0.001 0.002 (0.001, 0.004) 0.166 

2-hour insulin     

Sedentary time, min/d 0.200 < 0.001 0.015 (0.009, 0.022) < 0.001 

Time spent in SB bouts ≥ 30 min, min/d 0.199 < 0.001 0.022 (0.015, 0.030) < 0.001 

HOMA-IR     

Sedentary time, min/d 0.320 < 0.001 0.017 (0.011, 0.022) < 0.001 

Time spent in SB bouts ≥ 30 min, min/d 0.319 < 0.001 0.013 (0.008, 0.018) < 0.001 

HOMA-B     

Sedentary time, min/d 0.190 < 0.001 0.016 (0.011, 0.021) < 0.001 

Time spent in SB bouts ≥ 30 min, min/d 0.187 < 0.001 0.012 (0.007, 0.016) < 0.001 

Matsuda index     

Sedentary time, min/d 0.337 < 0.001 0.018 (0.024, 0.012) < 0.001 

Time spent in SB bouts ≥ 30 min, min/d 0.334 < 0.001 0.012 (0.017, 0.008) < 0.001 

Adjusted for sex, waist circumference tertiles, accelerometer wear time, and MVPA. SB = sedentary 

behavior, MVPA = moderate-to-vigorous physical activity. 
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Isotemporal substitution regression modeling was used for examining time 

reallocations from time spent in sedentary behavior and time in sedentary bouts  

30 minutes to LPA and MVPA. The replacement of time spent in SB (Figure 5) and 

in sedentary bouts  30 minutes (Figure 6) with an equal amount of LPA were 

associated with lower levels of HOMA-IR, HOMA-B, fasting insulin, and 2-hour 

insulin and a higher level in the Matsuda index. Furthermore, replacing time spent 

in SB (Figure 5) and in sedentary bouts  30 minutes (Figure 6) with an equal 

amount of MVPA were associated with lower levels of HOMA-IR, HOMA-B, 

fasting glucose, fasting insulin, and 2-hour insulin and a higher level in the Matsuda 

index. The associations were greater the more time was replaced. In addition, 

replacing sedentary time or time spent in sedentary bouts  30 minutes with MVPA 

had more significant associations with all biomarkers of glucose metabolism 

compared to time reallocations from sedentary time or time spent in sedentary bouts 

 30 minutes with LPA. In contrast, no significant associations with biomarkers of 

glucose metabolism were found when time spent in sedentary bouts  30 minutes 

was substituted by time spent in sedentary bouts of < 15 minutes. 
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Fig. 5. Time reallocations from sedentary behavior with light or moderate-to-vigorous 

physical activity and the change in glucose metabolism biomarkers among middle-aged 

participants (n = 2,991) (IV). Adjusted for sex and waist circumference tertiles. SB = 

sedentary behavior, LPA = light physical activity, and MVPA = moderate-to-vigorous 

physical activity.  
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Fig. 6. Time reallocations from sedentary bouts 30 minutes with light or moderate-to-

vigorous physical activity and the change in glucose metabolism biomarkers among 

middle-aged participants (n = 2,991) (IV). Adjusted for sex and waist circumference 

tertiles. SB = sedentary behavior, LPA = light physical activity, and MVPA = moderate-

to-vigorous physical activity. 
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6 Discussion 

The present study developed and validated a machine learning-based method for 

classifying sedentary behavior and physical activity from raw triaxial accelerations 

measured from the hip. Additionally, the study demonstrated that using the 

developed machine learning method, SB and sitting patterns could be distinguished 

in the sample of middle-aged Finnish adults. Finally, the study examined the 

associations of sedentary behavior and sitting patterns with serum lipid biomarkers 

at different MVPA levels and the associations of time substitution of SB with PA 

and their associations with glucose metabolism in the large population-based cohort 

of middle-aged Finnish adults. 

6.1 Physical activity and sedentary behavior classification using a 

machine learning method (I) 

A machine learning-based method was developed and validated to classify types of 

PA and SB from the raw triaxial accelerometer data measured from the hip. The 

total accuracy of the model was 96.5%, the mean sensitivity for the model was 

95.5%, and the mean specificity was 99.1%. Sitting could be recognized with     

92.2% sensitivity and 99.2% specificity, and lying down with 96.4% sensitivity and 

99.2% specificity, respectively. 

The accelerometer data collection was performed simultaneously with indirect 

calorimetry and using the predefined set of supervised activities as direct 

observation. The posture of activies was confirmed by direct observation and 

indirect calorimetry was used to calculate the intensities of the activities to ensure 

that they are somewhat in line with Compendium of Physical Activites (Ainsworth 

et al., 2000; Ainsworth et al., 2011).  In addition, sitting, lying down, and standing 

postures were also agreed upon with direct observation. 

The results of the present study were in line with other methodology 

development studies to classify PA and SB from the accelerometer data (de Almeida 

Mendes et al., 2018; Farrahi et al., 2019). In the previous studies, threshold-based 

methods perform with high mean values of total accuracy (95.8%), sensitivity 

(93.7%), and specificity (91.9%) (de Almeida Mendes et al., 2018). In addition, 

ML-based classification methods performed on average with total accuracy of 

approximately 85.5% in adults using a hip-worn accelerometer and within the 

sample validation (Farrahi et al., 2019). However, most of the recent ML-based 

approaches classified accelerometer data by physical activity types (such as 
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sedentary, household, and locomotor activities) instead of PA intensity categories, 

which may explain slight differences in the total accuracies of the models compared 

to the model developed in the present study (de Almeida Mendes et al., 2018). It 

can be concluded that the algorithm developed in the present study has the potential 

for classifications of PAs and SBs from the raw triaxial accelerometer data 

measured from the hip in working-aged adults. 

6.2 Characteristics of sedentary behavior and sitting (II) 

For the first time, a comprehensive set of sedentary behavior and sitting parameters 

was used to describe the characteristics of daily free-living SB and sitting 

separately in middle-aged Finnish adults. The present study showed that 

distinctions can be reliably made between the patterns of SB and sitting using an 

ML-based method in free-living conditions. More detailed information can be 

achieved when the patterns on SB and sitting are analyzed separately. In the sample 

studied, men spent their daily sedentary time in prolonged bouts more often than 

women. However, women sat more but broke up their sitting time as often as men. 

The results of the present study about the differences in SB between the sexes 

were in line with the previous studies in which men had more prolonged bouts of 

SB (Husu et al., 2016; van der Velde et al., 2017) and more daily sedentary time 

(López-Valenciano et al., 2020) compared to women. Similarly, a recent study 

using a wrist-worn accelerometer found that men had more daily sedentary time 

than women among middle-aged Finnish adults (Niemelä et al., 2019). In contrast, 

statistically significant differences in total sedentary time or breaks in SB were not 

found between men and women among type 2 diabetes patients (Sardinha et al., 

2017). The agreement between the patterns of sitting with the previous studies 

cannot be concluded since, to our knowledge, no other study has investigated the 

patterns of SB and sitting separately. In addition, the results of the previous studies 

cannot be reliably compared due to the different definitions of sedentary bouts and 

breaks. In previous studies, an SB bout was defined as a bout of sitting or lying 

down that ends with standing up (Husu et al., 2016). A break in SB was defined as 

a PA bout of at least 1 minute with an activity count higher than 100 counts per 

minute (Sardinha et al., 2017) or a transition from a sitting or lying posture to 

standing or stepping lasting at least 1 minute (van der Velde et al., 2017). 
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6.3 Associations of sedentary behavior and sitting patterns with 

serum lipid biomarkers (III) 

The sub-study III showed that sedentary behavior and sitting patterns and their 

associations with serum lipid biomarkers vary between MVPA categories in a large 

cohort sample of middle-aged Finnish adults. In all MVPA categories, the 

accumulation patterns of SB were more significantly associated with lipid 

biomarkers than sitting. Among adults in the lowest MVPA category (i.e., not 

meeting the minimum amount of MVPA 150–300 min/week), total sedentary time 

and time spent in sedentary bouts of 15–29.99 and ≥ 30 minutes were most 

consistently associated with impaired lipid metabolism. In addition, more total 

sedentary time and time spent in sedentary bouts of 15–29.99 minutes were 

unfavorably associated with lipid biomarkers among adults in the moderately-

active MVPA category (i.e., meeting the lower recommended MVPA limit of 150–

300 min/week). Among adults in the highly active MVPA category (i.e., meeting 

the higher MVPA limit of > 300 min/week), total sedentary time and time spent in 

sedentary bouts of 15–29.99 and ≥ 30 minutes were negatively associated with lipid 

biomarkers.  

The existing literature (Bellettiere et al., 2019; Ekelund et al., 2019; Henson et 

al., 2013; Patterson et al., 2018; Sjöros et al., 2020; Vaara et al., 2022; Vasankari et 

al., 2017) has studied chiefly the associations of SB patterns with cardiometabolic 

health independently of MVPA level. Nevertheless, the results of those studies are 

in line with the results of sub-study III, showing that the time spent in SB and 

prolonged sedentary bouts are unfavorably associated with cardiometabolic health. 

Furthermore, these relationships were dependent on the MVPA category in sub-

study III, showing that more total sedentary time and time spent in sedentary bouts 

of 15–29.99 minutes were inversely associated with lipid biomarkers in all MPVA 

categories, but time spent in sedentary bouts ≥ 30 minutes had inverse associations 

only in the low and high-activity categories. In addition, more MVPA time was 

favorably associated with lipid metabolism in the low-activity category but not in 

the moderate or high-activity categories. 

Some previous studies (Ekelund et al., 2016; Huang et al., 2021; Mossavar-

Rahmani et al., 2020; Stamatakis et al., 2019b; van der Velde et al., 2018; von 

Rosen et al., 2020) have investigated the associations daily sedentary time with 

cardiometabolic health at different MVPA levels. High daily sedentary time was 

reported to be adversely associated with cardiometabolic health among the least 

physically active adults (Ekelund et al., 2016; Stamatakis et al., 2019b) or 



 

68 

combined with a low PA level (Huang et al., 2021). On the contrary, one study (van 

der Velde et al., 2018) reported that high sedentary time was associated with an 

increased risk for metabolic syndrome and type 2 diabetes. Still, the risk was 

greatest in participants with low cardiorespiratory fitness and high sedentary time 

despite their MVPA level. Cardiorespiratory fitness is affected by many factors, 

such as frequency and intensity of engagement in PA and genetic and environmental 

factors, and could have mediating effects between SB, PA, and cardiometabolic 

health. However, previous studies have reported that an increase in MVPA time can 

attenuate or even eliminate health risks related to high volumes of SB, especially 

among the least physically active adults (Matthews et al., 2015; Mossavar-Rahmani 

et al., 2020; Stamatakis et al., 2019b; von Rosen et al., 2020).  

Previous research has proposed several thresholds (varying between 6–10 

hours/day) for a harmful amount of daily sedentary time (Stamatakis et al., 2019), 

which supports the results of the present study. In the present study, the risk of 

unfavorable lipid levels was increased by the daily sedentary time of approximately 

582.5 min/day, although this threshold provided limited accuracy. In line with our 

results, the risk of CVD was increased with high levels (> 10 hours/day) of daily 

sedentary time after adjustment for other CVD risk factors (Pandey et al., 2016). 

On the contrary, the risk of CVD mortality has been reported to be higher even in 

adults with 6–8 hours of daily SB (Patterson et al., 2018).  

The results of the present study revealed more consistent associations between 

the serum lipid biomarkers and the patterns of SB than those of sitting. However, 

the total time spent in SB was greater and accumulated in more prolonged bouts 

than sitting, which may explain some of the different associations involving SB and 

sitting. Nevertheless, previous studies have provided strong evidence of improved 

cardiometabolic health risk biomarkers when the sitting posture was replaced with 

standing or ambulatory activities (Graves et al., 2015; Winkler et al., 2018). 

6.4 Associations of time reallocations from sedentary behavior to 

physical activity with glucose metabolism (IV) 

The sub-study IV investigated the impact of time reallocations from sedentary 

behavior and sedentary bouts ≥ 30 minutes to LPA, MVPA, and sedentary bouts < 

15 minutes on the associations with glucose metabolism in a large cohort sample 

of middle-aged Finnish adults. The results showed that reallocating time spent in 

SB or sedentary bouts ≥ 30 minutes to MVPA was associated with healthier glucose 

metabolism. Substituting sedentaty behavior or sedentary bouts ≥ 30 minutes with 
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LPA was also beneficially associated with glucose metabolism. However, no 

association was found when the time spent in sedentary bouts ≥ 30 minutes was 

substituted with the time spent in sedentary bouts < 15 minutes. 

The previous isotemporal substitution modeling studies have shown that time 

reallocations from SB to LPA, or MVPA, are positively associated with glucose 

metabolism in adults (Cavallo et al., 2022; Del Pozo-Cruz et al., 2018; Galmes-

Panades et al., 2019; Grgic et al., 2018; Yates et al., 2015) which supports the results 

of the present study. Similarly, a recent study in the same population using 

compositional data analysis found that reallocating time spent in SB to LPA was 

associated with favorable glucose metabolism, and a more significant favorable 

association was found when SB was reallocated to MVPA (Farrahi et al., 2021b). 

In line with our results, associations were more substantial with insulin-related 

biomarkers than glucose-related biomarkers (Farrahi et al., 2021b).  

In the current study, substituting daily SB with LPA or MVPA increased the 

Matsuda index, which describes whole-body insulin sensitivity. In addition, 

substituting daily sedentary time with LPA or MVPA decreased HOMA-IR 

(describes insulin resistance) and HOMA-B (describes -cell function). Blood 

glucose level is regulated by a feedback loop involving insulin secretion in 

pancreatic -cells and insulin sensitivity of tissues (Khan et al., 2014). Initially, 

developing type 2 diabetes increases insulin secretion, and the presence of insulin 

resistance further increases insulin secretion in -cells to maintain normal blood 

glucose levels. PA and resistance training have an essential role in controlling 

insulin resistance of the whole body and especially muscles (Colberg et al., 2016). 

The previous systematic review showed a consistent association between total 

sedentary time and poor insulin sensitivity in adults (Brocklebank et al., 2015). 

Furthermore, more time spent in LPA and MVPA was favorably associated, 

particularly with insulin-related biomarkers in the birth cohort of Finnish older 

adults (Länsitie et al., 2021). The substitution of SB with LPA has been proposed 

as an achievable strategy for reducing the risk of type 2 diabetes in the most 

physically inactive adults (Healy et al., 2015; Van der Berg et al., 2017). In addition, 

the previous randomized controlled trial showed that substituting 40 minutes of 

daily SB with non-exercise PA for three months decreased fasting insulin levels in 

adults with a metabolic disorder (Sjöros et al., 2022). 

The results of sub-study IV are somewhat supported by a recent study in the 

same population, showing that sedentary profiles with high total sedentary time or 

with high sedentary bout duration have no different associations with glucose 

metabolism biomarkers (Farrahi et al., 2021a). In sub-study IV, broadly similar 
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associations were found when PA substituted sedentary behavior or prolonged 

sedentary bouts. However, the present study results have some inconsistencies one 

previous study. In adults at high risk of developing type 2 diabetes, replacing time 

spent in sedentary bouts ≥ 30 minutes with time spent in sedentary bouts < 30 

minutes was associated with lower fasting insulin (Edwardson et al., 2017). Based 

on the results of the present study, substituting daily SB or prolonged sedentaty 

bouts with LPA may be an achievable strategy for improving insulin sensitivity and 

insulin levels, e.g., in physically inactive adults, but substituting daily SB or 

prolonged sedentary bouts with MVPA provides greater benefits. 

6.5 Strengths, limitations, the implication of findings, and future 

research 

The main strengths of the present study were the use of the hip-worn triaxial 

accelerometer and ML-based signal analysis method to classify SBs and PAs 

instead of the traditional threshold-based analysis methods (Wijndaele et al., 2015). 

The hip has been proposed to be one of the most feasible attachment sites of the 

accelerometer to measure PAs and SBs reliably in large populations over long 

measurement periods (Aunger & Wagnild, 2022; Matthews et al., 2012a; 

Rosenberger et al., 2013). In addition, the ML-based model developed in sub-study 

I was validated against indirect calorimetry and direct observation, which is a 

definite strength. EE-based techniques in validating PAs and direct observation in 

validating SBs have been considered the gold standards for validating PA and SB 

measurement techniques (Aunger & Wagnild, 2022; Hills et al., 2014). 

However, some limitations of the ML-based model developed in sub-study I 

need to be noted. The METs of the activities were calculated from the indirect 

oxygen consumption using the standard conversion, which may not distinguish the 

individual variability (e.g., gender, age, and body composition) in metabolic 

responses (Welk et al., 2012). In addition, standing still was missing from the 

protocol since standing was measured as a poster viewing that included slight 

movements. The validation of ML-model in different populations (e.g. children and 

elderly) will be necessary to conduct before analyzing PA from those populations. 

The strength of sub-study II was that using the ML-based approach, the 

comprehensive set of SB and sitting pattern variables were analyzed separately 

from the raw triaxial hip acceleration data. In addition, the ML-based model was 

developed and validated for working-aged adults using the same hip-worn 

accelerometer. However, the intensity, duration, and frequency of the breaks in SB 
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or standing still posture were not investigated. Different intensities and activity 

types (standing or locomotor) of the breaks in SB may also have different health 

effects. For instance, light-intensity walking during the breaks in SB, but not 

standing, has been shown to have beneficial effects for postprandial glycemia in 

adults (Bailey & Locke, 2015). Additionally, the study sample was relatively small, 

within a narrow range in age and ethnicity. Although sub-study II presented a 

comprehensive set of the accelerometer-based characteristics of SB and sitting in 

free-living conditions using ML-based classification, further studies with larger and 

more heterogenous populations are needed to characterize the association of SB 

and sitting parameters with health. 

The strengths of sub-studies III and IV were the relatively sizeable population-

based study sample, the two-week hip-worn accelerometer measurements of PA 

and SB, the use of raw triaxial accelerations, the ML-based signal processing 

method, and the comprehensive range of cardiometabolic biomarkers. In addition, 

the patterns of SB and sitting were investigated separately in different MVPA 

categories in sub-study III. Isotemporal substitution modeling was used for time 

reallocations between SBs and PAs in sub-study IV. Nevertheless, sub-studies III 

and IV have some limitations. The present study might have some selection bias 

since participants providing valid PA and SB data smoked less, consumed less 

alcohol, and had more preferably body compositions and lower rates of CVD or 

diabetes compared to those not providing valid PA data. The accelerometer was 

worn during waking hours, which can be considered a limitation due to a possible 

interconnection between sleep and daily activities (Farrahi et al., 2021b). In 

addition, all kinds of standing were classified as LPA. MVPA could contain varying 

amounts of MPA and VPA, and SB's context or behavioral characteristics were not 

studied. In sub-study IV, the associations of time reallocations between SB and PAs 

were only theoretically studied. The causal associations of an individual cannot be 

determined due to the cross-sectional design of these sub-studies. The participants 

were of the same age and had the same ethnic background, which can be considered 

a limitation. Nevertheless, the results of this thesis can be used when planning 

evidence-based interventions to decrease SB in midlife and updating national SB 

recommendations. 

For future studies, it is recommended to investigate joint associations of MPA, 

VPA, LPA, SB, and prolonged sedentary bouts on cardiometabolic health in 

longitudinal designs to understand the physiological effects on cardiometabolic 

health comprehensively. In addition, future studies should analyze sleep and 

standing still, and the context of SBs should be investigated. Further studies with 
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more heterogeneous study samples and experimental study designs are needed to 

understand better the significance of SB's characteristics with cardiometabolic 

health. 
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7 Conclusions 

The present study developed and validated a machine learning-based algorithm 

measuring accumulation patterns of sedentary behavior and sitting in free-living 

conditions and indicated that patterns of sedentary behavior have different 

associations with cardiometabolic health in mid-life depending on the activity level. 

Based on the aims of this study, it can be concluded that: 

1. Physical activity and sedentary behavior classifications can be done from raw 

triaxial accelerations measured from the hip using a machine learning-based 

method with high accuracy. 

2. Sedentary behavior and sitting distinctions can be reliably made using a 

machine learning-based method. More detailed information about sedentary 

behavior can be achieved when overall sedentary behavior and sitting are 

analyzed separately in free-living conditions. 

3. The accumulation patterns of overall sedentary behavior and sitting and their 

associations with serum lipid biomarkers vary among moderate-to-vigorous 

physical activity categories. The patterns of overall sedentary behavior are 

more consistently associated with serum lipid biomarkers than the patterns of 

sitting. 

4. Reallocating daily time spent in sedentary behavior and sedentary bouts ≥ 30 

minutes with moderate-to-vigorous physical activity is most favorably 

associated with glucose metabolism, but also reallocating daily time spent in 

sedentary behavior and sedentary bouts ≥ 30 minutes to light physical activity 

is associated with healthier glucose metabolism. 
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