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Nguyen, Phong, Neural scene representations for learning-based view synthesis. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. C 891, 2023
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

This thesis introduces learning-based novel view synthesis approaches using different neural
scene representations. Traditional representations, such as voxels or point clouds, are often
computationally expensive and challenging to work with. Neural scene representations, on the
other hand, can be more compact and efficient, allowing faster processing and better performance.
Additionally, neural scene representations can be learned end-to-end from data, enabling them to
be adapted to specific tasks and domains.

Conventional structure-from-motion, structure-from-depth, and multi-view geometry
techniques prescribe how the 3D structure of the environment is represented. This thesis
introduces architectures that learn this representational space, allowing it to express concisely the
presence of textures, parts, objects, lights, and scenes using a single vector. In addition, the
methods can account for the uncertainty of understanding the scene’s content in the face of severe
occlusions and partial observations.

Large-scale novel view synthesis aims to generate photo-realistic images of arbitrary targets in
the 3D space. Recent research has produced target views by interpolating in ray or pixel space and
they often suffer from artifacts arising from occlusions or inaccurate geometry. This work
proposes novel, efficient frameworks that represent 3D scenes as multiple-depth planes. The
trained model can render color and depth images of the novel views. The proposed architectures
are compact and produce plausible results on unseen data without fine-tuning or test-time
optimization.

Human capture and rendering is the process of capturing the appearance and motion of a
human and generating a realistic 3D representation of that person. Existing methods tackle this
problem using expensive multi-view capture setups. This thesis focuses on the issue of predicting
novel views of an unseen dynamic human using a single viewpoint. Instead of representing the
input as a point cloud, this work presents an efficient sphere-based view synthesis network that
produces higher-quality results than multi-view approaches. Despite being trained solely on
synthetic data, the work also shows great generalization performance on real images.

Keywords: human synthesis, neural radiance fields, novel view synthesis, plane sweep
volumes, sphere-based rendering, vector-based representation





Nguyen, Phong, Neuraaliset näkymien esitystavat oppimispohjaiseen
näkymäsynteesiin. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta
Acta Univ. Oul. C 891, 2023
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Tämä väitöskirja esittelee lähestymistapoja oppimispohjaiseen uuden näkymän synteesiin käyt-
täen erilaisia neuraalisia näkymän esitystapoja. Perinteiset esitystavat, kuten vokselit tai pistepil-
vet, ovat usein laskennallisesti kalliita ja haastavia käsitellä. Neuraaliset näkymän esitystavat
voivat toisaalta olla kompaktimpia ja tehokkaampia, mikä mahdollistaa nopeamman käsittelyn ja
paremman suorituskyvyn. Lisäksi neuraaliset näkymän esitystavat voidaan oppia päästä päähän
datasta, jolloin ne voidaan mukauttaa tiettyihin tehtäviin ja alueisiin.

Perinteiset rakenne-liikkeestä-, rakenne-syvyydestä- ja moninäkymägeometriatekniikat mää-
räävät, miten ympäristön 3D-rakenne esitetään. Tämä väitöskirja esittelee arkkitehtuurit, jotka
oppivat tämän esitystapa-avaruuden mahdollistaen sen, että tekstuurien, osien, esineiden, valojen
ja näkymien olemassaolo voidaan tiiviisti ilmaista yhdellä vektorilla. Lisäksi menetelmät voivat
ottaa huomioon näkymän sisällön ymmärtämiseen liittyvän epävarmuuden vaikeiden okkluusioi-
den ja osittaisten havaintojen yhteydessä.

Laajamittainen uuden näkymän synteesi pyrkii luomaan fotorealistisia kuvia mielivaltaisista
kohteista 3D-avaruudessa. Aiemmat tutkimukset ovat tuottaneet kohdenäkymiä interpoloimalla
säde- tai pikseliavaruudessa, ja ne kärsivät usein okkluusioista tai epätarkasta geometriasta joh-
tuvista artefakteista. Tässä työssä ehdotetaan uusia, tehokkaita viitekehyksiä, jotka esittävät 3D-
näkymiä monisyvyystasoina. Koulutettu malli osaa renderöidä väri- ja syvyyskuvia uusista
näkymistä. Ehdotetut arkkitehtuurit ovat kompakteja ja tuottavat uskottavia tuloksia ennalta
näkemättömään dataan perustuen ilman hienosäätöä tai testausajan optimointia.

Ihmisen kapturointi ja renderöinti on prosessi, jossa tallennetaan ihmisen ulkonäkö ja liike
sekä luodaan realistinen 3D-esitys kyseisestä henkilöstä. Nykyiset menetelmät ratkaisevat tämän
ongelman käyttämällä kalliita usean näkymän kuvankaappausasetelmia. Tämä väitöskirja keskit-
tyy ongelmaan, jossa ennustetaan uusia näkymiä ennalta näkemättömästä dynaamisesta ihmises-
tä yhden kuvakulman avulla. Sen sijaan, että esitettäisiin syöte pistepilvenä, tämä työ esittelee
tehokkaan pallopohjaisen näkymän synteesiverkon, joka tuottaa laadukkaampia tuloksia kuin
monen näkymän lähestymistavat. Huolimatta siitä, että verkko on koulutettu pelkästään synteet-
tisellä datalla, työ osoittaa myös erinomaista suorituskyvyn yleistyvyyttä todellisilla kuvilla.

Asiasanat: ihmisen synteesi, neuraaliset radianssikentät, pallopohjainen renderöinti,
tasonpyyhkäisyvolyymi, uuden näkymän synteesi, vektoripohjainen esitystapa
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d Viewing direction of a ray

a The radius of a sphere

f A mapping function

φ The learnable weights of a neural network

γ Positional encoding

c Color of a 3D point
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1 Introduction

1.1 Background and motivation

View synthesis generates a new view of a scene from one or more existing pictures of
that scene. This can be used to create a novel view of a scene from a different perspective
or to fill in missing regions in a current view. Novel view synthesis can refer specifically
to the generation of a view that does not correspond to any real-world observation of the
scene but rather represents a novel or fictional perspective. This can be used for a variety
of purposes, such as virtual reality [1], special movie effects [2], and image-based
rendering [3]. Many different techniques can be used for novel view synthesis, including
2D image warping, 3D reconstruction, and machine learning-based approaches.

The history of view synthesis can be traced back to the earliest days of computer
graphics when researchers first began exploring ways to generate synthetic images from
geometric models. One of the first notable efforts in this area was the work of Ivan
Sutherland and his students at the University of Utah in the 1960s, who developed early
3D graphics systems that could generate synthetic views of simple geometric scenes [4].
In the decades that followed, there have been many significant developments in the field
of view synthesis, including the introduction of more sophisticated geometric modeling
techniques, the development of image-based rendering approaches that do not rely on
explicit geometric models, and the application of machine learning techniques to view
synthesis.

In recent years, there has been a particular focus on using deep learning to enable
more realistic and flexible view synthesis, with many researchers exploring the use
of generative models [5, 6] and other deep learning approaches to synthesize new
views. There are several motivations for using neural scene representations for view
synthesis. One motivation is to improve the realism of synthesized views. Traditional
view synthesis methods often produce unrealistic results because they need to fully
capture the complexity of scenes [7]. By using neural scene representations, which are
trained on either synthetic or real-world data, it is possible to generate more realistic
synthesized views [8]. Overall, the use of neural scene representations for view synthesis
represents a promising direction for improving the realism and usefulness of novel
views.
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Single or sparse view
 inputs & camera poses

Scene Encoder

Vector-based 
representation

(Paper I and II)

Target views

Plane-sweep volume 
representation

(Paper III and IV)

Scene Decoder

Volume 
rendering

Neural
renderer

Sphere-based 
representation

(Paper V)

Human View 
Synthesis Network

Fig. 1. An overview of different neural scene representations that have been used in this
thesis for the topic of novel view synthesis using a set of sparse observations.

1.2 Scope of the thesis

This thesis utilizes several neural scene representations and deep learning techniques for
novel view synthesis as can be seen in the Figure 1. The approaches in Paper I and
Paper II propose an implicit vector-based representation of a synthetic 3D scene and then
use a variational decoder to generate new views. Paper I presents two novel adversarial
losses to improve the performance and help the learning process become much more
stable. Paper II introduces a sequential synthesizing scheme to speed up the quality
of the rendered novel images and fasten the training process. Paper III and Paper IV
address the problem of novel view synthesis in large-scale real-world 3D scenes. Both
papers described learning to construct memory efficient plane-sweep volumes and infer
color and depth images of the unknown views. Paper IV proposes a generalized view
synthesis approach utilizing both neural radiance fields and convolution neural networks.
Finally, Paper V explores generating new views of an unseen dynamic human using a
single RGBD image via sphere-based rendering. All methods presented above show
plausible performance on unseen data without any scene-specfic fine-tuning or test-time
optimization.

1.3 Contributions

The main contributions of the thesis are listed below.
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– A general learning framework for novel view synthesis which introduces an additional
discriminator network encourages the model to predict more accurate novel views.
Moreover, the combination of the least square loss and the feature matching loss
helps stabilize both the generator and discriminator training processes. (Paper I)

– A sequential novel-view synthesis approach renders more accurate distant novel
views. Inspired by Transformers [9] architectures, the method can put more attention
on the views that are useful to render novel views. Moreover, the proposed method
requires less time to reach convergence than previous approaches. (Paper II)

– A generalized novel view synthesis method is presented that attains high-quality
synthesis results for both seen and unseen data. Adaptive depth scaling that enables
producing photorealistic novel views with and without per-scene optimization. A
spatial-temporal module is proposed to produce a smooth sequence of rendered novel
views along a continuous camera path. 1 (Paper III)

– An efficient sparse view synthesis network that employs a coarse radiance field
predictor and a neural renderer to holistically predict novel images approximately two
orders of magnitude faster than prior arts. The proposed scene-specific model requires
only 10-15 minutes of fine-tuning to achieve high-quality results. IFuthermore, the
proposed method does not require additional depth supervision. (Paper IV)

– A robust sphere-based synthesis network that generalizes to multiple identities without
per-human optimization. Another refinement module is presented to enhance the
self-occluded regions of the initial estimated novel views. This introduces a novel yet
simple approach to establishing dense surface correspondences for the clothed human
body. 2 (Paper V)

1.4 Overview of original articles

Paper I introduces a general learning framework for novel view synthesis that encodes
input views into a latent representation used to generate a new view through a recurrent
variational decoder. The proposed method improves the view synthesis by adding a
least-square adversarial loss and a feature-matching loss. The experiments demonstrate
that the trained model can produce high-quality results and faster convergence than the
conventional approach. This paper received the Best Paper Award in the SCIA 2019
conference.

1https://github.com/phongnhhn92/RGBDNet
2https://www.phongnhhn.info/HVS_Net/index.html
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Paper II addresses the problem of novel view synthesis sequentially. From the query
pose and a set of input poses, an ordered set of observations that leads to the target
view is created. The problem of single novel view synthesis is then reformulated as a
sequential view prediction task. A Transformer-based architecture is then proposed to
extract multiple scene representations. Experimental results show good performance on
various challenging synthetic datasets and demonstrate that the trained model not only
gives consistent predictions but also does not require any retraining for finetuning.

Paper III presents a cascaded architecture for novel view synthesis, called the RGBD-
Net, which consists of two core components: a hierarchical depth regression network
and a depth-aware generator network. The former predicts the target views’ depth maps
using adaptive depth scaling. At the same time, the latter leverages the predicted depths
and renders spatially and temporally consistent target images. Moreover, the method can
be optionally trained without depth supervision while retaining high-quality rendering.
Thanks to the depth regression network, the extracted dense 3D point clouds are more
accurate than those produced by some state-of-the-art multiview stereo methods.

Paper IV proposes a neural radiance fields-based view synthesis pipeline that renders
the entire view in a single forward pass during training and testing. Instead of rendering
the novel views directly at the original scale, the method infers lower-resolution radiance
fields. Then it uses an up-scale neural renderer to obtain the final estimates. Although
the generalized model can render plausible results on both unseen data, the trained
model can further be optimized using more images to achieve state-of-the-art results.

Paper V takes as input a single, sparse RGB-D image of the upper body of a human
and a target camera pose, and generates a high-resolution rendering from the target
viewpoint. To account for the sparseness of the input depth, a sphere-based neural
renderer is utilized to create a denser, warped image compared to simply performing
geometry warping from one view to the other. Combined with an encoder-decoder
architecture and trained end-to-end processing, this method can synthesize novel views
of unseen individuals and inpaint areas that are not visible from the main input view.

1.5 Outline of the thesis

This thesis consists of an overview and an appendix containing the original articles
described in the previous section. The remainder of the thesis is organized as follows.
Chapter 2 presents a brief background to novel view synthesis and the recent learning-
based methods that utilize neural scene representations. Chapter 3 introduces the
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vector-based scene representations that render novel views of small-scale synthetic
scenes. Chapter 4 tackles real-world and large-scale novel view synthesis by relying
on plane sweep volume representations. Chapter 5 presents a generalizing dynamic
human-view synthesis approach based on sphere-based rendering. Chapter 6 presents
the conclusions.
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2 Novel view synthesis

The fundamental goal of novel view synthesis is to render an image from a novel
viewpoint, given a sparse set of reference images and corresponding camera poses.
As opposed to traditional computer graphics, where the scene is constructed from
hand-crafted 3D models, the goal of view synthesis algorithms is to use images captured
from the real world as a medium for rendering scenes. The idea of using images as a
rendering medium has remained a challenging and long-standing topic in academia due
to a number of challenges. Some of the key challenges include camera pose estimation,
inferring the geometric structure of the scene, modeling view-dependent lighting, and
gracefully handling missing information. In addition to synthesizing plausible views,
the practicality of the algorithm imposes additional challenges, such as achieving a high
rendering speed and a low memory footprint.

2.1 Traditional view synthesis

The ways that novel view synthesis has been approached historically can be categorized
into two approaches: light field rendering and image-based rendering. Light field
rendering methods are based on directly interpolating between densely sampled images.
Furthermore, image-based rendering (IBR) takes advantage of geometrical information
derived from multi-view stereo to synthesize views.

2.1.1 Light-field rendering

Early work in novel view synthesis [10] defines the novel view synthesis problem as
approximating a light field representation, which is a continuous 5-dimensional function
that returns incoming radiance originating from the scene for a given position x ∈ R3

and view direction d ∈ R2.
The light field captures the flow of light in the scene, making it possible to render

novel views by sampling it from desired locations. Given a collection of source views and
camera poses that densely cover the parameter space, the light field can be discretized
into a regular grid and interpolated between samples to synthesize novel views [11, 12].
This discretization can be further reduced to a 4-dimensional grid by noting that radiance
remains constant along a ray in free space. This approach was termed the lumigraph,
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reprojection
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Fig. 2. An overview of image-based rendering. The scene geometry is first estimated using
structure from motion or multi-view stereo. Each pixel of the target view is rendered by
blending re-projected pixels from near-by input views.

in which the light field of an enclosed scene is discretized using bounding planes.
However, this approach works only with a sufficiently dense collection of images. A
more recent work [13] quantified this requirement by showing that light field rendering
has a fundamental minimum sampling rate.

2.1.2 Image-based rendering

Image-based rendering refers to novel view synthesis techniques that utilize a geometrical
estimate of the scene and nearby views to synthesize novel views. The development
of structure from motion (SfM) and multi-view stereo (MVS) algorithms introduced
a reliable way to estimate the camera poses and geometry of the scene from a set of
images, which became a foundational technique for image-based rendering. The goal of
SfM is to find the parameters of each camera and the 3D coordinates of shared points in
the scene. The traditional way of solving this problem involves an image correspondence
search and an incremental reconstruction procedure, explained in more detail [14]. The
MVS methods build upon this technique by associating each pixel of the source views
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with a globally consistent depth value [15]. The result is a dense point cloud that can be
further refined into a textured mesh using e.g., Delaunay triangulation.

Traditional IBR algorithms utilize MVS to estimate the surface geometry of the
scene and use it to reproject nearby images into a novel viewpoint [16]. As illustrated in
Fig. 2, the reprojection process involves projecting the pixels of nearby pictures to the
surface geometry and back to the target view. The reprojected pixels can overlap and
end up in sub-pixel locations, which is handled by aligning the pixels with the target
view utilizing, e.g., inverse bilinear interpolation and then using a blending operation
to form the final image. The blending operation varies between authors; for example,
Chaurasia et al. [17] specify the weights by camera orientation and the reliability
of depth information at each pixel. Later studies improve the geometry estimation
with various modifications to MVS, such as per-view meshes [18] and modeling depth
uncertainty [7].

2.1.3 Limitations of traditional view synthesis

While the two discussed approaches can synthesize plausible views, they are limited in
various aspects and have room for improvement. The approach of light field interpolation
is only feasible when working with a sufficiently dense collection of images. Given the
required sampling rate and the high memory cost of discretizing the parameter space,
light field rendering only lends itself to large-scale scenes.

Image-based rendering is more scalable and can be integrated into existing graphics
engines; however, there are several issues. Firstly, it is fundamentally limited by the
accuracy of the reconstructed surface geometry. Scenes involving detailed geometry and
view-dependent materials are incredibly challenging for SfM and MVS to reconstruct,
producing noisy or spurious geometry and missing regions. The blending process is a
crude approximation of how light can scatter from a surface, especially in scenarios with
challenging light interactions such as reflection and refraction.

In summary, synthesizing views from scenes involving sparse views, detailed
geometry, or view-dependent materials remains challenging for traditional view synthesis.
Recent studies address the above mentioned issues by exploring several neural scene
representations.
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Fig. 3. An illustration of 2D (a) and 3D (b) learning-based view synthesis.

2.2 Learning-based view synthesis

Traditional computer graphics allows us to generate high-quality controllable imagery
of a scene; all physical parameters of the scene, for example, camera parameters,
illumination, and materials of the objects, need to be provided as inputs. To generate
controllable imagery of a real-world scene, we need to estimate these physical properties
from existing observations such as images and videos. This estimation task is considered
inverse rendering and is challenging, especially when the goal is photo-realistic synthesis.
In contrast, learning-based view synthesis is a rapidly emerging field that allows
the compact representation of scenes, and rendering can be learned from existing
observations using neural networks. Like classical computer graphics, the goal of neural
rendering is to generate photo-realistic imagery in a controllable way, for example
generating novel views, re-lightning, or scene decomposition.

As seen in Figure 3, there are two lines of research on learning-based view synthesis
in 2D and 3D. The former approaches focus on training a neural network to render the
target image from some nearby input views and their poses. The trained 2D neural
rendering models can be generalized to new scenes without finetuning. In contrast, 3D
neural rendering overfits a neural network to a single scene and uses a computer graphics
engine to render the images. Unlike 2D neural rendering, the optimized network does
not learn how to render, but it learns to represent the scene in 3D, and that scene is then
rendered according to the physics of the image formation. Essentially, a neural rendering
pipeline learns to generate and represent a scene from real-world imagery, an unordered
set of images, or structured, multi-view images or videos. It does so by mimicking
the physical process of a camera that captures a scene. A fundamental property of
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(a) (b) (c)

Fig. 4. An overview of some popular explicit scene representations for novel view synthesis:
(a) multiple-plane images, (b) point-cloud and (c) voxel-grid (sparse octree).

learning-based view synthesis is the disentanglement of the camera capturing process
(i.e., the projection and image formation) and 3D scene representation during training.
This disentanglement has several advantages and leads especially to a high level of 3D
consistency during the synthesis of images (e.g., for novel view synthesis). Modern
neural rendering methods disentangle the projection and other physical attributes of
the 3D scene by relying on different types of neural scene representation, and we will
discuss them in the following section.

2.2.1 Explicit representations

Recent deep view synthesis methods learn to deal with 3D scenes using explicit 3D
representations such as multiple plane images, voxel-grids and point clouds, as can be
seen in Figure 4.
Multiple plane images. A significant number of studies [19, 20, 21] on view synthesis
represent the 3D using Multiple Plane Images (MPIs). Each MPI includes multiple
RGB-α planes, where each plane is related to a certain depth. The target view is
generated by using alpha composition. Given a camera ray that intersects each image at
plane depth, the projected color is formed by compositing each intersected color in a
front-to-back fashion. A deep convolutional neural network is presented to predict MPIs
that reconstruct the target views for the stereo magnification task [19].

Later work considerably improves the quality of synthesized images in the light-field
setups [22]. They propose a novel network with a regularized gradient descent method to
refine the generated images gradually. Local Light Field Fusion (LLFF) [23] introduces
a practical high-fidelity view synthesis model that blends neighboring MPIs to the
target view. Instead of using a set of simple RGB-α planes, the later work [24] models
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view-dependent effects by parameterizing each pixel as a linear combination of basis
functions learned from a neural network. This approach achieves the best overall scores
across all significant metrics on frontal-facing scenes with faster rendering time than
previous studies [19, 23]. In addition to multi-plane images, other researchers have
considered alternative image formats such as spherical [25] and cylindrical [26] image
representations to synthesize views from outward facing 360° scenes. This approach is
essentially similar except for a different warping scheme and finds use in a stereo setup
of 360° cameras. The critical advantage of multi-plane images is that they can be readily
stored in image formats and integrated into graphics engines for real-time rendering
without the need to evaluate a neural network. However, this representation could be
more extensive regarding translational movement in the scene.
Point-based representation. Point cloud is a lightweight 3D representation that closely
matches the raw data that many sensors (i.e. LiDARs, depth cameras) provide, and hence
is a natural fit for applying 3D learning. A drawback of the point-based representation is
that there might be holes between points after projection to the screen space. NPBG
and its variant [27, 28] train a neural network to learn feature vectors that describe 3D
points in a scene. These learned features are then projected onto the target view and fed
to a rendering network to produce the final novel image. SynSin [29] lifts per-pixel
features from a source image onto a 3D pointcloud that can be explicitly projected to
the target view using a U-Net model. A more recent work [30] optimizes all of the
scene’s parameters such as the camera model, camera pose, point position, point color,
environment map, rendering network weights, vignetting, camera response function, per
image exposure, and per image white balance using a differentiable U-Net renderer.
However, these point-based methods often suffer from temporal instabilities between
generated novel views of a smooth camera path.
Sphere-based representation. Recent work on neural sphere-based rendering [31]
introduces a fast, general purpose, sphere-based, differentiable renderer. Instead of
treating the entire 3D scene as a set of 3D points, each sphere is parameterized by its
position in space and its radius. Each sphere has an assigned opacity and can have
an arbitrary vector as a payload, such as a color or a general latent feature vector.
This makes it easy to handle point cloud data from 3D sensors directly, allows for the
optimization of the scene representation without problems of changing topology, and
is more efficient for rendering than recent approaches based on volumetric grids or
fully-connected networks [8]. Moreover, the sphere-based representation eliminates the
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Fig. 5. An overview of implicit scene representations. A learned neural network f (parameter-
ized by φ ) is optimized to encoded a 3D point x ∈ R3 and its view direction d ∈ R3 to either
binary occupancy and signed/unsigned distance fields for surface reconstruction or radiance
fields for novel view synthesis.

need for acceleration structures, such as a k-d tree or octree, thus it can naturally support
dynamic scenes.
Grid-based representation. Grid-based representations are similar to MPI represen-
tation but are based on a dense uniform grid of voxels. This representation has been
used as the basis for neural rendering techniques to model object appearance. An early
work [32] learns a persistent 3D feature volume for view synthesis and employs learned
ray-marching on the task of object-centric reconstruction. Neural Volumes [33] is an
approach for learning dynamic volumetric representations of multi-view data. The
method consists of an encoder-decoder network that transforms input images into a
3D volume representation and a differentiable ray-marching operation that enables
end-to-end training. However, the main limitation of these early approaches is the
required cubic memory footprint.

Recent research addresses the above issue by utilizing sparse voxel octrees [34] to
store and render voxels in a more efficient manner [35, 36]. While sparse voxel octrees
are more challenging to work with than cartesian grids, they take significantly less
memory to store and are faster to render. Another interesting approach is to learn a
tri-plane representation [37] for novel view synthesis and generative modeling, and the
features of each 3D point are obtained via tri-linear sampling. A tiny neural network
then decodes those features to predict the 3D scene properties.
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2.2.2 Coordinate-based representations

Conventional computer graphics algorithms and techniques developed assume meshes
or point clouds as 3D scene representations for rendering and editing. Early work on 2D
neural rendering [38] implicitly encodes the entire 3D scene into a latent vector and
then uses a generator network to render novel views of the target viewpoints. Although
this approach performs well on unseen synthetic data, it is not trivial to generalize
to large-scale scenes. Recently, a large number of works have tried to represent and
render a 3D scene using a coordinate-based mapping function such as a neural network.
These recent studies show that the mapping function f (x,d|φ) between the spatial 3D
coordinate x, view direction d, and the scene property y can serve as an implicit scene
representation parameterized by a single neural network φ as can be seen in the Fig. 5.
Such a new paradigm has drawn significant attention: one can train the neural network
defined in a continuous and differentiable function space to recover fine-grained details
at the scene scale with efficient memory consumption, which offers excellent benefits
over the alternatives.
Surface reconstruction. Different types of implicit functions such as binary occu-
pancy [39], signed, and unsigned distance functions [40, 41] are famous for this task.
A common choice of network architecture for these representations is multi-layer
perceptrons with ReLU activation. While ReLU is computationally convenient, it is
found that using ReLU for this purpose causes the network to struggle with modeling
high-frequency content. Fourier Features [42] tackles this issue by mapping the input
coordinates x to a frequency domain γ(x) as a pre-processing step. This mapping, known
as a positional encoding, is found to increase the performance of multi-layer perceptron
(MLP) when expressing low-dimensional functions. Alternatively, a later work [43]
showed that using a sine activation function in place of ReLU achieves similar results.
Novel view synthesis. A recently emerging view synthesis method called Neural
Radiance Fields (NeRF) [8] represents a continuous 3D scene in an MLP network f that
can be queried using classical volume rendering. Essentially, a continuous scene is
parameterized as a 5D vector-valued function which consists of a 3D location x and 2D
viewing direction d. For each sampled 3D point along the ray, NeRF predicts its emitted
color c = (r,g,b) ∈ R3 and volume density σ ∈ R1. The classical volume rendering
technique [44] is utilized to accumulate those colors and densities and render 2D images.
However, NeRF has to be evaluated at a large number of sample points along each
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camera ray. This makes generating a full image with NeRF extremely slow. Despite the
high quality of the synthesized novel images, NeRF also requires per-scene training.

Later, a vast amount of research has been dedicated to improving and extending
neural radiance fields in various directions. For a complete list of neural field pa-
pers, there are several surveys [45, 46] that are useful to read. Recent volumetric
aproaches [47, 48, 49] address the generalization issue of NeRF by incorporating a
latent vector extracted from reference views. The feature of each sampled 3D point x is
obtained via tri-linear interpolation. An MLP network encodes those features to get
the radiance fields, including colors and densities. A volume rendering of NeRF is
employed to obtain the novel views. Although these methods show generalization on
selected testing scenes, they inherit the original method’s slow rendering property.

Several studies address the slow rendering time since evaluating a multi-layer
perceptron at each point in the ray is rather time-consuming. A recent work [50]
introduces a student-teacher distillation scheme to effectively sample importance points
along the rays. The first sampling network predicts suitable sample locations using a
single evaluation per view ray, while the second shading network adaptively shades
only the most significant samples per ray. Combining both networks shows a real-time
rendering speed of 26 frames-per-second at a resolution of 1008 × 756 and a significantly
small model size of 4.1 MB.

Considering the problem of novel view synthesis from only a set of 2D images,
recent methods [51, 52] remove the requirement of known or pre-computed camera
parameters, including both intrinsic and 6DoF poses. BARF [52] tackles the above
problem by introducing a theoretical connection between classical image alignment to
joint registration and reconstruction with NeRF. A coarse-to-fine registration is necessary
for joint registration and reconstruction with coordinate-based scene representations.
However, both of these methods can only optimize poses from scratch for wide-baseline
360-degree captures. GNeRF [53] achieves this by training a set of cycle-consistent
networks (a generative NeRF and a pose classifier) that map from pose to image patches
and back to pose again, optimizing until the classified pose of real patches matches that
of sampled patches. They alternate this GAN training phase with a standard NeRF
optimization phase until the result converges.
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Fig. 6. An overview of hybrid scene representations for novel view synthesis: (a) stor-
ing/caching predicted radiance fields of a trained NeRF model to a sparse occtree and (b)
optimizing both density, feature volumes and a tiny neural network to estimate radiance
fields. Novel views are rendered via the volume rendering step of NeRF.

2.2.3 Hybrid representations

As seen in Section 2.2.2, a major drawback of coordinate-based representation is slow
novel views rendering. It is therefore essential to improve the rendering speed without
losing the high-fidelity output. Recent studies on neural rendering address this issue by
combining fast-access explicit data structures such as sparse octree or dense voxel grids
to render novel views efficiently (see Fig. 6).

The former approach [35, 54, 55, 56] utilizes a trained NeRF model to obtain a
dense radiance field of the entire 3D scene. This method modifies how view-dependent
colors are predicted to facilitate faster rendering and smaller memory requirements for
the cached representations. PlenOctrees [54] queries the MLP to produce a sparse voxel
octree of volume density, spherical harmonic coefficients and further finetunes this octree
representation using a rendering loss to improve its output image quality. In contrast, the
latter approach DirectVoxGO [57], proposes optimizing two explicit density and feature
grids along with a small MLP network to obtain the radiance fields. Both methods above
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significantly improve the rendering speed compared to NeRF, but the training times still
take almost an hour per scene. Recent work called Instant-NGP [58] enables the training
of a NeRF in a few seconds by exploiting a multi-resolution hash encoding instead of an
explicit grid structure. Moreover, the proposed hash encoding is also generalized to
several vision tasks such as gigapixel image approximation [59], surface reconstruction
via signed distance functions [40], and neural radiance caching [60].

The above methods can synthesize high-quality images but require high-resolution
feature grids to achieve good quality. This makes them less practical for graphics systems
operating within tight memory, storage, and bandwidth budgets. Beyond compactness, it
is also desirable for shape representation to dynamically adapt to the spatially varying
complexity of the data, the available bandwidth, and desired level of detail. A recent
work [61] on compression-aware neural fields proposes a vector-quantized auto-decoder
that replaces bulky feature vectors with indices into a learned codebook. Experimental
results show that the method can reduce the storage required by two orders of magnitude
with relatively little visual quality loss without entropy encoding. Another interesting
development [62] is to represent the 3D scene as a 4D tensor and factorize the tensor
into multiple compact low-rank tensor components for efficient scene modeling. The
trained model outperforms previous state-of-the-art methods and has a small model size
(< 4MB).
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3 Vector-based neural scene representation

This chapter presents neural rendering approaches that compress the entire 3D scene as
a vector. Conventional structure-from-motion, structure-from-depth, and multi-view
stereo methods [63, 64] often represent the 3D scenes explicitly using point-clouds or
meshes from sparse observations. Although these methods show good view synthesis
results on much source data, they cannot recover the desired target views with a limited
number of input images due to the ambiguity of 3D environments. Moreover, estimating
the entire 3D scene structure may be more challenging than synthesizing novel images
from new viewpoints.

The Generative Query Network (GQN) [38] tackles this problem by proposing an
encoder-decoder network to predict the entire 3D scene given a few sparse observations
(see Fig. 7). The encoder network first encodes input views into a single scene vector r.
Since the encoder does not know which target view to render, it must find an efficient
way of describing the actual layout of the scene as accurately as possible. It captures
the essential elements, such as object positions, colors, and the room layout, in a
concise, distributed representation. The encoder learns about specific objects, features,
relationships, and environmental regularities during training. Instead of decoding the
novel view from the encoded scene vector, the decoder is trained to produce a latent
vector that matches the statistic of the ground-truth novel view. However, training GQN
requires much synthetic data with perfect ground truths. Moreover, this method is
known for its large memory consumption, and the predicted novel views are sometimes
blurry. The proposed Generative Adversarial Query Network (GAQN) from Paper I
and the Transformer-based Generative Query Network (T-GQN) from the Paper II
improve the rendering quality of GQN by introducing two adversarial training losses
and a sequential rendering scheme.

3.1 Generative query networks

In this section, we provide the reader with a brief background to GQN. Given the
observations that include N source images {In}N

i=1 and their corresponding camera poses
{vn}N

i=1, GQN solves the view synthesis problem by using a encoder-decoder neural
network to predict the target image Iq at an arbitrary query pose vq.
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Fig. 7. An overview of a Generative Query Network (GQN). Adapted by permission, Paper I ©
2019 Springer Nature.

First, the encoder is a feed-forward neural network that takes N observations as
input and produces a single implicit scene representation r = ∑

N
n=1 rn by performing a

element-wise sum of N encoded scene representation rn. The decoder then takes r and
vq as an input and predicts the new view I′q from that viewpoint. The decoder network
is a conditional latent variable model [65] which includes M pairs of Generation and
Inference convolutional LSTM networks. At each generation step, the hidden state of the
Generation and Inference LSTM core is utilized to approximate the prior π and posterior
distribution q. Since the target view Iq is fed into the Inference sub-network, minimizing
the Kullback-Leibler (KL) distance between π and q would help the Generation sub-
network to produce an accurate result. Both the encoder and decoder networks are
trained jointly to minimize the ELBO loss LGQN function as follows:

LGQN =

[
− lnN (Iq|I′q)+

M

∑
m=1

KL
[
N (qm)||N (πm)

]]
. (1)

3.2 Generative adversarial networks

Before introducing the proposed Generative Adversarial Query Network of Paper I, a
brief introduction of Generative Adversarial Networks (GANs) is given. This method
consists of two competing architectures referred as a generator (Gen) and a discriminator
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Fig. 8. Illustration of a Generative Adversarial Query Network (GAQN). The proposed network
has an additional Discriminator network to further enhance the quality of the predicted novel
views. Adapted by permission, Paper I © 2019 Springer Nature.

(Dis). The generator Gen maps a given latent representation z (possibly a vector with
random values) into a novel image x′ = Gen(z) that is then passed to the discriminator
network Dis. The discriminator aims to determine if the given sample is produced by the
generator, or if it is a real image taken from the training set. Denoting the real training
samples as x, the conventional generator loss LGAN

G and discriminator loss LGAN
D are

defined as:

LGAN
G =−Ez∼Pz [logDis(Gen(z))], (2)

LGAN
D =−Ex∼Px [logDis(x)]−Ez∼Pz [log(1−Dis(Gen(z))]. (3)

Both networks are trained simultaneously in an alternating fashion. In the ideal case, the
procedure guides the generator to produce images that are indistinguishable from the
training image distribution. However, in practice the training procedure is challenging
due to various problems such as mode collapses [66].

3.3 Generative adversarial query networks

The proposed Generative Adversarial Query Network (GAQN) of the Paper I builds on
top of the GQN architecture by introducing two GAN training losses. As illustrated in
Fig. 7 and 8, the proposed GAQN consists of three components: an encoder network Enc,
a decoder network Dec, and a discriminator network D. The GAQN utilizes the same Enc

and Dec architecture as standard GQN to generate a novel view I′q = Dec(Enc(x, p), pq).
However, inspired by the aforementioned GAN methods, we include an additional

37



discriminator network D to distinguish between the generated fake images from the
GQN and the ground truth view in the training data. In this way, the discriminator is
trained to enhance the image fidelity of the GQN model.

3.3.1 Applying least-square adversarial loss

Numerous studies [67, 68] have shown that the training of the GAN may be unstable
due to the vanishing gradients problem caused by the binary cross entropy loss of the
vanilla GAN approach (see Equation 2 and 3). In this work, we avoid the problem by
adopting the least-square loss function from the previously proposed Least Squares
Generative Adversarial Networks (LSGANs) [69]. The idea of LSGANs has proven
effective since it tries to pull the fake samples closer to the decision boundary of the
least-square loss function. Based on the distance between the sampled data and the
decision boundary, LSGANs manage to generate better gradients to update its generator.
Furthermore, LSGANs also exhibit less mode-seeking behavior, stabilizing the training
process. Equation (4) and (5) provide the generator and discriminator loss of LSGANs
that we use to train the GQN decoder and our proposed discriminator as follows:

L LSGAN
G = Ezzz∼Pzzz

[
(Dis(I′q)−1)2

]
, (4)

L LSGAN
D = Ezzz∼Pzzz

[
(Dis(I′q))

2
]
+Exxx∼Pxxx

[
(Dis(Iq)−1)2

]
. (5)

3.3.2 Applying feature-matching loss

Inspired by the recent studies [68] on improving the stability of the GAN training, we
add an extra feature matching loss to train the generator network. The main idea of this
feature matching loss is to use the discriminator network as a feature extractor and guide
the generator to generate data that matches the feature statistics of the real data. There
are several approaches to exploiting the feature matching loss in training the generator.

Specifically, the common GAN generator loss is being replaced by a mean feature
matching loss. It has been argued that this mean feature matching loss helps prevent
the gradient vanishing problem during the training. In our research, we have already
adopted the least square loss to address the above problem, but there is no guarantee that
the problem is completely solved. Therefore, we train our GAQN generator network
using a unified loss function as the combination of LSGANs generator loss L LSGAN

G and
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Fig. 9. Comparison of generator and discriminator training loss between our proposed GAQN
(a) and GQN + GAN (b). Both the generator and discriminator of GQN+GAN are suffering from
mode collapsing and vanishing gradients. Using the least-square loss and the mean feature
loss, our GAQN achieves a stable learning process. Reprinted, with permission, from Paper I
© 2019 Springer Nature.

mean feature matching loss LFM . Let fD() be the mean of the output feature maps from
the 3rd layer of the discriminator network, the mean feature matching loss is define as
follows:

LFM = ||Exxx∼Pxxx fD(xgt)−Ezzz∼Pzzz fD(x′)||22. (6)

3.3.3 Discussion

Paper I applies both the least-square GANs and the discriminator feature matching
losses and has shown significantly better novel views than those produced by the original
GQN method. In addition, these two new losses also contribute to faster and more stable
training. In Figure 9, there is a clear difference in the training loss landscape between
GAQN and GQN+GAN. The training procedure of GQN + GAN is highly unstable due
to mode collapsing and diminishing gradients. In contrast, the GAQN model eliminates
both problems by using the least-squares loss and the discriminator mean feature loss.

Figure 10 illustrates the predicted novel view using the plain GQN architecture and
the proposed GAQN architecture. Although the obtained GQN model successfully
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Fig. 10. Comparison between generated a novel view using the GQN and the GAQN
architectures. Reprinted, with permission, from Paper I © 2019 Springer Nature.

predicts the correct location and color of three objects in the 3D scene, their edges are
blurry. Meanwhile, GAQN produces sharper object edges, especially to the middle
green icosahedron.

3.4 Transformers-based generative query network

Despite having better results than GQN, the proposed GAQN inherits the long training
convergence and low-quality novel views at the distant target pose. In this section,
a Transformer-based Generative Query Network (T-GQN) is introduced to infer the
underlying 3D scene structure and faithfully produce the target view even at a distant
query pose. GQN and GAQN use a simple summation function to represent the entire
3D scene as a single implicit representation. Although they successfully render the
target view, a large amount of data is required for training, which takes a long time to
converge. Moreover, both methods focus on synthesizing only a single target image.
They are inefficient when rendering target images for distant query poses subject to
strong geometric transformations and severe occlusions.
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Fig. 11. Illustration of the Transformer-based Generative Query Network (T-GQN). Reprinted,
with permission, from Paper II © 2020 Springer Nature.

3.4.1 Sequential view synthesis

The problem of single view synthesis can be redefined as a problem of sequential
view synthesis by predicting a sequence of N novel views Sout = {I′2, ..., I

′
N , I

′
q} from

a sequence of observations Sin = {(I1,v1), ...,(IN ,vN)}. Since we have N different
target views, having N other scene representations would be beneficial. To have
multiple implicit scene representations, a Transformer Encoder [9] is utilized to learn the
dependencies between input observations at each rendering step. As seen in Figure 11, a
set of scene representations r is fed as input to the Transformer Encoder and produces
another set of enhanced scene representations r∗n that are trained to exploit the multi-view
dependencies.

As shown in Fig. 12 (a), GQN predicts the target view Iq in a single rendering
step. If the query pose vq is distant from all input poses, then the target view might
look completely different from all input views. In this case, it is non-trivial for GQN
to generate a plausible target view, and it might take a long training time to reach
the convergence. If the model is able to predict an input view I′n for n > 1 based on
previous input data {(I1,v1), . . . ,(In−1,vn−1)} then it also renders the target view Iq at
the query pose vq provided that the camera poses {v1, . . . ,vN ,vq} have been organized as
a sequence where the adjacent poses are the closest ones. The proposed T-GQN model
is trained using multiple rendering steps to achieve such ability. Each rendering step is
identical to the GQN except that different sets of input observations and query poses are
fed as input to the network. Fig. 12 (b) illustrates these sets of input observations at each
rendering step with boxes of different colors.
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Fig. 12. An illustration of the single view synthesis (a) compared to our proposed sequential
view synthesis (b). Reprinted, with permission, from Paper II © 2022 Springer Nature.

3.4.2 Discussion

In novel view synthesis, the input images are often randomly captured, and they would
make rendering a distant target view much more challenging than those predicted by
nearby photos. Paper II tackles this issue using the sequential rendering scheme and
multiple scene representations. The proposed Transformer architecture’s attention
score further demonstrates its effectiveness in both cases when the camera movement is
restricted or not. In both cases, the model is trained to put the higher score on views that
are the most relevant to render at each rendering step (see Figure 13).

Finally, the effectiveness of the multi-step scene representation is presented in
Figure 14. In this case, the T-GQN model of Paper II significantly outperforms both
GQN and a variant SeqGQN, which uses a single representation r as an input to the
decoder network. Although both GQN and SeqGQN use the exact aggregated scene
representation r, SeqGQN can produce better and more accurate target views than the
baseline. This result demonstrates that sequentially approaching the neural rendering
leads to more precise view synthesis.

However, the proposed method manages to hallucinate the novel views given a
few sparse observations. Experimental results show that both GAQN and T-GQN
struggle to render photo-realistic images compared to those estimated using multi-view
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Fig. 13. Visualization of multi-view attention scores at each rendering step produced by our
methods when (a) the camera movement is restricted and (b) the camera is free to move.
Note that the order of the input sequence does not affect the learned multi-view attention
scores. Reprinted, with permission, from Paper II © 2020 Springer Nature.

data. Future research should address the problem of lifting a single image to a 3D
object and demonstrate the ability to generate a plausible 3D object with 360◦ views
that correspond well to the given reference image. This would further shed light on a
promising direction of easing the workflows for creative artists and designers.
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Fig. 14. Example of generated novel views compared between our proposed T-GQN and
variants on the RRC dataset. Reprinted, with permission, from Paper II © 2020 Springer
Nature.
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4 Plane sweep volume representation

The previous chapter introduced two novel view synthesis networks by compressing the
entire 3D scene as a single vector. Although those networks can hallucinate the full
synthetic scenes given a few sparse observations, it is non-trivial to generalize to real
large-scale images with higher complexities. This chapter focuses on the explicit Plane
Sweep Volume (PSV) representation which serve as the medium to synthesize new
views. Both Paper II and Paper IV utilize this representation and achieve state-of-the-art
results on the benchmark real and synthetic datasets.

Early studies on view synthesis with deep learning already use PSV [70] for novel
view synthesis. Each input image is projected onto successive virtual planes of the target
camera to form a PSV. Kalantari et al. [71] calculate the mean and standard deviation
per plane of the PSV to estimate the disparity map and render the target view. The
inputs to the recent MPI-based methods [23, 22] are also PSVs. However, those PSVs
are constructed on a fixed range of depth values. In contrast, the proposed RGBD-Net
of Paper III builds multi-scale PSVs which use adaptively sampled depth planes. In
Paper IV, the PSVs can also be used to efficiently infer the neural radiance fields of the
entire novel views.

4.1 Predicting color and depth images for novel views synthesis

This section first describes the differentiable homography warping step to obtain a PSV
of the novel view. The volume is later utilized by the deep neural network of Paper III
called RGBD-Net (see Fig. 15), which comprises two modules. The former network is a
hierarchical depth regression network (Section 4.1.2) that estimates the multi-scale
depth map of the novel view, and the latter depth-aware refinement network (Section
4.1.3) enhances the warped images to produce the final target image.

4.1.1 Constructing plane sweep volume via homography warping

Both Paper III and Paper IV propose to generate cost volumes for the multi-view images
by adopting the traditional plane stereo [72]. The basic idea of constructing a PSV is to
back-project the input image onto successive virtual planes in the camera frustum of the
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Fig. 15. The overview architecture of the proposed RGBD-Net. Reprinted, with permission,
from Paper III © 2021 IEEE.

novel view and measure the photo consistency among the warped volumes for each
pixel.

For simplicity, In and vn = {Kn,Rn, tn} are denoted as the nth input image and its
camera pose, Iq and vq = {Kq,Rq, tq} are denoted as the target image and its camera
pose and K, R, t are the camera intrinsics, rotation matrix and translation vector of each
viewpoint. A set of M virtual planes perpendicular to the z-axis of the novel view are
first uniformly sampled in the inverse-depth space. All input images In are warped into
those planes to form N volume {Vn}N

n=1. The coordinate mapping from the warp feature
map Vn(dm) to In at depth dm is determined by the plane transformation x̂ ∼ Hn(dm) · x,
where ∼ denotes the projective equality and Hn(dm) is the homography between the
input and target poses at the depth d. Let nq be the principle axis of the novel view, the
homography is expressed by a 3×3 matrix as follows:

Hn(dm) = Kq ·Rq · (I −
(tq − tn) ·nT

q

d
) ·RT

n ·KT
n . (7)

Both Paper III and Paper IV use bilinear interpolation to sample deep extracted features
rather than using raw RGB pixels of the input views. As the core step to bridge the 2D
feature extractor and the 3D rendering decoder, this warping operation is implemented
differentiably, enabling end-to-end training of novel view synthesis.
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Fig. 16. Illustration of the depth regression network of the RGBD-Net. Reprinted, with
permission, from Paper III © 2021 IEEE.

(a) (b) (c)

Fig. 17. Predicted pointcloud of the RGBD-Net on various scale dataset: (a) DTU datasets [76],
(b) Blended MVS dataset [77], (c) Tanks & Temples dataset [78]. Adapted by permission,
Paper III © 2021 IEEE.

4.1.2 Depth regression network

In this section, the pipeline of the depth regression network to estimate the depth map
of the target view as illustrated in Figure 16 using a set of unstructured input images
and their poses. Each input view is In first fed to the Feature Pyramid Network [73] to
extract K multi-scale features Fk

n . We then apply homography warping (Section 4.1.1)
to each input feature map to construct a PSV Pk

n of the target view with a set of Mk

hypothesis depth planes. At each scale, a mean PSV volume P̄k between all input views
is fed to a 3D Convolution U-Net to estimate a coarse novel depth map D̂k

q. Inspired by
the recent work on multi-view stereo [74], we estimate the depth map of the novel views
in a coarse-to-fine manner. A depth plane resampling technique is proposed from the
MVS literature [75] to efficiently sample near-surface depth planes using the predicted
coarse novel depth map prediction. This also helps reduce the GPU memory required to
process high-resolution feature maps. As can be seen in Figure 16, the method can
estimate high-resolution depth maps D̂k+1

q using the coarse estimates.
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Fig. 18. Illustration of the depth-aware refinement network of the RGBD-Net. Reprinted, with
permission, from Paper III © 2021 IEEE.

The proposed coarse-to-fine depth estimation network is first trained using the
object-centric DTU dataset [76] from scratch, and it obtains state-of-the-art results on
the testing set of the same source data. However, we observe that the model needs
help to generalize to the large-scale scenes from the BlendedMVS [77] and Tanks
& Temples [78] datasets. Therefore, we propose an adaptive depth scaling method
that normalizes the GT depths of those large-scale datasets to have a similar range to
the DTU dataset during training. During the testing time, we then scaled the depth
predictions back to the original range. As seen in Figure 17, this technique allows the
model to generalize and produce high-quality 3D scene reconstruction on unseen data.

4.1.3 Depth-aware refinement network

A depth-aware refinement network is proposed using the predicted depths of the
regression network above to produce the novel views Îq since the RGBD-Net uses a set
of sparse reference views to synthesize a novel view. Generating videos along smooth
camera paths is therefore potentially subject to temporally inconsistent predictions and
flickering artifacts due to the independent rendering at each new viewpoint. Inspired
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by the sequential view synthesis of Paper II, this refinement network (see Figure 18)
also consists of multiple rendering steps that produce Q sampled novel views. Each
rendering step of the RGBD-Net consists of feature fusion and view synthesis.

The former step leverages the regressed depth maps to warp multi-scale input
features to the novel views via bilinear interpolation. Experimental results show that
naively concatenating or summing those warped features often leads to sub-optimal and
blurry view synthesis results. Applying a Transformer-based architecture to learn a
unified representation leads to a bigger model. An inverse depth-based fusion method is
therefore introduced to add different weights to those warped features. As the depth
network gets better at predicting depth maps, so does the feature fusion method.

The latter view synthesis step uses the fusion features and the positional encoding of
the viewing direction as input to a U-Net with a shared ConvLSTM in the bottleneck.
This allows our model to perform long-range dependencies between different target
views and achieves spatio-temporally consistent novel images. Instead of directly
using the hidden state of the previous rendering step, the predicted depth maps are
leveraged to warp the hidden state to the current step. This also ensures that the
predicted novel image has similar sharp edges as the depth map produced by the depth
regression network. Moreover, the trained RGBD-Net model also shows outstanding
generalization performance on the unseen dataset, as seen in Figure 19. Although both
FVS [79] and NeRF++ [80] are trained on the Tanks and Temples [78] dataset, the
proposed RGBD-Net of Paper III still outperforms both of them both qualitatively and
quantitatively.

4.2 Cascaded and generalizable neural radiance fields

In the previous work of Paper III, the method relies on a ConvLSTM network to render
Q targets and enforce the view consistency between those rendered images. There is
a drawback: it would take a long training time to reach the convergence and achieve
view-consistency novel images. Recent studies [47, 48, 81] on generalized novel view
synthesis alleviates this problem by leveraging the continuous and implicit NeRF
representation. Instead of directly predicting the depth maps from the PSVs, these
methods learn neural radiance fields that extract consistent depths and color images via
volume rendering [44]. Moreover, they also train a generalized model using multiple
scenes and then perform 15- to 1-hour test-time optimization to achieve photo-realistic
renderings on a single scene.
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Fig. 19. Example of the generated novel views by the RGBD-Net and state-of-the-art methods
for three scenes from the Tanks and Temples dataset. Reprinted, with permission, from
Paper III © 2021 IEEE.

4.2.1 Coarse radiance fields predictor

Despite having state-of-the-art results, the NeRF-based generalized methods above
inherit the slow rendering property of the original NeRF method. MVSNeRF [81] first
infers a low-resolution PSV from a few sparse observations and then decodes such
volume into high-resolution novel views. The decoding step requires independently
querying each pixel’s radiance fields using a learned Multi-Layer Perception (MLP)
network. Therefore, rendering the entire high-resolution images is very expensive,
and it takes 15 seconds to obtain a single image. Paper IV addresses this issue by
introducing a Cascade and Generalizable Neural Radiance Fields (CG-NeRF) method
that significantly speeds up the rendering and also achieves state-of-the-art results on
both the seen and unseen datasets as can be seen in the Figure 20.

Similar to the RGBD-Net of Paper III, the first step is to estimate the depth map
of the target view. However, instead of regressing multi-scale depth maps, a coarse
radiance fields predictor is utilized to infer the novel view’s depths and deep features
in the lower resolution. Instead of using the costly 3D U-Net of the RGBD-Net, a
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Fig. 20. An overview of pretrained and scene-specific optimization of the Cascade and
Generalizable Neural Radiance Fields (CG-NeRF). Adapted by permission, Paper IV © 2021
IEEE.

memory efficient Transformer-based MobileViT block [82] is utilized to regularize
this cost volume. This network learns the long-range dependencies via the multi-head
attention [9] between the non-overlapping patches of multiple input PSVs. The output of
the MobileViT is a unified coarse volume V̂ that can be used to infer the density σ and
radiance features f of the query point x and its viewing direction d. By accumulating σ

and f of every 3D point along the rays, the entire low-resolution depths D and features
F are obtained from a single forward GPU pass.

4.2.2 Up-scaling neural renderer

The method presented in Paper IV feeds the coarse estimation of the scene geometry
and appearance of the above network to an up-scaling auto-encoder network and renders
the higher-resolution target images. However, it is challenging to generate such images
using coarse features. Paper IV also leverages the depth plane resampling technique and
feature fusion of Paper III to obtain the near-depth features. Instead of progressively
predicting depth maps from coarse to fine, the coarse depth map is bilinearly up-sampled
to match the original resolution. Both coarse and fine features are then fed to the
auto-encoder network. All modules of the CG-NeRF model are trained by photometric
losses between the high-resolution predicted and GT novel views. An additional coarse
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Fig. 21. The proposed CG-NeRF model comprises several parts: 1) a memory-efficient
MobileViT architecture that fuse multiple low-resolution plane-sweep volumes of the target
viewpoint into a single unified volume V̂ , 2) a coarse radiance fields predictor that estimates
target depth and features in low resolution, and 3) an auto-encoder network to render novel
views at the original resolution. Reprinted, with permission, from Paper IV © 2022 IEEE.

RGB loss and an adversarial loss [83] are added to further supervise the coarse radiance
fields predictor and enforce the view consistency.

4.3 Discussion

Paper III and Paper IV introduced novel approaches towards real-time and generalizable
novel view synthesis using a set of sparse observations. They show several advantages
over prior arts, including 1) a high accuracy 3D scene reconstruction is obtained as a
side product of the view synthesis process and 2) a good performance base model that
can be further finetuned for a short amount of time to achieve state-of-the-art results on
a specific testing scene.

Figure 22 illustrates the qualitative comparisons between the generated novel views
of the generalized or scene-specific fine-tuning CG-NeRF with those produced by
other methods. Although the model is trained from scratch using the DTU dataset [76],
the generalized version of CG-NeRF still shows competitive results to a 15 minutes
fine-tuning MVSNeRF [81] model. Optimizing for a quarter of an hour, the finetuned
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Fig. 22. Qualitative comparisons between CG-NeRF and state-of-the-art methods on three
different unseen datasets. Reprinted, with permission, from Paper IV © 2022 IEEE.

CG-NeRF model produces cleaner and more photo-realistic novel views than all baseline
methods on unseen synthetic and real datasets. In addition, both the RGBD-Net and
the CG-NeRF are very efficient at rendering novel views thanks to the coarse-to-fine
rendering strategy.

There is still a gap when employing the trained models on resource constraint devices
as the current approaches first aim to have high rendering speed on the commercialized
GPUs. Combining the current techniques with recent work [61] on compressing
and streaming neural radiance fields would reduce the model size and the memory
consumption significantly. Another interesting approach is to expand the current
approaches on unbounded large-scale scenes [84] captured from drones or satellite.
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5 Sphere-based dynamic human rendering

Previous chapters in this thesis have mainly focused on learning-based view synthesis
on static and large-scale scenes. However, it is non-trivial to apply these methods to
living people who are constantly moving daily. Capturing and faithfully rendering
photorealistic humans from novel views has been a fundamental problem of 3D computer
vision [85]. This chapter focuses on the problem of free-viewpoint human capture and
rendering, which refers to capturing the appearance and motion of a human performer
from a single viewpoint, and then synthesizing a new view of the performer from
any arbitrary viewpoint. This allows for creating virtual reality (VR) or augmented
reality (AR) experiences in which the viewer can freely change their perspective and
see the performer from any angle as if they were physically present in the same space.
Moreover, free-viewpoint human capture and rendering have many potential applications,
including film and television production and virtual try-on applications for clothing and
accessories.

5.1 Multi-view human performance capture and rendering

This section briefly introduces conventional free-viewpoint human rendering using
multiple input views. There are several existing studies on capturing and rendering the
appearance and motion of a human performer for free-viewpoint rendering. Recent
human-specific neural rendering approaches [86, 87] use multiple cameras to capture
the performer from different viewpoints. The captured images are then used to create a
3D model of the performer, which can be manipulated to synthesize new views from
any desired viewpoint. However, such methods can be prohibitively expensive to run
and cannot generalize to unseen humans but instead create a dedicated model for each
human that they need to render.

There is another line of research that tries to generate dynamic humans using a
generalized human view synthesis network as seen in the Figure 23 and they train the
model either by single or multiple view captured data. Martin-Brualla et al. [88] use
multiple depth sensors or structured lights to capture the 3D geometry of the performer
directly. However, their capture setup produces dense geometry, which makes this a
comparatively easy task: the target views stay consistent with the input views. A recent
approach [89] uses a frontal input view and a large number of calibration images to
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Fig. 23. Comparison of single and multi-view synthesis approaches on the human perfor-
mance capture and rendering.

extrapolate novel views. This method relies on a keypoint estimator to warp the selected
calibrated image to the target pose, leading to unrealistic results for hands, occluded
limbs, or large body shapes. Despite having excellent results, those multi-view synthesis
approaches require an expensive multi-view capture rig which is not trivial to setup.
Paper V tries to tackle this problem of using a single view RGB-D image, and the depth
image can be very sparse. Moreover, the input camera is fixed on the ground, looking up
to the human. This setup is chosen for practical purposes but also for increasing the
geometric distance between input and target poses.

5.2 Single view human performance capture and rendering

This section presents the main pipeline of the Human View Synthesis Network (HVS-
Net) from Paper V that generates high-fidelity rendered images of clothed humans using
just a single RGBD image from the frontal viewpoint. There are many challenges: 1)
generalization to new subjects at test-time as opposed to models trained per subject,
2) the ability to handle dynamic behavior of humans in unseen poses as opposed
to animating humans using the same poses seen at training, 3) the ability to handle
occlusions (either from objects or self-occlusion), 4) capturing facial expressions and
5) the generation of high-fidelity images in a live setup given a single-stream, sparse
RGB-D input (similar to a low-cost, off-the-shelf depth camera).
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Fig. 24. Comparison of sparse 3D point cloud transformations from the input view to the
novel view. The novel image warped by sphere-based rendering is significantly denser.
Reprinted, with permission, from Paper V © 2022 Springer Nature.

5.2.1 Sphere-based neural rendering

Given the depth of every pixel from the original viewpoint as well as the camera
parameters, these points can naturally be projected into a novel view. This makes the use
of depth-based warping or a differentiable point- or sphere-renderer [31] a natural choice
for the first step in the development of the view synthesis model. The better this renderer
can transform the initial information into the novel view, the better this projection step is
automatically correct (except for sensor noise) and not subject to training errors.

Fig. 24 shows a comparison between warped novel views from a single RGBD image
using three different methods: depth-based warping [90], point-based rendering [91] and
sphere-based rendering [31]. Depth-based warping [90] represents the RGD-D input
as a set of pixel-sized 3D points, and thus, the correctly projected pixels in the novel
view are very sensitive to the density of the input view. The widely-used differentiable
point-based renderer [91] introduces a global radius-per-point parameter that produces
a somewhat denser image. Since it uses the same radius for all points, this comes
with a trade-off: if the selected radius is too large, details in dense regions of the input
image are lost; if the chosen radius is too small, the resulting images get sparser in
sparse regions. The recently introduced sphere-based renderer not only provides the
option to use a per-sphere radius parameter, but also provides gradients for these radii,
enabling us to set them dynamically. As depicted in Figure 24, this allows us to produce
denser images than the other methods. More information about efficient differentiable
rendering can be found in the Pulsar sphere-based neural rendering paper [31].
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Fig. 26. Sphere-based view synthesis network architecture. Reprinted, with permission, from
Paper V © 2022 Springer Nature.

5.2.2 Sphere-based view synthesis network

Instead of naively warping RGB pixels, the sphere-based renderer warps the extracted
deep features of the input image to the novel view. In addition, those extracted features,
along with positional encoding of the pixel position and its viewing direction, are
fed to a shallow convolution layer, followed by a sigmoid activation to estimate the
radius-per-sphere. In Fig. 25, we show the visualization of rendered feature maps from a
set of sparse points using point and sphere-based renderers. In the case of point-based
rendering [91], each 3D point pi can render a single pixel. A large amount of pixels
can-not be rendered because there is no ray connecting those pixels with valid 3D points.
In contrast, the sphere-based neural renderer [31] renders a pixel by blending the colors
of any intersecting spheres with the given ray. Since we estimate radius ai of each sphere
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Fig. 27. An overview of the IUV-based image refinement network. Reprinted, with permission,
from Paper V © 2022 Springer Nature.

(dashed circle) using a shallow network, this allows us to render pixels that do not have
a valid 3D coordinates.

Although the warped features using sphere-based rendering are denser than other
methods, many pixels are still left to be filled. This remains a challenging problem since
having several “gaps” in the re-projected feature images cannot be avoided. As seen in
the Figure 26, Paper V presents an efficient encoder-decoder-based inpainting model to
produce the final renders. The encoding bottleneck significantly increases the model’s
receptive field size, allowing it to fill in more of the missing information correctly.
Additionally, the method employs a series of Fast Fourier Convolutions (FFC) [92] to
account for the image-wide receptive field. The model can hallucinate missing pixels
much more accurately compared to regular convolution layers [93]. The output of the
encoder-decoder structure is a foreground mask, a confidence mask and an novel view
RGB images. Both masks are then applied to the predicted RGB to obtain the initial
prediction. Paper V trains the above network using several photometric losses such as
L1 image loss, VGG perceptual loss and adversarial loss.

5.2.3 Occlusion-aware rendering

The sphere-based view synthesis network predicts plausible novel views with high
quality. As seen in Figure 27, if the person is holding an object such as a wallet or if
their hands are obstructing large parts of their torso, then the warped transformation will
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result in missing points in this region. This leads to low-fidelity texture estimates for
those occluded regions when performing novel view synthesis with a target camera
that is not close to the input view. Hence, to further enhance the quality of the novel
views, two additional modules are introduced: 1) an HD-IUV predictor to predict dense
correspondences between an RGB image (render of a human) and the 3D surface of a
human body template, and 2) a refinement module to warp an additional occlusion-free
input (a selfie in a practical application) to the target camera and enhance the initial
estimated novel view to tackle the self-occlusion issue.

There are several studies [94, 95] on predicting the dense correspondences of a
human from a single image. Still, the estimated IUV predictions cover only the naked
body instead of the clothed human, and they are inaccurate as they are trained based on
sparse and noisy human annotations. Instead, Paper V introduces an IUV predictor
from scratch using synthetic RenderPeople scans. This dataset contains 3D models that
can be processed to obtain accurate ground-truth correspondences. The output of the
HD-IUV predictor is then utilized to warp all visible pixels to the human in the target
camera and obtain a partially warped image. The partially warped image is finally fed to
another refinement U-Net model to refine the initial estimated novel view. This module
addresses two key details: 1) it learns to be robust to artifacts that originate either from
the occluded regions of the initially synthesized novel view as well as texture artifacts
that might appear because we rely on HD-IUV dense correspondences for warping and
2) it is capable of synthesizing crisper results in the occluded regions as it relies on both
the initially synthesized image as well as the warped image to the target view based on
HD-IUV.

5.3 Discussion

Training the HVS-Net of Paper V requires multi-view ground-truth images and their
human-dense correspondences. It is non-trivial to acquire such data from real human
captures. Therefore, the network is trained solely using synthetic data. Although the
trained model has not seen any real images, it can still synthesize photo-realistic novel
views of unseen humans, as illustrated in Figure 28.

Another impressive feat of the HVS-Net is that the method does not rely on dense
input depth maps to synthesize high-quality novel views. Figure 29 shows novel
view synthesis results using different levels of sparsity of the input depth maps. The
method can maintain the quality of view synthesis despite substantial reductions in point
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Fig. 28. The novel views generated by HVS-Net on the real-world examples without any
finetuning. Adapted by permission, Paper V © 2022 Springer Nature.

cloud density. This highlights the importance of the proposed sphere-based rendering
component and the occlusion-aware rendering.

For AR/VR applications, a prime target for a method like the one proposed, runtime
performance, is critical. At test time, the HVS-Net generates 1K resolution images at
21FPS using a single NVIDIA V100 GPU. This speed can be further increased with
more efficient data loaders and an optimized implementation that uses the NVIDIA
TensorRT engine. Finally, different depth sparsity levels do not significantly affect the
average runtime of the HVS-Net, which is a plus compared to prior studies [88, 89].
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(a) 5% foreground points (b) 10% foreground points (c) 25% foreground points

Fig. 29. A comparison between generated novel views on different levels of depth sparsity.
Reprinted, with permission, from Paper V © 2022 Springer Nature.

Although the HVS-Net is superior in generating dynamic unseen humans, the
method requires a set of sparse 3D points as input to the pipeline. Applying this method
on single-frontal camera smartphones is therefore more complex. Future research on
this topic should address the problem of generating novel views of an unseen dynamic
human using the captured smartphone data.
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6 Summary and conclusion

This thesis has presented novel learning-based view synthesis approaches using different
neural scene representations. This includes the simplest form of a single vector, as
seen in Paper I and Paper II. Although both methods show excellent performance on
unseen data and can hallucinate unseen regions, extending them to real-world data is
not straightforward due to the lack of training data. This motivates the use of much
more complicated scene representations, such as multiple plane images or plane sweep
volumes (Paper III). However, training such a model requires depth supervision to obtain
high-quality and consistent novel views. Combining such a method with neural radiance
fields addresses this issue and achieves state-of-the-art results on static synthetic and real
datasets (Paper IV). Chapter 5 discusses generating dynamic humans for the AR/VR
application (Paper V).

High-performance novel view synthesis from a set of sparse observations using deep
learning resort sto massive training and large network architectures. Paper I proposed a
method that leverages the adversarial training scheme to improve the visual quality
and convergence speed. Moreover, a feature-matching loss function is presented for
stabilizing the training procedure. The experiments demonstrate that Paper I can produce
high-quality results and faster convergence compared to the conventional approach [38].

Rendering far-away target views is a challenging problem of novel view synthesis.
Paper II tackles this issue by introducing an attention-based model that leverages
the long-range dependencies learning of Transformer architectures [9]. Instead of
directly predicting the target view in a single pass, a multiple-step rendering strategy is
proposed that sequentially renders novel views in an ordered set based on the geometric
distance between input and target poses. The learned model can attend to the most
critical view closest to the target at each rendering step. Moreover, it performs well on
various challenging datasets and gives consistent predictions without any retraining for
finetuning.

View synthesis methods struggle to render novel views on unseen data and have slow
rendering speeds. Paper III tackles these issues by introducing a view synthesis network
that estimates both color and depth images of the novel views in a coarse-to-fine manner.
A memory-efficient multiple-plane volume is constructed to extract multi-scale depth
maps, and they are then utilized to obtain near-surface features. A spatio-temporal
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consistency synthesis module is then used to obtain high quality and jitterless novel
views. The network can be trained end-to-end with or without depth supervision and
perform well on large-scale real data.

Previous research on view synthesis often uses depth supervision for training, and
requires a long training time to reach convergence. Paper IV presents a view synthesis
approach that leverages the coordinate-based scene representation of radiance fields [8]
that relies only on photometric loss to train. However, this method takes more than 30
seconds to render a single image. An cascade and efficient radiance fields predictor is
therefore present first to infer coarse estimates of the novel views. An up-scaling neural
renderer is then applied to predict the color image at the original resolution. Further
optimizing the trained model on multiple scenes in 15 minutes enables state-of-the-art
results on a specific testing scene.

Rendering a dynamic human has been an important problem in computer vision; a
way of rendering an unseen human using just a single image has yet to be discovered.
Paper V proposes a novel view synthesis framework that generates realistic renders from
unseen views of any human captured from a single-view and sparse RGB-D sensor,
similar to a low-cost depth camera, and without actor-specific models. The proposed
architecture creates dense feature maps in novel views obtained by sphere-based
neural rendering and creates complete renders using a global context inpainting model.
Additionally, an enhancer network leverages the overall fidelity, even in occluded areas
from the original view, producing crisp renders with fine details. Experimental results
show that high-quality novel views of synthetic and real human actors are generated
given a single-stream, sparse RGB-D input. The trained model also generalizes to
unseen identities and new poses and faithfully reconstructs facial expressions. Moreover,
this method outperforms prior view synthesis methods and is robust to different levels of
depth sparsity.
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