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Preface

This work concerns observations with the SOFIN spectrograph and the data re-
duction of échelle spectra. The work began in 1991 when the spectrograph was
for the first time installed at the Nordic Optical Telescope. In that period, the
author was involved in developing the control software for the spectrograph and
the CCDs, so that now the observations are almost completely remotely controlled
by computer. Later, the development of the data reduction package has started
which was motivated by the absence of other suitable software packages at that
time, and, also, by the specific requirements to the data reduction of the SOFIN
spectra. The aim of the thesis is the development of observing techniques and of
optimal reduction methods, and their implementation. The use of these methods
in the observation and reduction has resulted in a large number of high-quality
and, in some respect, unique, échelle spectra within different astrophysical pro-
grammes and in many scientific papers. A selection from these has formed the
astrophysical results of the thesis. Thus, the thesis merges three different aspects
of scientific work: the instrument, the data reduction including error analysis, and
the application to various astrophysical targets.

The thesis work has the following structure.

Chapter 1 gives the description of the spectrograph and scientific objectives of the
observing programmes. Then, the estimation and measurement of the efficiency
of the spectrograph follows. In the next sections, the model of the spectrograph
is described, which is incorporated in a software tool used during observations for
the proper settings of the instrument. In the last section, the stability issues of
the spectrograph are discussed based upon a number of tests.

In Chapter 2, the measurements of the spectrograph instrumental profile is given
which is followed by the discussion of several important issues concerning the
resolving power of the instrument.

Chapter 3 concerns the CCDs. This part was specially developed to solve the initial
problems and improve the performance of the SOFIN Astromed-CCD cameras.
The following aspects are illustrated: the noise sources, the flat-fielding problem,
and the measurable characteristics of the CCD performance. The measurement
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and integration of the CCD intensity transfer function is given. In the following
sections, the method of the CCD optimization is highlighted.

In Chapter 4, an overview of the data reduction package is given. The limitations
on the volume of this thesis do not allow to give the whole description of all the
specific algorithms developed for the data reduction. As an example, the cross-
correlation method and its accuracy are discussed because it is essential for the
accurate radial velocity measurements of the stellar spectra, which is demonstrated
in the first papers of the thesis.

Deconvolution of stellar spectra and recovery of broadening functions are an im-
portant issue in modern methods of data analysis. A number of astrophysical
aspects, the model, and the implementation of the algorithm are given in Chap-
ter 5. The method used is based on the truncated generalized least-squares and
operates with the principal components of the solution. The limitations of the
method are discussed motivating the regularized principal solution extension. An
example of the deconvolution of the SOFIN solar spectrum is given and discussed
in brief.

The most recent, not yet published aspect of the author’s work is given in Chapter 6
and concerns the mercury line profile variability of the binary star α And. The
description of the analysis is given and some results are discussed.

In the Appendix, a user’s guide for the reduction of SOFIN échelle spectra is given,
which illustrates various aspects of the process and effects which are taken into
account to achieve the maximal photometric and position quality of the spectra.

The second part of the thesis consists of selected papers based on SOFIN obser-
vations where the author’s work was essential. In the preface to the second part,
a short description of the author’s contributions is given which is followed by the
list of all papers where the author was involved.

A part of the author’s dissertation work which is not included into the present
thesis because of its size concerns the numerical methods of data analysis. In a
separate manuscript, the following topics are described: propagation of random
errors; the generalized least-squares: the linear, non-linear, and constrained cases;
test of the linear hypothesis; the orthogonal polynomial series and their trans-
formations to power series and Chebyshev forms; the smoothing splines; and the
solution to the Keplerian orbit problem and the binary system parameters. These
ready-to-program algorithms were derived by the author on the basis of a number
of treatises on numerical analysis and implemented into the data reduction pack-
age. The most important aspect of these derivations is the proper error analysis
of the parameters and the model, which plays a key role in the reduction process
of the spectra where the intensities and their errors are transformed at each stage
(including at some stages the wavelength errors). The description of the deconvo-
lution of stellar spectra (Chapter 5) is a part of this handbook and uses the same
style and notations.
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Chapter 1

The échelle spectrograph

SOFIN

1.1 Introduction

The high resolution échelle spectrograph SOFIN was designed and manufactured
at the Crimean Astrophysical Observatory in collaboration with the Observatory
of Helsinki University and installed at the Cassegrain focus of the 2.56 m Nordic
Optical Telescope, La Palma, Canary Islands. The observations with the instru-
ment started in June 1991 (Tuominen 1992). The spectrograph is a unique instru-
ment in its class and is one of the few very high resolution spectrographs in the
northern hemisphere. The spectrograph was designed to allow stellar spectroscopy
with three different spectral resolutions R = λ/∆λ = 30 000, 80 000, and 170 000,
depending on the brightness of the star and the scientific goals. The resolution is
altered by changing one of the three different optical cameras whilst all other opti-
cal elements of the spectrograph remain unchanged. The spectrograph is equipped
with a cross-dispersion prism to separate spectral orders so that many different
wavelengths are recorded in a single CCD exposure. The higher the spectral reso-
lution the smaller the part of the spectral range which can be covered by the CCD.
The change of the spectral setting is done by turning the échelle grating and the
cross-dispersion prism.

The spectrograph is completely remotely controlled from the host computer, except
for a few minor functions. Such a design provides a high operational efficiency
during the observations. The spectrograph control software is currently running
under MS-DOS and is a menu-driven program with a range of services to assist the
observations (Ilyin 1996). It includes a database of observations where the data
records are stored, which can be retrieved and displayed later, a quick-look facility
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12 CHAPTER 1. THE ÉCHELLE SPECTROGRAPH SOFIN

for an express analysis of the data obtained, the databases of observed objects
and spectral regions to hold all information specific for the particular observation
and the setup of the spectrograph. The data reduction facility is the second large
part of the software developed for the spectrograph. The key points of the data
reduction package are the simplicity and the high efficiency which in conjunction
with the user-friendly interface provides an easy way to operate with the enormous
amount and complex nature of the data.

1.2 Scientific applications

The long focus optical camera provides the highest spectral resolving power R =
180 000 and is used to resolve the fine structures of spectral lines and for accu-
rate measurements of their positions. For instance, the interstellar Na i D 5890 Å
is formed on the line of sight to some background stellar object and reflects the
motions of interstellar clouds. The higher the resolution, the more components
can be resolved, i.e. the smaller velocity differences between different clouds can
be detected. Another astrophysical aspect is to use the high resolution camera to
measure the isotopic shift and hyperfine structure of the spectral lines of chemically
peculiar Ap stars and of cool stars (e.g. Wahlgren et al. 1999). In the case of the Ap
stars, the isotopic ratio gives an estimate of the diffusion rate of the isotopes from
the enriched regions of their origin to the upper atmosphere. The very important
Li i 6707 Å line is a key element for studying the history of the universe, nucleosyn-
thethis, stellar interiors, and stellar evolution. These measurements require the
accurate observation of the position and intensity of fully resolved spectral lines
with the subsequent accurate analysis and comparison with a synthetic spectrum.
The high resolution camera allows to increase the accuracy of radial velocity mea-
surements, since the error of the spectral line position determination decreases as
the resolution grows. This also gives the possibility to investigate the instability
and variations of the radial velocities of F, G, and K-type stars, which in the past
were supposed to be very stable and were used as radial velocity standards. For
some stars, these variations, seen as tiny Doppler shifts of the spectral line posi-
tions, are thought to be due to a low mass companion, like a brown dwarf or a
large Jupiter-like planet, perturbing the position of the main star along the line of
sight, although the variations may be caused as well by non-radial pulsations of a
single star. To decide which explanation is correct for a particular star, accurate
observations at the highest resolution are needed, allowing to study the line profile
shapes in detail.

The second optical camera provides half of the resolving power of the previous
one and corresponds to about 80 000 near the échelle blaze angle. Reducing the
resolution two times doubles the amount of light per resolution element, as well as
allows for a doubling of the entrance slit width which reduces the light losses, and,
therefore, fainter objects can be observed. The second optical camera is widely
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used for Doppler imaging of late type stars. These exhibit small bumps in a spec-
tral line which drifts over the profile as the star rotates. The solution of the inverse
problem, using models of stellar atmospheres, yields the geometrical distribution
of the spots and a temperature map of the stellar surface (e.g. Bergyugina 1998).
The medium resolution optical camera is used for the direct measurements of the
stellar magnetic field with the Stokesmeter installed in front of the spectrograph
entrance slit. The Stokesmeter divides the stellar light into two beams with oppo-
site circular polarization. In the presence of a stellar magnetic field the spectral
lines in these two beams are shifted with respect to each other and the stronger
the field, the larger the offset. Measurements of the Zeeman splitting of a number
of spectral lines gives the effective magnetic field of the star as a function of its
rotational phase. Solving the inverse problem, using models of stellar atmospheres
and taking into account the effect of Zeeman splitting, gives the distribution of
the magnetic field strength over the stellar surface. Another aspect of the second
camera applications is the observations of the non-radial pulsations of Ap stars
on the short time scale of their variability with simultaneous recording of many
spectral features in one exposure. Lines of certain chemical elements exhibit small
variations of their radial velocities which can be attributed to the surface inhomo-
geneities. On the other hand, the amplitude of the oscillations derived from broad
band photometry strongly decays from the blue to the red which is attributed to
the wavelength dependence of limb-darkening and the steepness of the temperature
gradient with respect to the optical thickness.

The low resolution camera provides a spectral resolution around 30 000 which is
typical for most other stellar spectrographs. Since there is virtually no light loss
on the wide entrance slit and the spectral resolution is low, the camera is used
for observations of objects as faint as 15m with a 2.5 m telescope. The camera
allows to record in one exposure half of the whole optical spectrum ranging from
the blue spectral orders at 3500 Å to the red at 11000 Å. Such curious objects as T
Tauri and FU Orionis stars (e.g. Petrov et al. 1999), chromospherically active late
type binary systems, red dwarfs, and cataclysmic variables are observable with the
camera with most of the hydrogen lines, ultraviolet Ca ii H & K, the infrared Ca ii

triplet seen in the same échelle image which offers the possibility to analyze spectral
lines originating in different layers of the star and the surrounding environment.

1.3 Design of the spectrograph

The optical design of the SOFIN spectrograph is similar to that of the échelle
spectrograph for the CTIO 4m Blanco Telescope. The complete spectrograph de-
sign is described in four papers: the optics (Pronik 1995), the mechanics (Lagutin
1995), the electronics (Bukach & Zlotnikov 1995), and the software (Ilyin 1995,
including results of the first observations).

The spectrograph is mounted on the Cassegrain rotating adapter of the alt-azimuth
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Nordic Optical Telescope (NOT). The diameters of the main and secondary mirror
of the telescope are 2560 and 510 mm. The effective focal length is 28160 mm,
which makes the scale in the focal plane 137 µm/1′′.

The schematics of the optics is given in Fig. 1.1 and the layout of the main com-
ponents are shown in Figs. 1.2 and 1.3. All components of the spectrograph are
assembled in a rigid welded construction which has the dimension of 1800 × 800 ×
800 mm3; the total weight without the CCD dewars is 240 kg. The components of
the spectrograph are described in the following.

The entrance slit (1) in Fig. 1.3 is situated at the distance 210 mm below the
attachment flange. The mirrored slit plane is tilted with respect to the optical
axis by 13.◦5 in order to be viewed by the intensified TV guiding camera. The slit
width is remotely controlled and depends on the spectral resolution being used,
whilst the width of the decker can be changed manually and defines the height of
spectral orders and the interorder spacing.

The filter and shutter unit (2) in Fig. 1.3 is mounted below the entrance slit in one
assembly unit. A hollow cylinder with two radial slots attached to the axis of a
stepping motor constitutes the shutter. The turret with the filter wheel attached to
a stepping motor contains eight holdings for filters which have 16 mm in diameter
and 6 mm in thickness (the effective focal length of the collimator depends on the
filter thickness). The filters reduce the amount of scattered light diffused on the
spectrograph optical frames and surfaces, and are selected according to the spectral
region being used. The bandpasses are given in the following table together with
their numbers and positions on the turret. Some of the filters are composed of
two pieces to keep the thickness constant: a metal ring spacer between the pieces
eliminates possible optical interference on their surfaces.

0 0 Closed
1 7 Open
2 6 3000 - 25000 Neutral double
3 5 8500 - 25000 Infrared double
4 4 7000 - 25000 Red single
5 3 6000 - 25000 Orange single
6 2 3500 - 6000 Blue double
7 1 3500 - 7500 Transparent double

The beam switcher (3) in Fig. 1.3 is used to render the light from the two calibration
sources to the slit. It consists of a pentaprism attached to the stepping motor axis
via a rotating arm. In the position shown with the solid line, the slit is unobscured
for the light from the telescope, the position shown with the dashed line gives the
light from the flat field lamp.

The calibration sources include a tungsten flat field lamp (5) in Fig. 1.3, and a
ThAr hollow cathode spectral lamp (6) manufactured by S. & J. Juniper & Co.,
UK. The pupils of the lamps are collimated at f/11.
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Figure 1.1: The optical layout of the SOFIN spectrograph. The converging f/11
beam focussed onto the slit is redirected by the flat mirror to the collimator. The
collimated beam illuminates the échelle grating which renders the light dispersed
in wavelength to the cross-dispersion prism to separate the spectral orders in
the direction perpendicular to the dispersion. The two flipped positions of the
cross-dispersion prism are shown by the solid and dashed lines. Depending on
the position, the beam is directed to one of the optical cameras mounted in the
spectrograph. The échelle image is formed on the CCD attached to the optical
camera.
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Figure 1.2: The mechanical layout of the SOFIN spectrograph: the upper unit
(1) is shown in details in Fig. 1.3, flat mirror (2) with the adjustment mechanism,
collimator (3), échelle grating (4), cross-dispersion prism (5) with the handle to
flip the prism, two optical cameras (6 and 7) installed, CCD cameras (8), assembly
frame (9), and power supply with the stepping motor amplifiers (10).

The intensified CCD TV guiding camera (4) in Fig. 1.3 is used for setting, fo-
cussing, and guiding the stellar image on the slit. The field of view on the TV
screen is 70′′. With the maximum intensification a star as faint as 16m can be
seen. For bright objects a gray filter with an attenuation of 100 is put in front of
the TV camera. The shutter, gray filter, and open diaphragm are installed on a
remotely controlled linear shaft.

The analyzer of circular polarization (Stokesmeter) (8) in Fig. 1.3 is mounted on
a platform above the slit and can be positioned onto the optical axis when used
for spectropolarimetry. The design of the Stokesmeter is described by Plachinda
& Tarasova (1999) and is similar to that of Donati & Semel (1990). It consists of
an achromatic (4000–6800 Å) turnable quarter-wave plate, a beam splitter, made
of a plate of Iceland spar, and a fixed achromatic quarter-wave plate on exit which
converts the linearly polarized light into circularly polarized light to avoid lin-
ear polarized light attenuation on the échelle grating. The angle of the turnable
quarter-wave plate on the entrance is controlled by a stepping motor; four expo-
sures with the plate subsequently turned by 22.◦5 allows to measure all four Stokes
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Figure 1.3: The mechanical layout of the upper unit: slit (1), filter turret and the
shutter (2), pentaprism rotator (3), intensified guiding TV camera (4), flat field
lamp (5), comparison spectrum ThAr lamp (6), an auxiliary viewing pupil (7),
Zeeman analyzer (8), stray light absorber (9), and the assembly unit (10).

parameters. The image separation is 3′′ on the slit.

The diagonal flat mirror (2) in Fig. 1.2 is located 300 mm below the entrance slit
and turns the optical axis by 98◦. The projected diameter is 32 mm.

The parabolic collimator mirror (3) in Fig. 1.2 has a diameter of 128 mm and a
focal length of 1396 mm. The effective focal length of the collimator coupled with
the filters is 1400 mm. The mirror has been aligned once during assembly and any
temperature changes of its focal length are compensated by the focussing of the
optical cameras.

The photon counter (not shown but located between 2 and 3 in Fig. 1.2) is used to
estimate the amount of light passed through the slit of the spectrograph and con-
sists of a small prism installed in the collimated beam and a photomultiplier. The
photon count rate and accumulated sum during the object exposure are displayed
in real-time in order to suggest the exposure time in case of observing in modest
weather conditions.

The R2 échelle (4) in Fig. 1.2 (Milton Roy Co., USA), has a grooved area of
128 × 256 mm2 and is ruled with 79 grooves mm−1. The blaze angle is 63.◦435
(arctan 2). The incident and diffracted beams are separated by a fixed angle of 8◦

and the angles are coplanar with the échelle normal. The échelle tilt mechanism
changes the angle of incidence by turning the frame around ball-edged pivots within
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±3◦ by driving the tangent arm attached to the axis of the remotely controlled
stepping motor. The motor step size is about one pixel on the CCD for the long
camera. The working spectral orders are 20–65 (11 300 – 3500 Å).

The double-pass cross-dispersion prism (5) in Fig. 1.2 is made of BK7 glass and
mounted 800 mm apart from the échelle. The prism apex angle is 17.◦0212 which
makes the interorder spacing 75% of the order height at 5650 Å in the central 40th
order. The positioning mechanism of the prism is similar to that of the échelle and
allows to change the spectral setting in the cross-dispersion direction. The motor
step size is about one pixel on the CCD for the long camera. The prism assembly
is mounted on a mechanism which allows to turn the prism around the optical
axis to redirect the refracted beam to one of the two optical cameras installed
simultaneously in the spectrograph.

Three optical cameras provide three different spectral resolutions; two of them (6
and 7 in Fig. 1.2) can be installed in the optical ports at the same time and the
resolution is altered by flipping the cross-dispersion prism. The short and long
cameras are interchangeable, the medium camera is mounted permanently.

1. The long optical camera is a Cassegrain mirror system with an effective focal
length of 2079 mm and provides a resolving power ranging from 150 000 to
185 000 which depends on the échelle deflection angle. The entrance slit
width projected on two CCD pixels is 38 µm (0.′′28 on the sky) at the blaze
angle. The light loss on the slit with a seeing of 1′′ is 75%. The length of the
spectral orders is about 20 Å around 5500 Å which corresponds to a pixel size
of about 1000 m s−1 in radial velocities. About 15 adjacent spectral orders
can be covered in one CCD image. The vignetting in the image centre is
about 7% and almost homogeneous along the image.

2. The medium optical camera is a Ritchey-Chrétien mirror system with an
effective focal length of 1000 mm with a spectral resolution ranging from
70 000 to 86 000. The entrance slit width projected on two CCD pixels is
82 µm (0.′′6) at the blaze angle. The light loss on the slit is about 50% if the
seeing is 1′′. The length of the spectral orders is about 40 Å around 5500 Å.
The CCD format allows to record 12 such orders in one exposure. The pixel
size corresponds to about 1900 m s−1 in radial velocities. The vignetting in
the image centre is about 16% and increases towards the edges (68%).

3. The short optical camera is a meniscus system (two menisci and two mirrors)
has an effective focal length of 348 mm and provides a spectral resolution
from 25 000 to 30 000 with the entrance slit width of 236 µm (1.′′73) projected
on two CCD pixels. There is virtually no light loss on the slit since it is wider
than the average seeing. The light loss occurs mostly on the slit decker
which is reduced for the camera as compared to the others for better order
separation in cross-dispersion. The spectral format of the camera allows to
record all spectral orders in one image from 20 to 67 with the length of one
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order being around 120 Å at 5500 Å. Two such exposures are necessary to
get the complete overlap and full wavelength coverage of all spectral orders.
The pixel size corresponds to 5700 m s−1 in radial velocities. The vignetting
of the camera is 22% in the image centre and 92% at the edges is due to the
large secondary mirror.

The parameters of the first two optical cameras are given in the following table
(units are mm); the optical diagram of the third camera is given in the original
paper of Pronik (1995):

Ncam fcam R1 R2 e2
1 e2

2 D1 D2 d1 d2

1 2079 -852.05 -216.36 1 2.2957 160 40 -340 420.05

2 1000 -937.50 -635.30 1.247 12.2233 160 60 -300 356.00

where fcam is the focal length, R is the radius of the mirror curvature, e2 is the
eccentricity, D is the diameter of the mirror, d1 is the distance between the mirrors,
and d2 is the distance between the focal plane and the secondary mirror.

Each camera is equipped with a focussing mechanism which is a turnable threaded
ring to offset the image formed on the CCD along the optical axis whilst the
positions of the optical elements of the camera remain unchanged. The CCD
camera is attached to the optical camera via a bayonet adapter which preserves
the CCD adjustment after re-installation of the optical and CCD cameras. The
bayonet connectors are equipped with adjustment screws to align the CCD pixels
with respect to the cross-dispersion direction.

Two similar Astromed-3200 CCD cameras (8) in Fig. 1.2 make use of two UV-
coated EEV CCDs: P88100 (1152 × 298 pixels) and P88200 (1152 × 770 pixels)
which are housed in liquid nitrogen cooled dewars and operated at a temperature
of 150 K. The pixel size is 22.5×22.5 µm2. The dewar window is made of Spectrosil
B fused silica, 50 mm in diameter and 2 mm in thickness. The first one, the larger
format CCD camera, is used with the long and short cameras, the second one, the
smaller format CCD, is used with the medium resolution camera.

1.4 Efficiency of the spectrograph

The overall efficiency of the system including telescope and spectrograph is defined
as the fraction of the photons entering the main mirror which is detected by the
CCD.
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Figure 1.4: An échelle image of the RS CVn star IM Peg obtained with the medium
camera; R = 80 000 in the 6173 & 6563 Å spectral region. The spectral orders
located during data reduction are shown. The wavelengths of the spectral orders
increase from bottom to top. The O2 atmospheric bands at 7600 Å are clearly seen
in the 5th order from the top.
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Figure 1.5: A raw échelle image of α Tau obtained with the long optical camera;
R = 160 000 in the 6427 & 7516 Å spectral region. The wavelengths of the spectral
orders increase from top to bottom.



1.4. EFFICIENCY OF THE SPECTROGRAPH 21

100 200 300 400 500 600 700 800 900 1000 1100 1200
  

330 

300 

270 

240 

210 

180 

150 

120 

 90 

 60 

 30 

  

Figure 1.6: A raw échelle image of the magnetic Ap star α2 CVn recorded with
the Zeeman analyzer with the medium optical camera R = 80 000 around 4500 Å.
The doubled spectral orders are the left and right polarized beams.

1.4.1 The direct measurement of the efficiency

Measurements of the spectrograph efficiency are usually done by observing stars
with known energy distributions at different wavelengths, e.g. the set of bright
secondary standard stars for flux calibration given in Taylor (1984) and Hamuy et
al. (1992). Instead of the standard method, we used the programme observations
of two G-type stars obtained during different observing runs at a range of zenith
distances and meteorological conditions to estimate the efficiency in the red.

The central CCD order was used where the vignetting effect is minimal. The width
of the cross-dispersion profile was used as the estimate of the seeing condition
during the exposure. Assuming that the seeing profile is a Gaussian, the relative
transmittance of the slit is given by

T = erf

(

w
√

ln 2

FWHM

)

, (1.1)

where the seeing profile width is given by FWHM, and w is the slit width. The
transmittance is plotted as a function of the width ratio in Fig. 1.9. The measured
signal-to-noise ratio (SNR) at the selected order, corrected for the slit effect, and
reduced to the same exposure time was plotted in logarithmic units with respect
to the airmass of the observations. The upper envelope of the points was used for
linear extrapolation to the zenith.
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Figure 1.7: The reduced spectra of α Cas (V=2.20, K0 IIIa) with resolution R =
160 000 in the 6427 & 7516 Å spectral region.
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Figure 1.8: Echelle images taken with the low resolution R = 30 000 optical cam-
era. The horizontal curves indicate the position of the spectral orders found dur-
ing data reduction. Top: preprocessed image with the scattered light surface
subtracted prior to the weighted extraction of the spectral orders of the 20 min
exposure of the FU Ori star V1057 Cyg (V=10) which gave a signal-to-noise ratio
around 100 in the continuum at Hα. Bottom: The corresponding ThAr compari-
son spectrum image taken in the same spectral region. The bright Thorium lines
in the red are overexposed to allow a large number of fainter lines to be seen and
used for the calibration. The saturated lines produce vertical white “tails” areas,
i.e. of depressed bias level.
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Figure 1.9: Throughput of the slit illuminated by a Gaussian seeing image. The
horizontal axis is the ratio of the FWHM of the Gaussian seeing profile and the
slit width.

58 observations of 31 Aql (V=5.20, G7 IV) were made with the long camera with
the slit width 37 µm (0.′′27) which gives the resolution R = 160 000 (∆λ=0.020 Å
per pixel) in the central order 35 at 6440 Å. Extrapolation to the zenith esti-
mates SNR to be 470 in 10 min of exposure time without the light loss on
the slit. The flux outside of the Earth atmosphere expected for the star is

1100 photons cm−2 s−1 Å
−1

(interpolated from Allen 1976, p. 207). The monochro-
matic Earth atmosphere extinction at 6440 Å is 0.057 per airmass (the extinction
coefficients for the La Palma Observatory were provided by the Carlsberg Merid-
ian Telescope). For the given diameters of the telescope mirrors (256 and 51 cm
respectively), the expected SNR of the star at zenith is 2260. Hence, the efficiency
for the long camera is estimated to be 4.3%.

92 observations of HD 199178 (V=7.24 G2 III) were made with the medium cam-
era with the slit width 81 µm (0.′′60) which provides the resolution R = 76 000
(∆λ=0.042 Å per pixel) in the central order 32 at 7000 Å. Extrapolation to the
zenith estimates SNR to be 300 in 10 min of exposure time without the light losses

on the slit. The extra-atmosphere flux for the star is about 970 photons cm−2 s−1 Å
−1

.
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The atmospheric extinction at 7000 Å is 0.033 per airmass, hence the expected SNR
of the star at zenith is 1220 which gives the efficiency for the medium camera of
about 6%.

1.4.2 The expected efficiency

The efficiency can also be estimated by calculating the transmissions of all op-
tical surfaces of the spectrograph. The results of these detailed calculations are
given in Tab. 1.1. The telescope reflectance is given by direct measurements after
the cleaning of the mirrors. The reflectance on a surface at normal incidence is
calculated according to the Fresnel formula:

r =

(

n − 1

n + 1

)2

, (1.2)

where the refractive index n is 1.51 at 7000Å for BK7 glass. The internal trans-
mittance of BK7 is 0.99988 per mm (Optics Guide, Melles Griot Co. 1988). The
échelle reflectance was provided by its specification. The reflectance of all SOFIN
mirrored surfaces aluminized in 1990 is estimated to be 0.8.

The overall efficiency of the spectrograph and CCD is 6.8%. By including the
telescope, the efficiency is reduced to 4%, which is in good agreement with the
direct measurements.

For comparison, the coudé échelle spectrometer at the 2.7 m telescope of the Mc-
Donald Observatory has an estimated efficiency of the spectrograph of 16%, mainly
because of the silver coated surfaces (97.5% reflectance), and the higher CCD ef-
ficiency (77%).

A similar design échelle spectrograph at the 4 m telescope of CTIO has an efficiency
ranging from 4–8% depending on the optical system setup.

1.5 Model of the spectrograph

Present day CCDs which are used in the spectrograph are too small to cover the
whole spectral range of the échelle image. Hence, the observations are carried out
in selected settings of the échelle and prism angles with limited spectral coverage.
It is a matter of importance to have an appropriate means to select the configura-
tion of spectral lines (Fig. 1.10) and the pointing model of the spectrograph which
transforms the coordinates of the spectral setting into the instrumental units of
échelle and prism.
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Table 1.1: The transmission table of the optical elements of the SOFIN spectro-
graph. The total transmission coefficients for each subsection are given in the
rightmost column.

Telescope main mirror reflection 0.786
secondary mirror reflection 0.782 0.60

Filter surface 0.96
single pass, 3 mm 0.99963
surface 0.96 0.92

Compensating glass surface 0.96
single pass, 3 mm 0.99963
surface 0.96 0.92

Diagonal mirror reflection 0.8
Collimator reflection 0.8
Echelle reflection 0.67

vignetting 0.87 0.37

Cross-dispersion prism surface 0.96
first pass, 39 mm 0.9953
reflection 0.8
second pass, 39 mm 0.9953
surface 0.96 0.73

Camera main mirror reflection 0.8
secondary mirror reflection 0.8 0.64

CCD window surface 0.96
single pass, 3 mm 0.99963
surface 0.96 0.92

UV-coated EEV CCD QE at 7000 Å 0.50

1.5.1 Spectral mosaic

The échelle grating equation is

sin α + sin β = N k λ (1.3)

with

α = θ + γ + ǫ and β = θ − γ + ǫ + δ, (1.4)

where α and β are the angles of incidence and diffraction, γ is the fixed angle of 4◦

(2γ is the angular separation of collimator and prism), θ is the blaze angle, ǫ is the
échelle deflection angle with respect to the blaze, δ is the field angle varying around
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Figure 1.10: The model of the focal plane of the spectrograph as seen on the
computer screen: the red orders are at the bottom and the blue orders are at
the top. The blaze axis is at the centre, the two white curves at 41% of the
échelle efficiency indicate the interval of the full wavelength overlap. The CCD
box and the wavelength coverage correspond to the medium optical camera in
6173 & 6563 Å spectral region. The positions of some hydrogen and Ca lines are
marked with crosses and boxes.

the image centre in dispersion direction, N is the number of grooves per mm, k is
the spectral order number, and λ is the wavelength. The incidence and diffraction
angles are in the same plane for this spectrograph (various configurations of échelle
spectrographs were extensively discussed in Schroeder & Hilliard 1980).

The cross-dispersion prism equation describes the fact that the monochromatic ray
crosses the surface two times at different angles and becomes internally reflected
on the rear mirrored surface:

arcsin

(

sin αp

n

)

+ arcsin

(

sin βp

n

)

= 2 θp, (1.5)

where αp and βp are the angles of incidence and refraction, θp is the prism apex
angle. The refraction angle is given by the following sum:
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βp = αp + γp + δp, (1.6)

where γp = 30◦ is the fixed angular separation between the échelle and the optical
camera, and δp is the field angle varying around the image centre in cross-dispersion
direction.

The refractive index n of BK7 is approximated by

n2 = A1 + A2λ2 + A3λ−2 + A4λ−4 + A5λ−6 + A6λ−8 (1.7)

with the wavelength λ given in µm, and the polynomial coefficients (Pronik 1995)

A1 = 2.2699804 A2 = −9.8250605 × 10−3

A3 = 1.10172030 × 10−2 A4 = 7.6606834 × 10−5

A5 = 1.16169520 × 10−5 A6 = 5.81309000 × 10−7.

The image formed in the focal plane is calculated in the coordinate system (ǫ,βp)
of the échelle deflection and the prism refraction angles as a function of ǫ and order
number k:

αp(λ) = αp(λ(ǫ, k)) (1.8)

in the image centre with the field angles δ = δp = 0. A box in the focal plane
which reflects the CCD format is calculated in the angular units according to the
scaling factor of the selected optical camera. The CCD box can be positioned
to the different angles of échelle ǫ and prism βp. The corresponding table of the
wavelength coverage is calculated with the two angles fixed at the selected position
and the field angles δ and δp are varying within the CCD image:

δp(λ) = δp(λ(δ, k)). (1.9)

1.5.2 The échelle efficiency

The échelle grating has its maximum reflectance at the blaze angle which decreases
as the angle changes. Also, as the incidence angle increases, the projected area of
the grating is reduced which results in a beam area reduction. The total effect is
calculated allowing to estimate the light collection efficiency at the given spectral
setting.

The light reflectance with respect to the blaze intensity (ǫ = 0) is

Iλ =

(

sin u

u

)2

, where u = π

(

k − λ1

λ

)

. (1.10)



1.5. MODEL OF THE SPECTROGRAPH 29

The quantity λ1 = 225 885.77 Å is the wavelength in order k = 1 at the blaze angle
(N λ1 = 2 sin θ cos γ).

The transmittance of the light due to the change of the illumination area of the
échelle by the collimated beam as a function of the grating angle is given by the
ratio of the two areas Sech/Scol:

1

4
Sech = (sin 2ρ + 2ρ) D2

col − π D2
obs,

1

4
Scol = πD2

col − πD2
obs (1.11)

with

ρ =
Ly

Dcol
cos α,

where Ly is the length of the longest échelle side (across the grooves), Dcol is the
diameter of collimator, and Dobs is the diameter of the diagonal flat mirror, which
obscures the central part of the collimated beam. It is assumed that the collimated
beam size equals the width of the échelle Dcol = Lx. The transmittance decreases
from 94% to 77% from the blue to the red side of the order; additionally, the
resolution increases from blue to red.

The overall efficiency is shown in Fig. 1.11 as obtained by the multiplication of the
blaze function with the transmittance. The maximal efficiency at the blaze angle
is about 86%.

1.5.3 The resolving power

The resolving power R = λ/dλ is one of the basic parameters of the spectrograph
and describes its ability to resolve narrow spectral lines. For the given focal length
of the optical camera, the resolution is a function of the échelle angles and it
changes along spectral orders. Qualitatively, it is obvious that with the increase of
the angle of incidence, the projected density of the grooves becomes higher, which
results in a larger dispersion.

The wavelength size dλ of the resolution element formed by the slit projection
onto the CCD is

N k dλ = cos β dβ, where dβ =
p

fcam
(1.12)

is the angular size of the resolution element given by the projected slit width p on
the CCD and the focal length of the camera fcam. Then the resolving power is

R =
λ

dλ
=

sin α + sin β

cos β
· fcam

p
(1.13)
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which is a function of the échelle deflection angle ǫ, field angle δ, and the projected
slit width p (the entrance slit width also depends on the above two angles). For
the CCD centre at δ = 0 it becomes

R =
2 tan(θ + ǫ)

1 + tan(θ + ǫ) tan γ
· fcam

p
. (1.14)

Figure 1.11: The échelle plus collimator efficiency is plotted with respect to the
deflection angle in degrees. The uppermost curve corresponds to the red 20th
order, and the innermost curve is for the blue 60th order. The resolving power is
calculated for the three optical cameras for a resolution element of two pixels of
the CCD.

1.5.4 The optimal slit width

The slit is called optimal when its image in the focal plane is optimally sampled by
the CCD pixels. For the ordinary observing mode, the sampling interval is equal
to one CCD pixel, which implies that the spatial cutoff (or Nyquist) frequency
corresponds to two pixels on the CCD. The slit width which corresponds to an
instrumental profile of two pixels FWHM is used for observations to provide the
maximal resolving power for the given settings of the spectrograph.

The projected slit image is a convolution of three main profiles: the geometrical
projection of the rectangular entrance slit, the aberration profile of the camera,
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and the diffractional profile of the monochromatic beam on the collimated pupil.
To calculate the resulting width, it is assumed that the profiles are Gaussians,
hence, their widths can be added in squares:

p2 =

(

fcam

fcol
· cos α

cos β
· w

)2

+ A2(λ) +

(

λ

Dcol
fcam

)2

. (1.15)

The last term describes the diffraction broadening of the slit image. The middle
term is the camera aberration as a function of image position; for simplicity,
the aberration spot size is set constant and equal to 8 µm for all three optical
cameras. The first term consists of the three factors: the magnification factor of the
spectrograph, the angular magnification on the échelle, and the entrance slit width
w. The magnification by the échelle follows from Eq. (1.3): cos α dα+cos β dβ = 0.

The essential setup parameters for the three optical cameras are given in the
following table for the central 40th order at 5647 Å at the blaze. The slit width w,
given in µm, corresponds to two pixels on the CCD. The slit relative throughput T
in percent is calculated for 1′′ seeing. δλ and δv are the pixel width in wavelength
(mÅ) and radial velocities ( m s−1). ∆λ and ∆k are the length in Å and the
number of spectral orders in the CCD image.

No. Camera R w wsky T δλ δv ∆λ ∆k

1 long 161 000 38 0.′′28 25 17 930 20 16

2 medium 76 000 82 0.′′60 50 37 1970 42 14

3 short 27 000 236 1.′′73 100 104 5550 120 40

1.5.5 The pointing model of the spectrograph

The échelle and the cross-dispersion prism position angles are controlled by step-
ping motors. The pointing model establishes the relation between the step num-
bers and the position in wavelengths and order numbers for the centre of the CCD
image and is used for the selection of spectral regions (Fig. 1.10).

To obtain the reference points, a series of comparison spectrum images were made
in a grid of 5 × 7 different positions in dispersion direction and across the orders
for the three optical cameras. The images were processed to obtain the central
order number and its wavelength. Bivariate polynomial linear least-squares fits
were used to approximate the échelle deflection angle ǫ in Eq. (1.3) and the central
order number k as functions of the step motor numbers x and y as follows

ǫ(x, y) = q′(y)E p(x) and k(x, y) = q′(y)C p(x), (1.16)

where E1×2 and C4×1 are the matrices of polynomial coefficients associated with
the vectors of the Chebyshev polynomials q(y) and p(x) of the corresponding
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degrees. The polynomial coefficients were found sufficient for the SOFIN spec-
trograph to describe the surface with an appropriate accuracy, although, a more
dense grid in the cross-dispersion direction would provide an accuracy similar to
that achieved in the dispersion direction.

1.6 Stability of the spectrograph

As the alt-azimuth mounted telescope tracks the position of a star, the spec-
trograph mounted on the rotating adapter is changing its orientation which is
described by the parallactic angle. The parallactic angle between the hour circle
and the vertical circle (Woolard & Clemence 1966, p. 55) is calculated from

sin z sin q = cos φ sin h

sin z cos q = sin φ cos δ − cos φ sin δ cos h,
(1.17)

where q is the parallactic angle, z is the zenith distance, φ is the latitude of the
telescope in the northern hemisphere, δ is the declination of the object, and h is
its hour angle. Fig. 1.12 shows how the rotator parallactic angle and the zenith
distance of an object are changing in time. For a star with δ ≈ φ the rotator angle
is changing very fast but the zenith distance is not. Apart from this declination,
the slower change of the rotator angle is compensated by the near constancy of
the zenith distance at the meridian. The most critical parts are on the east and
west where both angles are changing very rapidly.

A change of the spectrograph orientation unavoidably results in a drift of spectral
line positions, an effect known as the flexure of Cassegrain mounted spectrographs.
Different optical components may change their positions in a different way as the
spectrograph changes its orientation which makes the overall effect very compli-
cated.

To evaluate the amplitude and the behaviour of the line drifts, an experiment
was made in December 1997 for the long 1st and medium 2nd optical cameras
as follows. To ensure that the ambient temperature changes are minimal, the
experiment was carried out during a cloudy night with the telescope dome closed
and the air conditioning system switched on. The altitude of the telescope was
gradually decreased from 90◦ to 20◦; at each altitude the rotator was turned from
−90◦ to +90◦, and at each rotator angle an exposure of the comparison spectrum
was made. Then the whole sequence was repeated for the other camera. The line
displacements were measured with respect to a group of lines at the image centre
of the very first exposure with the cross-correlation technique. The results of the
measurements are shown in Fig. 1.14, and the corresponding surfaces are shown in
Fig. 1.15 and Fig. 1.16 which were approximated by a bivariate smoothing spline.

As was expected, the 1st camera traces show a twice larger amplitude due to
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Figure 1.12: Change of the parallactic angle of the telescope rotator as function
of hour angle (left) and zenith distance (right) at the latitude φ = 28.76◦ of the
NOT for stars with different declinations. The length of the curves is defined by
the visibility of a star above the horizon. The time interval between two dots in
the right panel is 10 min of hour angle.

the doubled focal length as compared to the other camera. At each trace when
the altitude is fixed there is a turning point at which the drift in the direction
of rows (the dispersion direction) is minimal and is at +30◦ of the rotator angle
for the 1st camera and −30◦ for the 2nd. This is simply explained by the fact
that the angle between the échelle-prism axis and the optical camera is 30◦: at the
corresponding rotator angle the camera is exactly in the plane of the vertical circle,
therefore its bending is minimal (Fig. 1.13). As the zenith distance is changing, the
lines are moving back and forth in the dispersion direction. The minimal change
of the drift occurs at 30◦ zenith distance. There is no feasible explanation why
it happens at this angle: probably there are some changes in the resulting vector
of forces in the échelle turnable frame drawn out by the braced springs, but at
30◦ of zenith distance the angle between the échelle plane and the vertical is only
30◦. The échelle stands vertical at a zenith distance of 60◦, hence, the échelle unit
counteracts the springs.
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Bottom view

+-

Medium Long 1st and
Short 3rd cameras2nd camera

Rotator angles

Figure 1.13: The bottom view of the spectrograph mounted on the telescope rota-
tor adapter. Clockwise rotation corresponds to negative angles, and anticlockwise
rotation corresponds to positive angles of the rotator. The angle between the op-
tical cameras is 60◦. When the rotator angle is −30◦ the medium 2nd camera is
oriented in the plane of the vertical circle of the telescope.

The change of the spectral line width from one exposure to the other is shown in
the surface fits. These surfaces are less conclusive but show that the focussing of
the optical camera is degrading at certain orientations of the spectrograph and it
is definitely degrading with increase of the zenith distance. One conclusion that
can be made is that at the rotator angles (±30◦), where the drift in the dispersion
direction is minimal, the change of the focus is maximal.

The results of this experiment have merely practical consequences: to minimize
the drift in the dispersion direction during observations the rotator angle for the
long 1st camera should be around +30◦ (the same is true for the short 3rd camera
where the measurements were not made but the mechanical configuration is the
same), and −30◦ for the medium 2nd camera.

In order to obtain the optimal quality (stable lines and maximal resolution) long
exposures should be subdivided into a series of short ones depending on the object
position, with subsequent correction of the shifts.

1.6.1 Line broadening due to flexure

The drift of a spectral line across the CCD pixels during the integration results
in an apparent shift of the line centre from where it is expected and leads to the
increase of the line width. If the line shape can be described by a rectangular
profile, then apparently, a shift of such a line by the amount ∆ increases the line
width by the same amount. Most of the real spectral lines can be described as
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Figure 1.14: The line drift in two optical cameras as a function of the spectrograph
spatial orientation. The shift in rows is along the dispersion direction and the shift
in columns is in the cross-dispersion direction. The telescope rotator angle (R) is
changing from −90◦ to +90◦ and the zenith distance (Z) is changing from 0◦ to
70◦. The scale size for the medium camera plot is half that for the long camera
plot.

Gaussian profiles; in the latter case the increase of the width due to the shift is
less significant.

The whole process can be described as a convolution of the true line profile p(x)
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Figure 1.15: The surface fit shows the drift of a spectral line in the dispersion
direction (upper panel), in the cross-dispersion direction (middle panel), and the
change of the line FWHM as a function of zenith distance and rotator angle for
the long 1st optical camera.
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Figure 1.16: The surface fit shows the drift of a spectral line in the dispersion
direction (upper panel), in the cross-dispersion direction (middle panel), and the
change of the line FWHM as a function of zenith distance and rotator angle for
the medium 2nd optical camera.
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with the shift function s(x) which results in the smeared profile f(x). Assume
that the shift function is a rectangular profile of the width ∆, i.e. the shift of the
line is constant in time:

s(u) =







1, −∆/2 < u < +∆/2

0, otherwise.
(1.18)

Let the line p(u) be a Gaussian profile of the width σ, then the resulting profile is

f(x) =

∫ +∞

−∞

p(u) s(x − u)du =

∫ x+∆/2

x−∆/2

p(u)du =

∫ x+∆/2

x−∆/2

e−u2/σ2

du =

√
π

2
σ (y2 − y1)

(1.19)

where

y1 = erf

(

x − ∆/2

σ

)

and y2 = erf

(

x + ∆/2

σ

)

. (1.20)

The resulting profile is not a Gaussian anymore but the difference of two error
function profiles. The resulting full width wf is calculated at half amplitude of
the profile and plotted with respect to the width wp and the shift ∆ in the following
form:

wf

wp
= F

(

∆

wp

)

. (1.21)

A more simple but less realistic case is when the shift function can be described by
a Gaussian profile, i.e. the line position is a normally distributed random number
with a mean equal to the expected line position and the width σ2 (similar to
the width ∆ of the rectangular shift function). Then, the resulting profile is a
convolution of the two Gaussians:

f(x) =

∫ +∞

−∞

p(u) s(x − u)du =

∫ +∞

−∞

e−u2/σ2
1 e−(x−u)2/σ2

2 du =

√

π

σ2
1 + σ2

2

· σ1σ2 · e−x2/(σ2
1+σ2

2).

(1.22)

The resulting curves for the two shift functions are shown in Fig. 1.17. A rectan-
gular shift of a Gaussian profile of 2 pixels FWHM by two pixels would increase
its width by 25%; a shift by four pixels doubles the line width.
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Figure 1.17: Relative increase of a Gaussian profiles FWHM as a function of the
line shift with respect to its width. The bottom curve corresponds to a rectangular
shift function, and the upper curve is for a Gaussian shift function.

To verify this in practice, we made an observation of α Cyg (A2 I) whose spectrum
has very narrow interstellar absorption features in the Na i doublet. The obser-
vation was made with the 1st camera when the telescope was normally tracking
the star and then when the telescope rotator was turned by 50◦ during the expo-
sure. The comparison lines shifted by 0.5 pixels (425 m s−1) during the exposure.
The width of narrow absorption lines is about 4–5 pixels. The two spectra are
shown in Fig. 1.18. No increase of the line width due to the shift was found in this
experiment, because the expected increase of the line width is less than 1%.

1.6.2 Statical stability of the spectrograph

In this section we give an investigation of the statical stability of the spectrograph
when the external long-term factors of the flexure due to telescope tracking are
excluded. The importance of such a test is dictated by the need of understanding
the nature of the positional instability of spectral lines due to instrumental ef-
fects. This is especially important when we study short term variations of spectral
line profiles (e.g. non-radial pulsations or other monitoring programmes) where
the physical effect could be compatible in amplitude with the effects of instru-
mental nature. On the other hand, slow variations (tens of minutes) of the line
positions due to environmental effects give us additional suggestions of the proper
operational modes of the SOFIN spectrograph which can be used to minimize the
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Figure 1.18: The reduced spectrum of α Cyg (V=1.25 A2 Iae) taken with the
long 1st camera (R=176 000 at this spectral region) showing the profile of the
interstellar Na i D2 at 5889.9512 Å. The two spectra were taken under different
conditions: when the telescope was only tracking, and when the rotator was turned
from 0◦ to +50◦ step by step during its 5 min exposure at the zenith distance of
20◦. The rotation caused a shift of the comparison spectrum lines by 0.5 pixels (one
pixel is 850 m s−1). No apparent change of the width in the profile components is
seen. The decomposition of the line profile onto a number of Gaussians also gives
the same widths for the two spectra.

instrumental instability during observations and taken into account during data
reduction.
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Figure 1.19: The stability test of the spectrograph in stand-by position. The
horizontal axis is time in minutes. The panels from top to bottom are the image
drift in CCD rows and columns, line FWHM, the ambient temperature in C, and
the CCD temperature in K.
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Chapter 2

The instrumental profile

2.1 The instrumental profile

The instrumental profile of a spectrograph defines its resolving power, a key pa-
rameter which determines the ability of the spectrograph to resolve narrow spectral
lines. The resolving power is measured from the core of the profile, and its ex-
tended wings define the amount of scattered light of the spectrograph. This is
another important parameter which can tell us how much the apparent line inten-
sities differ from the true values and, therefore, defines the precision with which
e.g. the equivalent widths of the lines can be measured.

2.1.1 Obtaining the instrumental profile

Following the prescriptions of Tull et al. (1995), Diego et al. (1995) and Barlow et
al. (1995), the instrumental profile of SOFIN was measured in November 1998 for
the 1st and the 2nd optical cameras. A HeNe laser was used as a source installed
in front of the entrance slit. A small milk glass diffuser of the appropriate size
was installed between the slit and the laser to ensure that the convergence of
the entrance beam is f/11 and, therefore, the camera is uniformly illuminated.
The spectral settings of the two cameras were adjusted so that the 6328 Å laser
line appears close to the centre of the CCD image. The best focus was found
prior to the series of exposures. The exposure times for the two cameras were set
differently (10 s and 1 s, respectively) to achieve 25 000–30 000 ADUs per pixel
at the maximum of the HeNe line profile (the dynamical range of the CCD is
65535 ADUs). A series of 200 exposures was carried out for the 1st and 2nd
cameras giving a total signal-to-noise ratio at the line maximum of 10 000 and
5 500, respectively.

43
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A similar measurement of the instrumental profile was carried out in April 2000
for the low resolution 3rd camera. A series of 150 exposures was obtained which
yields a total signal-to-noise ratio of 3500.

A CCD bias column, averaged from the overscan in columns, was obtained and
subtracted from every image separately to ensure that bias variations would not
introduce any systematics. The photon noise is estimated from the Poisson statis-
tics for the known CCD gain factor. A standard unweighted integration across the
order was done to obtain the spectra of the line. The series of exposures took from
1 to 2 hours, therefore, a change of the ambient temperature and the CCD dewar
weight due to liquid nitrogen evaporation could shift the line position. To elim-
inate the effect, the spectra were cross-correlated with respect to the first profile
and the apparent shift in pixels was removed from each spectrum. The image in
Fig. 2.1 shows a sum of all debiased individual images of the 1st camera, co-aligned
in the dispersion direction.
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Figure 2.1: An image of the HeNe 6328 Å line obtained with the 1st camera. The
image is a sum of 200 individual exposures co-aligned with each other.

We found that the immediate summation of all spectra results in an apparent
increase of the core width of the resulting profile. The effect is well understood
taking into account that due to the line drift and only a few pixels present in the
line core, the undersampling of the core is severe, i.e. cannot be well described
with the large pixel size. The increase of the line width will otherwise lead to the
underestimation of the resolving power of the spectrograph. Therefore, we used
the change of the line position in order to improve the sampling of the profile as
follows.
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Figure 2.2: The instrumental profiles for the three optical cameras. The dots show
the overlaid pixels of individual spectra coaligned to each other due to the line drift
during the run of exposures. A spline fit is shown as a thin line for the camera 1
and 2. A jagged thin line in the camera 3 plot is the sum of individual spectra.
The widths at the three intensity levels are indicated with arrows.
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In order to exclude the effect of changes of the line intensity during the run due
to variations of the exposure time and laser instability, the spectra were rescaled
to the first spectrum. The linear scaling coefficients are determined by the cross-
correlation method at the maximum of the cross-correlation function. The wave-
length calibration was established from a ThAr comparison spectrum, the image
of which was obtained before the series. The wavelengths of the spectra were
transformed into radial velocities with respect to the line centre at 6328.160Å.
The spectra overlaid (interleaved) with each other in radial velocities show the
structure of the profile at a number of pixels which were drifted over the time
span of the run. The resulting profile was obtained by fitting a smoothing spline
to the pixels obtained as a weighted average over a small interval in velocity scale
(about 25 m s−1).

The result of such a procedure is shown in Fig. 2.2 for the 1st and the 2nd cameras.
In the case of camera 1, the overall line drift during the run is almost one pixel
which resulted in the complete overlapping of the pixels. In the case of camera 2,
the overall line drift was essentially smaller but well enough for the spline approx-
imation. Unfortunately (for this application), the relative stability of the short
camera is a few times higher than that of the other two. The corresponding pixels
of the line profile were fixed to almost the same position during the run, giving
no possibility to improve the sampling interval. Therefore, a sum of the cross-
correlated spectra with small drifts corrected was calculated with the subsequent
wavelength and radial velocity transformations.

2.1.2 The measurement of the resolving power

The resolving power definition involves the measurement of the line width. The
line width for the 1st and 2nd camera was measured directly from the well-sampled
profile. For the undersampled 3rd camera spectrum, the FWHM was measured
from the weighted fit of a Gaussian to the core of the profile. Since only a few pixels
are present in the core, the narrowest Gaussian was selected among all possible
combinations of the pixels involved in the fit. The minimal number of pixels used
for the fit is 4. This procedure is justified, because the very central part of the
profile can be described by a Gaussian shape, as discussed later. In this section
we assume, in the first approximation, that the internal line width of the HeNe
laser line is negligible.

For the high resolution 1st camera, according to the model, the expected resolving
power at this wavelength is R = 168 000 (R = λ/∆λ = c/v) per resolution element
of 2 pixels FWHM on the CCD. The measured width of the HeNe line is 1.80 km s−1

FWHM (2.04 pixels), which gives R = 167 000. The 2nd camera profile yields a
line width of 3.48 km s−1 FWHM (1.88 pixels) which results in R = 86 200. The
resolving power according to the model is R = 81 000 for the 2 pixels FWHM
resolution element. The width obtained with the low resolution 3rd camera is
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Figure 2.3: A schematic diagram of the fine structure of the HeNe laser 6328.16 Å
line which was used for the instrumental profile calibration. The Doppler profile
width is 1500 MHz (T = 400 K), the resonance mode spacing is 300 MHz (50 cm
cavity length), and the single mode width is 1 MHz (this width is exaggerated
10 times for clarity). The width of the picture corresponds to two pixels (2 ×
882 m s−1) of the high resolution 1st camera.

10.7 km s−1 FWHM (2.02 pixels) and corresponds to R = 28 000, which is close to
the expected value R = 28 000 for 2 pixels.

2.1.3 The natural width of the HeNe laser 6328 Å line

The natural width of the HeNe 6328 Å is assumed to be negligible for medium
resolutions. According to Bloom (1966), the Doppler width of the line is at
most 1.7 GHz, Melles Griot (1988) uses a typical value of 1.4 GHz (18.7 mÅ or
886 m s−1)1. This value agrees with the direct measurements of Tull (1972) ob-
tained with an échelle spectrograph and scanner (they used a R = 60 000 spec-
trograph). On the other hand, Barlow et al. (1995) refer to a width of 0.03 mÅ
or 1.4 m s−1. Their measurements of the instrumental profile with the Ultra High
Resolution Facility (UHRF) at AAT (R = 106) yields a core width of 300 m s−1

which implies that the natural width of their laser is indeed very small.

1For the frequency interval transformation, we use the differential equality ∆λ = λ
2
c

−1∆ν

which follows from λν = c.
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Figure 2.4: Shown in the middle is the comb of the HeNe laser line fine structure,
its convolutions with a Gaussian profile (thin curves), where the narrow profile is
for camera 1, the wider is for camera 2, the measured profiles approximated by a
spline (thick curves), and the step functions which are the undersampled profiles
calculated as the sum of the individual spectra (given for comparison).

To clarify the question of the true shape of the HeNe laser line, we refer to excellent
introductions by Siegman (1971) and Svelto & Hanna (1989), some details are
also given in Gray (1992, Ch.12). Fig. 2.3 shows the fine structure of the HeNe
6328.16 Å line, which consists of a number of single modes superimposed on a
Doppler broadened profile. The width of a single mode is defined by the internal
width of an atomic transition and is typically 1 MHz FWHM (13.3 µÅ) for a HeNe
laser. The mode spacing, or cavity resonance function, is defined by ∆ν = c/2L
and is caused by the multiple passing of the light packet between the two cavity
mirrors of the laser, the distance between them is denoted by L. The shorter the
cavity, the less modes are present (a laser with a very short cavity, L < 15 cm,
operates in a single mode). In our case, L ≈ 50 cm which implies that the spacing
is about 300 MHz or 4 mÅ. The intensities of the resonance modes are distributed
with a thermal Doppler broadening function (a Gaussian profile), which depends
on the gas temperature and its atomic number. For Ne (m=20) at 6328 Å and
for the gas temperature T = 400 K, a width of 1500 MHz or 20 mÅ FWHM for
the thermal profile is obtained. All unstabilized HeNe lasers are subject to mode
sweeping, an effect caused by thermal changes of the cavity length. The most
important thing is, that it is a long term effect as the cavity length changes with
the ambient temperature which may result in variations of the mode spacing and
their frequencies.
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The described structure of the HeNe line would now explain the fact that the
natural width is laser specific. For such a measurement when the natural width is
comparable with the spectrograph resolution, a laser with a short cavity working
in a single mode would be required.

Now, when we established the model of the line structure, we obtained the possi-
bility to exclude it from the measurements by deconvolution of the laser comb. In-
stead, we convolve the laser profile with Gaussians of different widths and compare
it with the measurements. Here, we have to assume that the convolution func-
tion has a Gaussian shape, resulting from the geometrical slit width, diffraction,
and aberrations. The convolutions of the laser comb with Gaussians of 1.7 pixels
FWHM for the two cameras are shown in Fig. 2.4. The corresponding widths in ve-
locities are 1.5 and 3.2 km s−1 which yield a higher resolving power of R = 200 000
and 93 000 for the pure Gaussian shape assumption for the 1st and 2nd cameras,
respectively.

2.1.4 The features

The core of the instrumental profile of SOFIN can be approximated by a Gaussian
profile. Fig. 2.5 shows the degree of deviation of the core from a Gaussian. Com-
parison with the profile of the 2nd and 3rd cameras shows a similar behaviour.
Down to the level of 10% of the central intensity the Gaussian is a good approx-
imation to the instrumental profile, but at the level, where the Gaussian reaches
1% of the central intensity, the instrumental profile still has about 3–4% intensity.

The extended wings of the profile constitute the amount of scattered light added to
the spectrum in the dispersion direction. For the 2nd camera profile, for instance,
the contribution is about 0.1% of the central intensity at 30 km s−1 (0.6 Å) from
the line centre. Examination of the original image shows that there is no difference
in the amount of scattered light along and across the dispersion around the central
peak. The scattered light across the spectral orders can be approximated within
the interorder gaps and removed from the image. This is not the case for the
scattering in the dispersion direction, as was discussed in Gray (1992, Ch.12).

The scattered light intensity differs by a factor of 2 for the two cameras (the ratio
of their focal lengths) over the whole range of ±100 km s−1 as could be seen from
the ratio of the two profiles. Griffin (1969) pointed out by using a log-log plot that
the wings exhibit an inverse-square decline. The fit of a Lorentzian profile to the
extended wings shows that the shape of the whole profile (except the satellites)
can be well approximated by the sum of the two (but not with a Voigt profile
which involves the convolution of the two). The FWHM of the Lorentzian profile
is two times less than the FWHM of the Gaussian which fits the core. For the
accurate convolution or deconvolution of the spectral lines, the instrumental profile
should be used with the scattered light (far wings) subtracted from it. In practice,
however, it is nearly impossible to distinguish between the scattered light and true
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Figure 2.5: Comparison of the instrumental profile for the 1st camera with the best
fit of a Gaussian profile (1.90 km s−1 FWHM) to the line core and a Lorentzian
profile (0.95 km s−1 FWHM) to the extended wings.

features of the instrumental profile. Fortunately, for SOFIN, the scattered light
contribution is so low, that it can be neglected.

Griffin (1969) distinguishes the following components of the instrumental profile:

1. The main peak (has been discussed above).

2. Rowland ghosts. This feature should be symmetrical with respect to the
main peak. Most likely, they are absent in the observed profiles.

3. Diffracted wings. The diffraction maxima are unresolved in our case: the
position of the first minimum is at 0.4 km s−1, i.e. within one resolution
element. The maximum N = 30 at 12 km s−1 has only 0.01% of the central
intensity.

4. Small-angle scattering in the optical system.

5. Halation and scattering in the photographic emulsion (not present here).

6. True scattered light. Has been attributed above to the broad scattering
wings.

Tull et al. (1995) add a number of new items:

7. Internal reflections and interference in the CCD. The two instrumental pro-
files were obtained by using two different CCDs (but of the same type). The
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structure of the wings obtained is much the same, so that this component
can be neglected.

8. Widening due to CCD transparency; the same argument as in the previous
item.

9. Charge transfer inefficiency, which makes a characteristic tail in the direction
of parallel (along the dispersion) or serial transfers (depending on which
of these two registers is not fully optimized). The CCDs being used are
optimized and specially tested for the effect.

10. External reflections (stray light images). This is the most plausible expla-
nation for the satellites in the scattering wings. The equal positions of the
satellites for the two cameras imply that the effect is taking place before en-
tering the elements of the optical camera. Filling the collimator pupil would
make external reflections on the collimator and échelle frames. Small-angle
back-reflections on the optical elements are also possible. One of the features
of SOFIN is a small flat mirror situated in the collimated beam. The mirror
is a key element of the spectrograph design: it turns the light beam emerg-
ing from the slit by a right angle and renders it to the collimator; the use
of the mirror reduces the size of the spectrograph and, therefore, improves
its mechanical stability. However, the design has its drawback: the mirror
is situated in the collimated beam which allows small-angle reflections back
to the rear of the slit which results in the appearance of additional off-axis
beams. The reflections which occur in the direction of the slit width will be
seen as the displaced features in the dispersion direction, i.e. the satellites
in the instrumental profile. The rear of the slit is protected from the back-
illumination effect by a black metal shield with a hole, although, the size of
the outlet leaves room for the small-angle back reflections. One other possi-
bility for back-reflections in SOFIN is a filter installed between the slit and
the flat mirror. The filter is composed of two pieces separated by a spacer:
an “ideal” optical element to generate off-axis beams.

It has been a long discussion in the literature (e.g. Griffin 1969), that the instru-
mental profile obtained in the laboratory may differ from that obtained on the
telescope. This important issue depends on the design of the spectrograph. Typ-
ically, the way how the collimator is illuminated is different for the calibration
source and for the stellar image. In the former case, the collimator is uniformly
illuminated, in the latter case, a central shadow area is present due to the sec-
ondary mirror of the telescope, hence, a difference in the shape of the profile may
be expected, as well as a possible systematic shift in the line positions from the
two sources. In the case of SOFIN, the diagonal flat mirror reduces the effect:
the secondary mirror of the NOT is 20% of the primary in diameter, the flat mir-
ror is 25% of the collimator. Therefore, the shadow from the telescope mirror is
completely inside the shadow due to the flat mirror and one should not expect
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any geometrical difference in the collimator illumination from the calibration and
stellar sources. A non-uniform illumination of the collimator by the stellar source,
which is also subject to temporal variations as opposed to the uniform illumination
by the calibration source, causes the difference between the instrumental profiles
obtained in the two cases.

2.1.5 Comparison with the solar spectrum

In this section we apply the measured instrumental profile to real observations.
The solar spectrum is used and compared with the McMath FTS Solar Atlas
(Kurucz et al. 1984), which has a resolving power of about 400 000 and a noise
level below 0.1%. Another advantage is that the solar spectrum obtained with
FTS is free of most instrumental effects, like the scattered light, and it is more
accurate unlike a synthetic spectrum which may contain uncertainties in the line
parameters.

The solar spectra of day light were obtained with the 1st and 2nd optical cameras
in July 1996 in the spectral region around 5620 Å. The telescope was pointed
without tracking to the sky with the dome and mirror opened. Pointing to the
sky ensures that the collimator illumination is similar to the calibration or laser
source. The exposure times were 15 and 8 min, yielding the signal-to-noise ratios
400 and 500 for the 1st and 2nd camera, respectively. The spectrum with the 3rd
camera was obtained in similar conditions in June 1997 with the signal-to-noise
ratio 260 in 8 min of exposure time.

A standard data reduction procedure was applied to the spectra including scattered
light removal and wavelength calibration. No corrections to the wavelength scale
other than the heliocentric correction were applied. The solar FTS spectrum was
convolved with the measured instrumental profiles of the 1st, 2nd, and 3rd cameras
in radial velocity scale. The continuum was derived by fitting a spline to the ratio
of the observed spectra and the convolved FTS spectra.

The two spectra for the 1st camera are shown in Fig. 2.6: an excellent agreement
with the two spectrographs at different line depths and consistency with the instru-
mental profile derived two years later. The difference between two spectra shows
a scatter of 0.4% rms (depends on how many lines are present in the spectrum)
which is higher than noise level of 0.25% due to photon statistics. The largest sys-
tematic deviations in the blue part of the spectrum occur possibly because of some
small uncertainties in the wavelength scale. The comparison of the instrumental
profile with a Gaussian in the previous sections shows that there is a systematic
deviation at levels below 10% of the peak intensity. To check how significant the
deviation is, we convolved the FTS spectrum with a number of Gaussians of differ-
ent widths. For a convolution with 2 pixels FWHM all line profiles are 5% deeper
than the observed spectrum. The best fit can be achieved with 4 pixels FWHM as
far as the line depth is concerned, although the convolved line widths are then 10%
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Figure 2.6: Comparison between the solar spectrum obtained with the 1st camera
(dots) and the FTS spectrum convolved with the HeNe instrumental profile (thin
line). The difference spectrum enlarged 10 times is plotted at the bottom. The
mean difference is 0.4% rms, the maximal deviation is 2.8%.

larger than in the observed spectrum. Hence, it can be inferred that the profile
wings below 0.1 are important and one should expect systematic deviations when
using a pure Gaussian profile for the convolution with the synthetic data.

In the case of the 2nd camera, the observed spectrum is in best agreement with
the convolved FTS spectrum (Fig. 2.7). The noise level in the difference spectrum
0.3% rms is almost completely due to the statistical noise level of 0.2%. However,
a contribution to the excess could possibly be due to the fine structure of HeNe
laser line present in the instrumental profile.

The comparison between the convolved FTS spectrum and the observed one with
the camera 3 is given in Fig. 2.8. The convolved spectrum shows small, but sys-
tematical deviations of the line widths and depths from the observations: the lines
are more narrow and shallow than in the observed spectrum, especially at the
edges of the image.

2.1.6 The real resolving power

The above comparison with the observed spectra proves that the measured instru-
mental profile almost corresponds to the real profile. The core of the profile is
broader due to the fine structure of the HeNe line but the near and far scattering
wings are introducing a real effect when convolved with the FTS spectrum. The
resolving power was measured from the deconvolved core of the profile and is in
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Figure 2.7: The solar FTS spectrum is convolved with the instrumental profile
of the 2nd camera (thin line) and overplotted with the observed spectrum (dots).
The difference spectrum enlarged 10 times is plotted at the bottom. The mean
difference is 0.3% rms, the maximal deviation is 1.3%.
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Figure 2.8: The solar spectrum observed with the 3rd camera (dots) and the
FTS spectrum convolved with the HeNe laser instrumental profile. The difference
spectrum enlarged 10 times is plotted at the bottom. The mean difference is 0.7%
rms, the maximal deviation is 4%.
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Figure 2.9: The convolution of two delta-functions of different separations with a
Gaussian and with the instrumental profile of the 1st camera. The width of the
convolved Gaussian profile is 2 pixels FWHM. The 1st camera instrumental profile
is able to resolve two sharp features separated by less than 2 pixels (1.8 km s−1)
which corresponds to the resolving power better than R = 167 000. The asymme-
try and shift of the convolved instrumental profile with respect to the Gaussian is
apparent; this could lead to a systematical error in radial velocities.

a good agreement with the expected values. A matter of practical considerations,
is whether the real profile with its features is able to resolve narrow spectral lines
and what is the real resolving power.

Two delta-functions were created in velocity scale with different separations to
mimic narrow spectral features (Fig. 2.9). A convolution with a Gaussian profile
of 2 pixels FWHM is given for comparison. The resolution can be defined as the
minimal distance between two narrow features at which the convolved profile can
be still numerically separated. The numerical separation involves either decompo-
sition of the two profiles or deconvolution with the known instrumental function.
The visual separation tells us that the convolved profile is still resolved at 2 pixels
separation of the delta-functions.

One other test for the resolving power involves observation of interstellar clouds
towards α Cyg (this spectrum was also used in Sec. 1.6.1 to demonstrate the effect
of line broadening due to mechanical flexure). The spectrum of interstellar Na i D2

at 5889.9512 Å was taken with the 1st camera (R = 176 000 at this spectral region)
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Figure 2.10: The spectrum of α Cyg (V=1.25 A2 Iae) taken with the 1st camera
(R=176 000 at this spectral region) showing the profile of interstellar NaI D2 at
5889.9512 Å. The profile is decomposed into 10 Gaussians. The line at −31 km s−1

with FWHM=4.6 km s−1 is a telluric line.

and is shown in Fig. 2.10. The profile was decomposed into 10 Gaussians (χ2
ν =

7.7) and compared with observations of Wayte et al. (1978) and Blades et al.
(1980), made with a Michelson interferometer (R = 500 000). They have resolved
a hyperfine structure of the interstellar profile on the line of sight in a number of
narrow ≈ 1 km s−1 components. The component at +1 km s−1 is a blend of two
narrow profiles separated by 1 km s−1 with the total width 2 km s−1. Convolution
with a two pixels Gaussian instrumental profile (the width is determined from the
ThAr comparison spectrum lines) gives FWHM=2.6 km s−1 which is exactly the
width of the decomposed component.

2.1.7 Discussion

The above analysis has shown that the measured resolving power is consistent with
that which is expected according to the design parameters. However, the estimated
resolving power is higher than expected especially after the fine structure of the
laser line was eliminated. The reduction of the profile width can be interpreted in
different ways as follows.

Firstly, the observed line width could be narrower if the collimated beam does not
fill the pupil completely, which results in only partial illumination of the optics of
the spectrograph, i.e. the aberration spot becomes narrower. This problem was
overcome by using a light diffuser situated at a certain distance above the slit.
Secondly, there might be some uncertainty in the estimate of the aberration spot
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for the optical cameras which is involved into the calculation of the slit width. And
the last uncertainty may come from the slit calibration which is possibly resulting
in a slit which is narrower than expected in linear scale. Nevertheless, the obtained
instrumental profile is legitimate for the CCD image centre and for the optimal
focus of the spectrograph.

The measured instrumental profiles show the typical shape common to all grating
spectrographs (Dravins 1993). The core of the profiles can be approximated by
a Gaussian down to 10% of its maximal intensity. Different kinds of estimations
of the convolution width based on the sum of squares of widths remain valid up
to the above accuracy. For higher accuracies, the real measured instrumental
profile should be used for the convolution with the template (synthetic) spectrum
to achieve the maximal correspondence to the observed spectrum. One should not
use a Gaussian approximation of the PSF for the convolution.
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Chapter 3

Optimization of CCD

performance

3.1 Introduction

In this chapter we will consider some results of the practical work with the CCDs
which were obtained during years of work with the Astromed CCD cameras used
with SOFIN. In the first two sections, some prescriptions concerning the accurate
flat fielding are given. Some preliminary results concerning the non-linearity effects
as consequences of the charge transfer inefficiency are given in the following section.
We proceed by describing a variant of the photon transfer technique which we
employed to estimate the gain of the CCD system, and also to correct for the
effects of non-linearity. Once the method has been developed and implemented,
we managed to optimize the CCDs and make them linear, therefore, the method
remains unused until future projects. Some general details about the mask method
used for the optimization are given in the last section of the chapter.

3.2 Noise of the ideal CCD

The registered signal in a single CCD pixel can be expressed according to the
following simplified model:

xi = ysi + b, (3.1)

where y is the spatially uniform illumination level of the CCD in photoelectrons, xi

is the random number of photoelectrons registered in pixel number i. The function

59
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Figure 3.1: The behaviour of the high frequency pixel-to-adjacent-pixels spatial
noise as a function of wavelength for two different CCDs. The upper panel shows
the behaviour for the EEV P8600 576 × 385 CCD, and the lower panel is for the
580 × 520 virtual phase Electron Corp. CCD (from Shcherbakov et al. 1995) Note,
that for the EEV CCDs, the pixel inhomogeneities are rather higher in the blue
than in the red.

si describes the relative sensitivity of individual pixels and is often referred to as
the high frequency spatial noise, pixel-to-adjacent-pixel noise, or fixed pattern
noise of the CCD. The function is described by the mean s = 1 and its variance
σ2

s . The amplitude of this noise σs is typically 1–6% and is constant for a given
CCD across the chip. The amplitude varies from one CCD to another depending
on its type and optimization quality. This noise is also wavelength dependent (see
Fig. 3.1). The random number b describes the additive component to the signal
and is associated with the electronic bias subtracted from the raw image, hence,
its mean b = 0, and σ2

b = σ2
ron is the readout noise of the CCD in photoelectrons

( e−).

The total noise of the registered signal over a large sample of the CCD image is
estimated using error propagation:

σ2
x = σ2

ys2 + y2σ2
s + σ2

ron, (3.2)

which after division by y2 yields the total relative noise of the registered signal:
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δ2
x = δ2

ys2 + σ2
s +

σ2
ron

y2
=

1

y
+ σ2

s +
σ2

ron

y2
, (3.3)

where in the first term the noise distribution of y is assumed to be Poissonian
and the mean of s2 = 1. Fig. 3.2 demonstrates the contributions of the three
components to the total relative noise.

At the first crossing point y = σ2
ron, the contributions of the readout noise and

photon noise are equal (but dominating over the spatial noise) and limit the de-
tectability of a very low signal with the CCD below this level. At the middle
crossing point y = σ2

ron/σs, the contributions from the additive and multiplicative
noise components are equal, but the photon noise is dominating. The last cross-
ing point is at y = 1/σ2

s where the readout noise has become negligible, but the
accuracy of the measured signal is determined merely by the spatial noise. Hence,
the final accuracy of the measured signal is based on the quality of the spatial
noise correction. Some special pre-requirements for the flat fielding procedure are
discussed in the next section.

Figure 3.2: The three basic components of the total noise of the CCD. The am-
plitude of the spatial noise is set to σs = 2% and the readout noise to σ2

ron = 8 e−.
For the given parameters, the readout noise becomes dominant over the photon
noise at light levels below 64 e− while the spatial noise dominates at the levels
above 2500 e−.
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3.3 Correction for the high frequency spatial noise

The fixed pattern noise is a multiplicative component of the image structure, hence
the correction is straightforward by division of the object image by an uniformly
illuminated flat field image. The noise of the object image after the division may
entirely depend on the noise level of the flat field image because of the statistical
error of the accumulated flux: a poor flat fielding can significantly degrade the
accuracy of the object image. Consider the amount of photoelectrons ( e−) accu-
mulated in the object image y and in the flat field ny, where n is some number
which implies that the flat field image is the sum of several individual exposures.
The squared relative error of the ratio of two random independent variables is

δ2
r = δ2

y +
1

n
δ2

y, (3.4)

where the readout noise contribution was neglected for simplicity. The following
ratio of the relative errors is the accuracy reduction factor due to flat fielding
and describes the achieved accuracy with respect to the one expected (which is
equivalent to the ratio of the signal/noise of the two images):

δr

δy
=

√

1 +
1

n
. (3.5)

The following table gives for a range of flux ratios the corresponding accuracy
reduction factors:

n 1 3 10 50 100

δr/δy − 1, % 41 15 5 1 0.5

If the fluxes are equal (n = 1), the signal/noise degradation of the object image
is

√
2 which is equivalent to the loss of half the exposure time. The use of 50 flat

fields will degrade the resulting signal-to-noise ratio by 1% only.

To accumulate the flux ny sufficient for accurate flat-fielding, a series of flat field
images of the same level can be obtained with the subsequent co-addition of all of
them to form the master flat field.

The intensity level of the individual images should be, in fact, close to that of the
object exposure in the case of CCD linearity problems. The amplitude of the fixed
pattern may be different at high levels as compared to lower levels of the object
exposure. Apparently, this can introduce spurious systematical deviations in the
noise level of the corrected image. The ideal solution to the problem is to correct
the image intensities with the intensity transfer function to make their response
linear, and then perform the flat field division.



3.3. CORRECTION FOR THE HIGH FREQUENCY SPATIAL NOISE 63

Figure 3.3: The accuracy reduction as a function of the number of co-added flat
fields. Two different accumulation levels of 25000 e− (the lower curve) and 130 e−

(the upper curve) were used. The solid curves are the expected accuracy reductions
according to Eq. (3.7). The measurements were carried out in March 1996 with
the P88100 CCD.

In the above equations the readout noise was neglected. Co-addition of many weak
CCD images increases the noise component due to readout noise. The relative
noise of the image divided by the sum of k flat fields, where the intensity of each
individual image is a multiple n of the intensity of the source image, is given by:

δ2
r = δ2

y

(

1 +
1

nk

)

+
σ2

ron

y2

(

1 +
1

n2k

)

, (3.6)

which leads to the accuracy reduction equation:

δr

δy
=

√

(

1 +
σ2

ron

y

)

+
1

n2k

(

n +
σ2

ron

y

)

. (3.7)

The first term reflects the readout noise component of the total noise of the source
image and the second term is the contribution of the sum of the flat fields.

It is always useful to compare theory and practice. In our experiment we used
the EEV P88100 1152 × 298 pixels CCD, uniformly illuminated by a red diode.
80 similar flat field images were obtained for two illumination levels. After the
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bias subtraction, the first image was divided by the sum of the flat fields and
the relative error was measured in some selected area of the corrected image. A
plot of the measured and expected noise levels as a function of the number of flat
fields is shown on Fig. 3.3. Unfortunately, the environmental conditions changed
at the end of the experiment (the humidity in the NOT dome was about 100%)
which spoiled the last images. Otherwise, this experiment shows that the accuracy
reduction follows the prediction and no other additional noise sources are present.

3.4 Charge transfer efficiency

The efficiency of the charge transport during readout is measured in both direc-
tions of the parallel and the serial transfer. The basic method to calculate the
overall efficiency is the so-called extended pixel edge response (EPER). The CCD
is illuminated to get a uniform response with the subsequent readout of a number
of trailing pixels which is more than the physical number of pixels in the CCD
in order to obtain overscan areas in both directions. The amount of charge (the
sum) spilled out of the last column/row, or equivalently, the amount of deferred
charge is measured with respect to the bias level.

The charge transfer efficiency describes the fraction of the charge transferred from
one pixel to the other:

CTE = 1 − d

c · n
, (3.8)

where c is the intensity level of the uniform area in ADU (analogue-to-digital
units), n is the number the CCD transfers, i.e. the number of times the charge
loss was suffered in the direction of parallel or serial transfers, and d is the amount
of measured deferred charge. The quantity (1–CTE) is called the charge transfer
inefficiency (CTI).

The charge transfer inefficiency is one of the sources of CCD non-linearity: the
charge trapped in a single pixel is accumulated until it is co-added to the next
charge packet (column brightening), or in the case of a single event, it appears
as a tail of the spilled charge opposite to the direction of the transfer. Since the
charge is co-added to the other pixels, the ratio of the pixel intensities becomes
dependent on the amount of the trapped charge as a function of the distance
between pixels.

The above method of measuring CTE is the relative method. The absolute method
is employed in CCD labs and uses an X-ray source with the known number of
equivalent optical photoelectrons per single event (e.g. a Fe55+Mn source has
1620 e−/event). A plot of intensities versus column number shows the amount of
charge lost as the number of transfers increases (e.g. Janesick 1997).
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Figure 3.4: The charge transfer inefficiency 1–CTE in the direction of parallel
transfer at different illumination levels of the P88100 CCD (December 1995). An
average of two flat fields and 200 overscanned columns were used for the measure-
ments.

Usually, the CTE of a CCD is characterized by a single number. We found that
the CTE is not constant over a range of intensities (at least for our CCDs), and
therefore cannot be expressed as a single number. In Fig. 3.4 we used the EPER
technique at different flat field illumination levels. As can be seen, the minimal
charge losses occur in the central part of the dynamical range. The systematical
change of the CTE reflects the shape of the potential well. In principle, the
structure of the well can be reconfigured with a fine tuning of the substrate bias
voltage (vss). The other reason for the increase of CTI at low light levels is a
too high level of the output gate voltage (vog) which controls the height of the
potential barrier when the next charge packet is transferred into the output node
of the serial register (this is valid at least for the EEV CCDs). A too high level of
the barrier can cause a complete blockage of the signal, and a partial trapping of
the signal results in the appearance of a “fat zero” effect which also can be seen
in the linearity curve (Thorne et al. 1987).

3.5 The intensity transfer function of the CCD

In this section we consider a method for correction of the CCD non-linearity effects
in a qualitative way, i.e. the problem is to reconstruct the intensity transfer function



66 CHAPTER 3. OPTIMIZATION OF CCD PERFORMANCE

which can be used to correct the raw pixel intensities. The importance of the
problem and possible ways to its solution were extensively discussed in ESO CCD-
related works, the most relevant is Gosset & Magain (1993).

The method described here is an extension of the known photon transfer technique
(Janesick 1997) in the sense that the measured quantities are based on the analysis
of the variance of the detected signal. This is the principal difference to the
absolute methods which employ X-ray sources. In the following considerations we
are going to find the exact solution to the problem and, if possible, to eliminate
many of the assumptions used in the photon transfer technique. However, our
experience of using the method described below shows that a more complex model
of the CCD signal transfer equation is needed which should include an additive
component due to the charge transfer inefficiency. Nevertheless, we proceed with
the simplified model similar to that already introduced.

We shall consider the CCD as a non-linear system with the signal transformation
according to the model:

xi = p(y)si + b, (3.9)

where y is the mathematical expectation of the input signal to the system in
photoelectrons and its variance is σ2

y = y, xi is the signal measured in pixel i in
ADUs, p(y) is the unknown signal transformation function of the CCD amplifier
and the digitizing circuit, si is the fixed pattern noise with the mean s = 1 and
the variance σ2

s . The subtracted bias offset b is assumed to have the mean b = 0
and the variance σ2

b = σ2
ron in ADUs to be known.

Two identical exposures of the uniformly illuminated CCD yield two images which
have almost the same average level but never the same due to small deviations
from the average in shutter response, light source brightness, etc. The division of
the two debiased images by each other yields a ratio image, which is used to obtain
two quantities: the average ratio r and its variance σ2

r by using a large enough area
of the CCD. We use the ratio of the two images (not the difference as in Janesick
1997) in order to eliminate the multiplicative fixed pattern noise. Recalling the
relative error identity for the ratio of two independent random numbers, we have:

σ2
r

r2
=

p′2
1 y1s2 + σ2

ron

x2
1

+
p′2

2 y2s2 + σ2
ron

x2
2

, (3.10)

where p′
1 ≡ p′(y1) and p′

2 ≡ p′(y2) are the first derivatives of the unknown function
p(y), y1 and y2 are the unknown “true” numbers of photoelectrons, x1 and x2 are
the measured average of the signal registered on the same CCD area of the two
identical exposures (not to be confused with the signal at the pixel number 1 and
2), and the factor s2 = 1 is omitted hereafter.

In order to exclude unnecessary variables, namely x2 and y2, two assumptions
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have to be made at this point, the first one is that

r =
x1

x2
(3.11)

implying that the measured averages of the registered signals are not biased by the
fixed pattern noise over a large sample, and the second one is that the unknown
function p(y) must be simple (Occam’s approach is in action), i.e. within a small
interval of intensities [y1, y2] it can be approximated by a straight line:

x2 − x1 = p′(y2 − y1), (3.12)

where the notation is p′ = p′
1 = p′

2.

Applying these assumptions and after multiplication of both sides of Eq. (3.10) by
x2

1, we get

σ2
r

r2
x2

1 = p′2(y1 + r2y2) + σ2
ron(1 + r2) (3.13)

and finally, after omitting the index referring to the first image of two identical
exposures x ≡ x1 and y ≡ y1, it follows:

p′2 · y

x
=

σ2
rx

r2(1 + r2)
− p′ · r(1 − r)

1 + r2
− σ2

ron

x
, (3.14)

which is a general form of the intensity transfer equation as a function of the
number of different illumination levels measured as x.

3.5.1 The CCD gain function

Let us make a further simplification of the intensity transfer function, namely that
it is

p(y) =
y

g(x)
, (3.15)

i.e. the number of detected photoelectrons is y = xg(x), where g(x) is the gain
function of the system in e−/ADU units. This implies that p′(y) = 1/g(x) and
after some transformations we get the solution

g(x) =
xr2(1 + r)

x2σ2
r − σ2

ronr2(1 + r2)
. (3.16)
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The function, defined in the interval of different values of x over the dynamical
range of the CCD, can be derived from the measurements of x, r, σ2

r , and σ2
ron

obtained from a number of identical exposures. This approximation and the de-
rived solution will be used later for the proposed “mask” method of the CCD quick
characterization. Also, by neglecting the ratio term by setting r = 1 and for fluxes
x ≫ σ2

ron, one will get a simple estimate of the gain factor:

g(x) =
2

xσ2
r

. (3.17)

3.5.2 Integration of the transfer equation

To restore the shape of the function p(y) we need to integrate the differential
equation Eq. (3.14). In fact, we are finally interested to restore the inverse function
of p(y), namely a generalization of the gain function:

y = xg(x) (3.18)

which would give us the true, corrected for the non-linearity effects, number of the
photoelectrons y detected from the measured number x of ADUs. Eq. (3.14) is a
differential equation which is quadratic in p′(y). To lower the degree and simplify
the derivations, we approximate the term p′(y) on the right hand side in Eq. (3.14)
by a constant number 1/g0, which is the inverse gain of the system, Eq. (3.16).
An estimate of g0 can be obtained as a preliminary step prior to the integration.
Then, the right hand side of Eq. (3.14) reads

f(x) =
σ2

rx

r2(1 + r2)
− 1

g0

r(1 − r)

1 + r2
− σ2

ron

x
, (3.19)

which is a discrete function of the measurements at a number of different fluxes
x. The variables are separated and integrated in parts as follows:

∫ y

0

dy
√

y
=

∫ x

0

dx
√

xf(x)
, (3.20)

where we write p′(y) = dx/dy. The integration can be done with the Runge-Kutta
method in the case when the integration function is a smooth (and possibly an
analytical) function. Here, we used two types of approximation of the integrated
function depending on the complexity of its shape.
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Polynomial approximation

Suppose, that the integration function can be approximated by a polynomial of
degree n:

1
√

f(x)
=

n
∑

k=0

ckxk; (3.21)

after the integration it becomes

√
x

n
∑

k=0

ck

2k + 1
xk =

√
y. (3.22)

Then, the unknown function is

g(x) =
y

x
=

[

n
∑

k=0

ck

2k + 1
xk

]2

. (3.23)

Smoothing spline approximation

Suppose, that the function f−1/2(x) cannot be well described by a polynomial but
is approximated by a smoothing spline (the details of the implementation are given
in Ilyin 2000). The smoothing cubic spline is defined on each interval [xi, xi+1] of
the data i = 0, 1, . . . , n, and together with its derivatives is written as follows:

q(p) = ai + bip + cip
2 + dip

3 q′′(p) = 2ci + 6dip

q′(p) = bi + 2cip + 3dip
2 q′′′(p) = 6di,

(3.24)

where

p =
x − xi

hi
and hi = xi+1 − xi. (3.25)

The unknown polynomial coefficients of the cubic spline are calculated from its
second derivatives y′′

i :

di =
h2

i

6
(y′′

i+1 − y′′

i ), ci =
h2

i

2
y′′

i ,

bi = yi+1 − yi − (di + ci), ai = yi

(3.26)
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where the derivatives y′′
i are obtained from the solution of a system of linear

equations and yi are the smoothed points of the tabulated function. The integral

Ii(x) =

∫ x

xi

1
√

xf(x)
dx (3.27)

is defined on each interval x ∈ [xi, xi+1]. Integrating by parts, one can obtain:

Ii(x)

2
√

x
= q(p) − 2

3

(

x

hi

)

q′(p) +
4

15

(

x

hi

)2

q′′(p) − 8

105

(

x

hi

)3

q′′′(p) (3.28)

and the total integral [0, x] consists of the sum:

J(x) =

∫ x

0

1
√

xf(x)
dx =

[

k−1
∑

i=0

Ii(xi+1)

]

+ Ik(x), (3.29)

where the index k is chosen from the interval where xk−1 ≤ x < xk. Finally, the
unknown integrated function is

g(x) =
y

x
=

J2(x)

4x
. (3.30)

3.6 The mask method

With the variation of the photon transfer technique as described above to obtain
the CCD linearity curve, a series of pair exposures of different exposure times (or
by changing the light source intensity) with the CCD uniformly illuminated is
obtained. Each pair consists of two exposures of the same accumulated level. In
practice we usually do about 10–30 pairs of exposures which, with the subsequent
image processing (to obtain r and σ2

r for a number of selected image regions), takes
an hour to obtain the linearity curve. Consequently, a faster method was invented
to speed up the process and make the trial-and-error CCD optimization process
efficient and practically applicable.

The proposed mask method is used which is less accurate but is much faster in
the sense, that only two exposures are needed to obtain the linearity curve at
once. The idea behind it is that the CCD is illuminated fairly non-uniformly
which results in an image with a large range of accumulated ADUs. If the CCD
is linear, the ratio of such two images should be approximately a constant. The
noise level of the ratio gives an estimate of the gain factor as a function of ADUs
(Eq. (3.16)). The ratio of two exposures at different illumination levels can reveal



3.6. THE MASK METHOD 71

possible non-linear effects of the CCD, and can be used as a merit function for the
CCD optimization process.

The mask is a PostScript programmed image and printed on a transparent film
with a 300 dpi PS-printer. Fig. 3.5 shows the mask and the associated code which
can be found in the “PostScript Language Manual” (Adobe Systems Inc., Wesley).

%!PS-Adobe-2.0

/DataString 256 string def

/mask{gsave translate scale

image grestore} bind def

0 1 255 {DataString exch dup put} bind for

1 256 4 [1 0 0 256 0 0] {DataString}

120 100 20 70 mask

showpage

Figure 3.5: The mask (here printed with 600 dpi) used to obtain a non-uniformly
illuminated CCD image and its corresponding code in PostScript. The numbers
120 100 in front of the mask command define the width and height of the mask
and 20 70 are its lower-left position on the sheet in PostScript point units.
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Figure 3.6: An image obtained through the mask installed in front of the CCD
and uniformly illuminated by a light source. The actual CCD size is smaller
than that of the mask shown in the previous figure. Thus, the fine structure
results from light falling through the gaps between the dots which make up the
“homogeneous” stripes in the mask. This installation was used for the P88100
CCD gain reconfiguration in October 1999. The range of pixel intensities is 10000–
40000 ADUs.

The following figures show the results of the method and the success of the opti-
mization procedure.
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Figure 3.7: The ratio of two images taken with different fluxes versus intensity of
the first image. Each point is the ratio of the intensities of the same pixels in two
images. The mean and variance curves are calculated within every bin of 1/500 of
the intensity range.
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Figure 3.8: The ratio curve, enlarged from the previous figure, and the gain fac-
tor as functions of intensity. The ratio curve should be constant; it is tilted by
only 0.3% within the range of intensities. Despite the tilt of the ratio, the gain
factor curve is constant and the mean is 1.07 e−/ADU for the reconfigured P88100
CCD camera with the adjusted parameters vod=14, vrd=3.5, vrsph=–7.8, and
pgain=8.
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Figure 3.9: An example of the ratio plot of two CCD images with the incorrect
voltage setup.
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Figure 3.10: The enlarged ratio curve from the previous figure, the tilt is about
1.1%. The corresponding gain curve shows some tilt and breaks; the maximum
non-linearity is about 30%. This was used as an indication that the the trial
voltage parameters are wrong: vod=16, vrd=7, vrsph=–3, pgain=8.
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Chapter 4

Processing astronomical

spectra

4.1 The 4A software package

The Advanced Acquisition, Archiving, and Analysis (4A) software package is the
main tool for providing observations with a remotely controlled spectrograph as
well as the subsequent reduction and analysis of the data.

The package provides the software to control the SOFIN spectrograph and the
CCDs which are used to register the échelle spectra.

The images and spectra are written as separate files stored in the FITS format,
selected records of their headers constitute the contents of a database. Instead
of using a command line prompt, file names, and shell scripts, like other data
reduction facilities in astronomy, an interactive facility allows to operate with the
data by its context as it is seen in the database. The procedures can be run
interactively for a single image or spectrum for immediate evaluation of the result,
or in an automatic, sequential mode for a number of images selected from the
database.

The database facility allows to add new files to the database, copy or move them
to another directory. New fields can be added, edited, and removed from the
database. A number of mathematical operations, including time transformation
routines, are incorporated to manipulate with the fields of the database, and, thus,
records in the FITS headers.

One of the main features of the package is that it gives in the resulting spectra
not only intensities but also errors of the intensities and pixel positions. All the
routines are propagating the variances, which are ultimately based on the photon

75
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noise statistics of the raw images.

Two groups of filters are implemented: the ranked filters with median and trimmed
mean (including moving average filter), and the convolutional filters with the Gaus-
sian, Lorentzian, and stellar rotational profiles. The approximation facility imple-
ments a weighted smoothing spline and polynomials; a clip-and-fit algorithm allows
e.g. to approximate the outer envelope of the data or the interactive exclusion of
intervals from the fit and facilitates reshaping the spectra e.g. during continuum
normalization.

The software is written in the C language and contains about 100 000 lines of
the source code (2.6 MB in total). It includes a graphical user interface, a num-
ber of mathematical routines (Ilyin 2000), the programs for the spectrograph and
CCD control, data reduction and analysis facilities developed solely by the au-
thor. The total number of such programs is 140. Some standard mathematical
routines were implemented from Press et al. (1992) and a number of routines
for time and ephemeris transformations was coded from basic astronomical hand-
books. Although the software is developed in MS-DOS, it is running in Linux and
Windows-98 software emulation environments.

It a frequently asked question why not to use other standard data reduction pack-
ages, like IRAF, MIDAS, AIPS, Figaro, or Starlink, instead of 4A. The answer
is that they indeed can be used for the reduction of the SOFIN échelle spectra
without any problems. But our (limited) experience with the other packages shows
that 4A does it better and in a more efficient way. However, most of the proce-
dures are common, some of them are based on rather different approaches, like the
flat field correction of échelle spectra. The criterion for the efficiency is that the
observer can now leave the telescope with his data completely reduced, somehow
similarly to the pipeline data reduction in MIDAS and IRAF.

4.2 Reduction of CCD échelle spectra: an overview

The process of spectrum reduction involves a number of procedures to correct
for the spectrograph and CCD instrumental effects and to extract the calibrated
stellar spectra from the raw images. The following constitutes a short overview; a
more technical desription of the individual steps is given in the Appendix.

A very first step of any CCD reduction is the subtraction of the bias frame, an
image obtained with a zero exposure time. If the bias is not uniform across the
image but constant in time, the average of many such images is subtracted. How-
ever, if the bias is variable in time, then the overscan area of the same CCD image
is used which involves the subtraction of the averaged and smoothed bias trace
from the whole image.

Once the zero point of the intensity is removed and the images are trimmed at the
edges, the estimation of the pixel variances is performed. The estimate of the pho-
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ton noise is based on the known CCD gain factor and the amplitude of the readout
noise. The variance of every pixel will then follow the intensity transformations
at each and all subsequent steps of the data reduction.

The CCD pixels intrinsically have different sensitivities which vary within several
percent depending on the CCD. The image of the pixel sensitivity can be obtained
from the master flat field, which is made up by a sum of a large number of flat
field exposures. Division of the images being processed by the master flat field can
significantly reduce the apparent noise of the spectra.

Prior to the échelle order integration, the scattered light has to be subtracted from
the image to ensure that the depth of the spectral lines remains undisturbed. The
structure of the scattered light is usually very complex and results from the light
diffusion and backwards reflections on the optical elements of the spectrograph.
The background structure is difficult to describe in terms of a model, hence, an em-
pirical approximation of the inter-order structure is used to retrieve the scattered
light surface e.g. by means of a clip-and-fit smoothing spline in two dimensions.

The spectral orders of the échelle image are tilted and curved with respect to
the regular grid of CCD pixels. The order definition involves recognition of the
spectral orders in the image and approximation of the order positions with a
bivariate polynomial.

The spectral orders are integrated at each wavelength pixel by using a weighted fit
of the spatial profile to the intensity distribution of the pixels across the dispersion.
Since the fit is linear, it allows to distinguish between good pixels and those which
are affected by cosmic ray events. The latter are excluded from the fit. The image
of the spatial profiles of the spectral orders is derived by smoothing the normalized
intensities along the CCD columns in the dispersion direction.

The integrated spectra are usually curved due to the difference in illumination lev-
els in the centre of the focal plane and in the edges. To correct for the vignetting
function, flat field spectra are used which generally show the same shape in in-
tensity. Appearance of interference fringes in the stellar spectra due to varying
thickness of the CCD UV-coating film can also be accounted for with the aid of
the flat field spectra.

The wavelength calibration of the stellar spectra is derived from the images of a
ThAr comparison spectrum. The images are debiased, trimmed, and the variances
are estimated. The background of the comparison images is obtained e.g. by a
median filtration in the dispersion direction.

The bivariate polynomials of the spectral orders are used from the neighbouring
object or flat field images. The position of the curves may not coincide with the
centres of the spectral orders of the comparison image because of a drift between
the two images. The exact position is obtained by fine tuning of the bivariate
polynomial curves to the cross-dispersion profiles of the comparison spectrum im-
age.



78 CHAPTER 4. PROCESSING ASTRONOMICAL SPECTRA

After integration of the spectral orders, the central positions of the lines are de-
termined by fitting Gaussian profiles. To find the wavelengths of lines in a single
order, a search algorithm is used which compares the positional configuration of
the lines in the spectrum with the wavelength configuration of lines in a catalogue.

A fit of the line positions in pixels to their wavelengths defines the dispersion
polynomial for a single order. The wavelength identification of the other spectral
orders is done in a first approximation using the constancy of the ratio between
échelle order numbers and wavelengths at a given pixel in the dispersion direction.
The exact wavelength for every line of all other spectral orders is found by picking
the nearest value from the catalogue of spectral lines.

Combination of hundreds of spectral lines into one fit based on the appropriate
model significantly improves the accuracy of the wavelength calibration. Such a
model is based on a bivariate polynomial fit of the line position in the dispersion
direction as a function of wavelength and its position in cross-dispersion direction.
The complexity of the model is justified by the fact that the dispersion of the
spectral orders is changing non-linearly due to aberration effects in the optical
cameras, misalignment of the optical elements, and centring errors due to possible
asymmetry of the spectral lines. Furthermore, two subsequent comparison spec-
trum images exhibit a drift of the spectral line positions with respect to each other
in either direction due to variations of the above factors in time as a function of the
spectrograph’s spatial orientation on the telescope and the ambient temperature
in the dome. The model is capable to trace the temporal changes of the dispersion
coefficients by inclusion of the third, the time dimension into the model, if at least
two images are obtained at different times.

The pupil of the comparison spectrum is formed by uniform illumination of the
slit. The pupil of the stellar image is defined by the width of the seeing profile.
Any slit spectrograph is subject to the slit error which results in a small and
random shift of the stellar lines with respect to the comparison spectrum lines.
The amplitude of the effect depends on the relative sizes of the slit and the seeing
profile, on the exposure time, and how accurately the stellar seeing image is centred
onto the slit. The shift can be corrected using telluric lines which are very often
present in some orders of the stellar spectra. The correction for the slit error is
incorporated into the wavelength calibration model since the telluric lines obey
the same dispersion relations as the comparison spectrum. A low order bivariate
polynomial is added to the above 3D-polynomial and describes the deviation of
the telluric line positions from the wavelength solution. A zero-order polynomial
would specify a constant shift of all telluric lines with respect to the comparison
lines.

Instead of rebinning the spectra into the wavelength scale, a wavelength table
is added to the spectra giving the wavelength and its error for each pixel. The
heliocentric wavelength correction and possible removal of the stellar radial velocity
does a simple transformation of the wavelength table for every pixel. The spectra
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are rebinned into the same wavelength scale when the weighted average or the
sum of many spectra is calculated. The variances of the rebinned spectrum are
calculated taking the variances of the pixel intensities and their wavelength errors
into account.

The spectra are normalized to a continuum estimated from a synthetic or mean
spectrum using a smoothing spline or polynomials. The clip-and-fit algorithm
together with the interval selection feature (masking the pixels) facilitates the
continuum approximation.

The cross-correlation facility is a tool to determine the position of a spectrum
with respect to a template. Due to the non-linearity of the wavelength scale,
the shift between two spectra can be determined in three different scales: pixels,
wavelengths, and radial velocities. The weighted linear regression at each offset
accounts for the variances of the spectra and their positional errors.

As a matter of fact, the cross-correlation is also used very often internally in many
algorithms at different steps of the data reduction. The error of the offset is used
in many instances as a weight for subsequent steps or as a significance level when
the program should make a decision. Therefore, in the next section the details of
the cross-correlation technique are described. In the last section of this Chapter
some details of the radial velocity scale transformations are given which are related
to the implementation of the cross-correlation method.

4.3 The cross-correlation offset determination

4.3.1 The cross-correlation method

Let t(xi), i = 1, 2 . . . , N be a noise-free template spectrum and pi ≡ p(xi) a
programme spectrum given with the variance for each pixel σ2

i . The shift δ is
determined as the offset at which the match between the spectra is best, i.e. the
merit function is minimal:

χ2(a, b, δ) =
∑

i

(

a + b · t(xi + δ) − pi

σi

)2

, (4.1)

where a and b constitute the intensity transformation of the template spectrum
t(xi +δ) to the programme spectrum pi at the trial offset δ. The index i is ranging
within the overlapping regions of the two spectra for the given δ with possible
exclusion of masked features in the two spectra, which implies that the number
of used pixels n is also a function of the offset δ. Since the template spectrum
is given noise-free, the values of t(xi + δ) can be interpolated for the offset equal
to any fractional part of the step size. As it is seen from the model, the noisy
programme spectrum p(xi) is not interpolated between pixels.



80 CHAPTER 4. PROCESSING ASTRONOMICAL SPECTRA

The above non-linear least-squares fit in general has no unique solution since in
the case of stellar spectra the minimization function may consist of several minima
at different offsets produced by similar spectral lines. Therefore, the problem must
be solved in two steps: the first includes the solution of the linear fit to determine
the parameters a and b for every trial offset δ, and the second one is to find the
appropriate minimum of the χ2(δ) as a function of one variable.

The solution of the linear problem leads to the following transformation of the
minimization function:

χ2(δ) =
(

1 − r2(δ)
)

·
∑

ωi(pi − p̄)2, (4.2)

where ωi = 1/σ2
i are the weighting factors as the inverse variances of the pro-

gramme spectrum, r is the cross-correlation coefficient as a function of the offset:

r(δ) =

∑

ωi(pi − p̄)(ti(δ) − t̄(δ))
√
∑

ωi(pi − p̄)2 ·
∑

ωi(ti(δ) − t̄(δ))2
(4.3)

and the weighted averages are:

p̄ =

∑

ωipi
∑

ωi
and t̄(δ) =

∑

ωiti(δ)
∑

ωi
(4.4)

with the notation ti(δ) ≡ t(xi + δ) for simplicity.

Since the latter term in Eq. (4.2) is constant, the minimum of the function can be
found by choosing the appropriate peak of the cross-correlation function and using
a centring algorithm to determine the position of the maximum. The variance of
the parameter δ will then be defined as the inverse of the curvature matrix of χ2(δ)
times the variance of the linear fit:

σ2
δ =

χ2(δ)

n − 2
· 2

(

d2χ2

dδ2

)−1

. (4.5)

The second derivative of χ2(δ) is

d2χ2

dδ2
= −2

[

(

dr

dδ

)2

+ r
d2r

dδ2

]

·
∑

ωi(pi − p̄)2, (4.6)

where the first derivative vanishes when the function is at minimum. Therefore

d2χ2

dδ2
= −2r

d2r

dδ2
·
∑

ωi(pi − p̄)2 (4.7)

and, finally, replacement of the weighted sum of the residuals from Eq. (4.2) gives:
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σ2
δ = −

(

d2r

dδ2

)−1

· 1 − r2

r (n − 2)
, (4.8)

where r is the amplitude of the cross-correlation peak at the offset δ, n is the num-
ber of the overlapped pixels of the two spectra at the given offset, and the inverse
curvature of the peak can be determined with the selected centring algorithm.

The first component of the above formula describes the accuracy of the offset
limited by the width and depth of the line(s): the shallower the line, the flatter
the cross-correlation peak, hence, the larger the uncertainty of the offset. The
second term describes both random and systematical components of the linear
regression between the template and observed spectrum. The error of the centring
of the cross-correlation peak and that of the curvature determination are small
compared to the terms in Eq. (4.8) and, therefore, are neglected.

4.3.2 The accuracy for Gaussian profiles

Now, let us construct a simple example to gain some insight about the accuracy
estimate. Let the program spectrum be a single Gaussian profile

p(xi) = C

(

1 ± d exp

[

−
(

xi − xc

σline

)2
])

(4.9)

centred at xc with the width σline, d is the relative line depth (strength), C is the
continuum level. The spectrum is sampled with the step size ∆λ over n pixels.
Let the normally distributed noise with the variance σ2 be added to the spectrum
p(x). Let the template spectrum be the same profile but noiseless.

The cross-correlation of two Gaussians is equivalent to the convolution of the two
profiles which results in a Gaussian shape:

r(δ) = r0 exp

(

− δ2

2 σ2
line

)

, (4.10)

which gives the curvature of the cross-correlation function at its maximum

d2r

dδ2
= − r0

σ2
line

. (4.11)

The sum of the weighted (ωi = 1/σ2) squared deviations of the programme spec-
trum pi from the mean p̄ is obtained after the integration:
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∑

ωi(pi − p̄)2 =

√

π

2
· C2

σ2
· d2 σline

∆λ

(

1 −
√

2π σline

n∆λ

)

. (4.12)

Neglecting the ratio in the brackets (if n∆λ ≫ σline) and introducing the signal-
to-noise ratio in the continuum (SNR=C/σ), the integral reads

∑

ωi(pi − p̄)2 =

√

π

2
· d2 σline

∆λ
· (SNR)2. (4.13)

The variance term in Eq. (4.5) will be

χ2(δ)

n − 2
= 1 (4.14)

in this model, since no systematical difference has been introduced between two
equal Gaussians, therefore, the squared sum of weighted residuals χ2(δ) of the
linear regression will be exactly equal to the number of degrees of freedom n − 2.

Then, expressing σline by FWHM and putting all terms together we obtain:

σ2
δ =

√

1

2π ln 2
·
(

1

r0 · SNR · d

)2

∆λ · FWHM. (4.15)

The constant in front of the equation is about 0.48. The equation derived resembles
to ones obtained by other authors (e.g. Brown 1990). The better the sampling
interval, the deeper and narrower the line; the higher the signal-to-noise ratio,
the better the accuracy of the cross-correlation. It was also derived but omitted
here for simplicity, that the inclusion of m similar Gaussians into the model will
decrease the variance to σ2

δ /m accordingly.

4.4 Rebinning into radial velocity scale

The offset in radial velocity scale between two spectral lines depends on the wave-
lengths of the lines. In order to measure the offset in radial velocities, the spectra
in wavelengths have to be rebinned to a scale with a constant step size in velocities
according to the Doppler formula:

∆v

c
=

∆λ

λ
= ∆ ln λ, (4.16)

where ∆v is the radial velocity difference between two wavelengths separated by
∆λ around wavelength λ, c is the speed of light, and in this linear approximation
∆v ≪ c and ∆λ ≪ λ.
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The constant step size in velocities is achieved after the transformation of the
wavelength scale to the constant step size in ln λ, which results in the definition
of the rebinning grid:

ln λi = ln λ0 + i · ∆ ln λ (4.17)

with λ0 being the initial wavelength of the spectrum, the index i = 0, 1, . . . , n − 1.
An ordinary rebinning in wavelengths implies that the difference in wavelengths
in the new grid is constant, but in the case of radial velocities, the ratio between
wavelengths in the new grid (in the subsequent nodes) must me constant.

It is more convenient than ln λ to have velocity units for describing the pixel
positions. One should realize that the possibly high velocities resulting from this
transformation do not have any physical meaning; only velocity differences between
nearby (∆v ≪ c) features in the same spectrum or between the same features
in different spectra indicate the Doppler shift. The velocity scale is merely a
reformulation of the commonly used ln λ scale.

One choice of the step size is a predefined velocity step size, the more flexible
option is to select an average velocity as follows:

∆v = c · ∆ ln λ = c · ln λn−1 − ln λ0

n − 1
=

c

n − 1
· ln

λn−1

λ0
. (4.18)

The intensities of the spectrum are integrated

ŝi =

∫ λ+

λ−

s(λi)dλ (4.19)

within the interval in wavelengths defined as

λ±

i = λ0 · exp

[

∆v

c
· (i ± 0.5)

]

. (4.20)

It is convenient to have a grid in the velocity scale common to different spectra.
Since the grid is linear, the zero point can be established at the wavelength of a
spectral feature λc common to a number of spectra. The initial velocity at the
wavelength λ0 of the first pixel of the spectrum and the velocity grid is therefore
given by:

vi = c · ln
λ0

λc
+ ∆v · i. (4.21)

There is an alternative and intermediate way to transform into radial velocity scale
without involving the rebinning procedure. This results in the unequally spaced



84 CHAPTER 4. PROCESSING ASTRONOMICAL SPECTRA

spectra with the linear velocity scale, i.e. the distance between two features caused
by a radial velocity shift at different wavelengths remains constant. The procedure
also involves the wavelength λc of a common feature of the spectra. The velocities
for each pixel k in the spectrum are calculated according to

vi = c · ln
λi

λc
. (4.22)

The intensities of the spectrum remain unchanged in their pixels until a number of
spectra have to be rebinned into the same grid for cross-correlation or arithmetical
operations.



Chapter 5

Deconvolution of stellar

spectra

5.1 Introduction

The observed stellar spectra are subject to broadening due to various instrumental
and physical effects. If the effects are known and can be modeled then the true
spectral profile can be recovered. Presence of noise in the spectra makes the
problem of restoration ill-posed. The solution of the problem can be found by
solving the inverse problem formulated in various ways. In this chapter we consider
the restoration of the underlying spectrum and the broadening function. These
inverse problems play a key role in the modern methods of the analysis of stellar
spectra. The basic applications are highlighted as follows.

Deconvolution of the blurred spectra with the known point spread function (PSF)
is the way to increase the spectral resolution and to resolve narrow features. Here-
after we refer to the term of the PSF caused only by the spectrograph, i.e. it is the
instrumental profile. Deconvolution with e.g. the known rotational profile would
refine the exact position and the structure of the interior of the spectral lines.

Deconvolution of the observed low resolution spectrum with the PSF obtained
with a smaller step size (and a higher resolution) results in a spectrum of a higher
resolution. The increase factor depends on the sample length. Another way to
increase the resolution keeping the sample length fixed is to use a different observ-
ing technique known as dithering (Lauer 1999, where it is applied to the WFPC
images of the HST) to obtain spectra shifted with respect to each other by a multi-
ple of the pixel size. Such a number of spectra interleaved in the wavelength scale
decreases the step size but not the resolution (Gray 1986 uses a dithering device
to produce the interleaved spectra to improve the accuracy of the line bisectors).

85
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Deconvolution with the proper PSF will increase the resolution of the observed
spectra.

The restoration of the broadening function depends on the template spectrum.
Several different cases can be summarized:

1. The template spectrum is of the same kind as the observed one, but ob-
tained with a higher resolution and preferably with a higher signal-to-noise
ratio (SNR). One natural choice is to use the solar spectrum obtained with
the spectrograph and the FTS solar spectrum (Kurucz et al. 1984). The
restoration of the PSF made with these spectra for several spectrographs
was described by Valenti et al. (1995), who also used a spectrum of an io-
dine cell. The restoration is an alternative way to obtain the PSF of the
spectrograph instead of its direct measurement with the use of a laser or
telluric lines (Griffin 1969). The use of a synthetic spectrum is also possible
but increases uncertainty of the restoration due to an additional freedom in
the choice of the stellar parameters and the broadening function.

2. The template spectrum consists of a number of delta functions with their
positions and intensities corresponding to the spectral line list. The restora-
tion of the broadening function gives a mean spectral profile of the observed
spectrum which is de-blended from the delta functions but includes the PSF.
The use of many spectral lines, which is possible with échelle spectra, can
increase the accuracy of the restored stellar profile. The use of the delta-
spectrum convolved with the known PSF as a template in the deconvolution
results in a mean profile free of the instrumental effects. The method has be-
come known as the least-squares deconvolution (LSD) and was implemented
by Donati et al. (1997) and Collier Cameron (1999).

3. The template is calculated by the integration of the local line profiles over
the stellar disk weighted with a limb-darkening function. In the case of a
rotational broadening mechanism, the restored broadening function will rep-
resent the true rotational profile, including effects like asymmetric macro-
turbulence. This true profile can then be used to deblend lines which cannot
be modeled reliably. The deconvolved profile is free from the assumptions
made in modeling the rotational profile (Gray 1992, Ch.17).

4. Restoration of the blended profiles of binary systems as a function of the
orbital phase involves a template spectrum of a single star. The method was
successfully used by Rucinski (1999) to resolve the double components of the
observed profile. It was demonstrated that the deconvolution has a certain
advantage as compared to the widely used cross-correlation technique.

One related problem, where many of the same techniques used in deconvolution
problems can also be applied, is the restoration of the distribution of stellar param-
eters across the star’s surface. A range of techniques has been developed, known in
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general as the Doppler imaging technique, to solve the ill-posed inversion problem
to restore the stellar surface from a time series of one-dimensional stellar spectra
(Vogt et al. 1987, Piskunov et al. 1990, Collier Cameron 1992, and Berdyugina
1998).

5.2 Formulation of the problem

The convolution of the known true spectrum t(x) with the unknown kernel p(x),
which is the instrumental PSF or a broadening function, results for the continuous
case in the blurred function s(x) co-added with the known function of the random
noise ǫ(x)

s(x) =

∫ +∞

−∞

t(x − u) p(u)du + ǫ(x) (5.1)

which is the first problem: the reconstruction of the unknown function p(x). The
convolution of the unknown true spectrum t(x) with the known kernel p(x)

s(x) =

∫ +∞

−∞

p(x − u) t(u)du + ǫ(x) (5.2)

is the second problem: the reconstruction of the true spectrum t(x).

5.3 The sampling matrix

The convolution process becomes discrete once it is sampled and integrated (recor-
ded) with the CCD. For simplicity, let the CCD pixels be adjacent (no gaps)
and have a flat response within each pixel (Jorden et al. 1993 showed that this
assumption is not very accurate). Furthermore, assume that either t(u) or p(u)
are known on a sampling grid finer than the actual CCD pixel size. To match
the spectra, we need to resample the convolved function to the pixel size of the
observed spectrum.

The length of the restored function depends on the sampling rate, an integer
multiple r of the sampling interval of t(u) or p(u) which equals the sampling
interval of s(x):

r =
∆x

∆u
. (5.3)

The equal step size of the observed spectrum remains unchanged but the template
(profile) is rebinned with the new step size ∆x/r according to the following scheme:
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s0 s1

r=1

tt

r=3r=2

s0

0t t t2 t t t t1 t2 t3 t4 t50 1 1 3 4 0

1s0s1s

The choice for the configuration of the template pixels for even r is more compli-
cated than e.g. Valenti et al. (1995); it is employed in order to minimize the loss
of resolution. Therefore, we use a more sophisticated scheme where the centre of
one of the template pixels coincides with that of the observed pixel.

The integration of a single pixel is described by the sampling row-vector h1×q so
that1

si =

q−1
∑

k=0

hkti·r+k (5.4)

and the number of pixels involved in the integration over one pixel in the observed
spectrum is

q =
r

2
· 2 + 1, (5.5)

where the ratio is an integer division. The normalized elements of the sampling
vector are

h1×q = [hi] =
1

r







(0.5 1 . . . 1 0.5), r is even,

(1 1 . . . 1 1), r is odd.
(5.6)

The resampling of the whole spectrum tl×1 into sn×1 is described by the product
with the sampling matrix Hn×l:

sn×1 = Hn×l · tl×1 (5.7)

1In this Chapter indices run from zero.
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where the elements of the matrix are the sampling vectors shifted row-wise by the
sampling rate r and given by:

Hn×l = [Hi,ir+k] = hk, k = 0, 1, . . . q − 1, i = 0, 1, . . . n − 1. (5.8)

The number of pixels of the template spectrum tl×1 satisfies the following condi-
tion:

l =







qn, r is odd,

(q − 1)n + 1, r is even.
(5.9)

The following is the illustration of the sampling matrix with r = 3, n = 2, l = 6:

(

h0 h1 h2 0 0 0
0 0 0 h0 h1 h2

)















t0

t1

t2

t3

t4

t5















=

(

s0

s1

)

.

5.4 Deconvolution of the PSF

The formation of the observed spectrum with the known true or expected spectrum
in the discrete case is given by:

sn×1 = Hn×l · Tl×m · pm×1 + ǫn×1, (5.10)

where s is the observed spectrum and ǫ is the vector of its random noise, H is the
sampling matrix, and T is the offset matrix of the template spectrum tl×1. Its
length is defined by the sampling matrix

l =







qn, r is odd,

(q − 1)n + 1, r is even,
(5.11)

and p is the unknown PSF of length m. The odd number of pixels m can be
less than that of the template spectrum and should be selected from the interval
q ≪ m ≤ l. The elements of the matrix T are constructed by shifting the template
spectrum tl×1 and the elements are:
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Tl×m = [Tik] =







ti−m/2+k, 0 ≤ i − m/2 + k < l

0, otherwise.
(5.12)

The following example illustrates the contents of the matrices for r = 2, n = 3,
m = 5, and l = 7:





h0 h1 h2 0 0 0 0
0 0 h0 h1 h2 0 0
0 0 0 0 h0 h1 h2























0 0 t0 t1 t2

0 t0 t1 t2 t3

t0 t1 t2 t3 t4

t1 t2 t3 t4 t5

t2 t3 t4 t5 t6

t3 t4 t5 t6 0
t4 t5 t6 0 0





























p0

p1

p2

p3

p4











=





s0

s1

s2



 .

The design matrix of the convolution model is the product

An×m = Hn×l · Tl×m (5.13)

and the PSF profile can be found by solving the least-squares problem:

sn×1 = An×m · pm×1 + ǫn×1. (5.14)

The obtained system of equations should be well conditioned if n ≫ m and can be
solved with the standard methods of least-squares with the use of e.g. the Cholesky
decomposition for the inversion. Since, in general for the applications described,
A is not well-behaved, we shall proceed with the ill-posed solutions as described
in Sec. 5.6.

5.5 Deconvolution of the spectrum

The formation of the observed spectrum convolved with the known PSF in the
discrete case is given by:

sn×1 = Hn×m · Pm×m · tm×1 + ǫn×1, (5.15)

where s is the observed spectrum of length n and ǫ is the vector of its random
noise, H is the sampling matrix, P is the offset matrix of the known PSF vector
pl×1. The length l is an odd number, t is the unknown deconvolved spectrum and
its length is defined by the sampling matrix:
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m =







qn, r is odd,

(q − 1)n + 1, r is even.
(5.16)

The elements of the matrix P are constructed by shifting the elements of the PSF
vector p:

Pm×m = [Pik] =







pl/2+k−i /
∑

k pk, 0 ≤ l/2 + k − i < l

0, otherwise
(5.17)

and the elements in each row are normalized to their sum in order to preserve the
intensities of the deconvolved spectrum at its edges.

The following example illustrates the contents of the matrices for r = 2, n = 3,
m = 7, l = 5, not showing the profile normalization:





h0 h1 h2 0 0 0 0
0 0 h0 h1 h2 0 0
0 0 0 0 h0 h1 h2























p2 p3 p4 0 0 0 0
p1 p2 p3 p4 0 0 0
p0 p1 p2 p3 p4 0 0
0 p0 p1 p2 p3 p4 0
0 0 p0 p1 p2 p3 p4

0 0 0 p0 p1 p2 p3

0 0 0 0 p0 p1 p2





































t0

t1

t2

t3

t4

t5

t6



















=





s0

s1

s2





The design matrix of the convolution model is the product

An×m = Hn×m · Pm×m (5.18)

and the deconvolved spectrum t can be found by solving the inverse problem:

sn×1 = An×m · tm×1 + ǫn×1. (5.19)

The matrix A is an r-times underdetermined system of linear equations: no unique
solution exists unless we use the solution of ill-posed problems described below.
The solution to the problem is extensively described in Sec. 5.6.

5.6 The principal components regression

Modern methods of matrix factorizations give a new treatment of the linear least-
squares problem (Watkins 1991, Stoer 1993, Golub & van Loan 1989). The classical
method of least-squares is a perfect way to solve the problem, except in the case
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when the matrix of normal equations A′WA is close to singular.2 This may
happen when the number of free parameters exceeds the number of observations,
or/and when the parameters of the model chosen to describe the observed process
are heavily correlated with each other. This results in a linear dependence of rows
of the design matrix A, reduction of its rank, and singularity of the inversion or
plurality of the solution.

The problem can be solved in a different way based on the concept of orthogo-
nal decomposition of the model which we use to describe the observations. This
results in a new system of equations, which uses orthogonal functions (i.e. a new
orthogonal design matrix), and in a new set of unknown parameters, known as
the principal components, which are independent of and uncorrelated with each
other. The least-squares solution of the orthogonal system of equations to the
observations gives the unknown principal components parameters.

The independence of the parameters will allow us to test the statistical significance
of the terms in a simple manner to decide which of them can be eliminated from
the fit. The vector from which the insignificant components have been eliminated
comprises the reduced principal components. The original set of unknowns is then
obtained by back composition of the truncated set of the independent parameters
with a matrix which describes the linear dependence of the original parameters.
Due to the cancellation of the insignificant principal components the solution in
terms of the original unknown parameters is not unique, and forms a family of
parameter sets. The size of the family can be reduced by imposing additional
linear constraints on the problem.

One can see a similarity between the spectral decomposition by Fourier trans-
formation and the above orthogonal functions. The difference is that the Fourier
harmonics are the trigonometric functions while here, the orthogonal functions are
not specified, except that they satisfy the orthogonality condition. The trigono-
metric functions are orthogonal only for continuous data; they are in general not
orthogonal on a given data window; the construction of the principal components
ensures that their associated basis functions are orthogonal given the observations.
The same approach is used when a set of orthogonal polynomials is constructed.

The solutions to ill-conditioned and singular linear systems was described and dis-
cussed in many papers and monographs, some of them were used here: Hocking
(1976), who reviewed the solutions based on the principal components and rigid
estimators, Jackson (1991), Hansen (1997), and Dunteman (1989). The princi-
pal components solution is similar to the truncated least-squares (TLS) developed
by Golub & van Loan (1980) for solving overdetermined systems of linear equa-
tions, who have also extended it to the total TLS approach where the variances
of the variables of the model are incorporated into the minimization functional.
Neumaier (1998) discussed the problem in terms of the truncated singular value
decomposition (SVD), together with many other aspects of the inversion problems.

2A is the design matrix, A′ is its transposed, and W is the weight matrix.
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Let the linear model, describing an observed process, be given in the form:

y = Ap + ǫ, (5.20)

where yn×1 is the observations and ǫn×1 is the vector of their random noise, An×m

is the design matrix, and pm×1 is the vector of unknown parameters or underlying
function. The number of unknown parameters m could be less or greater than the
number of observations n. The noise in the observations is characterized by the
positively definite and symmetric dispersion matrix E (ǫ′

ǫ) = D (y).

In order to satisfy the orthogonal condition of the decomposition of A, we need
to decompose the variance matrix into two matrices. If the variance matrix is not
diagonal, the Cholesky factorization results in a lower triangular matrix S:

D (y) = σ2W−1 = σ2SS′, (5.21)

where it is assumed that the dispersions are known up to some scaling factor σ2.
To obtain the weighting matrix we need to invert the dispersion matrix:

W = σ2D−1(y) = (S−1)′(S−1) = V′V. (5.22)

The inversion of the lower triangular S is straightforward (Press et al. 1992). In
the case of uncorrelated noise in the observations, the diagonal elements of V are
simply the inverse of the standard deviations: V = [σ−1

ii ].

The orthogonal basis of the matrix (VA)n×m can be obtained with the QR factor-
ization (Golub & van Loan, 1989) or with the SVD (the algorithm in Press et al.
1992 is based on Golub & van Loan, 1989). The latter factorization is more suitable
for the current problem and decomposes the matrix into three components:

VA = BCD′, (5.23)

where the matrix Bn×m contains the orthonormal basis vectors (B′B = Im×m,
but BB′ 6= I), the diagonal matrix Cm×m contains the singular values of the de-
composition, and the orthonormal Dm×m is the linear dependence matrix (D′D =
DD′ = Im×m).

The elements of C = diag (c0, c1, . . . , cm−1) are c0 ≥ c1 ≥ . . . ≥ cm−1 ≥ 0 and the
rank of VA equals the number of non-zero singular elements.

The columns of B are the eigenvectors and C2 are the eigenvalues of

(VA)(VA)′ = BC2B′

The columns of D are the eigenvectors and C2 are the eigenvalues of

(VA)′(VA) = A′WA = DC2D′
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The approximated function becomes

ỹ = Ap = V−1BC · D′p = T · q (5.24)

i.e. expressed in the new terms

T = V−1BC and q = D′p (5.25)

of the new design matrix T which is orthogonal with the weights of observations
T′WT = C′C = C2, and of the vector q of uncorrelated unknowns, known as the
principal components of the vector p.

Denoting the vector of the residuals of the fit as r = y − ỹ, the minimization
functional becomes

σ2χ2(q) = r′Wr = (y − Tq)′ W(y − Tq) (5.26)

The minimum of the norm (Ax − y)′(Ax − y) is at x obtained from the normal
equations A′Ax = A′y.

The system of normal equations is

T′WT q = T′Wy (5.27)

which then becomes

C2q = CB′Vy (5.28)

and readily gives the solution for the principal components

q = C−1B′Vy. (5.29)

The original parameters, or the underlying function, is a linear combination of the
principal components:

p = Dq. (5.30)

The diagonal of the dispersion matrix of the principal components is:

D (q) = C−1B′V · D (y) · V′BC−1 = σ2 C−2 (5.31)

and the dispersion matrix of the original parameters is

D (p) = D D (q) D′ = σ2DC−2D′. (5.32)
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And finally, the approximated function is

ỹ = Ap = Tq = V−1BCq. (5.33)

The dispersion matrix of the fit is

D (ỹ) = TD (q) T′ = σ2(V−1B) · (V−1B)′ = σ2SBB′S′, (5.34)

where V−1 = S as it was introduced for the standard deviations of the additive
random noise of the observations in (5.21) and (5.22).

5.7 Selection of the principal components

To find a stable solution to the problem, we have to eliminate the m − k smallest
principal components in q which have the largest variances and contribute noisy
components to p. A number of tests can be used which results in a vector of the
reduced principal components q̃ with the last m − k terms are set to zero. This
causes also the corresponding terms of the singular values in C to become zero.

5.7.1 The F -test

The squared sum of the residuals of the fit (RSS) is

r′Wr = y′Wy − σ2q′D−1(q) q = y′Wy − q′C2q, (5.35)

which is the series of the terms

RSSm = y′Wy −
m−1
∑

k=0

q2
kc2

k =

n−1
∑

i=0

ωiy
2
i −

m−1
∑

k=0

q2
kc2

k (5.36)

and obeys the recurrence relation:

RSSk = RSSk−1 − q2
kc2

k. (5.37)

Since the principal components q are linearly (hence, statistically) independent,
each of them can be tested for its statistical significance in the fit.

A standard F -test can be applied to the principal components by evaluating the
change of the RSS as a function of the index k. The null hypothesis H : qk = 0
is tested against its alternative H1 : qk 6= 0 to check the significance of qk. If the
hypothesis is true, then it follows that RSSH = RSSk−1, and the F statistics is
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Fk =
RSSk−1 − RSSk

RSSk/(n − k)
=

q2
kc2

k

RSSk/(n − k)
. (5.38)

The hypothesis is accepted if the probability for Fk being as small as it is obtained,

P (F > Fk) = Q(Fk, 1, n − k) > 1 − α, (5.39)

is higher than some level given by the significance of the fit α which is e.g. 95%.
If the hypothesis H is accepted, then the element k is considered insignificant and
all subsequent m − k components are set to zero. In many practical cases, the
statistics F may show a wiggly or noisy behaviour superimposed on the obvious
decaying trend as the index k increases. Therefore, a careful analysis based on
several consecutive components is needed to decide where it crosses the significance
level.

5.7.2 Goodness of the fit

The reduced χ2 of the minimization functional is a function of the number k of the
principal components (χ2 is also the correction coefficient for the sample variance
σ2):

χ2
n−k = σ2 =

RSSk

n − k
, (5.40)

where the index k = 0, 1 . . . r and r = rank(VA) is a number of the non-zero
singular values r ≤ min(n, m). If the variances of the observations are known
exactly (σ2 = 1), then the number of the principal components can be selected
when χ2

n−k as a function of k descends to the unity level, or any other pre-defined
level if the variances are not exactly known.

A visual inspection of the plot of χ2
n−k as a function of the index k is also useful

for the subjective definition of the number of components at some kink or sudden
drop of the function.

5.7.3 Analysis of variance

As it was shown, the sum of the diagonal elements of the dispersion matrix of the
original parameters equals the total sum of variances of the principal components:

trD (p) = trD (q) = trC−2 (5.41)

i.e. this defines the third stopping criterion to select the number of components for
which the sum of variances is less than a predefined threshold for the maximally
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allowed sum of variances of the original parameters. The criterion described by
Kendall (1975) is based on the analysis of the sum of the minimal singular values
C which obeys the χ2 distribution.

5.8 The constrained principal components solu-

tion

The solution to the constrained linear least-squares problem is detailed in Ilyin
(2000):

y = Ap + ǫ subject to : Gp ≥ c

y = Ap + ǫ subject to : Gp ≤ c,

(5.42)

where Gl×m is the linear condition matrix, cl×1 is the vector of constants con-
straining the solution pm×1, and the number of the constraints l ≤ m.

The use of the principal components does not change essentially in the solution,
although, the form of the Lagrangian solution is slightly modified:

p = p̃ − (DC−2D′) G′ · (G (DC−2D′) G′)
−1 · (Gp̃ − c), (5.43)

where p̃ = Dq̃ is the unconstrained reduced principal components solution.

As an example it is demonstrated how it works in one particular case often met in
practice when we need to find the solution whose sum is equal to some predefined
number

m−1
∑

k=0

pk = c, (5.44)

or, in the other words, the solution is normalized. The matrix G1×m = (1, 1, . . . 1)
is a unity row, and the constant sum is c1×1 = c. Denoting the elements of the
dispersion matrix D (p) σ−2 = DC−2D′ = [σ2

ik], we form a vector

vm×1 = [vi] =
m−1
∑

k=0

σ2
ik, (5.45)

i.e. the sums of the dispersions in each row. Then the elements of the vector of
the constraint solution is
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pi = p̃i − vi
∑

vk
· (
∑

p̃k − c), (5.46)

which shows that the difference between the obtained and expected sums is applied
via the multiple correlation coefficient to correct the solution. One can also see
that in the constrained solution

∑

pi = c.

5.9 Linear regularization methods

The principal components analysis is, in fact, a particular method of a more general
class of minimization problems known as the regularization methods of the inverse
problem.

The orthogonal decomposition of the design matrix, described in the previous
sections, is equivalent to spectral decomposition of the observed process. The set
of orthogonal functions is the set of discrete spatial harmonics, which describe the
data, and comprises the columns of the matrix T and the principal components q

are interpreted as their amplitudes. Selection of the reduced set of the components
acts as a spatial filter which is a trade-off between the amplitude of the smallest
spatial harmonics and the noise. Generally speaking, such a compromise can be
established in many inverse problems where the amplitude of the smallest spatial
harmonic is well distinguished from the low level noise, i.e. it works very well
for the broad features in a spectrum with high signal-to-noise ratio. For a lower
signal-to-noise the principal components cannot distinguish between the harmonics
and the random noise, hence, they tend to pick noisy features of the solution
(one possible remedy to the problem is to obtain these harmonics with a higher
accuracy by extending the length of the data sample, i.e. use of many spectra
instead of one for deconvolution, for example). This is the insufficiency of the
method and leads to the addition of external conditions which can control, e.g. the
shape of the solution. The additional conditions are invoked into the minimization
functional which controls the shape of the solution and the strength of this control
is attributed to a regularization parameter (a Lagrangian multiplier).

5.10 The standard formulation

In brief, the regularization solution to the underdetermined least-squares problem
(n < m) can be obtained as follows (Craig & Brown, 1986). Find the solution p

which minimizes the functional of the modified least-squares, or ill-posed problem:

χ2(p) =
1

σ2
r′Wr + α p′Rp (5.47)
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where the residuals are r = y − Ap, the regularization parameter is α > 0, and
R is a symmetric and positively definite regularization matrix which controls the
solution depending on the definition of the matrix. The equation of the minimum
of the functional ∂χ2(p)/∂p = 0 is

A′WA p − A′Wy + λ Rp = 0 (5.48)

where λ = 1
2 ασ2. The solution is

p = (A′WA + λ R)−1 · A′Wy (5.49)

The standard methods to obtain the solution of the regularized inverse problems is
a normal matrix inversion (Press et al. 1992). The LU or Cholesky decomposition
can be used for the inversion since the matrix is not singular due to the presence
of the non-zero regularization matrix R.

Several types of the regularization matrices can be used. The simplest is the zeroth
order regularization matrix R = I, i.e. the product p′Rp = p′p is the minimization
of the sum of squares of the solution. The first, second, etc. order regularization
matrices are minimizing the total square of the first, second, etc. derivatives of
the solution, R = H, where H = H′

1
H1 or H = H′

2
H2. The matrices H1 and

H2 are called the difference matrices and are given in Press et el. (1992). For
completeness, we have them also here.

The first difference matrix has the following elements:

(H1)(m−1)×m =











−1 1 0
−1 1

. . .
−1 1

0 −1 1











(5.50)

and its quadratic form is a three band-diagonal matrix:

(H′

1
H1)m×m =



















1 −1 0
−1 2 −1

−1 2 −1
. . . . . .

−1 2 −1
−1 2 −1

0 −1 1



















(5.51)

The second difference matrix has the elements:
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(H2)(m−1)×m =











−1 2 −1 0
−1 2 −1

. . .
−1 2 −1

0 −1 2 −1











(5.52)

and its quadratic form is a five band-diagonal matrix:

(H′

2
H2)m×m =



























1 −2 1 0
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . . . . .
1 −4 6 −4 1

1 −4 6 −4 1
1 −4 5 −2

0 1 −2 1



























(5.53)

5.11 Regularized principal components solution

The regularization method was initially developed to solve the problem of the
matrix inversion in ill-posed problems by means of biasing of its diagonal with a
small amount of positive additive to improve the matrix condition number and
therefore to avoid its singularity during the inversion.

Similarly, the singularity in the inversion is avoided when the solution is obtained
with the principal components where the last m − k presumably small singular
values are eliminated or truncated according to the selected stopping criteria.
Hence, the reduced principal components can be formulated as the solution to the
minimization problem:

χ2(q) =
1

σ2
r′Wr subject to: qi = 0 for i = k, k + 1, . . . , m − 1 (5.54)

i.e. it acts as a uniform cut-off filter to the vector q. The regularization of singular
linear systems stabilizes the solution by controlling its smoothness, i.e. it has
filtering properties.

The solution p of a singular linear system was expressed in terms of the orthog-
onal decomposition of the design matrix. Therefore, we can also formulate and
solve the regularization problem in terms of the principal components. It has also
an advantage that once the principal components solution is obtained, it can be
further improved, in terms of smoothness, by means of the regularization. The use
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of different regularization matrices and various regularization functionals allows to
control the smoothness and the shape of the principal components in a number of
different ways. This results in a number of solutions for the original parameters,
and the choice of the correct solution has to be done from the specific formulation
of the minimization problem.

The regularization problem can be formulated as follows: find the solution q which
minimizes the functional

χ2(q) =
1

σ2
r′Wr + α q′Rq, (5.55)

where the same notations are used as before, but the vector of the residuals is
r = y − Tq. The equation of the minimum of the functional ∂χ2(q)/∂q = 0 is

T′WT q − T′Wy + λ Rq = 0, (5.56)

where λ = 1
2 ασ2. The equation becomes

(C2 + λ R) q = C2q̂, (5.57)

where the normal principal solution is denoted as

q̂ = C−1B′Vy. (5.58)

The regularized principal components solution is

q = (C2 + λ R)−1 · C2q̂, (5.59)

or, in the alternative form

q = (I + λ C−2R)−1 · q̂ (5.60)

as a function of the regularization parameters λ. The dispersion of the regularized
solution has become

D (q) = σ2 (C2 + λ R)−1 · C2 · (C2 + λ R)−1. (5.61)

The parameter λ can be estimated in the first approximation from the equality of
the two components of the sum:

λ = ασ2 =
trC2

trR
. (5.62)
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Then, the parameter λ should be decreased until

1

σ2
r′Wr < δ, (5.63)

i.e. the weighted sum of the residuals reaches some level δ. Another method of
choosing the regularization parameters is the cross-validation method and the L-
curve criterion discussed in Fierro et al. (1997).

The regularized solution of the original parameters is as before

p = Dq. (5.64)

The product in front of q̂ in Eq. (5.59) can be interpreted as a damping filter
which suppresses the noisy components of the vector: the smaller the square of the
singular values in C, the stronger the dumping of the components of q̂. The degree
of the suppression depends on the regularization parameter λ, and the shape of
the filter is defined with the regularization matrix R. Here we can apply different
regularization matrices to q to obtain a class of various regularized solutions to q,
p, and to the fitting function ỹ.

5.11.1 Regularization of the principal components

I Minimum squares of q, i.e. R=I. The solution to the problem is

q = (C2 + λI)−1 · C2q̂. (5.65)

Since the inversion matrix is diagonal, the components of the vector are

qk =
c2

k

c2
k + λ

· q̂k. (5.66)

The filtering properties of this solution are obvious: the larger the parameter λ,
the stronger the suppression of the noise in q̂ as the singular values ck → 0 along
with their variances σqk

→ 1/λ. The variances of the solution are given by

σ2
qk

=
c2

k

(c2
k + λ)2

. (5.67)

Fierro et al. (1997) investigated the filtering properties of this solution applied to
the problem of total truncated least-squares.

H Maximal smoothness of the solution q, i.e. R=H. The solution to the problem
is
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q = (C2 + λH)−1 · C2q̂. (5.68)

At zero singular values ci ≡ 0, where i ≥ r = min(n, m), the submatrix of the
inversion matrix becomes singular because the regularization matrix H itself is
not positively definite (i.e. x′Hx > 0 is not true for all x, in particular, it is zero
for the unity vector x). The solution to q should be found for the vector and the
inversion matrix truncated to the rank r with zero singular values excluded from
the inversion.

5.11.2 Regularization of the original parameters

The problem is to find the solution q which minimizes the functional

χ2(q) =
1

σ2
r′Wr + α p′Rp =

1

σ2
r′Wr + α q′ D′RD q, (5.69)

i.e. controls the shape and the smoothness of the original parameters. The regu-
larization matrix to q is now D′RD and the solution to the problem is

q = (C2 + λ D′RD)−1 · C2q̂. (5.70)

I Minimum squares of p, i.e. R=I. The solution to the problem is

q = (C2 + λI)−1 · C2q̂ (5.71)

the same as in Eq. (5.65).

H Maximal smoothness of the solution, i.e. R=H. The solution to the problem
is

q = (C2 + λ D′HD)−1 · C2q̂. (5.72)

5.11.3 Regularization of the fitting function

Find q which controls the smoothness of the fit weighted with the variances of the
observations, i.e. which minimizes the functional

χ2(q) =
1

σ2
r′Wr + α (Vỹ)′ R (Vỹ) =

1

σ2
r′Wr + α q′ · CB′RBC · q, (5.73)

where the orthogonal decomposition Eq. (5.24) of the fitting function was used.
The regularization matrix to q is CB′RBC and the solution to the problem is
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q = (C2 + λ CB′RBC)−1 · C2q̂. (5.74)

I Minimum squares of the fit, R=I, then

q =
1

1 + λ
q̂, (5.75)

i.e. scaling the principal components changes the amplitude of the fit, hence its
total square.

H Maximal smoothness of the fit, i.e. R=H, then

q = (C2 + λ CB′HBC)−1 · C2q̂, (5.76)

or, in a similar form

Cq = (I + λ B′HB)−1 · Cq̂ (5.77)

5.12 Regularized differential solution

In the regularization functionals considered so far, the solution was formed in
the arbitrary basis of all possible solutions. In the case R = H, the solution is
smoothed by minimizing the differences of subsequent pixels and the differential
nature of the matrix does not change the norm of the solution. This is not the
case for the zeroth-order regularization matrix R = I, which minimizes the norm
of the solution as the factor λ increases. This limits the application of the zeroth-
order regularization to these data which are around zero, i.e. this regularization
suppresses the wildly oscillating solutions around zero by controlling their ampli-
tude. On the other hand, the use of the zeroth-order regularization is the most
simple from the computational point of view, since it operates with diagonal ma-
trices, and it has the simplest functional form which is easy to interpret in order
to understand more complex problems. One of such insights is that the zeroth
order regularization implicitly uses the a priori information about the solution
assuming that it should be around zero. This leads us to the inclusion of the a
priori information in a more general functional which will seek for the solution
closest to any predefined function or any other deterministic information about
the solution. The solution obtained with the known a priori information will be
called the regularized differential solution.

This is, on the other hand, the basis for the solution to the pattern recognition
problem where the goodness of the fit is used as a criterion to make the decision.
The regularized differential solution is also widely-known as Occam’s inversion.
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The English fourteenth century philosopher William Occam wrote that it is vain
to do with more what can be done with fewer, which has become known as Occam’s
razor - a fundamental tenet of modern science: hypotheses should be neither
unnecessarily complicated nor unnecessarily numerous (Constable et al. 1987, who
have first applied Occam’s principle to the inversion).

The minimization functional in terms of the orthogonal decomposition is

χ2(q) =
1

σ2
r′Wr + α (q − q̃)′R (q − q̃), (5.78)

where q̃ is an a priori known function. In the absence of the a priori information,
the reduced principal components solution q̃ can be used instead as the first guess
to the solution. After derivations similar to the ones above, the minimization
equation becomes

C2q + λ R(q − q̃) = C2q̂ (5.79)

and the solution is given by

q = (C2 + λ R)−1 · (C2q̂ + λ Rq̃), (5.80)

where q̂ is the principal components solution as before.

I Let the regularization matrix be of zeroth order R = I. The components of the
vector q become

qi =
c2

i q̂i + λq̃i

c2
i + λ

. (5.81)

Once again, the vector of the reduced principal components solution has the ele-
ments:

q̃i =







q̂i, i = 0, 1, . . . k − 1

0, i = k, k + 1, . . . m
(5.82)

therefore the regularized differential solution has the elements

qi =











q̂i, i = 0, 1, . . . k − 1

c2
i

c2
i + λ

· q̂i, i = k, k + 1, . . . m.
(5.83)

That is exactly what we often need in practice: to keep the real part of the spatial
harmonics of the solution and smooth its noisy tail with the chosen parameter λ.
This solution, in turn, does not require an additional inversion of the matrix.
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H In case we need to determine that solution whose residuals with respect to the
a priori solution are smooth, the regularization matrix of the higher orders should
be used: R = H. The solution becomes

q = (C2 + λ H)−1 · (C2q̂ + λ Hq̃). (5.84)

The solution should be found for the truncated inversion matrix when ci > 0 as it
was discussed for Eq. (5.68).

Similar is the case when the reduced principal components solution in the original
parameters space p̃ = Dq̃ is used as the a priori information:

χ2(q) =
1

σ2
r′Wr + α (p − p̃)′R (p − p̃), (5.85)

which has the solution given by

q = (C2 + λ D′RD)−1 · (C2q̂ + λ D′RD q̃). (5.86)

In the case R = I, the solution is the same as in Eq. (5.83), and for R = H it is
obtained by straightforward substitution of the regularization matrix.

5.13 Astronomical example

In this section we give an example of the deconvolution applied to real observations.
We use the solar spectrum which was used in Sec. 2.1 for the comparison with the
FTS solar spectrum convolved with the instrumental profile. Here, we use the
same spectrum obtained with the high resolution 1st camera and the measured
HeNe laser instrumental profile for deconvolution and compare it with the original
FTS spectrum.

The process of deconvolution is demonstrated with a number of figures. The
weighted design matrix of the convolution model Eq. (5.18) is constructed from
the offset instrumental profile and the sampling matrix with the sampling rate
r = 1, and is shown in Fig. 5.1.

The result of its SVD factorization (Eq. (5.23)) is shown in Fig. 5.2 where the two
matrices B and D are given. One can see from the images that the orthogonal
functions in the columns of the matrices have rather different spatial frequencies
from the left to the right. The vector of singular values C is given in Fig. 5.1. The
solution of the least-squares problem results in the vector of the principal compo-
nents q (Eq. (5.29)), which is plotted in Fig. 5.3. The best solution was selected,
in this particular study case, from the plot of χ2

ν (Fig. 5.3), which describes the
mismatch error of the fit. The number k = 450 of the first significant principal
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Figure 5.1: The image of the weighted design matrix VA and the vector of singular
values of the diagonal of C in log scale.

components was selected where χ2
ν = 1, and all other components were set to

zero. The particular solution in the original parameter space (the deconvolved
spectrum) is obtained by using Eq. (5.30) and shown in Fig. 5.5. The covariance
matrix for the selected solution is shown in Fig. 5.4, which gives us the degree of
correlation between neighbouring pixels of the solution.

To ensure that the selected solution is indeed the best, we create an image (Fig. 5.4)
of the family of solutions, where the deconvolved spectra are given in each row;
the number of the reduced principal components increases from top to bottom.
We see that the inclusion of the first few tens of the principal components gives a
rough estimate of the spectrum, the further down the more details are reproduced,
and towards the end the noise magnification occurs.

The deconvolved spectrum shown in Fig. 5.5 is overplotted with the FTS spectrum.
The difference spectrum reveals a quite good agreement between the spectra.
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Figure 5.2: The image of the orthogonal matrices B and D of the weighted design
matrix VA.
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Figure 5.3: The vector of the principal components q and the run of log χ2
n−k as a

function of the number of principal components k. The best solution is at k = 450
when χ2

n−k = 1.
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Figure 5.4: The image containing all principal solutions and the covariance matrix
of the selected solution.
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Figure 5.5: Comparison of the deconvolved spectrum and the FTS solar spectrum.
The difference between the spectra is shown at the bottom. The rms of the differ-
ence is 0.4%.
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Chapter 6

Line profile variations of the

binary star α And

6.1 Introduction

α And (HR 15, HD 358) is a well-known peculiar bright double-lined binary sys-
tem which has a mercury-magnesium primary component (B8 IVpMnHg). The
primary component is the hottest (Teff=13800 K) star among its class and shows
abundances of Mn, Hg, P, and Ga which are 4–5 orders of magnitude higher than
in the Sun (Ryabchikova et al. 1999). The spectral variability of the line profiles
has been known for a long time. Rakos et al. (1981) reported the detection of
variations in the UV Si ii line profiles (1100–1300Å) with a period of around 3h

based on Copernicus observations. The variations of the continuum level in the
lineless 3431Å region show a period of 23h. The presence of such different vari-
ations complicates the explanation of the abundance anomalies by diffusion. In
this study, we concentrate on the profile variability of the Hg ii 3984 Å line which
was earlier suspected to show some variations (Ryabchikova et al. 1999). The ob-
servations and subsequent analysis yield that the line indeed shows variations of
its shape modulated by the stellar rotation, and the most plausible explanation is
the presence of two strong Hg spots on the stellar surface.

6.2 Observations and data reduction

The observations of α And were obtained with the SOFIN spectrograph at the
2.56 m Nordic Optical Telescope (NOT) at Roque de los Muchachos Observatory,
La Palma, Spain. A total number of 68 observations was obtained during 21 nights

111
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in May, June, August, September, October, and November 1999 covering a time
span of 180 days. The entrance slit width was set to 82 µm (0.′′6 on the sky) pro-
viding the resolution element of 2 pixels FWHM and the resolving power of 80 000
at the spectral setting centred on 3984 Å at order number 57. The spectra were
recorded with an Astromed-3200 CCD camera providing a spectral coverage of 10
échelle orders (51–60) of about 30 Å in length from 3766 Å to 4450 Å. Exposure
time varied from 1 to 10 min depending on the seeing conditions, the signal-to-
noise ratio achieved ranges from 80 to 350. Typically, one to three observations
were made per night, within the time span of 2–3 hours given the unknown peri-
odicity of the Hg ii 3984 Å line on short (hours) and long (days) time-scales. Each
observation comprises one to three individual exposures to avoid possible CCD
overflow in the reddest spectral orders.

The spectra were reduced with the 4A package. This involved standard procedures
of bias subtraction, estimate of the variance of the flux, master flat field correc-
tion, scattered light subtraction with the aid of 2D-smoothing splines, spectral
order definition, and weighted integration of the flux with cosmic spikes elimina-
tion. The wavelength calibration was done with the use of a ThAr comparison
spectrum, each of them taken before and after each individual object exposure to
eliminate any temporal changes in the spectrograph during an exposure. The wave-
length solution incorporates Gaussian-centred positions, wavelength, and time of
all detected spectral lines from the two images bracketing the stellar image. The
wavelength for every pixel in the stellar spectrum is calculated for the time of its
mid-exposure. The corrections of the spectra for the vignetting function and for
the Earth’s orbital motion constitute the final steps.

6.3 Radial velocity measurements

The Hg ii 3984 Å line shows variations of the line profile superimposed on the or-
bital motion of the primary stellar component due to the secondary. Hence, to re-
move the stellar radial velocity, we used relative measurements of the velocity with
respect to the mean of the three neighbouring spectral orders 53 (4264–4294 Å),
54 (4185–4214 Å), and 55 (4109–4138 Å). The three orders show no conspicuous
trace of the secondary stellar component. A cross-correlation technique was used
to measure the velocity of each individual spectrum with respect to the mean with
the velocity error determination involving variances of the pixel fluxes and the
curvature of the cross-correlation peak. A polynomial of 4th degree was used to
determine the centre and the curvature. Depending on the spectral order and the
signal accumulated, the typical error is about 100–400 m s−1.

The parameters of the orbit was prevously published by Pan et al. (1992), Tomkin
et al. (1995), and Ryabchikova et al. (1999). A Keplerian orbital fit (Ilyin 2000)
to our measurements of the primary component is shown in Fig. 6.1 and the pa-
rameters obtained are given in Tab. 6.1. The limited time span of the observations
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γ, m s−1 5539 ± 96 Tperi, 2451 532.92 ± 0.26

K, m s−1 32976 ± 118 TRVmax, 2451 526.17 ± 0.20

P , days 96.884 ± 0.12 Tconj, 2451 533.79 ± 0.23

ω, degrees 77.5 ± 0.48

e 0.5342 ± 0.0025 Nfree 204

rms, m s−1 651 χ2
ν 10.5

Table 6.1: The set of the orbital parameters of the Keplerian fit. The moments of
time are given as HJD.
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Figure 6.1: The orbital solution to the relative radial velocities of the primary
component.

did not allow for an improvement of the period compared to that obtained by
the other authors. The radial velocity of the order number 57 containing the line
Hg ii 3984 Å was removed by using the orbital fit.

6.4 The period of the line profile variations

The line of interest, Hg ii 3984 Å, shows remarkable changes of its shape from
night to night. In order to understand the behaviour of the process, we first
investigated the periodogram of the line profile for each wavelength (pixel) of the
profile. A Lomb-Scargle periodogram (Press et al. 1992) was calculated for an
image of spectra resampled to the same stepsize in wavelengths, separately for
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Figure 6.2: The gray-scale image of the periodogram of the Hg ii 3984 Å line profile
variations. The vertical axis units are frequencies in d−1. The maximum corre-
sponding to the rotational period 2.d38 is at 0.42 d−1.

each pixel. The periodogram image is shown in Fig. 6.2 and a sample of one
column is given in Fig. 6.3. As we see from Fig. 6.3, the maximum is at 0.42 d−1

which corresponds to 2.d38. This frequency is persistent over the whole line profile
in Fig. 6.2, unlike the other peaks which are present only in parts of the profile.
The associated window function of the observations is shown in Fig. 6.4, which
peaks at the one day frequency.

The period can also be justified because it is very close to the rotational period of
the main component of α And from the following considerations. Pan et al. (1992)
derived the inclination of the orbit of i = 105.◦66 ± 0.◦22; Ryabchikova et al. (1999)
estimated v sin i = 52 km s−1, and the stellar radius was estimated by Shallis et
al. (1995) to R = 2.7 R⊙. Given the parameters, the estimate for the rotational
period is Prot = 2.d53 ± 0.d05 taking into account the error in the inclination and
assuming that the error in the rotational velocity is 1 km s−1.

To refine the period of the line profile variations estimated from the periodogram,
we could use a cross-correlation of the individual profiles with respect to the mean
spectrum and fit a model to the resulting changes (e.g. RVs). The disadvantage
of this approach is that the cross-correlation technique assumes a similarity of
the spectra being used which is not the case for this profile. Instead, we used a
non-linear least-squares fit of a single period to all wavelength pixels of the profile
versus time allowing to vary the offset, amplitude, and phase shifts along the line
profile
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Figure 6.3: The periodogram of the line profile at λ 3983.5 Å. The frequencies are
in d−1.
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Figure 6.4: The window function of the observations calculated for an extended
range of frequencies.



116 CHAPTER 6. LINE PROFILE VARIATIONS OF α AND

yik = bi + ai cos 2π

(

tk

p
+ φi

)

where yik is the image of spectra versus time tk, k = 1, 2, . . . N , and wavelength
i = 1, 2, . . . M . The free parameters along the profile are the offset (bias) bi,
the amplitude of variations ai, and phase shifts φi, as well as the period of the
variations p. The Levenberg-Marquardt method (Press et al. 1992) was used to
find the parameters; the initial guesses for bi, ai, and φi were obtained from a
linear least-squares solution for the period estimated from the periodogram

The period found by using this model is P = 2.d38257±0.00024 with the goodness
of fit values rms=0.0081 and χ2

ν = 3.15. The change of the bias, amplitude, and
phase is shown in Fig. 6.5 together with their error bars. The image shows the
profile phased with tk/p + φi. Clearly, two features separated by half a period at
phases 0.3 and 0.8 are present. A more convenient image is shown in Fig. 6.6 where
no phase shift was applied. The second, smaller feature is not so well shaped as
compared to the other one, because the observations are not very dense at phases
0.6–0.8. The average within every 0.1 phase bin of the line profile is also shown in
Fig. 6.7.

The time scale of the variability modulated by the stellar rotation and the different
strengths of the two features rule out the hypothesis of non-radial pulsations for
the star. The expected time scale of non-radial pulsations for this star could be
about 10–20 hours as it is for the stars of similar type and spectral class. The
most plausible interpretation, hence, is the presence of two Hgii patches separated
by 180◦ in longitude. According to the slope in the phase diagram, the latitudes
of the two spots are almost the same.

The model could not completely describe the variability of the line profile, espe-
cially in the case of two spots. The spot configuration and their geometry should
be included. The inconsistency of the model is indicated by the excess of χ2

ν .
Indeed, the model, aimed to find the period, is the simplest model one can apply
without involving any stellar spot geometry configuration.

6.5 Variability of other spectral lines

To check whether spectral lines in other spectral regions of the échelle image show
variability, we analyzed a variance spectrum for each spectral order with the orbital
motion of the primary component removed. The result is shown in Fig. 6.8: the
weighted average of the order is shown at the top of each panel and the spectrum
of the standard deviation (magnified by a factor of 100) is at the bottom. No
strong variations as much as in Hg ii 3984 Å is seen. The excess variance at 4200,
4045, and 3849 Å was analyzed with the Lomb-Scargle periodogram as above. The
most significant peaks at these regions are very close to the orbital period 96.d8
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Figure 6.5: The image shows a phase diagram where the drift of the features
in wavelength with phase is removed. The plots below are the intensity level,
amplitude, and the phase shifts of the fit to the line profile.
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Figure 6.6: The line profile phased with the rotational period.
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Figure 6.7: The individual spectra averaged in bins of the rotational phase 0.0 −
0.1, 0.1 − 0.2, . . . , 0.9 − 1.0. The phase increases from top to bottom with the
displacement 0.05 in intensities between spectra.
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of the binary system, hence, these features, most likely, belong to the secondary
component.
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Figure 6.8: The averaged line profiles and the variance spectrum×100 for the
échelle orders 52 – 60 left to right and top to bottom. The orders 57, 59, and 60
are truncated to avoid strong Hydrogen lines.



Appendix A

Reduction of SOFIN CCD

échelle spectra: a user guide

A.1 Introduction

Unlike many other data reduction packages used in astronomy, where most of the
procedures are built into a few integrated tasks, the 4A data reduction consists
of a number of elementary steps. This approach is more flexible, it gives a better
feeling for the data, but makes the whole procedure more complex.

In this chapter the description of the data reduction sequence is given from the
point of view of a user, who is familiar to work with 4A. The detailed description of
the 4A facilities is given in the ”Reference Guide for 4A”. The present user’s guide
gives the explicit commands in the normal sequence of échelle spectra reduction.
The numerical parameters given in the guide are typical for SOFIN spectra but
should be always adjusted for the particular set of data.

A.2 The essential steps of the data reduction

1. Removal of the electronic bias from the CCD images.

2. Variance estimation.

3. Correction for the master flat field.

4. Evaluation and removal of the scattered light surface from the images.

5. Definition of the spectral orders.

121
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6. Weighted extraction of the spectral orders.

7. Correction of the object spectra for the vignetting function.

8. Background subtraction from the comparison spectrum images and spectral
order extraction.

9. Wavelength calibration based on comparison and telluric lines.

10. Transformation of the object spectra into the wavelength scale.

11. The heliocentric and radial velocity transformations of the wavelength scale.

12. The continuum normalization of the object spectra.

A.3 Removal of the CCD bias

Overscan selection

For the object and flat field images use the overscan in columns at the bottom of
the image, and for the saturated comparison spectra (especially in case of the 3rd
camera images) use the overscan in rows on the right of the image. Display the
image and position the marker box to the overscan area. Move the box to exclude
the first 1–3 CCD edge pixels (they may create a problem later during filtration).
Create a new record in the list of regions (Process menu): the extraction function
should be avrcols for the overscan in columns, and avrrows for the overscan
in rows. The template for the file name is ccd00000.bss or similar (Fig. A.1).
Ensure that the record in the list is highlighted (and none of the others). Mark
the images and extract the averaged biases (FITS/Extract regions). Repeat the
region selection and the extraction for the images with the overscan in rows in
necessary.

Bias smoothing

Smooth the averaged biases with a trimmed mean filter with the window parame-
ters 33-5-5 (the window length is 33, and the highest/lowest 5 pixels are rejected).
In case of apparent fringes in the bias (which is due to electrical interference on
the CCD), use a filter with the smaller window size (11-3-3 for instance), or a
Gaussian filter with the window length 3. Ensure that cosmic spikes do not affect
the filtration.
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Bias subtraction

Mark the smoothed biases and subtract them from the marked images (Reduction/Bias

removal), where the option column applies to the overscan in columns. The re-
sulting images will have the extensions .col and .row, respectively. Check that
the averaged level in the overscan area of the subtracted images is around zero
by inspecting the averaged cross-cut or making a histogram. Move the original
images to the trash can (usually a DUMP subdirectory in the working directory).

Figure A.1: Left: An image with the selected overscan area in the CCD columns
shown as the marker box. The position of the box is given in the highlighted
record of the opened list of regions. Right: An averaged bias column containing
a jump in it due to CCD electronics stabilization problem is shown. A trimmed
mean filter is used to eliminate the readout noise and preserve the variations. The
smoothed bias is subtracted from every column of the original image.

Trimming the images

Select an area with the marker box which is the same for all images: the region
should exclude the two overscans and the first few edge pixels in columns and rows
which are usually bad. Create a record in the list of regions with the template
file name ext00000.* and the extraction function Subimage. Unmark the bias
records. Mark the debiased images and extract the subimages. Move the original
images .col and .row out of the working directory.

Estimation of the photon noise

Mark all debiased, trimmed images in the database and start the estimation of the
photon noise command in Process/Variances. This operation will not change
the image name but it changes its size. The number of dimensions of the images
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is increased by one, and the third dimension is used to store the estimated vari-
ances. Check that the error bars appear in a cross-cut of the image when changing
the plotting mode or by plotting the variances (Scaling menu). The procedure
requires two FITS records to be present: GAIN is the CCD gain factor in e−/ADU
and RON is the readout noise in ADU. These records should be added to the FITS
header, if not present.

A.4 Flat field correction

Master flat field normalization

The easiest way to calculate the trend in the master flat field is to use a trimmed
mean filter with the window parameters 41-11-11. Unfortunately, for some dark
pixels and dust particles the smoothed function may follow these features. Use
a weighted spline with the smoothing factor ranging from 0.05 to 0.0001 and
the rejection level ±40. In the particular case of camera 3 the parameters are
±80/0.001. Take the ratio between the original and smoothed images. If the
normalized image is still disturbed in the areas around the dark pixels, then the
pixels should to be masked out in the original image.

An alternative way to mask out the dark and sharp features is to use the clipping
facility in Process/Variances: smooth the master flat with a median filter of
40–50 rows in length, sort the database, so that the original and smoothed records
appear together, and clip the pixels which deviate from the median more than
40 σ.

Division by the master flat

Mark the object and night flat field images and divide them by the master flat
which creates .dvd files by default. Check the noise reduction: take a cross-
cut of one column in the night flat field before and after the division. Calculate
statistical parameters in a flat region of the spectrum: the Stdev/Mean ratio gives
the measured signal/noise ratio. In case there is no such flat part in the spectrum,
then smooth the spectrum by a spline, take the ratio, and measure the variance.
The estimated signal/noise should be the same as the expected one, which is
obtained by displaying the signal/noise spectrum (Scaling/PlotSNR). Move the
original images .col and the master flats out of the working directory.
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Figure A.2: Left: A column of the master flat field smoothed by a spline with the
factor 0.01. In order to avoid sharp features, the sigma-clipping parameter is set
to 40, hence the pixels deviating more than 40σ of the photon noise are rejected,
which is, in this particular case, approximately the level of the CCD pixel-to-pixel
noise. The clipped pixels are shown in gray. Right: The master flat field image
after the normalization. The dark features are well preserved during the spline
smoothing. The signal-to-noise ratio of the image is about 1100.

A.5 Scattered light removal

The scattered light surface is calculated in two steps: the surface of the interior
of the spectral orders is approximated using a weighted spline in the clip-and-fit
mode along rows, then the resulting surface is smoothed by a spline in columns.

1st camera. Smoothing in rows is done by a weighted spline with the smoothing
factor 600 and the clipping parameters 2 (above) and 0 (below). The image
extension could be set to .pol. Smoothing in columns is done with an
unweighted spline of factor 600. The resulting image extension is .bgn.

2nd camera. Use a weighted spline in rows with the smoothing factor 10 and
the clipping parameters 2 (above) and 0 (below). Use an unweighted spline
in columns with the factor 1000.

3rd camera. Use a weighted spline in rows with the smoothing factor 1 and the
clipping parameters 2 (above) and 0 (below) and an unweighted spline in
columns with the factor 10.

A sometimes difficult problem for images of the 3rd camera is the undersampling
effect in cross-dispersion which produces conspicuous ripples in the scattered light
images in the dispersion direction. Subtraction of such a surface introduces the
ripples into the stellar spectra. By using larger smoothing factors the ripples can
be reduced, however, the scattered light level could still be overestimated.
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Figure A.3: Left: Decrease of the noise in the same column of the night flat field
image before (upper, 6%) and after (lower, 0.6%) the master flat division. The
columns are normalized to their trends. The amplitude of the high frequency
spatial noise of the CCD used for the 2nd camera is about 6% rms and is constant
for any illumination levels. The increase of the noise at the lower right is due to
the lower light intensity level. Right: Check of the signal/noise ratio consistency
by using the same single flat field column after the master flat correction. The
plot shows the expected signal/noise ratio along the column (obtained with the
Alt-N command in Scaling/Plot SNR). The opened statistical window gives a
similar signal/noise (about 150) calculated for the selected region of the marker
box. The shape of the signal/noise plot reflects the shape of the trend removed
from the column and is due to order curvature.

In case the scattered light surface is disturbed by bad pixels in the original image,
they can be masked out by clipping around a median image (filtered with window
length 60 rows) with the clipping levels 100 (above) and 5 (below).

In the case when the ripples on the background are present due to electrical in-
terference on the CCD, choose a small factor of the smoothing spline of the order
of 1–5. This will allow to remove the wavy pattern from the image during the
background subtraction.

Sort the database by file names and extensions and subtract the scattered light
surfaces from the original images by using the pair operation command. The result
should look like the left image in (Fig. A.4). The flat field corrected images .dvd

and the background images can be moved out of the working directory.
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Figure A.4: Left: An image prior to the scattered light correction. A structure is
seen between the spectral orders. Right: The scattered light surface of the image in
the previous picture. The surface was obtained by approximation of the interorder
gaps by a spline with the smoothing factor 10 and the rejection of pixels above
2σ along each row of the image in cross-dispersion. Then, the resulting image was
smoothed along each column in the dispersion direction with an unweighted spline
of the factor 100.

A.6 Definition of spectral orders

Order detection

Two parameters can be changed for the detection procedure: the median filter
length and the detection probability. A filter length of 5 pixels is sufficient for
most of the images; the more cosmic particles in the image the longer the filter.
The detection probability should be 100% for the short 3rd camera and 1–10%
for the others. The parameter can be as small as 10−20 in order to eliminate the
detection of spurious spectral order-like features in the interorder gaps in the blue.

Mark the scattered light subtracted images and run the detection of orders pro-
gram. The order definition polynomials are stored in separate binary (non-FITS)
files with the extension .spp.

Order assignment

Displaying image by image, give the correct échelle order numbers to the spectral
orders detected (Fig. A.6). For the 2nd camera the order numbers are increasing
downwards (blue is at the bottom of the image) and the order number which is set
in the program should be positive. For the 1st and 3rd cameras the order numbers
are decreasing downwards (red is at the bottom of the image), therefore, the order
number should be negative.
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The order number can be identified from a known feature (Hα, for instance) and
retrieved from the focal plane map program. If there is no such feature, the
corresponding spectral order in the comparison spectrum can be identified (see
wavelength identification, Sec. A.9.1) and the wavelength interval compared to the
model of the focal plane.

If a number of images are very similar to each other (the same camera, the same
spectral setting, and the spectral orders are approximately at the same positions
during monitoring observations), the order assignment can be done with a single
command. Firstly, give the order number to the first image, mark all images of
the same kind, and secondly, run the Reduction/Count orders command from
the database of images. The program will ask to point to the first reference image.
Press Enter to start the procedure to enumerate the échelle order numbers for
the marked images. Inspect the last images to ensure that the order numbers are
correct (in case of a shift in the cross-dispersion).

A.7 Optimal extraction of spectra

Parameter adjustment

Check whether the default parameters are suitable for the images being processed.
For a single object image run the weighted extraction with the spline smoothing
parameter 0, which creates the unsmoothed version of the spatial profile image
(.sp). Take a cross-cut of a column and check at what smoothing factor the spline
fits the data. Use a weighted spline fit without clipping (both values are reset to
zero). The higher the factor the less flexibility for the spline to fit small curvatures.

The default parameters for the smoothing factors are 109 for the 1st camera images,
108 for the 2nd, and 106 for the 3rd. The median filter length can be around 11
and the threshold is 3.

Inspection of the images

Mark the object and night flat field images and run the extraction procedure. It
will create two new images for every original one. The first image contains the
spatial profiles (.sp), which can be inspected and deleted. The extracted spectra
and their variances are packed into one image with the column number equal to
the order number (Fig. A.6). The cosmic spikes detected can be inspected in the
original images: the hits are masked by changing the signs of their variances. The
original images should all be inspected by displaying them with the Marker/Masked

pixels switched on.

The scattered light subtracted images .sub can be moved out of the working
directory.
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Figure A.5: Left: A column of the raw spatial profile of the image. A smoothing
spline of factor 109 is used to obtain the filtered image of the spatial profile for
the optimal extraction. Right: A smoothed spatial profile image with patches on
it which are rejected from the spline approximation.

A.8 Correcting the shape of the spectra

Smoothing flat fields

Use a weighted spline with a smoothing factor 0.1 and possibly no clipping to
smooth the images of the flat field packed spectra column by column (which are
now the spectral orders). Any appearance of interference waves in the smoothed
orders should be carefully inspected and compared with the corresponding spectra
of the object. If the amplitude and phase of the waves are the same, then the
interference can be removed from the object spectra. Otherwise, the effect can be
enhanced several times. In this case, any interference appearance in the flat field
spectra should be smoothed out by the spline approximation.

Normalize to the mean

In order to keep a similar number of ADUs in the object spectra, the smoothed flat
fields can be approximated by a polynomial of zeroth degree in columns taking the
ratio. The number of ADUs in the bluest orders of 3rd camera images is usually
very low, which leads to singularities after the normalization. These orders can be
patched by 1.

Reshaping the spectra

Mark the corresponding packed object images and divide them by the normalized
flat fields. Check that the object spectra become flattened (Fig. A.7). This is often
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Figure A.6: Left: The image with the scattered light subtracted and used for the
optimal extraction. After the extraction the detected cosmic spikes are marked on
the image and seen as red patches after entering the mode Alt-F6. The amount
of detected spikes is controlled by the sigma-clipping parameter of the optimal
extraction algorithm. The curves of the located orders are shown. The bottom
status bar indicates the échelle order numbers resulting after the orders assign-
ment: the small marker box (in the third order from the bottom) indicates the
position of the order number 38. Right: The image of the packed spectral orders
after the optimal extraction.

not the case for 3rd camera spectra due to possible differences in the shapes of the
object and flat field spectra. Remove all flat fields and the original object images
from the working directory.

A.9 Wavelength calibration

Background removal

Mark all comparison spectrum images and apply a median filter with a window
length of about 33 rows over one column and take the difference. This will create
new images with the median background subtracted on a column by column basis.
Delete the median images .med and move or delete the original images.

The other way to remove the background is to use a smoothing spline in the clip-
and-fit weighted mode. One set of typical parameters are: the smoothing factor
is 1, clip above is 2, and below is 10 (to avoid cold pixels due to overexposed com-
parison lines). Fit the images in columns and take the difference. This procedure
works much slower that the median filtration, but gives a more smooth solution.
The important advantage is that the median may slightly disturb the central po-
sition of a blend of lines which is wider than the filter length. On the other hand,
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Figure A.7: Left: Two spectra are shown before and after the division by the
night flat field which results in reshaping of the continuum. Right: An image of
the packed spectral orders of the comparison spectrum image.

the smoothing spline may be sensitive to the clipping parameters in certain cases
of line configuration, e.g. broad overexposed features, many cold pixels, etc. The
remedy is to mask out these features by using a median filter and then to use
the spline to fit and subtract the background. In the case of using the spline
approximation, the images with the subtracted background should be unmasked
(Process/Variances/Absolute variances) prior to any further operations.

Order tuning

The spectral orders for the comparison spectrum image should be taken from
the nearest object or flat field images (Reduction/Orders assignment). The
orders of these images may not be at the same positions as these of the compari-
son image. To align the orders to the actual position of the cross-profile, use the
Reduction/Orders tuning command which works with marked images. For a sin-
gle image the order tuning can be done from the imager program (Process/Orders

tuning) with the input parameter which gives the initial offset of the orders in
the cross-dispersion direction. For small offsets the parameter is zero. Run the
procedure and check that the polynomial curves are adjusted to the centre of the
spectral orders. The parameter equal to the distance between two adjacent orders
in pixels will offset the polynomial curves down to the next spectral order. The
actual offset of the curves is displayed in the bottom status bar.

In many cases, the strong overexposed spectral lines may disturb the order tuning
procedure. The areas around strong lines can be masked out to be excluded from
the fit: use the Scaling/Mask region command for individual images, or for a
number of images it can be done from the list of regions: select the areas and use
the function MaskRegion. Run the command FITS/Extract regions from the
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database of images to mask out the selected areas of the marked images.

After the run, add two FITS records created by the program to the database:
CROFFS is the offset of the spectral orders in cross-dispersion direction and ECROFFS

is its error. Check that the orders in those images with large offsets are aligned
correctly and their order numbering remains the same as in other images.

A.9.1 The wavelength solution of the comparison spectrum

Wavelength identification

For the first comparison spectrum in a series, do the standard extraction which cre-
ates an image of the packed spectral orders (Fig. A.7). Unpack the image to create
a separate spectrum for each spectral order. Select an order with a known wave-
length range and run the spectral line parameters program (Reduction/Spectral

lines/Line parameters).

Locate the positions of spectral lines given so that at this stage the strongest lines
should be selected for identification purposes. The location is simply done by
putting the horizontal line of the graphical marker at the top of the background
noise level and pressing Enter. All lines above the level will be detected and
Gaussian profiles fitted to their profiles. The parameter given in Graph/Gaussian

zero specifies the continuum level of the Gaussians. If the spectrum is used for
the first time, the parameter is calculated as the median of the spectrum.

Select the catalogue of ThAr spectral lines named tharkpno.cat. Run the wave-
length identification (Table/Search in catalog) by specifying the possible range
of wavelengths for the blue end of the spectrum and the range of possible lengths
of the order. The program gives a number of different identification choices: select
the one with the maximal number of lines included. Select the PosWav function
and make a fit. Exclude the most deviating points: use the Ins command to
exclude a single line from the table, Ctrl-Ins to exclude a group of lines whose
deviates are within the marker box positioned in the plot of residuals from the fit,
or Alt-E to exclude a group of lines whose deviates are outside the marker box.

If the identification is wrong for all choices, i.e. the rms is too large everywhere,
repeat the whole procedure with a reduced amount of lines included (delete all
lines in the table, repeat the line locating with a raised level, so that only the
strongest lines are selected).

A larger number of identified lines may result if the catalogue is changed to
tharpen.cat. The wavelengths in the table are updated from the previous search
by the command pickup from catalogue.

Make the fit and remove deviating points. The rms should be around 1–10 mÅ.
Run the Adjacent orders command to calculate approximate dispersion curves
for all adjacent orders of the image.
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Run the line parameters program for every order in that image to locate the posi-
tions of spectral lines, and to pick up the wavelengths from the catalogue. Make
the fit and exclude the most deviating points (this can be also done later during
the global fit). The parameters of the spectral lines including their wavelengths
are stored in separate binary (non-FITS) files for each spectral order with the
extension .slp.

Figure A.8: Left: The comparison lines location window commands. The back-
ground level is set to zero, the horizontal marker box is positioned above the noise
and used to locate all the lines above it. The wavelengths of the lines located are
picked up from the catalogue of ThAr lines according to the dispersion polynomials
obtained from another order. Right: The initial step to find the wavelength of the
lines located. Give the approximate wavelength range of the blue (left) end of the
spectrum and its length, obtained from the focal plane model of the spectrograph.
A number of solutions is shown. The two solutions which have the same initial
wavelength and most of the lines included (field Num) are the correct solutions.

Wavelength solution

Run the ArcLamp solution command on the packed comparison spectrum image
with the wavelengths identified. It displays the global fit in two projections: along
the central row and along the dispersion direction in wavelengths scaled to some
reference order number. The default value for this order number is 40. Remove
the most deviating points with the marker box. For a single comparison image,
typical degrees (along time × columns × wavelengths), rms, and the fit error for
the image centre are (the units are m s−1):
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Camera Degrees rms FitErr

1st 0 × 1 × 3 70 10

2nd 0 × 2 × 4 120 15

3rd 0 × 1 × 4 600 35

Figure A.9: Left: Two comparison spectra images, taken before and after the
stellar exposure, are merged into the global fit. The effect of the drift of the line
positions is seen. Right: The same as in the previous picture after the fit versus
time is performed. The polynomial dispersion degree across the rows is 3, the
divergence degree across the columns is 1, and in time it is 1 since only two images
are involved.

Multiple wavelength identification

After the wavelength scale is established for a single reference comparison image,
the wavelength scale can be established for all other images of the same spectral
region and camera. Mark the images, run the Coalign spectra command, and
point to the reference comparison spectrum. The parameter p specified in the
menu command is the search interval (±p) of the cross-correlation range which is
used to define the shift between the spectra.

When the procedure has succeeded, unmark all records selected, and run the
comparison spectrum wavelength solution for each image to inspect the fit and to
remove the most deviating points. The procedure creates a binary (non-FITS) file
of the dispersion coefficients with the extension .was.

Multiple wavelength solutions

In order to exclude any effects related to the instability of the spectrograph, two or
more comparison spectrum images which were taken before and after the object
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exposure can be combined into one wavelength solution. Mark the images and
run the program. Increase the time degree in the fit. Combination of two images
should improve the rms of the fit by a factor

√
2. The dispersion coefficients for

multiple comparison spectra are stored with the name of the first image.

Transformation into wavelength scale

At this stage the object spectra can be transformed into the wavelength scale if
the telluric correction will not be applied. The wavelength scale command asks
for the comparison image and the object image. The object spectra (orders) are
transformed into the wavelength scale and stored as separate files.

A.9.2 The telluric wavelength solution

Creation of the telluric image

Mark the object images and apply a weighted spline with the smoothing factor
0.001 or so and the clipping factors 2 (below) and 0 (above) with taking the
difference. The file extension for the difference could be .atm. The image with the
difference should contain mostly the sharp telluric lines while the broader stellar
lines are filtered out (see Fig. A.10).

Figure A.10: Left: A spectral order with the telluric lines. The smoothness of the
spline is adjusted to filter the stellar lines out and leave the sharp telluric features.
The difference of the two constitutes the telluric image. Right: The telluric image
of the packed spectral orders after most of the stellar lines were filtered out.
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Figure A.11: Left: The telluric line identification menu. The selected images
.atm, the catalogue specified, the continuum level, and the maximal FWHM of
the lines to be selected are shown. Right: A fragment of the unpacked spectral
order containing the identified telluric lines for the image. The same result can be
obtained in order-by-order basis with use of the Mark/Relocate lines command
as shown in the open menu.

Dispersion polynomials

In order to make the identification of the telluric lines possible, one should know
the wavelength scale of the telluric images. Then, the program can guess the
wavelength of the detected feature and find its exact wavelength from the catalogue
of the telluric lines. The dispersion polynomials for each order and every telluric
image have to be generated. Resort the database of images, so that they are
in order of time. The comparison spectrum images should have the wavelength
solution at the time. Run the Reduction/Dispersion polynomials command.
In the bottom prompt line it will be indicated what to enter: first, it asks to
point to the comparison spectrum, then to the telluric image. Once it is done,
the program calculates the polynomials for every order of the image (binary non-
FITF files with the extension .fps). Then enter the next pair of images. To exit
from the cycle, press Esc. In case there are many telluric images and a single
comparison spectrum, the procedure can be done faster by marking these images
and entering only the comparison image.

Identification of the telluric lines

Open the menu of Reduction/Telluric lines and specify the catalog which
should be tellkpno.cat: a catalog of the telluric lines derived from the Solar
Photographical Atlas. Specify the background level: the intensity of the contin-
uum. In case the difference was taken, the continuum level is zero, in case of
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normalization, it is one. Specify the maximal width of the telluric lines: the pro-
gram will reject all choices where the identified line is broader than the specified
limit. The value depends on the resolving power and a good choice is 2–6 pixels
FWHM. Run the procedure for the selected packed images (see Fig. A.11).

In case of having some problems, the identification can be inspected for individual
orders step-by-step (Fig. A.11). To do that, unpack the image of the telluric lines
and run the spectral line parameters program for an order where telluric lines are
expected (5000–9000 Å). The dispersion polynomials are assumed to be prepared.
The presence of the dispersion polynomial is indicated in the status bar: as the
graphical marker is moved it displays the approximate wavelength for the marker
position. Change the catalog name to tellkpno.cat. Run the Mark/Relocate

command, which makes an initial guess about the line positions based on the
dispersion polynomials and the wavelength from the catalog, and relocates the
lines to the observed spectrum (it means that it tries to fit a Gaussian to the
spectrum at the position where the telluric line is expected). The lines wider
than 3 pixels FWHM are deleted. Inspect the Gaussian fit for every line, make
a dispersion curve fit, and remove the most deviating lines. A potential pitfall of
the procedure is that the telluric lines can be confused with narrow stellar lines
which is then difficult to recognize because of the small number of lines.

Make a global fit of the telluric image by using the comparison spectrum wave-
length solution and remove deviates.

Figure A.12: Left: The combined fit of two comparison spectrum images and
telluric lines prior to the exclusion of the deviating lines. In spite of the large
scatter of the telluric lines, they tend to cluster around a curve. Right: The
combined fit after the deviating points are excluded (with help of the exclusion
out of the box command Alt-E).
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Wavelength solution

The telluric solution allows to combine one or two comparison spectra and the
telluric spectrum into one global fit. The final wavelength solution for the object
images is made by obtaining the telluric solution for every observation. Mark the
two (or the first, if the second does not exist) comparison images, run the telluric

solution command, and select the record with the telluric image. Make the fit
by F7. If there are many telluric lines, they should cluster around a curve. Many
deviating lines can be excluded by using the Alt-E command, which excludes all
lines outside of the marker box.

Change the degree in rows from 0 to 1 or higher and check the significance of the
fit. In most cases, the zeroth degree in rows is enough. Use the Partial option
to display the behavior of the telluric lines curve with respect to the comparison
spectrum lines. This may help to estimate the degree of the telluric polynomial
according to its curvature.

Typical values based on the telluric solution with two comparison images are (the
degrees are along time × columns × wavelengths for the comparison image +
columns × rows for the telluric image; the units are m s−1):

Camera Degrees rms FitErr

1st 1 × 1 × 3 + 0 × 1 80 12

2nd 1 × 2 × 4 + 0 × 1 120 20

3rd 1 × 1 × 4 + 0 × 1 800 75

The dispersion coefficients are written to a non-FITS file with the extension .was

and the name of the telluric image.

Transformation into the wavelength scale

The transformation into the wavelength scale is done as described before in Sec. A.9.1,
except that the “comparison spectrum image” is now the telluric image.

A.10 The wavelength transformations

Heliocentric correction

The correction for the Earth’s motion is done by removing its projected radial
velocity from the wavelength table of the marked spectra by running the Remove

Radvel command in the Reduction/Wavelength transformation menu. Specify
the output files extension, the usual choice is .hwl. The Add error option is
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Figure A.13: The plot shows the effect of the slit error correction made for 35
different observations of Ap stars with the short 3rd camera. The vertical axis
is the radial velocity in m s−1 and the horizontal is the spectrum number. Two
water-line rich orders (#27 and #31) were used for the comparison. The upper
part shows the comparison of telluric line positions with respect to an artificial
spectrum prior to the correction. A significant offset of all spectra by about 0.7
pixels (the pixel size is 5400 m s−1) is evident. The lower part shows the same
comparison after the combined telluric solution was applied. The average level
is 260 m s−1. The most deviating points around spectrum number 110 are from
a bright star which was difficult to centre accurately onto the slit. The larger
the centring error, the larger the difference between the dispersion polynomials
of the comparison spectrum and the telluric lines, which results in an incomplete
correction of the slit effect.

irrelevant for this procedure. The velocity in m s−1 is given in the FITS header
by EARTHVEL and used by the command as an argument.

If the record is not present, run the Target command on the marked spectra to
update the header records. Spectra co-added prior to the heliocentric correction
have no EARTHVEL parameter since the midpoint of the sum has changed. These
spectra have to be updated with the Target procedure.

Stellar radial velocity rest frame

Similarly, the correction for the stellar radial velocity is done by removing the radial
velocity given in a specified FITS keyword; again, a new copy of each spectrum
with the specified extension, .swl for instance, is created. The stellar velocity
FITS record should be created with the FITS/Modify record command: enter
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a name, select the floating-point format, and the value in m s−1. The velocity
will be removed from the spectrum, which means that the red-shifted spectrum
should have the positive velocity. The procedure assumes that the spectra are in
the wavelength scale. The wavelengths of the resulting spectra are modified for
each pixel according to the velocity given: λi · (1 − v/c).

The Add error option requires also an error of the radial velocity to be given in
the FITS record with the prefix E in the name of the velocity keyword name. The
option affects the variance of the pixel intensities.

Figure A.14: Left: The picture shows how the FITS keyword is created to specify
the wavelength of a line. The dialog window is opened from the Fits/Modify

record menu. The new FITS record will be appended to the headers of the spectra
marked in the database. Right: The transfer to radial velocity scale dialogue
window: the resulting file extension .rv and the FITS keyword having the central
wavelength as its value are shown.

Rebinning into radial velocity

The procedure rebins the selected spectra into the radial velocity scale with re-
spect to the wavelength which is given in the specified FITS record. It creates a
new set of spectra with the file extension as specified in the menu window. The
spectra are rebinned into the same step size in the velocity scale (∆λ · c/λ = const
for any part of each spectrum). The zero velocity corresponds to the reference
wavelength chosen. The distance between two lines in velocity scale will not de-
pend on their wavelength. The rebinning procedure involves modification of the
spectrum intensities and their variances.

If the Add error option is set to Yes, then the error of the wavelength calibration
is involved into the calculation of variances of rebinned pixels.

The rebinned spectra can be used for radial velocity measurements, although the
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cross-correlation procedure itself does the rebinning from wavelength into radial
velocities in case the Radvel option is selected.

Transformation into radial velocity

The procedure is similar to the previous one, but no rebinning of the intensities is
performed. The wavelengths are transformed into radial velocity scale with respect
to the central wavelength specified in the FITS record: vi = c · ln(λi/λc). This
creates a table of unequally spaced radial velocities for each pixel of the spectrum.
The spectra can be used for the cross-correlation in Wavelength rebinning mode.

The Add error option has no effect for this procedure.

Remove offset in pixels

The procedure removes an offset in pixel scale and the value is given in the specified
FITS record. The type of the spectrum argument units is irrelevant. A shift by one
pixel moves the pixel position (wavelength number, radial velocity, etc.) from the
original pixel to the new one which results in the shift of the spectrum leftwards
with respect to the original one. A shift by half a pixel results in a spectrum where
the pixel position is calculated as the mean of the positions of two adjacent pixels.

The Add error option requires also an error of the offset given in the FITS record
with the prefix E in the name of the pixel shift keyword name. The option affects
the variance of the pixel intensities.

Remove offset in wavelength

The procedure removes the offset given in axis units which can be wavelength,
radial velocity, pixels, etc. and results in modification of pixel positions.

The Add error option requires also an error of the offset given in the FITS record
with the prefix E in the name of the wavelength offset keyword name. The variance
of the pixel intensities are modified according to the error of the wavelength scale
(if the spectra are in wavelength scale) and the error of the specified offset.

A.11 Continuum normalization

The continuum normalization involves fitting of a smoothing spline or a polynomial
to the area of the spectrum free of spectral lines. The procedure requires the
presence of the variances in the spectrum (to check it, display the spectrum and
run the plot variance command in Scaling menu Alt-V). If for some reason no
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variances are present, make an estimation of the photon noise or set the variances
to a constant in the Process/variances menu of the database of spectra.

The fitting of the curve is done from the Approximation menu after the spectrum
is displayed. Use the Gray- key to mask pixels out or Gray+ key to unmask them
(the masked pixels are displayed in a gray colour). The pixels around spectral lines
being masked out are not used for the approximation. Open the Approximation

window, select Weighted fit, set clipping levels to 0, and use a spline of the specified
smoothing factor or a polynomial of a certain degree. Normally it generates a curve
which overplots the spectrum. The curve is automatically saved as a FITS file with
the same name as the spectrum and the extension .pol. The file is added to the last
records of the database and can be retrieved later. In order to generate and display
the normalized spectrum on the same screen, choose the option Take as Ratio by
pressing Enter on the command (the other choice are Difference and None). Set
up the output normalized spectrum extension in the Second output command,
.nor, for instance. Run the fit again to generate the normalized spectrum which
is automatically saved as a FITS file and added to the database. The option
Overwrite mode prevents overwriting the existing file. For the trial-and-error fit,
the option should be set to Yes. To display the normalized spectrum in the same
scale as the original, change the scaling factor in Scaling/Scale Alt-F7 to the
value, for instance, of 1.5 times of the original spectrum intensity. The normalized
spectrum will be enlarged on the screen by this amount (the spectrum intensities
are not modified). Change the mask, if necessary, by (un-)masking pixels and tune
the fit parameters to satisfy a good continuum.

To facilitate the continuum fitting, the procedure can be used in a clip-and-fit mode
to exclude from the fit narrow absorption lines. Set the Clip below parameter to
2 and make a fit. The features below 2σ of the standard deviation are masked out
and the remaining pixels are used for the fit. In fact, the procedure does a number
of iterative fits subsequently masking the deviating pixels before it converges to
the some curve. Broad spectral features or emission lines can be excluded from the
fit by hand with the Gray- command. The resulting normalized spectrum inherits
the position of the masked pixels (they are seen in gray): in order to restore them
to the normal mode use unmask pixels commands Gray +, or it can be done at
once for many spectra by running the Process/Variances/Absolute variances

command from the database of spectra (the spectra should be marked).

The described normalization can also be done for many spectra at the same time
if the spectra are similar to each other and cover the same wavelength range. The
original marked spectra are displayed on the same screen with the Alt-Enter

command and the above masking and normalization will be performed for every
spectrum at the same time. A useful command for this purpose is Fit/Transfer

intervals, which masks the same pixels of all displayed spectra as in the first
spectrum. A non-interactive fit and continuum normalization can be also done
for a number of marked spectra from the Process/Polynomial approximation
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Figure A.15: Left: A spectrum normalized to a polynomial continuum of 7th degree
in the fit-and-clip mode, where a 2σ clipping of features below the continuum was
used. The normalized spectrum was scaled by 80000 to be seen in the same scale
as the original spectrum. The broad emission Hα line was excluded from the fit
by masking its pixels out with the Gray- command, as it is seen on the original
spectrum by its gray colour. Right: A spectrum normalized to the continuum of the
mean spectrum. Shown are the original spectrum, the ratio to the mean spectrum
(shifted upwards for clarity), and its polynomial curve which is the continuum.
The resulting normalized spectrum is scaled to 8000. In the ratio, a number of
small but sharp features are due to line profile variability.

menu of the database of spectra. This can be useful for a large amount of spectra
when there are no features to mask out, or the masking has been done with the
Transfer intervals command.

The other way to normalize to a continuum is to use a mean spectrum. Mark the
spectra and make the sum. Fit a continuum to the summed spectrum and nor-
malize to it. Divide every original spectrum by the normalized mean spectrum. In
the ratio, non-variable spectral lines are canceled and the shape of the continuum
remains. Fit a curve to these divided spectra: the Take option should be set to
None, and all variable line features should possibly be masked out. Divide the
original spectra by the smooth curves which constitutes the continuum normaliza-
tion. To do that, sort the database of spectra by file name and extension, and use
pair operations in the Process menu to divide the spectra. A synthetic spectrum
can be used as well instead of the mean normalized spectrum.

A.12 Cross-correlation of spectra

Select the spectra being used for the cross-correlation and display them simulta-
neously on the screen with the Alt-Enter command. The first spectrum in the
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sequence is used as the reference or template spectrum. To change the order of
the sequence, use the Alt-D or Alt-Q commands from the Marker menu. The
name of the first spectrum in the sequence is displayed in the bottom status bar.
Exclude parts of the spectrum which should not be used for the cross-correlation,
if necessary, by masking pixels out with the Gray- command. From the Fit menu
run the cross-correlation Alt-F10. Three modes for the lag calculations are incor-
porated: pixels, wavelengths, and radial velocities. Change the calculation mode
in the Marker menu, the range of the lags, and the number of points of the cross-
correlation function within this range. The change of the number of points starts
the calculations and displays the function. To interrupt the process press Esc.

The cross-correlation function in the pixel scale is calculated regardless of the
axis units: the offsets are applied in index units. In the wavelength mode it is
calculated in axis units, so that the spectra are rebinned with the same step size
in axis units. In the radial velocity mode the spectra are rebinned with the same
step size in velocity scale assuming that the axis unit is wavelength. The option
Marker/Position error is used to take into account the error of the wavelength
calibration when calculating the error of the cross-correlation offset determination
and is used when the axis unit of the spectra is wavelength.

To find the position of the maximum use the commands from the Search menu:
the Parabolic search command estimates the centroid position based on the cur-
vature of the uppermost points, the Polynomial fit command estimates the po-
sition of the maximum from a polynomial fit of specified degree, and the Gaussian

fit command is used to fit a Gaussian to the cross-correlation peak. The centroid
positions can be determined individually by going through the table of the offsets,
or it can be done at once for all of them. The table includes the following items:
the spectrum file name, the position of the function maximum Offset, the error
of the centroid determination StdDev (based on the variances of the spectra and
the curvature of the peak), the amplitude of the peak Rmax, χ2

ν of the regression fit
Rchi2, and the two coefficients of the linear regression c0 and c1. These parame-
ters can be saved into the FITS header of the spectra from the Exit menu. Select
a FITS keyword to be used to identify these parameters and save the changes. The
keyword can be used later to shift the spectra, i.e. to remove the stellar orbital
motion, from the Wavelength transformation menu as described above.

A.13 Decomposition of line profiles

Line profiles which consist of several components can be decomposed into a number
of Gaussian profiles with the use of the Reduction/Line parameters procedure
(Alt-F7). The decomposition function assumes that the variances of the spectrum
are present. Enter the function and fit a number of Gaussians to the line profile: to
fit an emission profile put the horizontal marker line above the continuum level and
to fit an absorption line put the marker below. Press Enter to do the fit: firstly,



A.13. DECOMPOSITION OF LINE PROFILES 145

Figure A.16: Left: A number of spectra are displayed in order to run the cross-
correlation facility. The spectra are offset in intensities and the reference spectrum
is at the bottom of the plot. A number of pixels on the left are masked out to be
excluded from the regression fit. Right: The cross-correlation function for every
spectrum and the maximum positions displayed in the table. The lag unit is radial
velocity. The opened Exit window shows the name of the FITS record used to
save the offsets in the header of each spectrum.

it recognizes all the features above or below the marker level, and secondly, makes
the fit of a Gaussian to each feature. To fit a Gaussian without minimization of
the profile width, change the option in Marker/Gaussian fit opt to No. This
creates a table of the initial guess for the multi-Gaussian fit. The table of the
line parameters can also be edited using Alt-F4. To display the Gaussian profiles,
press F8 (Table/Plot Gaussians).

The next step is to tell the program which of these initial profiles will be used
in the multi-Gaussian fit: being in the table of lines press Alt-I (Table/Select

line). A line with the table record in pink indicates that it is included into
the fit. In the same way a line can be excluded from the fit. Press Alt-F6

(Marker/Multi Gaussian fit) to start the fit: it opens a window where the
current parameters of the Gaussian profiles and the convergence of the fit are
displayed. One of the parameters is DeltaMax which is the tolerance interval. The
fit has converged when the tolerance is less than 10−11. If the fit has converged,
as indicated with a message at the bottom status bar, press Enter to accept the
newly fitted parameters. By pressing Esc, the newly found parameters of the fit
are discarded. If the fit has not converged, it indicates that the initial guess is too
bad: try to fit new Gaussian profiles which describe the components in a more
close way.

To display the sum of the decomposed Gaussians, use Alt-F8 (Table/Plot sum).
The individual Gaussians can be subtracted from the line profile with Alt-S

(Table/Subtract Gaussians), the line record in the table is displayed in red.
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It is useful in some cases, to subtract some of the components and do the fit to
the remainders. In this case the subtracted profiles have to be excluded from the
fit. The resulting composition of the Gaussians can be written into a separate
file by the Table/Write Gaussians command. The variances of the function are
the errors of the multi-Gaussian fit. It is also possible to modify the original line
profile by subtracting one or several components: on exit (Alt-X), the program
asks whether to save the changes (press Enter) or not (press Esc). Subtraction of
a component changes the variances of the initial line profile.

The resulting parameters in the table from the multi-Gaussian fit are the line
position and its error (Position and σ(Pos)), the amplitude and FWHM of the
Gaussian (Intensity and FWHM), and the equivalent width with its error (EWG and
σ(EWG)). The table of the parameters can be exported into a text file by using the
Table/Print table command.

Figure A.17: Left: A line profile decomposed onto three Gaussians. The line
profile, the individual components, and their sum are shown. Right: After the
fit, the two broad components are subtracted leaving the narrow component. The
plotting mode is changed to show the error bars of the pixels.
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Appendix B

Publications based on

SOFIN observations

In this chapter a list of publications is given where the observing and reduction
methods presented in the thesis were used.

The publications are divided into three groups, the first two (T Tau and RS CVn
stars) contain results of the research project “Late type stars and interstellar
matter: activity, magnetism, and turbulence” at the University of Oulu. The third
group gives the papers of other works to which the author has contributed. Selected
publications, marked with a bullet in the list, are presented in the subsequent part
of this thesis.

The author’s contributions in most of the papers are observations and data re-
duction. This has given the possibility to develop the observing technique and
data analysis, and to obtain a unique set of scientific observations. Frequent
observations, analysis of various instrumental effects, the CCD optimization, de-
velopment of the specific observing approach to the spectrograph resulted in high
quality spectra as compared to the earliest observations with SOFIN or with other
spectrographs we have used. The data reduction facility, as it is described in this
thesis, was not created at once but was continuously developed during the past
years with the raw material in hands. The most essential procedures which deter-
mine the quality of spectra reduction were recreated in some cases several times
to achieve the maximum efficiency and stability. All this has resulted in excellent
scientific output.

A demand to observe and analyze small effects of the line profile position and
shape, which we see in the spectra of e.g. extra-solar planetary systems and stars
which undergo non-radial pulsations, was a next step in the development of the
data analysis facility including the error propagation in the data reduction, ad-
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vanced cross-correlation, multi-period analysis, and the spectrum/PSF deconvo-
lution facilities. The work is still going on and many new results are not included
in the present thesis.

B.1 T Tau stars

Refereed journals:

Petrov, P.P., Gullbring, E., Ilyin, I., Gahm, G.F., Tuominen, I., Hackman, T.,
Lodén, K. 1996, “The gas flows of SU Aurigae”, A&A 314, 821

Gullbring, E., Petrov, P.P., Ilyin, I., Tuominen, I., Gahm, G.F., Lodén, K. 1996,
“Line profile variations of the classical T Tauri star BP Tauri”, A&A 314,
835

Zajtseva, G., Petrov, P.P., Ilyin, I., Duemmler, R., Tuominen, I. 1996, “RY Tauri
at high brightness”, IBVS 4408

• Petrov, P., Duemmler, R., Ilyin, I, Tuominen, I. 1998, “Increase of emission and
shell features in the spectrum of the FUor V1057 Cyg”, A&A 331, L53

• Petrov, P.P., Zajtseva, G.V., Efimov, Yu.S., Duemmler, R., Ilyin, I.V., Tuomi-
nen, I., Shcherbakov, V.A. 1999, “Brightening of the T Tauri star RY Tauri
in 1996. Photometry, polarimetry and high-resolution spectroscopy”, A&A
341, 553

Conference proceedings:

Gahm, G.F., Petrov, P., Tuominen, I., Gullbring, E., Ilyin, I. 1995, “High-
resolution spectroscopy of T Tauri stars”, 4th MUSICOS workshop (eds.
L.Huang, D.S.Zhai, C.Catala, B.H.Foing), p. 237

Petrov, P.P., Gullbring, E., Gahm, G.F., Lodén, K., Ilyin, I., Tuominen, I., Hack-
man, T. 1995, “Wind, accretion and spots of the T Tau star SU Aurigae”,
Stellar surface structure (ed. K.Strassmeier), IAU Symp. 176, Poster Pro-
ceedings, p. 217

Zajtseva, G., Efimov, Yu., Petrov, P., Ilyin, I., Duemmler, R., Tuominen, I.
1998, “Brightening of the T Tauri star RY Tau in 1996”, Cool Stars, Stellar
Systems, and the Sun, 10th Cambridge Workshop, (eds. J.A.Bookbinder &
R.A.Donahue), PASPC 154, p. 1808
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B.2 RS CVn stars

Refereed journals:

• Duemmler, R., Ilyin, I., Tuominen, I. 1997, “A new radial velocity curve for the
RS CVn star σ Gem. Constraints on its physical parameters.”, A&AS 123,
209

• Berdyugina, S.V., Jankov, S., Ilyin, I, Tuominen, I., Fekel, F.C. 1998, “The
active RS Canum Venaticorum binary II Pegasi. I. Stellar and orbital pa-
rameters”, A&A 334, 863

• Berdyugina, S.V., Berdyugin, A.V., Ilyin, I., Tuominen, I. 1998, “The active
RS Canum Venaticorum binary II Pegasi. II. Surface images for 1992-1996”,
A&A 340, 437

Korhonen, H., Berdyugina, S.V., Hackman, T., Duemmler, R., Ilyin, I.V., Tuomi-
nen, I. 1999, “Study of FK Comae Berenices. I. Surface images for 1994 and
1995”, A&A 346, 101

• Berdyugina, S.V., Ilyin, I., Tuominen, I. 1999, “The long-period RS Canum
Venaticorum binary IM Pegasi. I. Orbital and stellar parameters”, A&A
347, 932

• Berdyugina, S.V., Ilyin, I., Tuominen, I. 1999, “The active RS Canum Venatico-
rum binary II Pegasi. III. Chromospheric emission and flares in 1994-1996”,
A&A 349, 863

• Berdyugina, S.V., Berdyugin, A.V., Ilyin, I., Tuominen, I. 1999, “The active RS
Canum Venaticorum binary II Pegasi. IV. The spot activity cycle”, A&A
350, 626

• Berdyugina, S.V., Berdyugin, A.V., Ilyin, I., Tuominen, I. 2000, “The long-
period RS Canum Venaticorum binary IM Pegasi. II. First surface images”,
accepted by A&A

Conference proceedings:

Shcherbakov, A.G., Fernandez-Figueroa, M.J., Martin-Parra, F., De Castro, E.,
Cornide, M., Montes, D., Ilyin I., Tuominen I. 1995, “The He i 10830Å and
Ca ii H observations of the RS CVn system ζ And”, Stellar surface structure
(ed. K.Strassmeier), IAU Symp. 176, Poster Proceedings, p. 181

Berdyugina, S., Ilyin, I., Tuominen, I. 1998, “II Peg: Stellar and Orbital Parame-
ters”, Cool Stars, Stellar Systems, and the Sun, 10th Cambridge Workshop,
(eds. J.A.Bookbinder & R.A.Donahue), PASPC 154, p. 1384
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Berdyugina, S., Ilyin, I., Tuominen, I. 1998, “II Peg: New Surface Images for
1992-1996”, Cool Stars, Stellar Systems, and the Sun, 10th Cambridge Work-
shop, (eds. J.A.Bookbinder & R.A.Donahue), PASPC 154, p. 1952
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154, p. 1477
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Proceedings of Astrophysics with the NOT (eds. H.Karttunen & V.Piirola),
University of Turku, p. 222
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