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Abstract—Non-Orthogonal Multiple Access (NOMA) is at the
heart of a paradigm shift towards non-orthogonal communication
due to its potential to scale well in massive deployments. Neverthe-
less, the overhead of channel estimation remains a key challenge
in such scenarios. This paper introduces a data-driven, meta-
learning-aided NOMA uplink model that minimizes the channel
estimation overhead and does not require perfect channel knowl-
edge. Unlike conventional deep learning successive interference
cancellation (SICNet), Meta-Learning aided SIC (meta-SICNet)
is able to share experience across different devices, facilitating
learning for new incoming devices while reducing training over-
head. Our results confirm that meta-SICNet outperforms classical
SIC and conventional SICNet as it can achieve a lower symbol
error rate with fewer pilots.

Index Terms—NOMA, SIC, deep learning, SICNet, pilot allo-
cation, meta-learning.

I. INTRODUCTION

The path to future wireless networks is encompassed by
a massive deployment of devices, enabling smart cities, au-
tonomous vehicles, and many unforeseen scenarios. Machine-
type Communication (MTC) services have revolutionized the
wireless communications industry by shifting the focus toward
the Internet of Things (IoT). Besides a large number of devices,
these mMTC devices are often battery constraint, with limited
computational capability, and have heterogeneous and sporadic
traffic patterns. Combined, these characteristics impose many
challenges for the design of efficient random-access proce-
dures and radio resource management. Therefore, researchers
are increasingly studying multiple access techniques that are
able to scale well to this massiveness while coping with the
existence of interference and scarce spectrum. In this context,
Non-Orthogonal Multiple Access (NOMA) with Successive
Interference Cancellation (SIC) has shown potential and has
been the focus of academy and industry in recent years [1]–[7].
This is because NOMA schemes allow for multiple-user trans-
mission with superior performance compared to conventional
orthogonal schemes. These recent surveys evince the popularity
and potential of NOMA and overview key characteristics,
techniques, and applications [1], [4], [5].

Despite the recent advances, there are many open chal-
lenges concerning NOMA in massive IoT deployments such
as latency, complexity of receivers, perfect channel knowledge
and effective utilization of radio resources. These challenges
prompted researchers to look into data-driven approaches to
handle multi-user connectivity [7]–[10]. We should note that

data-driven learning-based communication systems aim to co-
exist or replace conventional model-based approaches thanks
to their low complexity and ability to adapt well to vary-
ing channels. Moreover, the learning-based models can be
easily customized to any environment, however, at cost of
new training instances. For instance, [9] argues that although
linear processing has been effective in NOMA systems, non-
linear processing is sometimes necessary to maintain good
performance. The authors propose a neural network archi-
tecture that leverages the benefits of both linear and non-
linear processing leading to efficient real-time detection per-
formance. The authors in [8] introduce a deep-learning-based
user detection solution (DeepMuD) for the uplink in massive
MTC NOMA. The proposed DeepMuD employs an offline-
trained Long Short-Term Memory (LSTM)-based network for
multi-user detection without the need for perfect channel state
information (CSI). Interestingly, authors report that DeepMuD
improves error performance compared to conventional detectors
and becomes even better as the number of devices increases.
Authors in [7] introduce a deep learning approach for esti-
mating the symbols named SICNet in the downlink NOMA.
Contrary to conventional SIC, SICNet replaces the interference
cancellation blocks with deep neural networks (DNNs) to infer
the soft information representing the interfering symbols in a
data-driven fashion, yielding robustness against changes in the
number of users and power allocation.

More recently, ML-based transceivers have gained lots of in-
terest. For instance, the authors of [11] proposed a meta-SICNet
detection scheme for massive MIMO. The results showed that
their meta-SICNet outperforms the conventional MMSE detec-
tor. Furthermore, the work in [12] investigates learning-based
transceivers using joint learning and meta-learning techniques.
An important limitation of the autoencoder-based approach
to end-to-end training is that training should be generally
carried out from scratch for each new channel. Despite the
enhanced performance, such models can be trained on an
end-to-end basis irrespective of the underlying modulation or
multiplexing scheme. However, when relying on conventional
training schemes, these models are required to be trained
from scratch for each separate transmission condition, which
is cumbersome in MTC networks with heterogeneous traffic
and radio resources. Therefore, such networks would benefit
from a learning scheme that accumulates experience to facilitate
learning in new conditions.



In this context, meta-learning was introduced [13]–[15], also
known as learning to learn. Often communications networks are
expected to operate under a variety of system configurations.
Using conventional learning requires the training of a separate
model for each system configuration, leading to data and
training time and processing costs. Owing to efficiency, we
want to train a single model that would perform across all
configurations. However, for such joint training, there may not
exist a model that is able to perform well. On the other hand,
meta-learning uses data from multiple configurations to infer
a model class and learning procedure, enabling learning on
configurations of interest. For example, few-shot classification
aims to infer a learning procedure that trains a classifier under
limited training data from each class. To do so, the learning
procedure is inferred from meta-training data that quickly train
a classifier on meta-training tasks, rather than training a single
model to classify across all tasks [13], [14]. More specifically,
in a wireless communication setting, meta-learning outperforms
(with respect to symbol error probability) conventional and
joint training in IoT scenarios where devices transmit few
pilots while adapting to non-linearities and fading. Learning
to communicate on noisy or fading channels requires training
to be carried out from scratch for every channel, for example,
using pilot symbols. In this case, joint training is equivalent to
non-coherent transmission. In [16], authors address the sensing
and fusion problem in massive MTC, which aims to collect
and process a large amount of information and extract key
features representing the observed process. However, sens-
ing and fusion impose communication overheads and data
redundancy to perform a given accuracy. The authors then
proposed a meta-learning adaptive sensing and reconstruction
framework that leverages prediction error and sensing decisions
so to reduce the amount of communication overhead while
guaranteeing robustness. Besides, they show that meta-learning-
based approaches outperform conventional machine-learning
algorithms in terms of convergence rate.

A. Contributions

In this context, we build upon [7], [8], [17] and propose
a novel few pilot-aided detection mechanism, named meta-
SICNet, for NOMA uplink in massive MTC. Herein, as in
[7], we infer the interfering symbols via deep neural networks.
However, we can reduce training over the network by the use of
meta-learning, and in addition, as in [17], we reduce the number
of pilots required for detection. Therefore, our contributions are

• We propose a data-driven approach that applies meta-
learning for NOMA uplink transceiver design.

• The network model consists of multiple MTC devices
transmitting their superimposed signal to the BS. Then,
the meta-SICNet framework in the BS learns to recover
the transmitted symbols using the meta-training and adap-
tation approach.

• The meta-SICNet is able to decode symbols with fewer
pilots, in the presence of interference, compared to basic
SIC and conventional SICNet methods.

Fig. 1: The system model comprises k sets of meta-training devices and one
Meta-testing device. Each meta-training set, k, transmits a superimposed signal,
xk of L-devices to the BS.

• Extensive simulation results elucidate that the proposed
meta-SICNet scheme significantly outperforms both clas-
sical SIC and conventional SICNet in terms of outage
probability and requires a lower number of pilots (down
to 2 pilots).

B. Outline

The rest of the paper is organized as follows: section II
depicts the system model and the problem formulation. Conven-
tional SICNet and the proposed meta-learning-based SICNET
solutions are presented in Sections III and section IV elucidates
the results, and finally, the paper is concluded in Section V.

II. SYSTEM LAYOUT AND PROBLEM FORMULATION

A. System Layout

We consider a non-orthogonal uplink channel where we have
K meta-training device groups and one meta-testing group. For
each group k, L IoT devices transmit their data to the BS within
the same time and frequency resources as illustrated in Fig.1.
The devices transmit {x(k)=1,...,K

l=1,...,L } symbols to the BS using
superposition coding, where the symbol x(k)

l is the lth symbol
transmitted from the kth device. Specifically, the symbol x(k)

l

is amplified with the transmitted power Pl for l = 1, . . . , L.
The channel input is the superimposed signal xk given by

xk =

L∑
l=1

√
Plx

(k)
l (1)

The symbols are sampled from an M -point constellation S, and
assumed to be mutually independent with unit mean power, i.e.,
E
[∣∣∣x(k)

l

∣∣∣] = 1. For simplicity, we assume all devices have the
same modulation order M . The channel output at the BS for
each k group denoted as yk for k = 1, . . . ,K is given by

yk = hkxk + nk, (2)

where hk ∈ C is the channel coefficient between the BS and the
device-group k, and nk ∼ CN (0, σ2) is the complex additive
white Gaussian noise (AWGN).



Fig. 2: Architecture of SICNet for DNN-based SIC for L = 2 devices.

B. Problem Formulation

We aim to construct a symbol detection demodulator based
on a short packet transmission of a few pilot symbols. For
each device l in the device group k, the detected symbol,
i.e., x̂(k)

l , is estimated from the channel output yk. To enable
symbol recovery using few-pilot learning, we use a data-driven
approach based on meta-learning and DNNs. Assuming no
prior information about the channel model at the receiver,
the BS can use the signals received from the previous pilot
transmissions of K other IoT device groups, which are referred
to as meta-training devices and their data as meta-training data.
In particular, the BS has available N pairs of pilots xk and
received signal yk for each meta-training group k = 1, . . . ,K.
The meta-training dataset is denoted as D = {D}k=1,...,K ,
where Dk = {(xk

(n), y
(n)
k ) : n = 1, . . . , N}, and (xk

(n), y
(n)
k )

are the pilot-received signal pairs for the kth meta-training
group of devices.

For the meta-test devices, the BS receives P pilot symbols.
It collects the P pilots received from the target device in
set DT = {(x(n), y(n)) : n = 1,. . ., P}. The demodulator can
be trained using meta-training data D and the pilot symbols
DT from the meta-test devices. To recover the symbols, the
successive interference cancellation algorithm is utilized, such
that the power allocations for the superimposed symbols satisfy
P1>P2. . .>PL. Hence, the meta-learning-based DNN succes-
sively detects each symbol from the channel output signal yk.

III. DEEP LEARNING-BASED SIC

In this section, we describe the data-driven solutions based on
DNNs to perform SIC and symbol detection. First, we introduce
the conventional DNN based SICNet; then we illustrate the
proposed meta-SICNet approach.

A. SICNET

The DNN-based SIC, called SICNet, was introduced in [7]
to estimate the transmitted symbols in the downlink NOMA
users scheme. For the sake of illustration, we consider an uplink
scheme with L = 2 devices in each device group. As depicted
in Fig. 2, the architecture of SICNet is implemented using
sequential DNN blocks. Each block performs symbol recovery,
which is considered a classification problem. Therefore, the
structure of SICNet consists of L DNN stages, where each
stage estimates the transmitted symbol of each device. Each
stage uses the received signal yk and the output vector pl for

Support-Set

Query-Set

Training
Dataset

SICNet

SICNet

k

Test-Set SICNet 

Meta-Training on K Meta-Groups

Adaptation on Meta-Test Group

Fig. 3: Architecture of meta-SICNet

l = 1, . . . , L that represents the conditional distribution of the
corresponding symbol, expressed as

pl =

 p̂(xl = γ1|yk,p1, . . . ,pl−1)
...

p̂(xl = γM |yk,p1, . . . ,pl−1)

 , (3)

where γi is the ith constellation symbol in the constellation
space S for i = 1, . . . ,M , and p̂(xl = γi|yk,p1, . . . ,pl−1) is
a parametric estimation of the probability of xl given yk and
the previous estimates p1, . . . ,pl−1.

The data-driven feature of the SICNet increases its capability
to detect symbols reliably without requiring full knowledge of
the channel model. Concretely, it works in a model-agnostic
manner contrary to the conventional SIC algorithm [7], which
requires a restricted channel model [18]. Thus, SICNet operates
with arbitrary channel models depending on the classification
process of the data-driven DNN. Furthermore, the SICNet
architecture only requires knowledge of the modulation order
M and the power coefficients of the transmitted signals.

B. Proposed Meta-Learning Approach

In this section, we describe the meta-learning approach for
demodulation based on [17]. In our proposed method, the meta-
learning-based SICNet allows learning the interference cancel-
lation and signals demodulation using a few-pilot transmission.
Moreover, the model can quickly adapt to the change in the
channel conditions, in contrast to the classical SICNet.

In our model, the learning is performed in two phases; the
meta-learning phase and the test-adaptation phase, as shown
in Fig. 3. In the meta-learning phase, we use the meta-
training data D and iterate over the number of K meta-tasks
(meta-devices) to learn a general parameter vector θ using the
inner task parameter θ′k. This can be done offline at the BS
while collecting data from training devices. For the meta-test
adaptation phase, the learned parameter θ is adapted to enable



Algorithm 1: Meta-Learning based SIC
Input: Meta-training data D = {Dk=1,...,K}, and

meta-testing pilot data DT ; NS
tr and NQ

tr ; step
size α and β.

Output: Learning parameter vector θ; SER.

1 Randomly initialize the parameter vector θ.
2 START META-TRAINING:
3 while not done do
4 for each meta-training group k do
5 Randomly split Dk into two sets; support-set

DS
k of size NS

tr, and query-set DQ
k of size NQ

tr .
6 Calculate the gradient ∇θLDT

(θ) from (4) with
DT = DQ

k , and ∇2
θLDT

(θ).
7 Compute adapted parameters θ′ using (5) as

θ′k = θ − β∇θLDQ
k
(θ)

8 end
9 update the meta-parameter θ:

θ ← θ − α∇θ

K∑
k=1

LDS
k
(θ′k)

10 end
11 START META-TESTING ADAPTATION:
12 for testing epochs do
13 Load the learned parameter vector θ.
14 Sample data from DT .
15 Update θ in the direction of the gradient with step

size η by
θ ← θ − η∇θLDT

(θ)

16 end

fast adaptation based on the few pilots P transmitted by the
target (meta-test) devices. Consequently, the test data-set DT

is used to train a demodulator pθ(x|y) to minimize the cross-
entropy loss given by

LDT
(θ) = −

∑
(x(n)|y(n))∈DT

log pθ(x
(n)|y(n)). (4)

Then, the stochastic gradient descent is used to update the
parameter θ iteratively as

θ ← θ − η∇θ log(x
(n)|y(n)), (5)

where the pair (x(n)|y(n)) ∈ DT , and η is the step size. As
discussed in [13], the purpose of the MAML algorithm is to find
the initial parameter θ such that, for any device, the loss after
one iteration of (5) applied to the received pilots is minimized.
The training and testing (adaptation) steps are illustrated in
Algorithm 1.

IV. NUMERICAL ANALYSIS

In this section, we evaluate the performance of the proposed
meta-SICNet in terms of symbol error rate (SER) and compare

TABLE I: meta-SICNet Model Parameters

Parameter Value
Number of device groups for meta-SICNet K 20
Number of devices in each group L 2
Modulation Number M 2
Power factors of the devices P1, P2 4, 1
Number of DNN layers for SICNet 4
Neurons for DNN block 1 24-12
Neurons for DNN block 2 32-16
Activation function for hidden layers ReLU
Activation function for output layers Softmax
Optimizer Adam
Outer learning rate α 0.1
Inner learning rate β 0.001
Number of training epochs 300
Number of pilots for training data NS

tr, N
Q
tr 4, 4

Size of testing data for target devices 106

Training SNR 6 dB
Learning-rate for adaptation on test devices η 0.001
Number of adaptation epochs 1000

it to the performance of classical SIC and conventional SICNet.
The simulation parameters for meta-SICNeT are presented in
Table I. The model considers K = 20 meta-device groups
for training, and each group includes L = 2 non-orthogonal
interference devices for the UL system. The transmitted signal
to the BS is modulated using the BPSK modulation scheme
of modulation order 2, where the signal is superimposed by
the power coefficients P1 = 4 and P2 = 1. The SICNet
architecture comprises 2 DNN blocks, and each DNN consists
of 4 layers; the input and output layers and two hidden layers.
The number of neurons in each hidden layer is shown in
Table I. The training loss criteria is based on the combined
loss from both devices. For the end-to-end training, we used
the Adam optimizer with the meta-learning rate α = 0.1 and
inner learning rate β = 0.001. For simplicity, we consider a
symmetric channel model of ±1, where half of the training
groups have a channel of +1 and the other half −1. For
adaption on target devices, the channel is chosen randomly as
+1 or −1. The training is performed on an 11-th Gen Intel
Core i5 2.40GHz CPU and 16-GB RAM. The training loss
converges after 200 epochs.

Fig. 4 depicts the performance of SER for both meta-SICNet
and SICNet for a different number of pilots. The simulation
was performed for Nte = 1, 2, . . . , 8 with an SNR value
of 15 dB. The results show that the meta-learning approach
outperforms the SICNet in terms of SER. Moreover, it is
clear that increasing the number of pilots improves learning
performance. However, for meta-SICNet, the SER relatively
saturates faster at 2 or 3 pilots. Note that device 2 always
performs better since interference is already removed after
decoding the signal from device 1, which captures the SIC
effect.

In Fig. 5, we plot the symbol outage probability as a
function of the SNR for SNR values {0, 2, . . . , 18} using 4 pilot
symbols. It appears that the meta-SICNet can capture the effect
of SNR as the symbol error rate significantly improves when
increasing the SNR. Again, it is obvious that the meta-SICNet
outperforms conventional SICNet and the classical SIC for all
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Fig. 4: Symbol error rate vs. number of pilots for Meta-testing devices and
SICNet (SNR = 15 dB).
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Fig. 5: Symbol error rate vs. SNR for Meta-testing devices, SICNet, and
conventional SIC (number of pilots = 4).

SNR values, which proves the superiority of the proposed meta-
learning solution for in NOMA uplink. Note that the classical
SIC is the worst performer here, so we just added one curve
for illustration.

In Fig. 6, we address the performance of meta-SICNet for
a different number of meta-training tasks (device groups) with
15dB SNR and Nte = {4, 8} pilots. The simulation shows that
the capacity of learning for the meta-SICNet model improves
when increasing the meta-training device groups. Therefore,
the model can achieve lower SER if the training experience is
shared between more device groups.

Table II illustrates the training complexity for both meta-
SICNet and SICNet in terms of the number of parameters,
training time per epoch, and adaptation (testing) time. Although

5 10 15 20 25 30

10-3

10-2

Fig. 6: Symbol error rate vs. number of meta-training tasks (number of device
groups) for SNR = 15 dB, and number of pilots 4, 8.

TABLE II: Complexity analysis of meta-SICNet vs. SICNet, 8 pilots

Model # Parameters Training time Test-time

Meta-SICNet 2240 50.3 ms 4.01 ms
SICNet 1120 10.9 ms 41.01 ms

the meta-SICNet approach achieves higher computational com-
plexity, the training can be done offline among the meta-training
device groups. Then, the online adaptation process is performed
to continuously update the model parameters without having to
train the model again. On contrary, the SICNet model requires
performing the whole training process online whenever the
channel condition alters. Therefore, the testing (adaptation)
time for the meta-based approach is much less than SICNet
for the same number of pilots. Hence, meta-SICNet can achieve
lower SER with relatively low online complexity (i.e, only 4.01
ms of adaptation time).

V. CONCLUSIONS

In this work, we introduced a data-driven, meta-learning-
aided NOMA uplink model. Unlike classical SIC and con-
ventional deep learning SIC, the proposed meta-SICNet can
accumulate experience across different devices, facilitating the
learning process for newly introduced devices and reducing
the training overhead. Our results confirm that meta-SICNet
outperforms conventional SICNet as it can achieve a lower sym-
bol outage probability. Moreover, meta-SICNet can converge
faster and renders significantly good performance for a few
pilots (only 2 or 3 pilots). Although meta-SICNet consumes a
longer time for training, the training phase is performed offline,
and the online adaptation phase consumes a very short time
(≈ 4 ms) compared to conventional SIC, which reduces the
online complexity. There are plenty of possible extensions to
the meta-SICNet approach proposed here, among which full-
duplex NOMA with self-interference cancellation, adaptation to



a higher number of devices, and meta-learning aided massive
MIMO.
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