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Abstract—Effective resource allocation is a crucial requirement
to achieve the stringent performance targets of ultra-reliable
low-latency communication (URLLC) services. Predicting future
interference and utilizing it to design efficient interference
management algorithms is one way to allocate resources for
URLLC services effectively. This paper proposes an empirical
mode decomposition (EMD) based hybrid prediction method to
predict the interference and allocate resources for downlink based
on the prediction results. EMD is used to decompose the past
interference values faced by the user equipment. Long short-
term memory and auto-regressive integrated moving average
methods are used to predict the decomposed components. The
final predicted interference value is reconstructed using indi-
vidual predicted values of decomposed components. It is found
that such a decomposition-based prediction method reduces the
root mean squared error of the prediction by 20 − 25%. The
proposed resource allocation algorithm utilizing the EMD-based
interference prediction was found to meet near-optimal allocation
of resources and correspondingly results in 2 − 3 orders of
magnitude lower outage compared to state-of-the-art baseline
prediction algorithm-based resource allocation.

Index Terms—Auto-regressive moving average, decomposition-
based prediction, empirical mode decomposition, intrinsic mode
functions, long-short term memory, residual, ultra-reliable low
latency communication.

I. INTRODUCTION

The ultra-reliable low-latency communication (URLLC) ser-

vice class has been introduced in fifth-generation (5G) new

radio to support mission-critical applications where uninter-

rupted and robust data exchange is of the utmost importance.

It has use cases in factory automation, process industries, smart

grids, intelligent transport systems, and professional audio ap-

plications [1]. The latency and reliability targeted by URLLC

services are one millisecond and 1− 10−5, respectively [2].

URLLC is confronted with three significant lower layer

challenges: uncertain traffic arrival, random channel impair-

ments including fading, and random interference [3]. Conven-

tional resource allocation methods address these challenges by

adopting the transmission strategy based on the observed out-

come, for instance, hybrid automatic repeat request (HARQ)

re-transmissions in the case of a transmission failure [4]. As

the latency and reliability requirements for URLLC services

are much more stringent, such conventional schemes are not

able to support it efficiently [5].
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Existing 5G URLLC enabling technologies separately focus

on achieving low latency and high reliability. Although these

independently created reliability and latency-enabling tech-

nologies meet the 5G standards, these existing technologies

may not be capable enough to meet the requirements of

networks beyond 5G. For example, 5G achieves reliability

requirements by over-provisioning resources, which otherwise

could have been allocated for some other service, such as

enhanced mobile broadband (eMBB) or massive machine-type

communication (mMTC). Therefore, an innovative, intelligent

solution must simultaneously address latency and reliability

while utilizing scarce resources efficiently.

Developing an intelligence mechanism to predict future

interference values and allocate resources proactively is seen

as a potential URLLC enabler that can facilitate efficient

resource allocation [6]. Link adaptation is a traditional method

that predicts future interference values based on past inter-

ference samples [7]. However, one drawback of conventional

link adaptation schemes is that they only consider the mean

value of all interference values from the past, ignoring the

sudden interference fluctuations. This behavior may result in

inaccurate predictions because it lacks knowledge of the entire

interference distribution. Hence, an interference prediction

scheme that utilizes the whole past interference distribution

for the forecast will lead to better predictions.

A recursive predictor is presented in [8], where the auto-

correlation of interference is converted into an autoregres-

sive moving average representation, which is then utilized

to estimate future interference. Predictive interference-aware

resource allocation for graphical processor unit systems for

efficiently training deep learning models are presented in [9].

In addition, interference prediction for vehicular communica-

tion is proposed in [10], where packet collision is avoided by

the knowledge of the predicted interference vehicles. Since

interference is a highly random signal with contributions from

multiple interferers, accurately predicting interference is a

complex procedure. Hence, more accurate prediction mech-

anisms need to be explored. Towards this end, we propose a

novel empirical mode decomposition (EMD) based approach.

The study of efficient resource allocation for URLLC ser-

vices based on predictive interference values is still in the early

stages [11]. Therefore, we propose a novel hybrid resource

allocation scheme using EMD [12]. In the proposed method,

we decomposed the original signal using EMD and predicted

the decomposed signal components using long-short term



memory (LSTM) [13] and autoregressive integrated moving

average (ARIMA) [14]. Then, individually predicted compo-

nents are added to form a total interference prediction. Finally,

resources are efficiently allocated in the downlink based on the

predicted interference values. The proposed scheme achieves

near-optimal performance, which is difficult to achieve using

conventional interference prediction and resource allocation

methods.

The rest of this paper is organized as follows. Section II

represents the system model and problem statement. In Sec-

tion III, we propose the EMD-based prediction and resource

allocation scheme. Simulation results and performance analy-

sis are given in Section IV. Finally, conclusions are presented

in Section V.

II. SYSTEM MODEL

Consider the downlink of a wireless network. We are inter-

ested in the performance of a URLLC user operating in the

presence of N interferers, as shown in Fig. 1. It is assumed that

the desired channel has an average signal-to-noise ratio (SNR)

of γ̄, whereas the mean SNR of the interference links (termed

as interference-to-noise ratios (INR)) are uniformly distributed

within a given range [γmin, γmax]. The desired link is assumed

to be established with the base station, which has the highest

SNR. Therefore, it is assumed that the interfering link with the

highest SNR value (γmax) has a lower SNR value compared

to the desired link (γ̄ > γmax). Also, we assume there is

no cooperation between transmitters. Further, we consider a

single antenna (single input single output (SISO)) Rayleigh

block fading model. The serving base station transmits D bits

via the desired downlink with the given target error probability

ε. The objective is to allocate channel uses R as efficiently as

possible to guarantee both low latency and high reliability by

predicting future interference values.

URLLC transmissions typically occur over a short trans-

mission time interval (TTI) that can be as low as 0.1 ms [15].

Since the coherence time of a typical wireless transmission

is much longer than this duration, the channel coherence

time can span over multiple TTIs. It is assumed that the

transmitter acquires sufficient knowledge about the desired

channel state information (CSI) within that coherence time.

Also, we consider the user equipment (UE) will update the

serving base station with the total interference values it has

seen in the past. This will give the serving base station more

information about the interference at the receiver, enabling it

to perform the proposed interference prediction scheme in the

downlink.

III. INTERFERENCE PREDICTION AND RESOURCE

ALLOCATION

In this work, we propose decomposing the complex sum

interference signal using EMD and predicting the individual

components separately to improve the prediction accuracy. A

schematic of the proposed method and state-of-the-art is shown

in Fig. 2.

Fig. 1. System model: desired link operates with N interferers.

A. Empirical mode decomposition

EMD decomposes the past total interference signal power

into intrinsic mode functions (IMF) using the heuristic de-

composition method [12]. As a result of this decomposition

method, we can obtain frequency-ordered IMF components.

Initial IMFs contain high-frequency oscillations. Then, the

oscillation frequency reduces as the IMF number increases,

resulting in more linear IMFs at the end. The total interference

signal power can be reconstructed using decomposed compo-

nents as

f(t) =

L−1
∑

i=1

IMF i(t) + res(t), (1)

where L is the number of decomposed components, and res(t)
is the residual. Here, L is not predetermined, and it only

depends on the nature of the signal. Prediction of a high

oscillatory signal is more challenging than a less oscillatory

signal when developing and training a model. As a result,

instead of relying on a single model for overall forecasting

interference, we have devised separate models for each IMF

and a residual component. Here, the input signal to each model

is less oscillatory as the IMF number increases. Therefore, the

model’s prediction accuracy improves, and the model training

task becomes more manageable. Similar to (1), the predicted

value of total interference can also be reconstructed by taking

the individual predicted values of each IMFs and residual.

The total interference signal is split into two sets to obtain

training and validation samples. This split can be done using

a predetermined training sample percentage value (e.g., 80%).

The number of samples in the total interference signal is

denoted as T . The number of samples in training data and

validating data are taken as P and M , respectively, where

T = P +M .

B. Prediction model selection and training

Two time series forecasting methods are used to predict the

values of each decomposed component, namely LSTM [14]

and ARIMA [13]. The ARIMA model is selected due to its

ability to work with non-stationary data [13]. The process of

ARIMA consists of four steps: identification, estimation, diag-

nostics, and forecasting. The LSTM recurrent neural network



Fig. 2. Proposed resource allocation scheme versus state of the art resource allocation scheme.

(RNN) method is selected due to its capability of learning

long-term dependencies and carrying forward learned informa-

tion for a long period by supporting future decisions [14] by

addressing the drawbacks of traditional RNN such as vanishing

or exploding gradients.

Each IMF and the residual are fed into these two forecast-

ing algorithms. Here models have been trained individually

corresponding to each IMF and residual with P number of

training samples to optimize the prediction accuracy of each

component signal. The total number of models trained using

the LSTM method equals adding the number of IMFs and

residuals (L), which is the same as ARIMA. These two

forecasting methods predict the next sample value based on the

trained neural networks and time series forecasting techniques.

Since there are M validating data points, the one-step

prediction method is repeated M times to obtain the predicted

value set. The advantage of iteratively predicting only one fu-

ture value at a time over predicting all M future values at once

is that we can optimize the model at each step by comparing

the most recent predicted value to the actual value. We can

improve prediction accuracy by always incorporating the most

recent data points into model training. The forecasted IMF and

residual values of each model are then added to obtain the final

forecasted interference signal using two methods as

LSTMrecon =

M
∑

t=1

(

L−1
∑

i=1

IMFLSTM(i)(t) + resLSTM (t)),

(2)

ARIMArecon =
M
∑

t=1

(
L−1
∑

i=1

IMFARIMA(i)(t) + resARIMA(t)),

(3)

where LSTMrecon is the reconstructed signal using the pre-

diction of each IMF and residual using the LSTM method,

ARIMArecon is the reconstructed signal using the pre-

diction of each IMF and residual using ARIMA method.

IMFLSTM(i)(t) is the predicted value using LSTM model

that trained to predict IMF(i) at time step t, IMFARIMA(i)(t)
is the predicted value using ARIMA model that trained to pre-

dict IMF(i) at time step t. Here, resLSTM (t), resARIMA(t)

are the residual value of the LSTM model, ARIMA model at

time step t, respectively.

In addition to the decomposed signals, training samples of

the total interference are fed into the LSTM and ARIMA mod-

els for baseline comparison. The corresponding predictions are

obtained as

LSTMSignal =

M
∑

t=1

SignalLSTM (t), (4)

ARIMASignal =
M
∑

t=1

SignalARIMA(t), (5)

where LSTMSignal is the predicted signal using LSTM

method without using EMD, ARIMASignal is the pre-

dicted signal using ARIMA method without using EMD,

SignalLSTM (t) is the predicted value at time step t using

LSTM method, and SignalARIMA(t) is the predicted value

at time step t using ARIMA method.

C. Resource allocation

The predicted signal to interference and noise ratio (SINR)

γ̂ will be calculated assuming that the power of the desired

signal S is known using CSI estimates, and is given by

γ̂ =
S

Î +N0

, (6)

where Î is the predicted interference power and N0 is the

normalized noise power. According to finite block length

theory [16], the number of information bits D that can be

transmitted with the given decoding error probability ε using R

channel uses in additive white gaussian noise (AWGN) channel

can be calculated by

D = RC(γ̂)−Q−1(ε)
√

RV (γ̂) +O(log2 R), (7)

where C(γ̂) = log2(1 + γ̂) is the shannon capacity

of AWGN under a finite block length regime, V (γ̂) =
1

ln(2)2

(

1− 1
(1+γ̂)2

)

is the channel dispersion measured in



Fig. 3. Resource allocation and performance evaluation timeline.

squared information units per channel, and Q−1 is the in-

verse of the Q-function [3]. Using the preceding information,

the number of resources (channel utilisation) R required to

transmit D bits with a target error probability ε is estimated

by [4]

R ≈

D

C(γ̂)
+

Q−1(ε)2V (γ̂)

2C(γ̂)2

[

1 +

√

1 +
4DC(γ̂)

Q−1(ε)2V (γ̂)

]

.

(8)

This resource allocation happens within one time step prior

to the actual transmission (t − 1), as shown in Fig. 3. After

the transmission of D bits using the allocated R number of

resources at time t, we can obtain the exact total interference

I that D bits have undergone. Therefore, we can obtain the

actual SINR γ as shown in (9). It is important to note that,

now γ will be calculated using actual total interference I value

as

γ =
S

I +N0
. (9)

Since we initially allocate the resources R based on target error

probability ε, now we can obtain the achieved error probability

by rearranging the terms in (7) and substituting predicted SINR

value γ̂ with the actual SINR value γ as shown below

εachieved ≈ Q

(

RC(γ)−D
√

RV (γ)

)

. (10)

Finally, we will be able to compare the target error probability

with the achieved error probability. The above-mentioned

procedure can be iterated over different target error rate values

to obtain the variation of achieved error rate values against the

target error rate values.

IV. SIMULATIONS RESULTS

Unless otherwise specified, the simulation parameters are

listed in Table I. The simulation parameters can be changed

based on requirements without compromising the model’s

performance.

A. EMD based prediction accuracy analysis

We used the same hyperparameter settings for all models

to validate the EMD-based prediction accuracy in comparison

to conventional prediction methods that do not use the EMD.

TABLE I
SIMULATION PARAMETERS

Description Value

Number of interferers (N ) 5
SNR values of interferers [5, 3, 0, -2, -5] dB
SINR value of desired signal (γ̄) 20 dB
Number of samples considered 100
Channel model Rayleigh block fading SISO
Number of Bits (D) 50

Target error rates (ε) 10
−5, 10−4, 10−3, 10−2, 10−1

Forgetting Factor of IRR (α) 0.01

Although the prediction models are trained according to indi-

vidual training datasets of IMFs, residual, and total signal, the

hyperparameters used for all these models remain the same.

All the models are trained using the following hyperparameters

in Table II.

TABLE II
HYPERPARAMETERS USED TO TRAIN ALL MODELS

Method Hyperparameter Value

LSTM/ARIMA Training window 30

LSTM

Number of epochs 100
Activation function ReLU
Optimizer function Adam
Loss function MSE
Number of neurons in LSTM layer 1 100
Number of neurons in LSTM layer 2 100
Number of neurons in dense layer 1

ARIMA
Number of previous samples for AR (p) 30
Number of previous samples for MA (q) 0
Order of integration (d) 1

Individually predicted elements will be added to generate

the EMD-based prediction output. The performances of EMD-

based prediction methods are compared with conventional

prediction methods (without EMD). We use the root mean

squared error (RMSE) as an evaluation criterion to compare

the performance. In each method, an RMSE value is obtained

by comparing the reconstructed signal with the validation

dataset of the total interference signal. Then, an RMSE value

is again obtained by comparing the predicted value of the

interference signal with the validation dataset of the total

interference signal. The obtained RMSE values are presented

in Table III, and predicted signals are shown in Fig. 4 and

Fig. 5.

TABLE III
RMSE COMPARISON OF THE PREDICTED SIGNALS WITH THE ORIGINAL

SIGNAL

Comparison criteria ARIMA LSTM

Original with predicted (without EMD) 2.13 2.49
Original with reconstructed (with EMD) 1.63 1.91

As shown in Table III, the RMSE values of the reconstructed

signals using both LSTM and ARIMA methods are less

than the RMSE values of the predicted signals. Therefore,

it suggests that EMD-based prediction methods outperform

conventional prediction methods.



Fig. 4. Illustration of the original signal with the predicted signal using
ARIMA method.

Fig. 5. Illustration of the original signal with the predicted signal using LSTM
method.

B. Baseline Schemes for resource allocation

We evaluate the performance of the proposed scheme in

comparison to the baseline. Therefore, the following two

baseline schemes have been used [16].

1) Moving Average Based Estimation: This is a conven-

tional weighted average-based estimation procedure. It has

been adapted to predict interference signal power as the

first baseline scheme. Here, interference measured at time t

is passed through the first order, low pass, infinite impulse

response (IIR) filter. Interference estimates are obtained as

Ît+1 = αIt−1 + (1− α)Ît, (11)

where, α (0 < α < 1) is the forgetting factor (FF) of the

filter. It determines the weight given to the latest measurement

compared to the previous one. Based on a simulation-based

heuristic analysis, it has been determined that an α = 0.01 is

optimal for latency performance [7].

2) Genie Aided Estimation: The genie-aided estimator is

considered an optimal estimator. In this interference prediction

scenario, it is assumed that the transmitter knows precisely

what interference condition the transmitted signal will en-

counter. In other words Î = I .

For comparison, we evaluate the performance of the pro-

posed scheme with the baseline schemes, where the predicted

Fig. 6. Achieved outage versus target outage for different prediction methods.

interference values using baseline schemes are ÎIIR and

ÎGenie. Then, achieved outages for the same set of target

outage values will be obtained using the procedure described

above. Finally, conclusions were made by comparing the

results of the proposed scheme to the results of the baseline

schemes.

C. Overall resource allocation and performance analysis

We used the same hyperparameters for all models in section

IV-A only to compare the prediction accuracy of EMD-based

predictions with the conventional prediction methods. We

can achieve high prediction accuracy by individually tuning

hyperparameters for each model because the characteristics

of the input signal to each model vary as the IMF number

increases. Suppose we use the same hyperparameters for each

model. In that case, the models with more linear input signals

will encounter overfitting, and the models with more random

input signals will experience underfitting. Also, the model

training time can be drastically reduced by using relaxed

hyperparameters for higher IMFs. For example, using a small

training window for higher IMFs will result in less training

time and still be able to obtain highly accurate predictions.

Resources are allocated for the downlink channel based

on predicted interference Î . Achieved block error rate targets

εachieved were obtained by simulating different target error

rate values ε. The performance of the EMD-based resource

allocation is evaluated against the two baseline schemes.

Since the genie-aided estimator assumed it already knows the

achieved SINR, it can allocate the exact number of resources

required to achieve the target outage, as shown in Fig. 6. The

curve generated by the Genie-aided estimator is regarded as

the optimal allocation of resources. Any curve that deviates

less from the genie-aided curve can be considered an efficient

allocation of resources. In contrast, efficiency decreases as the

curve moves further from the genie-aided curve.

The performance of the IIR filter-based estimation shows

low performance and can only achieve the block error rate

(BLER) target of around 10%, as shown in Fig. 6. IIR filter-

based achieved outage curve shows considerable deviation



Fig. 7. Resource usage versus target outage for different prediction methods.

from the expected genie aided achieved outage curve. The

achieved BLER targets of IIR filter-based estimation can be

quite resource-efficient only for eMBB services [17]. For

URLLC services, stricter achieved outage targets are antici-

pated.

We can observe that resource allocation without EMD

utilizing only LSTM, and ARIMA methods shows poor per-

formance compared to genie-aided resource allocation but

perform better than IIR-based resource allocation. In con-

trast, achieved outages using EMD-based prediction methods

demonstrate better performance than IIR filter-based methods

and methods that do not use EMD. The resource allocation

method, which uses EMD and ARIMA for interference pre-

diction, has allocated resources in a nearly optimal way to

meet almost target error rates, as shown in the ARIMArecon

curve. Then, the second-best resource allocation has been

achieved with the EMD-based LSTM method, as shown in the

LSTMrecon curve. It also proves the EMD-based prediction

methods could allocate resources more efficiently than the non-

EMD prediction methods. The resource usage corresponding

to the above outage targets is shown in Fig. 7. The genie-

aided estimator has allocated an optimal minimal number of

resources because it is assumed to have exact prior knowledge

about the interference. Our proposed EMD-based prediction

schemes allocate resources to near-optimum performance,

which assigns fewer resources than state-of-the-art interference

prediction schemes.

V. CONCLUSION

In this paper, predictive resource allocation for URLLC

services was investigated. The desired downlink in the pres-

ence of N interfering links was considered. We used the

EMD algorithm to decompose the total interference signal

power into IMFs and residuals. This decomposition allowed

us to predict future interference values precisely. Along with

the EMD, two prediction algorithms were used to train the

models: LSTM and ARIMA. While heading toward the final

objective of efficient resource allocation, the performance of

EMD based hybrid prediction scheme was also evaluated.

Based on the predicted interference values, downlink resources

were allocated to withstand the presence of actual interference.

Finally, the performance of the proposed scheme was evaluated

against the two baseline schemes and was able to achieve near-

optimal performance.
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