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Abstract— Power splitting (PS) based simultaneous wireless
information and power transfer (SWIPT) is considered in a multi-
user multiple-input-single-output broadcast scenario. Specifically,
we focus on jointly configuring the transmit beamforming vectors
and receive PS ratios to minimize the total transmit energy of
the base station under the user-specific latency and energy har-
vesting (EH) requirements. The battery depletion phenomenon
is avoided by preemptively incorporating information regarding
the receivers’ battery state and EH fluctuations into the resource
allocation design. The resulting time-average sum-power mini-
mization problem is temporally correlated, non-convex (including
mutually coupled latency-battery queue dynamics), and in gen-
eral intractable. We use the Lyapunov optimization framework
and derive a dynamic control algorithm to transform the original
problem into a sequence of per-time-slot deterministic and
independent subproblems. The latter are then solved via two
alternative approaches: i) semidefinite relaxation combined with
fractional programming, and ii) successive convex approximation.
Furthermore, we design a low-complexity closed-form iterative
algorithm exploiting the Karush-Kuhn-Tucker optimality con-
ditions for a specific scenario with delay bounded batteryless
receivers. Numerical results provide insights on the robustness
of the proposed designs to realize an energy-efficient SWIPT
system while ensuring latency and EH requirements in a time
dynamic network.

Index Terms— Beamforming, battery dynamics, convex opti-
mization, energy harvesting, Karush-Kuhn-Tucker conditions,
Lyapunov framework, power splitting, queue backlogs, SWIPT,
sum power minimization.

I. INTRODUCTION

POWERING and supporting the seamless and autonomous
operation of Internet-of-Things (IoT) deployments is
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becoming challenging given the exponential increase in the
number of ubiquitous and low-power devices. On one hand,
wired charging is usually cost-prohibitive and/or incon-
venient to deploy anywhere, especially when considering
industrial IoT deployments. On the other hand, traditional
battery-powered solutions struggle with limited battery life
and the corresponding replacement problem, which is neither
economical nor eco-friendly. Unfortunately, the energy scav-
enging from environmental sources (e.g., solar, wind, thermal,
etc) may be also inappropriate (at least as a standalone)
for many use cases with stringent Quality-of-Service (QoS)
requirements. This is because the associated energy supply
is uncontrollable and can significantly oscillate according
to temporal/geographical/environmental circumstances. More-
over, the ambient energy scavenging demand an add-on har-
vesting material and circuit, which in practice limits the
form factor reduction to the desired levels for many use
cases. As an appealing alternative, radio frequency (RF)-based
wireless energy transfer (WET) allows efficient on-demand
charging of low-power devices over the air, which simplifies
servicing and maintenance, promotes form factor reduction
and durability increase of the end devices, and thus con-
tributes to the realization of scalable and sustainable wireless
networks [3].

Wireless networks natively include wireless information
transfer processes, hence WET appears naturally combined
with them. The simultaneous wireless information and power
transfer (SWIPT) technology, which enables efficient utiliza-
tion of radio resources by wirelessly charging battery-limited
devices while simultaneously conveying useful informa-
tion [4], [5], [6], is an example of it. Specifically, the downlink
multi-antenna broadcast SWIPT system has attracted much
attention from the research community and has been widely
studied in the literature. As an example, the early pioneering
work [7] characterizes the underlying rate-energy trade-offs
of a broadcast SWIPT system that includes a multi-antenna
base-station (BS) communicating with several user equipments
(UEs) in downlink. Therein, each UE may perform bothenergy
harvesting (EH) and information decoding (ID) functions
on the received signal, i.e., either by applying the time-
switching (TS) [7] or power splitting (PS) [7], [8] protocol.
Meanwhile, the authors in [9] investigate the problems of
maximizing the effective capacity and energy efficiency by
considering both PS and TS architectures subject to a fixed
minimum harvested energy and fixed QoS delay requirements
for receivers. Although a TS scheme simplifies the receiver
design, it hinders the full exploitation of radio resources since
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the wireless information and WET processes are not really
simultaneous in time. Thus, motivating the use of PS schemes
which generally achieve higher spectral efficiency [9], [10]
and energy efficiency [9]. A comprehensive overview of the
aforementioned PS and TS schemes and other less popular
SWIPT schemes, such as the so-called spatial switching (SS)
and integrated receiver (IR), is provided in [11].

It is worth highlighting that interference substantially
reduces the data rate achievable at each link, thus it has
an adverse impact on ID performance. Meanwhile, in terms
of WET, the interference is not a foe but a friend since
the power of interfering signals can easily be transformed
into useful energy, and conceivably used for recharging EH
UEs [12], [13], [14], [15]. Due to the simultaneous multi-
user RF EH, the SWIPT beamformer design inherently has a
multicast structure. Note that finding a good balance between
EH and ID is key for an efficient SWIPT implementation.
For scenarios with separated EH and ID receivers, the authors
of [12] study the minimization of the worst-case mean square
error (MSE) of the received information signals under transmit
power and receive EH constraints. In [13], the transmit beam-
former is designed to maximize the weighted sum of users’
harvested power subject to per-user signal-to-interference-
plus-noise ratio (SINR) requirements. Meanwhile, authors
in [14] characterize the achievable rate-energy trade-off in
a SWIPT multi-user MIMO interference channel. In [16],
a joint beamforming and PS optimization is carried out to
minimize the BS transmit power, under fixed SINR and EH
QoS constraints per user, with the help of the semidefinite
relaxation (SDR) framework. This work is extended in [17],
wherein the authors develop a low-complexity and compu-
tationally efficient solution via second-order cone program
(SOCP). Authors of [18] and [19] also extend [16] by studying
and optimizing the transceiver design under MSE and EH
constraints. Meanwhile, a joint transmit power allocation and
receiver PS mechanism is proposed in [20] to maximize the
minimum SINR at the UEs. Assuming co-located EH and ID
receivers, the minimization of the sum power consumption is
studied in [15], [21], and [22], while [23] considers the energy
efficiency maximization, where beamforming vectors and PS
ratios are jointly designed subject to a fixed minimum EH and
SINR constraints per UE.

All the aforementioned works mainly focus on a downlink
multi-user SWIPT system under fixed users’ QoS require-
ments. Moreover, they assume that the instantaneous harvested
energy is always sufficient to support the devices’ compu-
tational and communication operations. However, the energy
required to decode the received data increases with the down-
link transmitted rate [24], [25], and thus the above assumption
may not be always satisfied. Specifically, if the energy required
for the information decoding operation surpasses the current
energy availability, the UE could turn off, or at least interrupt
the ID operations, thus causing a service outage. This critical
problem has lately attracted significant research effort in
diverse setups. For information-only transfer systems with
limited energy availability at the receivers, authors of [24]
investigate the downlink transmission strategies and provide
the feasible maximum supported data rates, which are mainly

restricted by the receivers’ instantaneous battery levels. The
previous work is extended to coordinated multi-cell systems
in [25]. Meanwhile, authors of [26], [27], and [28] aim to
maximize the network sum rate while considering the battery
depletion problem, for which they establish a limited receiver
battery constraint. In [26] and [28], the solutions are only
based on the instantaneous states of the batteries, while [27]
applies the Lyapunov optimization framework to design an
online dynamic control algorithm.

The Lyapunov based solution has been widely used in many
practical applications (as, e.g., in [29], [30], [31], and [32])
to transform the long-term average stochastic problem into a
series of per-time-slot deterministic optimization subproblems,
which do not require any a priori information on the system
uncertainties, while efficiently capturing the non-stationary
evolution of queue backlogs per user. In [29], the authors
propose a SWIPT-enabled mechanism to increase the average
secrecy throughput by considering the data and energy buffer-
ing at the wirelessly powered relays. Meanwhile, the authors
of [30] design an online adaptive resource allocation policy to
maximize the fairness among different mobile clients, while
the trade-off between response delay and energy efficiency
is studied in [31]. Finally, authors in [32] propose a task
scheduling algorithm for SWIPT systems to minimize the
energy consumption, while satisfying a minimum average data
and task performing rate.

A. Contributions

Although the state-of-the-art research on SWIPT-enabled
systems is vast, the increasingly stringent system QoS require-
ments, low energy availability, and battery dynamics over time
still require extensive study, which motivates our research
in this work. Specifically, we provide the joint optimization
of transmit beamforming vectors and receive PS ratios that
concurrently satisfies the user-specific latency and EH require-
ments of a PS-based SWIPT system. Our proposed radio
resource allocation strategies preemptively incorporate infor-
mation related to the users’ battery state and EH fluctuations
while efficiently avoiding the battery depletion phenomenon in
a delay bounded time dynamic mobile access network. To the
best of our knowledge, this paper, whose preliminary and
reduced-length versions can be found in our earlier works [1],
[2], is the first to jointly consider the interdependence of
latency-battery dynamics for SWIPT-enabled systems. The key
contributions of this paper are as follows:

• We formulate a long-term transmit energy minimization
problem subject to users’ probabilistic queue backlog
constraint and a maximum harvested power requirement.
The transmit beamforming vectors and receive PS ratios
are jointly designed considering explicitly the minimum
energy needed to decode downlink transmitted data mes-
sages and to support battery-limited receivers’ operations.
Our proposed radio resource allocation schemes allow
meeting the latency and EH requirements at the UEs
while avoiding their battery depletion.

• We employ the Lyapunov optimization framework,
specifically the drift-plus-penalty function, to transform
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the time-average problem into a sequence of per-time-slot
deterministic subproblems, while efficiently capturing the
non-stationary evolution of queue backlogs. To circum-
vent the temporally correlated user-specific battery and
EH constraints, we introduce a virtual spare battery
queue for each user. A dynamic control algorithm is then
provided for solving the time-correlated and cumbersome
average sum-power minimization problem.

• The beamformers and PS ratios are coupled in
SINR and EH expressions, and are not jointly con-
vex. To circumvent this, two alternative approaches,
namely SDR combined with fractional programming
(FP) quadratic transform technique, and a linear Tay-
lor series approximation via successive convex approx-
imation (SCA) framework, are adopted. Both proposed
methods achieve efficient solutions, each with specific
convergence and complexity characteristics. Specifically,
the SDR-FP based method provides faster convergence
in terms of the required approximation point updates for
the considered setup configuration. In contrast, the SCA
framework has much lower computational complexity per
iteration, and the optimized beamformers are obtained
directly. It is worth highlighting that the constrained opti-
mization schemes proposed in [16], [17], [18], [19], [20],
[21], [22], and [23] can not be used directly here due to
the underlying interdependence of latency-battery queue
dynamics. Thus, our proposed solutions are significantly
more advanced, and provide a systematic approach for
solving problems with mutually coupled and non-linear
time-varying constraints.

• A low-complexity and computationally efficient iter-
ative algorithm is proposed for a special scenario
where the latency constrained SWIPT-enabled receivers
operate without energy storage, and the harvested
energy is made immediately available to support their
operations [16], [17]. Specifically, the proposed algo-
rithm exploits the Karush-Kuhn-Tucker (KKT) optimal-
ity conditions, and requires evaluating only closed-form
mathematical expressions. This leads to computationally
efficient, thus, latency-friendly, implementations.

The proposed methods provide insights into the trade-offs
between the long-term achievable harvested energy at UEs and
required transmit energy at the BS, while ensuring the user-
specific latency and minimum battery energy requirements to
support the persistent receivers’ operations. The simulation
results manifest the robustness of the proposed designs to
realize energy-efficient SWIPT systems for delay bounded
applications in a time dynamic mobile access network.

B. Organization and Notations

The remainder of this paper is organized as follows.
In Section II, we describe the system architecture and opti-
mization problem. Section III provides a dynamic control
algorithm for the average sum-power minimization problem.
In Section IV, we propose the joint beamforming and PS
optimization. In Section V, we study the batteryless scenario.
Simulation results are presented in Section VI, while conclu-
sions are drawn in Section VII.

Notations: We use italic, boldface lower- and upper-case
letters to denote scalars, vectors and matrices, respectively.
Notation C

N×M represents the space of N × M complex
matrices. The norm and the real part of a complex num-
ber is represented with |·| and �{·}, respectively. For an
arbitrary-size matrix X, the superscript X−1, X H and X T

donates respectively inverse, conjugate transpose and transpose
operation. [X]m,n is the (m, n)-th element of X, and [x]+ �
max(0, x). Notation E[·] represents the statistical expectation
operation.

II. SYSTEM ARCHITECTURE AND PROBLEM

FORMULATION

A. System Model

We consider a multi-user multiple-input single-output
(MU-MISO) SWIPT system as shown in Fig. 1. Here, a set
K � {1, 2, . . . , K} of single antenna UEs is served by a
BS equipped with Nt transmit antennas in the downlink.
For simplicity, but without loss of generality, we consider a
time-slotted frame structure where the slots are normalized to
an integer value, i.e., t ∈ {Tf , 2Tf , . . .} with a duration of Tf

seconds each. Let hk(t), fk(t) ∈ CNt×1 denote respectively
the downlink channel vector and transmit beamforming vector
corresponding to the k-th UE during time slot t. Then, the
signal received at the k-th UE can be expressed as

yk(t) = h H
k (t)fk(t)dk(t)

+
∑

u∈K\k

h H
k (t)fu(t)du(t) + wk(t), (1)

where wk ∈ CN (0, σ2
k) denotes the additive white Gaussian

noise (AWGN) at the receiver, and dk is the downlink transmit-
ted data symbol. Moreover, we assume independent and nor-
malized data symbols, i.e., E{dkd∗u} = 0 and E{|dk|2} = 1,
∀k, u ∈ K and k �= u.

Similar to [7], [8], [15], [16], [17], [18], [19], [20], [21],
[22], and [23], we assume that each UE k ∈ K implements
PS on the received signal yk(t) for simultaneous ID and EH
as shown in Fig. 1. Let ρk(t) ∈ [0, 1] represent the PS ratio to
the ID circuit of k-th UE during time slot t. Then, the portion
of the signal split to the ID circuit can be expressed as

yID
k (t) =

√
ρk(t)

(
h H

k (t)fk(t)dk(t)

+
∑

u∈K\k

h H
k (t)fu(t)du(t) + wk(t)

)
+ z̃k(t), (2)

where z̃k ∈ CN (0, δ2
k) is the additive noise at the ID circuit

of k-th UE. The received SINR of k-th UE is given by

Γk(t) =
ρk(t)|h H

k (t)fk(t)|2
ρk(t)

∑
u∈K\k

|h H
k (t)fu(t)|2 + ρk(t)σ2

k + δ2
k

. (3)

Meanwhile, the remaining portion of the signal split to the EH
circuit of k-th UE during time slot t is given by

yEH
k (t) =

√
1 − ρk(t)

(
h H

k (t)fk(t)dk(t)

+
∑

u∈K\k

h H
k (t)fu(t)du(t) + wk(t)

)
. (4)
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Fig. 1. The SWIPT system consists of one BS with user-specific queues, and multiple battery-limited UEs, where each UE implements the PS scheme to
perform EH and ID simultaneously.

Then, the harvested power at the EH circuit of k-th UE is
given by

Eh
k (t) = ζk

(
1 − ρk(t)

)(∑
j∈K

|h H
k (t)fj(t)|2 + σ2

k

)
, (5)

where ζk ∈ [0, 1) represents the energy conversion efficiency.
Note that we consider an EH model, as in [7], [8], [16],

and [17], where the output direct current (DC) increases
linearly with the input RF power level. However, in practice,
the energy conversion efficiency of a practical EH circuit is
not constant due to the non-linearities introduced by, e.g.,
resistance, capacitance, and diode-connected transistors [33].
Note that there is no generic EH model which can capture
all practical issues of EH circuit components [34]. Therefore,
we are considering a broadly recognized, yet simple, linear
model for analytical tractability and to facilitate the discussion.
Indeed, we aim to capture, for the first time, the underly-
ing interdependence of latency-battery queue dynamics for
SWIPT-enabled time dynamic systems, for which leveraging
a simple EH model is a natural first step. Moreover, the
results and the performance trends shown in this paper should
still, approximately, hold for the moderate input power level
regime [32, Fig. 4]. Considering a more involved EH model,
which efficiently accounts for the sensitivity and saturation
impairments of the non-linear circuit components, is an inter-
esting topic for future extensions of this work.

B. Queueing & Latency Model at Network

We assume that the BS has queue buffers to store the
network layer data of UEs [35, Ch. 5]. Let Qk(t) denote the
queue backlog of k-th UE during time slot t, which evolves as

Qk(t + 1) =
[
Qk(t) − Rk(t) + Ak(t)

]+
, ∀k, (6)

where [x]+ � max(x, 0), Rk(t) � log2(1 + γk(t)) is the
downlink rate, and γk(t) denotes the achievable SINR of k-th
UE during time slot t. In (6), Ak(t) denotes the downlink data
arrival with a mean arrival rate of E[Ak(t)] = αk, ∀k ∈ K.

According to Little’s law, the average delay (or latency)
is proportional to long-term time-average queue length as
lim

T→∞
1
T

∑T−1
t=0 E[Qk(t)] [36, Ch. 1.4]. Thus, we can use the

queue backlogs {Qk(t)} as users’ latency measures, and
impose the allowable threshold {Qth

k } to each time slot.

Fig. 2. An illustration of the receivers’ battery storage and consumption
model at the k-th UE.

Specifically, we consider a probabilistic constraint on user-
specific queue length [37], defined as

Pr
{
Qk(t) ≥ Qth

k

} ≤ ε, ∀t, (7)

where ε is a tolerable probability for delay bound violation.

C. Battery Storage & Consumption Model at Receiver

The k-th UE is equipped with a battery of finite capac-
ity Bmax

k . The battery energy level decreases in accordance
with the circuit power consumption and the decoding oper-
ations of the downlink received data [24], [25], [26], [27],
[28]. The EH circuit allows the UEs to recharge their battery
by collecting the required energy from received RF signals
(see (5)). Similar to [26] and [27], we assume that the EH
system adopts the harvest-store-use strategy [4, Sec. III],
wherein the harvested energy in a given time slot can be only
available in the subsequent time slots, as shown in Fig. 2.
Thus, the battery dynamics Bk(t + 1) of the k-th UE at the
beginning of the time slot (t + 1) is given by

Bk(t + 1)=min
{
Bmax

k ,
[
Bk(t)−Eu

k (t)
]++Eh

k (t)
}

, ∀k,

(8)

where Eh
k (t) is the harvested energy defined in (5). Moreover,

Eu
k (t) represents the energy spent by the k-th UE during time

slot t, which we model as

Eu
k (t) = Tf

(
P cir

k + P dec
k (t)

)
, ∀k, (9)



3026 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 22, NO. 5, MAY 2023

where P cir
k is the fixed power consumed by the receiver,

including the front-end circuit, and reporting power consump-
tion of the UE to the BS. In (9), P dec

k (t) is the power con-
sumed by the decoding process. Note that the overall energy to
be consumed in each time slot must not exceed the energy cur-
rently available in the users’ battery, i.e., 0 ≤ Eu

k (t) ≤ Bk(t),
∀t, k. Specifically, by incorporating the receivers’ battery state
information in the design of beamformers and PS ratios,
the BS can adequately allocate the required resources to
ensure, i.e., maximum supported rates Rmax

k (t) and maximum
required EH Emax

k (t) for each user at each time slot.
The circuit power P cir

k is assumed to be a constant for
each user. On the other hand, P dec

k (t) mainly depends on
the transmitted data rates, defined as P dec

k (t) � f(Rk(t)),
∀k ∈ K. It is worth highlighting that there is no standardized
and extensively recognized model for f(Rk(t)) in the research
community. However, there is a consensus about the fact that
the decoding consumption always increases with the downlink
transmit rate. Herein, we adopt the model presented in [24],
which states that the energy consumed is linearly increas-
ing with the downlink transmitted data rates. Specifically,
f(Rk(t)) � ϑd

kRk(t) where ϑd
k > 0 reflects the energy

efficiency [Joules/bit] of the decoder implementation at the
receiver device. Thus, combined with P dec

k (t) and expres-
sion (9), the maximum allowable downlink rates Rmax

k (t) of
each user k can be expressed as1 [24, Sec. II]

Rk(t) ≤ Rmax
k (t) � 1

ϑd
k

(
Eu

k (t) − TfP cir
k

Tf

)
, ∀k. (10)

Note that due to the stochastic nature of the radio channel,
there exists a non-negligible probability that the links between
the BS and certain UEs are in poor conditions (i.e., in a
deep fading state). Thus, scheduling such UEs will probably
provide little (if any) benefit. However, storing the energy and
waiting for better channel gains may improve the network
performance. Therefore, at the beginning of each time slot,
the resource allocation process at the BS should take into
account the user-specific battery charge levels, and accordingly
assign the downlink rates. From (9), we can observe that even
if the k-th UE is not served at a given scheduling time slot t,
its battery will still decrease according to TfP cir

k . This fixed
energy consumption impacts the resource allocation algorithm
for the EH process, i.e., the battery energy should not be
instantaneously depleted and there should be always sufficient
energy stored in the receiver’s battery to support its persistent
operations at each time slot.

The battery storage capacity of the k-th UE is limited by
Bmax

k , and the overflow (or extra) harvested energy will be
eventually discarded by the user device. Thus, the harvested
energy at each time slot t can be upper bounded by

Eh
k (t) ≤ Emax

k (t) � Bmax
k − Bk(t), ∀k. (11)

To summarize, the current battery charge level at each
UE strictly constrains both the maximum supported downlink

1Note that the beamformer design and PS strategy proposed in the paper can
be extended by adopting the appropriate maximum supported rate (10) corre-
sponding to any specific implementation of the decoding power consumption
model [24, Sec. II].

transmit rates (10) and the maximum EH requirements (11)
at each time slot. We assume a standard time division duplex
(TDD)-based channel state information (CSI) acquisition from
reciprocal uplink, where the current battery energy availability
is also reported by the UEs [24], [25], [26], [27], [28]. Hence,
the resource allocation process not only considers CSI, but
also the residual energy in the receivers’ battery, for the joint
design of transmit beamforming vectors and receive PS ratios
in a delay bounded time dynamic mobile access network.

D. Problem Formulation

Our objective is to design a power-efficient resource alloca-
tion scheme that satisfies the latency requirement of each user
while taking into account the user-specific battery energy limi-
tations. Specifically, we jointly optimize transmit beamforming
vectors and receive PS ratios in order to minimize the BS
average transmit power subject to a probabilistic queue back-
log constraint and a maximum harvested power requirement
per user. Furthermore, the resource allocation strategies are
designed by preemptively incorporating the receivers’ battery
and EH fluctuations while efficiently avoiding the battery
depletion phenomenon. The network average transmit sum-
power minimization problem can be formulated as

min
{fk(t),ρk(t)}, ∀t

lim
T→∞

1
T

T−1∑
t=0

∑
k∈K

E
[‖fk(t)‖2

]
(12a)

s.t. Pr
{
Qk(t) ≥ Qth

k

} ≤ ε, ∀k, ∀t, (12b)

Rk(t) ≤ Rmax
k (t), ∀k, ∀t, (12c)

Eh
k (t) ≤ Emax

k (t), ∀k, ∀t, (12d)

0 ≤ ρk(t) ≤ 1, ∀k, ∀t, (12e)

where the expectation operation in (12a) is with respect
to random channel states and data arrivals processes. Note
that (12b) guarantees that the queue backlog of k-th UE at
each time slot t is less than Qth

k with probability 1 − ε, thus,
it ensures the desired users’ latency requirements.

III. DYNAMIC CONTROL ALGORITHM VIA LYAPUNOV

FRAMEWORK

Problem (12) consists of a time-average sum-power objec-
tive function (12a), a non-linear probabilistic constraint (12b),
rate constraints (12c) including coupled and non-convex SINR
expressions, EH constraint (12d) including time-correlated
battery energy dynamics, which cannot be addressed directly
in a tractable manner. In this section, we first handle the
time-average and probabilistic intractability, and then provide
an online dynamic control algorithm exploiting the drift-
plus-penalty framework and the Lyapunov optimization the-
ory [35]. The proposed convex relaxations for the coupled
and non-convex constraints are later provided in Section IV.

We start by applying the well-known Markov’s inequal-
ity [36], and transform the non-linear probabilistic queue-
length constraint (12b) as

Pr
{
Qk(t) ≥ Qth

k

} ≤ E[Qk(t)]
/
Qth

k ≤ ε, ∀k ∈ K.
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Thereby, problem (12) can be equivalently rewritten as

min
{fk(t),ρk(t)}, ∀t

lim
T→∞

1
T

T−1∑
t=0

∑
k∈K

E
[‖fk(t)‖2

]
(13a)

s.t. lim
T→∞

1
T

T−1∑
t=0

E
[
Qk(t)

] ≤ εQth
k , ∀k,

constraints (12c) − (12e). (13b)

Next, the time-average constraint (13b) is tackled by recast-
ing it as a queue stability problem [35, Ch.5]. Specifically,
we define a virtual data queue Zk(t) for each user k, which
evolves as

Zk(t + 1) =
[
Zk(t) + Qk(t + 1) − εQth

k

]+
, ∀k. (14)

Note that the inequality constraint (13b) is ensured only if
the associated virtual queues {Zk(t)}∀k are stabilized [35,
Theorem 2.5]. Thus, to stabilize the virtual queues in (14),
we employ the Lyapunov optimization framework, and design
a dynamic control algorithm with long-term stability require-
ments. It is worth highlighting that the feasible control action
sets are coupled over time due to the temporally correlated
user-specific battery charge level (12d) [26], [27]. To circum-
vent this issue, we introduce a virtual battery queue Uk(t) for
each user k, defined as

Uk(t) � Bmax
k − Bk(t), ∀k. (15)

From (15), we can observe that the spare energy availability
at the receivers’ battery increases inversely with the value of
Uk(t), ∀k ∈ K. Thus, to jointly stabilize the coupled virtual
data queues (14) and battery queues (15), we now define a
weighted quadratic Lyapunov function [35]

L(Ψ(t)) � 1
2

∑
k∈K

{
Zk(t)2 + ωkUk(t)2

}
, (16)

where Ψ(t) =
[
Zk(t), Qk(t), Uk(t), Bk(t)

∣∣∀k ∈ K]
and

ωk > 0 is a linear scaling factor on the spare battery
capacity of the k-th UE. Note that the parameter {ωk}∀k

in (16) can be considered as a free parameter (e.g., it may
reflect energy to data bits conversion factor), which balances
the user-specific contributions of latency-battery queue in
the Lyapunov function. Specifically, different scaling on the
virtual battery queue might lead to a different Pareto optimal
allocation of resources.2 Then, the Lyapunov drift between two
consecutive time slot is given by

	(Ψ(t)) =
1
2

E
[L(Ψ(t + 1)) − L(Ψ(t))

∣∣Ψ(t)
]

(17a)

=
1
2

E

[∑
k∈K

{(
Zk(t + 1)2 − Zk(t)2

)
+ ωk

(
Uk(t + 1)2 − Uk(t)2

)}∣∣∣Ψ(t)
]
. (17b)

2The user-specific priority weights {ωk}∀k corresponding to the spare
battery capacity (16) are design parameters that can be tuned based on
available statistical information, e.g., latency-battery queue states and channel
conditions, to achieve the desired trade-off between BS transmit energy and
receiver battery charge level. In fact, this is an interesting topic for future
extensions.

Next, by using expressions (6), (8), (14) and (15) in (17),
and after some algebraic simplifications, an upper bound for
the Lyapunov drift 	(Ψ(t)) is obtained as

	(Ψ(t))≤Ω − E

[∑
k∈K

(
Qk(t) + Ak(t) + Zk(t)

)
Rk(t)

∣∣Ψ(t)
]

−E

[∑
k∈K

ωk

(
Bmax

k − Bk(t)
)
Eh

k (t)
∣∣Ψ(t)

]
, (18)

where Ω is a positive constant term. More specifically, Ω =
ζQ +ΦQ(t)+ζB +ΦB(t), while the following conditions3 are
satisfied in all time slots [35]:

ζQ ≥ 1
2

E

[∑
k∈K

{
Ak(t)2 + Rk(t)2

}∣∣Ψ(t)
]
, (19a)

ΦQ(t) =
∑
k∈K

{1
2
(εQth

k )2 +
1
2
Qk(t)2 + Zk(t)Qk(t)

+
(
Qk(t) + Zk(t)

)
Ak(t)

}
, (19b)

ζB ≥ 1
2

E

[∑
k∈K

{
ωkEu

k (t)2 + ωkEh
k (t)2

}∣∣Ψ(t)
]
, (19c)

ΦB(t) =
∑
k∈K

ωk

(
Bmax

k − Bk(t)
)
Eu

k (t). (19d)

We define the drift-plus-penalty function [35] for (13) as

	(Ψ(t)) + V E

[ ∑
k∈K

‖fk(t)‖2
∣∣Ψ(t)

]
, (20)

where V ≥ 0 is a trade-off parameter. Thus, by minimizing
the upper bound of (20) subject to constraints (12c) - (12e)
at each time slot, we can ensure the user-specific latency
requirements and maintain the required battery energy levels
at the receiver, while minimizing the sum-power objective
function (12a). Herein, we employ the concept of opportunistic
minimization of an expectation [35, Ch. 1.8] to minimize the
upper bound of (20), and obtain a series of per-time-slot
deterministic problem. Moreover, each subproblem (21) can
be independently solved based on the current queue buffer,
battery charge level, and CSI, as summarized in Algorithm 1.

Note that we have conveniently introduced the non-negative
auxiliary variables {γk(t), ek(t)}∀k to ease the problem
tractability. Nevertheless, this does not affect the correspond-
ing solution since constraints (21b) and (21c) hold with equal-
ity at the optimality [38]. Moreover, for a given queue state at
beginning of each time slot t, the transmit beamformers and
receive PS ratios can be computed independently as described
in Section IV.

IV. JOINT BEAMFORMERS AND PS RATIOS DESIGN

The joint beamformers and PS ratios design problem (21)
introduced in Algorithm 1 is still intractable due to the non-
convex SINR expressions (21b), and the coupling between the
optimization variables {fk(t), ρk(t), γk(t)} in (21b) and the
optimization variables {fk(t), ρk(t), ek(t)} in (21c). In this

3To obtain (18), we used ([a1 + a2 − a3]+)2 ≤ (a1 + a2 − a3)2,
∀{a1, a2, a3} ≥ 0. Further, we have assumed that the second moments
of data arrival E[Ak(t)2|Ψ(t)] and transmission E[Rk(t)2|Ψ(t)] processes
in (19a), and energy utilized E[Eu

k (t)2|Ψ(t)] and harvested E[Eh
k (t)2|Ψ(t)]

processes in (19c) for all k ∈ K are bounded [35, Ch. 5].
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Algorithm 1 Dynamic Control Algorithm for (12)

1 For a given time slot t, obtain battery levels {Bk(t)} and compute
Rmax

k (t) using (10)
2 Observe the current queue backlogs {Qk(t), Zk(t)}, and solve the

following problem:

min
{fk(t),γk(t),
ek(t),ρk(t)}

V
�
k∈K

‖fk(t)‖2−
�
k∈K

ωk

�
Bmax

k − Bk(t)
�
ek(t)

−
�
k∈K

�
Qk(t) + Ak(t) + Zk(t)

�
log2(1 + γk(t)) (21a)

s.t. γk(t) ≤ ρk(t)|h H
k (t)fk(t)|2

ρk(t)
�

u∈K\k

|h H
k (t)fu(t)|2+ρk(t)σ2

k +δ2
k

, ∀k,

(21b)

ek(t) ≤ ζk

�
1 − ρk(t)

�� K�
j=1

|h H
k (t)fj (t)|2+σ2

k

�
, ∀k,

(21c)

log2(1 + γk(t)) ≤ Rmax
k (t), ∀k, (21d)

ek(t) ≤ Emax
k (t), ∀k, (21e)

3 0 ≤ ρk(t) ≤ 1, ∀k. (21f)

4 Update queues {Qk(t + 1)} and {Zk(t + 1)} by using (6) and (14),
respectively

5 Update battery levels {Bk(t + 1)} by using (8)

6 Set t = t + 1, and go to step 1

section, the coupled and non-convex constraints in (21) are
handled by using two alternative approaches: i) SDR combined
with recently proposed FP quadratic transform technique [39],
and ii) linear Taylor series approximation via SCA frame-
work [40]. Both proposed methods achieve efficient solutions,
each with specific convergence and complexity characteristics.
Specifically, for the considered setup configurations, the SDR-
FP based method provides faster convergence in terms of the
required approximation point updates. In contrast, the SCA
framework has considerably lower computational complexity
per iteration and the optimized beamforming vectors are
obtained directly, which will become clear in the following.

It is worth highlighting that due to the underlying inter-
dependence of latency-battery queue dynamics, the con-
strained optimization schemes described in [16], [17], [18],
[19], [20], [21], [22], and [23] can not be used directly to
solve (21). Thus, our proposed solutions are significantly more
advanced, and provide a systematic approach for handling
problems with mutually coupled constraints. Further, proposed
approaches provide valuable insights on the joint optimization
of beamformers and PS ratios that concurrently satisfies the
latency and EH requirements per user, which is inherently an
intractable and NP-hard optimization problem. Note that in
both approaches, the non-convex problem (21) is first recast as
a sequence of convex subproblems, and then iteratively solved
until the desired convergence of the objective function (21a).
In the following, we omit the time index t to simplify the
notation.

A. Solution of (21) via SDR-FP Framework

To begin with, let us define Fk � fkf H
k , ∀k ∈ K.

The main idea behind the SDR framework is to drop the

rank-one constraints, e.g., replace each semidefinite rank-one
matrix Fk by a general-rank positive semidefinite matrix, i.e.,
Fk 
 0, ∀k ∈ K. Then, an additional post-approximation
procedure is required to obtain rank-one beamforming vectors
using, e.g., eigen-decomposition and possibly combined with
some randomization techniques [41], [42], as will become
clear in the following. Thus, by applying the standard SDR
technique to (21), and after some algebraic simplifications,
we obtain the following relaxed problem

min
{Fk,γk,

ek,ρk}
V

∑
k∈K

Tr(Fk) −
∑
k∈K

ωk(Bmax
k − Bk)ek

−
∑
k∈K

(Qk + Ak + Zk) log2(1 + γk) (22a)

s.t.
1
γk

h H
k Fkhk−

∑
u∈K\k

h H
k Fuhk ≥ σ2

k +
δ2
k

ρk
, ∀k,

(22b)

1
ek

( K∑
j=1

h H
k Fjhk + σ2

k

)
≥ 1

ζk(1 − ρk)
, ∀k, (22c)

γk ≤ 2Rmax
k − 1, ∀k, (22d)

ek ≤ Emax
k , ∀k, (22e)

0 ≤ ρk ≤ 1, ∀k, (22f)

Fk 
 0, ∀k, (22g)

where Tr(·) denotes the trace operation. Note that the refor-
mulated problem (22) is still non-convex due to the coupling
between variables {Fk, γk} in (22b) and {Fk, ek} in (22c).
Thus, managing the mutually coupled EH and SINR com-
binations is considerably more challenging than conventional
constrained optimization with a fixed QoS requirement per
user [16], [17]. To handle the fractional non-convexity in (22),
we use the recently proposed FP quadratic transform tech-
nique [39], also reproduced in Proposition 1, that has been
shown to converge to a local solution. Specifically, the FP
quadratic transform techniques decouple the numerator and
the denominator of the concave-convex functions, thereby
enabling the iterative optimization between primal and aux-
iliary variables. This strategy works well for a variety of
optimization problems, including scheduling, power control,
and beamformer design [39].

Proposition 1: Given a non-negative function A(x) ≥ 0,
a strictly positive function B(x) > 0, and a monotonic
function f(·) : R �→ R, the coupled fractional constraint

f
(

A(x)
B(x)

)
is equivalent to f

(
2�

√
A(x)−�2

kB(x)
)
, when the

auxiliary variable � has the optimal value �(�) =
√

A(x)

B(x) .
Proof: Proposition 1 can be easily proved by following

the steps in [39, Section II]. �
1) Convex Approximation for Constraint (22b): By using

Proposition 1, the fractional term in (22b)

1
γk

h H
k Fkhk, ∀k, (23a)

is equivalent to

2νk

√
h H

k Fkhk − ν2
kγk, ∀k, (23b)
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when the auxiliary variable νk has the optimal value

ν
(�)
k =

1
γk

√
h H

k Fkhk, ∀k. (23c)

2) Convex Approximation for Constraint (22c): Similarly,
by using Proposition 1, the fractional term in (22c)

1
ek

( K∑
j=1

h H
k Fjhk + σ2

k

)
, ∀k, (24a)

is equivalent to

2μk

√∑K
j=1h

H
k Fjhk + σ2

k − μ2
kek, ∀k, (24b)

when the associated auxiliary variable μk has the optimal value

μ
(�)
k =

1
ek

√∑K
j=1h

H
k Fjhk + σ2

k, ∀k. (24c)

3) Approximated Convex Subproblem: By setting a fixed
approximation point {ν(i)

k , μ
(i)
k }, and substituting (23b) and

(24b) into (22b) and (22c), respectively, the problem (22) can
be expressed in convex form as

min
{Fk,γk,

ek,ρk}
V

∑
k∈K

Tr(Fk) −
∑
k∈K

ωk(Bmax
k − Bk)ek

−
∑
k∈K

(Qk + Ak + Zk) log2(1 + γk) (25a)

s.t. 2ν
(i)
k

√
h H

k Fkhk − (
ν

(i)
k

)2
γk

−
∑

u∈K\k

h H
k Fuhk ≥ σ2

k +
δ2
k

ρk
, ∀k, (25b)

2μ
(i)
k

√∑K

j=1
h H

k Fjhk + σ2
k

− (
μ

(i)
k

)2
ek ≥ 1

ζk(1 − ρk)
, ∀k, (25c)

γk ≤ 2Rmax
k − 1, ∀k, (25d)

ek ≤ Emax
k , ∀k, (25e)

0 ≤ ρk ≤ 1, ∀k, (25f)

Fk 
 0, ∀k. (25g)

Note that (25) provides an approximate solution for (22) in
the vicinity of {ν(i)

k , μ
(i)
k }. Thus, by iteratively solving (25)

while updating {ν(i)
k , μ

(i)
k } with the solution of current itera-

tion, we can find a solution for (22) [39]. Moreover, for a
fixed operating point {ν(i)

k , μ
(i)
k }, the subproblem (25) can

be efficiently solved using convex optimization tools, e.g.,
CVX [43].

For a given time slot t, let
{
F�

k(t), γ�
k(t), e�

k(t), ρ�
k(t)

}
∀k

denote the solution obtained from (25). However, note that the
achievable SINR (3) and the maximum harvested power (5)
at k-th UE is computed by using actual beamforming vec-
tors f�

k (t) and PS ratios ρ�
k(t). Therefore, if F�

k(t) satis-
fies Rank

(
F�

k(t)
)

= 1, ∀k ∈ K, we can write F�
k(t) =

f�
k (t)f� H

k (t), and f�
k (t) is a feasible solution to original

problem (21). On the contrary, if Rank
(
F�

k(t)
)

> 1,
an additional post-approximation procedure is required to
obtain the beamforming vectors, which inevitably degrades

the achievable solution [41], [42]. For example, one pos-
sible rank-one approximation is obtained by simply setting
{f�

k (t)}∀k to be proportional to the eigenvector q1
k(t) of

{F�
k(t)}∀k associated with the largest eigenvalue λ1

k(t), i.e.,
f�
k (t) =

√
��

k(t)q1
k(t), ∀k ∈ K, where �k is scaled to

satisfy all the constraints in (25) [42]. Specifically, after
{q1

k(t)}∀k are obtained, (25) is modified by replacing Fk(t)
with F̃k(t), and introducing additional constraints F̃k(t) =
�k(t)q1

k(t)q1 H
k (t), and then solve the problem with opti-

mization variables �k, ∀k ∈ K (we refer the reader to [42]
and [41] for details). The joint optimization of beamformers
and PS ratios, with the proposed SDR-FP based convex
approximation, has been summarized in Algorithm 2.

Algorithm 2 SDR-FP Based Iterative Algorithm for (25)

1 Initialize with feasible starting point {ν(0)
k , μ

(0)
k }, ∀k,

and set i = 1
2 repeat
3 Solve (25) with {ν(i−1)

k , μ
(i−1)
k }, and denote the local

solution as
{
F(i)

k , γ
(i)
k , e

(i)
k , ρ

(i)
k

}
4 Update ν

(i)
k using (23c) with

{
F(i)

k , γ
(i)
k

}
, and μ

(i)
k

using (24c) with
{
F(i)

k , e
(i)
k

}
5 Set i = i + 1
6 until convergence or for fixed number of iterations

B. Solution of (21) via SCA Framework

In this subsection, we employ the SCA framework [40],
wherein the constraints (21b) and (21c) are successively
upper-bounded with a sequence of convex subsets via
first-order linear Taylor series approximations. The underlying
convex subproblem is then iteratively solved until the desired
convergence of the objective function. Note that, in contrast
to the above-mentioned SDR-FP technique, here the optimized
beamformers are obtained directly from the feasible solution,
and no additional post-processing steps are required. The SCA
based solutions have been widely used in many practical
applications, e.g., spectrum sharing, energy efficiency, and
multi-antenna interference coordination. For example, the SCA
based linear Taylor series relaxation of the concave-convex
fractional constraints is provided in our earlier work [2], [37].
In the following, the main steps are briefly reproduced.

1) Convex Approximation for Constraint (21b): We start
by rewriting SINR constraint (21b) as

γk ≤ |h H
k fk|2∑

u∈K\k

|h H
k fu|2 + σ2

k + δ2
k

ρk

, ∀k. (26)

For compact representation, we define new functions as

Gk(fk, γk) � |h H
k fk|2
γk

, (27a)

Ik(F, ρk) �
∑

u∈K\k

|h H
k fu|2 + σ2

k +
δ2
k

ρk
, (27b)
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where F � [f1, f2, . . . , fK ]. Hence, expression (26) can be
equivalently written as

Ik(F, ρk) − Gk(fk, γk) ≤ 0, ∀k. (28)

Note that (27a) is a quadratic-over-linear function, and (27b)
is a convex function with respect to the optimization variables,
hence, the left-hand side (LHS) of (28) is a difference of
convex functions [38, Ch. 3]. Thus, the linear convex approx-
imation of the equivalent constraint (28) can be obtained by
replacing Gk(fk, γk) with its first-order Taylor series approx-
imation around a fixed operating point {f (i)

k , γ
(i)
k }

G̃k(fk, γk, f (i)
k , γ

(i)
k ) � 2�

{
f (i) H
k hkh H

k

γ
(i)
k

(
fk − f (i)

k

)}

+
|h H

k f (i)
k |2

γ
(i)
k

(
1 − γk − γ

(i)
k

γ
(i)
k

)
. (29)

2) Convex Approximation for Constraint (21c): To begin
with, we rewrite expression (21c) as

ek

ζk(1 − ρk)
≤

K∑
j=1

|h H
k fj |2 + σ2

k, ∀k. (30)

For compact representation, we define new functions as

Ck(ρk) � 1
ζk(1 − ρk)

, (31a)

Sk(F, ek) �
∑K

j=1 |h H
k fj |2 + σ2

k

ek
. (31b)

Hence, expression (30) can be rewritten as

Ck(ρk) − Sk(F, ek) ≤ 0, ∀k. (32)

Observe that (31a) and (31b) are respectively convex and
quadratic-over-linear functions with respect to the optimization
variables. Hence, the LHS of (32) is again a difference of con-
vex functions [38, Ch. 3]. Then, to provide the linear convex
approximation of equivalent constraint (32), we replace Sk(F)
with its first-order linear Taylor series approximation around
a fixed operating point {F(i), e

(i)
k }

S̃k(F, ek,F(i), e
(i)
k )

� 2
K∑

j=1

�
{
f (i) H
j hkh H

k

(
fj − f (i)

j

)}

+

∑K
j=1 |h H

k f (i)
j |2 + σ2

k

e
(i)
k

(
1 − ek − e

(i)
k

e
(i)
k

)
. (33)

3) Approximated Convex Subproblem: After replac-
ing (21b) and (21c) with its linear Taylor series approxima-
tions (29) and (33), respectively, the problem (21) can be
approximated as the following convex subproblem:

min
{fk,γk,
ek,ρk}

V
∑
k∈K

‖fk‖2 −
∑
k∈K

ωk(Bmax
k − Bk)ek

−
∑
k∈K

(Qk + Ak + Zk) log2(1 + γk) (34a)

s.t. Ik(F, ρk)−G̃k(fk, γk, f (i)
k , γ

(i)
k ) ≤ 0, ∀k, (34b)

Ck(ρk) − S̃k(F, ek,F(i), e
(i)
k ) ≤ 0, ∀k, (34c)

γk ≤ 2Rmax
k − 1, ∀k, (34d)

ek ≤ Emax
k , ∀k, (34e)

0 ≤ ρk ≤ 1, ∀k. (34f)

Note that the subproblem (34) provides an approximate
solution in the proximity of a fixed operating point. Thus,
by iteratively solving (34) with a convex optimization solver,
e.g., CVX [43], and updating variables {f (i)

k , γ
(i)
k , e

(i)
k , ρ

(i)
k }

with the current SCA solution, as illustrated in Algorithm 3,
we obtain a solution for problem (21).

Algorithm 3 SCA Based Iterative Algorithm for (34)

1 Initialize with feasible starting point{
f (0)
k , γ

(0)
k , e

(0)
k , ρ

(0)
k

}
, ∀k, and set i = 1

2 repeat
3 Solve (34) with

{
f (i−1)
k , γ

(i−1)
k , e

(i−1)
k , ρ

(i−1)
k

}
and

denote the solution as
{
f�
k , γ�

k, e�
k, ρ�

k

}
4 Update

{
f (i)
k = f�

k

}
,
{
γ

(i)
k = γ�

k

}
,
{
e
(i)
k = e�

k

}
and{

ρ
(i)
k = ρ�

k

}
5 Set i = i + 1
6 until convergence or for fixed number of iterations

V. DELAY-BOUNDED BATTERYLESS DEVICES

In this section, we study a special scenario of great practical
significance, the case of batteryless UEs, which is key for
self-sustainable and battery-free future wireless networks [3].
Delay bounded batteryless and low-power networks can play
a crucial role for e.g., emergency networks and industrial
automation scenarios, due to dense deployment and restricted
human access.

As there is no battery in the user devices, the energy
harvested from the RF received signals is immediately avail-
able to support the receiver operations in the current time
slot [16], [17], e.g., based on the harvest-use strategy [4,
Sec. III].4 Moreover, the remainder of the extra harvested
energy will be discarded by the user devices. Therefore,
constraints (21d) and (21e) are no longer required for this
specific SWIPT-enabled batteryless setup [16]. However, the
receiver must be able to harvest an adequate amount of energy,
i.e., to support its circuit power consumption and decoding
operations on the downlink received data. Let ëk(t) denote
a (fixed) minimum harvested power QoS requirement of the
k-th UE for seamless receiver operations during time slot t.
In the following, time index t is omitted for notation brevity.
Thereby, the problem (21) can be recast as

min
{fk,γk,ρk}

V
∑
k∈K

‖fk‖2

−
∑
k∈K

(Qk + Ak + Zk) log2(1 + γk) (35a)

4The harvested energy is temporarily stored in a built-in capacitor, which
can be immediately used for receiver operations [4].
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s.t. γk ≤ ρk|h H
k fk|2

ρk

∑
u∈K\k

|h H
k fu|2 + ρkσ2

k + δ2
k

, ∀k, (35b)

ëk ≤ ζk

(
1 − ρk

)( K∑
j=1

|h H
k fj |2 + σ2

k

)
, ∀k, (35c)

0 ≤ ρk ≤ 1, ∀k. (35d)

Problem (35) is intractable due to the non-convex SINR
constraint (35b), and the coupling between optimization vari-
ables {fk, ρk} in expression (35b) and (35c).

We again adopt the SCA framework [40], wherein the non-
convex constraints (35b) and (35c) are upper-bounded with
their first-order Taylor series approximations. Note that (35b)
is equivalent to (21b), and it can be handled as described in
Section IV-B.1. Moreover, following the steps presented in
Section IV-B.2, constraint (35c) can be addressed as follows.

To begin with, we rewrite expression (35c) as

ëk

ζk

(
1 − ρk

) ≤
K∑

j=1

|h H
k fj |2 + σ2

k, ∀k. (36)

For compact representation, we define new functions as

C̈k(ρk) � ëk

ζk

(
1 − ρk

) , (37a)

S̈k(F) �
K∑

j=1

|h H
k fj |2 + σ2

k. (37b)

Hence, expression (36) can be equivalently rewritten as

C̈k(ρk) − S̈k(F) ≤ 0, ∀k. (38)

We can observe that both (37a) and (37b) are convex func-
tions, and hence, the LHS of (38) is a difference of convex
functions [38, Ch. 3]. We replace the quadratic function S̈k(F)
with its first-order Taylor series approximation around a fixed
operating point {F(i)} as

˜̈Sk(F,F(i)) �
K∑

j=1

|h H
k f (i)

j |2 + σ2
k

+ 2
K∑

j=1

�
{
f (i) H
j hkh H

k

(
fj − f (i)

j

)}
. (39)

Thereby, the problem (35) can be approximated as the
following convex subproblem around a fixed operating point
{f (i)

k , γ
(i)
k }

min
{fk,γk,ρk}

V
∑
k∈K

‖fk‖2

−
∑
k∈K

(Qk + Ak + Zk) log2(1 + γk) (40a)

s.t. λk,1 : Ik(F, ρk)

− G̃k(fk, γk, f (i)
k , γ

(i)
k ) ≤ 0, ∀k, (40b)

λk,2 : C̈k(ρk) − ˜̈Sk(F, F(i)) ≤ 0, ∀k, (40c)

λk,3 : ρk ≥ 0, ∀k, (40d)

λk,4 : ρk ≤ 1, ∀k, (40e)

where λk = [λk,1, λk,2, λk,3, λk,4] are non-negative Lagrange
multipliers associated with each constraint. The role of the
Lagrange multipliers will become clear in the following sub-
section. Note that subproblem (40) can be iteratively solved
using standard convex optimization tools, e.g., CVX [43],
as illustrated in Algorithm 4.

Algorithm 4 SCA Based Iterative Algorithm for (40)

1 Initialize with feasible starting point{
f (0)
k , γ

(0)
k , ρ

(0)
k

}
, ∀k, and set i = 1

2 repeat
3 Solve (40) with

{
f (i−1)
k , γ

(i−1)
k , ρ

(i−1)
k

}
and denote

the solution as
{
f�
k , γ�

k , ρ�
k

}
4 Update

{
f (i)
k = f�

k

}
,
{
γ

(i)
k = γ�

k

}
and

{
ρ
(i)
k = ρ�

k

}
5 Set i = i + 1
6 until convergence or for fixed number of iterations

A. Solution of (40) via KKT Conditions

Herein, we also provide a low-complexity iterative algo-
rithm that does not rely on generic convex solvers. Specifically,
we tackle (40) by iteratively solving a system of closed-form
KKT optimality conditions [38, Ch. 5.5]. After some algebraic
manipulations, we obtain the Lagrangian L(F, γk, ρk, λk)
of (40) as detailed in (41), shown at the bottom of the next
page. Next, by differentiating (41) with respect to primal
optimization variables {fk, γk, ρk}, we obtain the stationarity
conditions for (40), given by

∇fk : f H
k

(
V I +

∑
u∈K\k

λu,1huh H
u

)

= λk,1
f (i) H
k hkh H

k

γ
(i)
k

+ f (i) H
k

K∑
j=1

λj,2hjh H
j , (42a)

∇γk
:

Qk + Ak + Zk

1 + γk
= λk,1

|h H
k f (i)

k |2
(γ(i)

k )2
, (42b)

∇ρk
: λk,1

δ2
k

ρ2
k

= λk,2
ëk

ζk(1 − ρk)2
+ (λk,4 − λk,3). (42c)

Further, in addition to primal-dual feasibility, the KKT condi-
tions include the complementary slackness, defined as

λk,1 ≥ 0; λk,1

{
Ik(F, ρk)

− G̃k(fk, γk, f (i)
k , γ

(i)
k )

}
= 0, ∀k, (43a)

λk,2 ≥ 0; λk,2

{
C̈k(ρk) − ˜̈Sk(F,F(i))

}
= 0, ∀k, (43b)

λk,3 ≥ 0; λk,3

{
0 − ρk

}
= 0, ∀k, (43c)

λk,4 ≥ 0; λk,4

{
ρk − 1

}
= 0, ∀k. (43d)

Note that the associated dual variable {λk} is strictly pos-
itive only when the constraint is tight. Specifically, setting
λk,3 > 0 would imply ρk = 0. However, in such a case,
expression (27b) would become infeasible. Similarly, λk,4 >
0 results in ρk = 1, and it would make expression (37a) infea-
sible. Thus, we can conclude that constraints (40d) and (40e)
are not tight at a feasible solution of (40), i.e., 0 < ρk < 1 and
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λk,3 = λk,3 = 0, ∀k ∈ K. Next, let us assume the Lagrange
multipliers λk,1 > 0 and λ2,1 > 0, ∀k ∈ K. Then, after
some algebraic manipulations of expressions (42) and (43),
the closed-form steps in the iterative method are

f̃k =
(
V I+

∑
u∈K\k

λ
(i−1)
u,1 huh H

u

)−1

×
{

λ
(i−1)
k,1

γ
(i−1)
k

hkh H
k f (i−1)

k

+
K∑

j=1

λ
(i−1)
j,2 hjh H

j f (i−1)
k

}
, (44a)

f (i)
k = f (i−1)

k + β
(
f̃k − f (i−1)

k

)
, (44b)

ρ
(i)
k = 1 − ëk

ζk

{
2

K∑
j=1

�
{
f (i−1) H
j hkh H

k

(
f (i)
j − f (i−1)

j

)}

+
K∑

j=1

|h H
k f (i−1)

j |2 + σ2
k

}−1

, (44c)

γ
(i)
k = 2γ

(i−1)
k +

{
2�

{
f (i−1) H
k hkh H

k

γ
(i−1)
k

(
f (i)
k − f (i−1)

k

)}

−
∑

u∈K\k

|h H
k f (i)

u |2−σ2
k−

δ2
k

ρ
(i)
k

}
(γ(i−1)

k )2

|h H
k f (i−1)

k |2
, (44d)

λ
(i)
k,1 =

(Qk + Ak + Zk)
(
γ

(i−1)
k

)2

(1 + γ
(i)
k )|h H

k f (i−1)
k |2

, (44e)

λ
(i)
k,2 =

ζkδ2
kλ

(i−1)
k,1

(
1 − ρ

(i−1)
k

)2

ëk

(
ρ
(i−1)
k

)2 , (44f)

where β is a positive step size, i.e., 0 < β ≤ 1. It is worth
highlighting that the SWIPT beamformer design (44a) inher-
ently has a multicast structure due to EH from RF received
signals [15]. Specifically, the dual variables {λk,1} and {λk,2}
control the balance between information unicasting and energy
multicasting to each user, respectively. Note that to avoid
separate outer and inner loop updates, and hence, to speed
up the convergence, the fixed operating point {f (i)

k , γ
(i)
k }

is also heuristically updated in each iteration along with
the associated Lagrange multipliers. Thus, in general, the
monotonic convergence can not be guaranteed. However,
to improve the convergence behaviour, we employ the best
response (BR) method to regularize the beamformer update
in expression (44b). In Section VI, we show via a numerical
example that, with a proper choice of β in (44b), a monotonic
convergence of the objective function can be achieved with
a fairly small number of iterations. The proposed method

consists of iteratively solving a system of closed-form KKT
equations as summarized in Algorithm 5.

Algorithm 5 KKT Based Iterative Algorithm for (40)

1 Initialize with feasible starting point{
f (0)
k , γ

(0)
k , ρ

(0)
k , λ

(0)
k

}
, ∀k, and set i = 1

2 repeat
3 Solve f̃k from (44a) and update f (i)

k using (44b)

4 Compute variables ρ
(i)
k , γ

(i)
k from (44c), (44d),

respectively
5 Obtain Lagrange multipliers λ

(i)
k,1, λ

(i)
k,2 from (44e),

(44f), respectively
6 Set i = i + 1
7 until convergence or for fixed iterations

VI. SIMULATION RESULTS

In this section, we provide numerical examples to assess
the performance of the proposed algorithms for joint transmit
beamformers and receive PS ratios optimization. We con-
sider a SWIPT system with K = 2 UEs being served
by a BS equipped with a uniform linear array (ULA) of
Nt = 8 antenna elements. For simplicity, we assume identical
parameters for all UEs. Specifically, we set noise variance
δ2
k = −50 dBm and σ2

k = −70 dBm; EH conversion
efficiency ζk = 0.8, ∀t, k [17]. Without loss of generality,
we assume maximum battery capacity Bmax

k = 10 Joules;
fixed energy consumption P cir

k = 0 dBm; energy efficiency
of decoder circuit ϑd

k = 0.5 [Joules/bit]; normalized frame
duration Tf = 1; and scaling factor ωk = 150, ∀t, k. Further,
we consider a Poisson arrival process Ak ∼ Pois(α) with
allowable queue backlog Qth

k = 5 bits and tolerable violation
probability ε = 10% in problem (12) [37]. We set the fixed
minimum harvested power requirement ëk(t) = 10 dBm, ∀t, k
in problem (35). Finally, we set the step size β = 0.25 in
expressions (44b). If not mentioned otherwise, we consider
problem (12) and all the results are averaged over randomly
generated 3000 channel realizations.

We consider uncorrelated Rician fading to model the radio
propagation channel. Specifically, the channel hk ∈ CNt×1

of k-th UE consists of a deterministic Line-of-Sight (LoS)
path hLoS

k and a spatially uncorrelated non-LoS (NLoS)
path hNLoS

k , such that

hk(t)=
√

κ

1 + κ
hLoS

k (t)+

√
1

1 + κ
hNLoS

k (t), ∀t, k, (45)

L(F, γk, ρk, λk) =
∑
k∈K

[
V ‖fk‖2 − (Qk + Ak + Zk) log2(1 + γk) +

∑
u∈K\k

λu,1|h H
u fk|2

+ λk,1

{
σ2

k+
δ2
k

ρk
−2�

{f (i) H
k hkh H

k

γ
(i)
k

(
fk−f (i)

k

)}−2
|h H

k f (i)
k |2

γ
(i)
k

+γk
|h H

k f (i)
k |2

(γ(i)
k )2

}
+λk,2

{( 1
1 − ρk

) ëk

ζk

}

− 2
K∑

j=1

λj,2�
{
f (i) H
k hjh H

j

(
fk − f (i)

k

)}−λk,2

{ K∑
j=1

|h H
k f (i)

j |2+σ2
k

}
+ρk

{
λk,4−λk,3

}−λk,4

]
. (41)
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Fig. 3. Convergence behavior of Algorithm 2 and Algorithm 3 for (21) with
V = 1 and mean arrival α = 3.

where κ is the Rician factor. We set κ = 5 dB unless
stated otherwise. Moreover, the NLoS component is modeled
independently for each time slot t using Rayleigh fading with
the path-loss of −40 dB. Meanwhile, the LoS component
follows the standard far-field ULA model, i.e., hLoS

k (t) =√
10−4[1, e−jπ sin(θk(t)), . . . , e−j(Nt−1)π sin(θk(t))] T, where

θk(t) is the azimuth angle of k-th UE during time slot t relative
to the boresight of the BS antenna array. The azimuth angles
θk(t) ∈ [−π/2, π/2], ∀t, k, are randomly generated.

A. Convergence and Complexity Analysis

First, we investigate the convergence behavior of the pro-
posed iterative algorithms for a given randomly generated
channel realization. Note that the solution of (21), both in
Algorithm 2 and Algorithm 3, is obtained directly from
the convex optimization toolbox SeDuMi [43]. Further, the
per-iteration computational complexity is dominated by the
downlink beamformer optimization step and scales exponen-
tially with the length of the beamforming vector Nt. It can be
observed from Fig. 3 that the SDR-FP based iterative Algo-
rithm 2 provides faster convergence in terms of the required
approximation point updates. The interior point methods are
usually adopted to solve SDP formulations, and each iteration
requires O(

(K + N2
t )3.5

)
arithmetic operations [16], [44],

[45, Sec. III]. Moreover, Algorithm 2 also requires additional
post-approximation procedures to recover the rank-one beam-
forming vectors (see Section IV-A for more details). On the
contrary, the SCA based iterative Algorithm 3 attains the feasi-
ble solution without any additional steps after the convergence.
The approximated convex problems can be efficiently solved
as a sequence of SOCP, and the worst-case computational
complexity of each iteration is O(

(
K + Nt)3.5

)
[17], [44].

Note that both solutions exactly coincide, implying also that
the Algorithm 2 yields a rank-one solution for the refor-
mulated problem (12) in this particular scenario with the
above considered setup configurations. However, the SDR-
based optimization becomes expensive, potentially much more
than SCA framework, as the number of transmit antennas Nt at

Fig. 4. The data queue backlog performance with V = 1 and different mean
arrivals.

the BS increases (e.g., matrix {Fk}∀k). Therefore, Algorithm 2
can be useful for delay-constrained devices with sufficient
processing capabilities, while Algorithm 3 can be applied to
hardware-constrained devices to produce a more computation-
ally efficient solution.

B. Impact of Parameter V and Mean Arrival Rate α

Herein, we investigate the impact of different mean arrival
rate α and trade-off parameter V on the achievable system
performance. First, we set V = 1 and illustrate the empirical
cumulative distribution function (ecdf) of the queue backlogs
in Fig. 4. It can be concluded that irrespective of the mean
arrival α, the proposed method ensures the maximum queue
backlogs of each user k (i.e., Qth

k = 5) within tolerable
violation probability ε = 10%. Thus, the proposed convex
relaxations to (12) still allow to satisfy the desired user-specific
latency requirements (i.e., probabilistic queue backlog con-
straint (12b) is met). Note that similar performance trends can
be obtained for different values of parameter V , but this is not
illustrated due to space limitations.

Next, we examine the impact of different values of the
trade-off parameter V on the average transmit power of the
BS and the average harvested power at the receiver in Fig. 5
and Fig. 6, respectively. The result in Fig. 5 shows that the
sum-power decreases with an increasing V . This is an expected
behavior since V can be anticipated as a scaling factor for
the sum-power objective function (see expression (21a) for
details). Thus, higher values of V linearly emphasize the min-
imization of the BS transmit power over the sum of network
queue backlogs and spare battery capacity until/unless the
queues length becomes substantially larger than the sum-power
objective value. Furthermore, we can observe that the BS sum-
power significantly increases with the mean arrival rate. This
is mainly due to the fact that the increase in the network queue
backlogs (6) enforces downlink transmission with higher data
rates to reduce users’ queues, e.g., at the cost of consuming
more energy, and thus, requiring higher BS transmit powers
to quickly recharge the devices. Note that with the increasing
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Fig. 5. The BS average transmit power with increasing V and different mean
arrivals.

Fig. 6. The receiver average harvested energy with increasing V and different
mean arrivals.

V and α, it also becomes more stringent to satisfy the
user-specific latency constraints (12b), as will become clear
in the following.

Fig. 6 illustrates that the energy harvested at the receiver
decreases with the increase of V . This is mainly due to the
decrease in the transmit power of the BS with an increasing V ,
as also shown in Fig. 5. Note that a downlink transmission
with less power leads, in general, to relatively less harvesting
opportunities at the receivers. Furthermore, we can observe
that the harvested power increases with the mean arrival rate.
Specifically, with the increasing network queue backlogs (6),
the BS attempts to increase the maximum downlink supported
rates (10). Thus, the UEs consume significant energy resources
to support their current data decoding operations (9), which
eventually leads to greater EH requirements in subsequent
time slots due to less available spare battery capacity (refer
to Section II-C for more details). In this regard, our pro-
posed virtual battery queue with the scaling on spare battery
capacity (15) enforces more stringent EH requirements at
the UEs to quickly recharge them and also stabilize the
time-average battery queues (8). All in all, there is a strong

Fig. 7. The dynamics of network queues with V ∈ {1, 8} and mean
arrival α = 3.

Fig. 8. The dynamics of virtual queues with V ∈ {1, 8} and mean
arrival α = 3.

interplay among network queue length, BS transmit power,
and receiver spare battery capacity, as can be seen from
Fig. 4−Fig. 6.

C. Network and virtual Queue Dynamics

Fig. 7 and Fig. 8 respectively show the dynamics of network
queue backlogs {Qk(t)} and associated virtual queue {Zk(t)}
over time with parameter V = {1, 8} for a given UE. It can be
observed that the time dynamics of queues include a transient
state and a steady state. Furthermore, the steady state is only
attained after accumulating certain backlogs in the associated
virtual queues {Zk(t)} as shown in Fig. 8. Thus, until/unless
the virtual queue reaches a certain value at which it gets satu-
rated (e.g., around t = {26, 34} for V = {1, 8}), only then the
actual network queue oscillate, so as the probabilistic queue
length constraint Pr

{
Qk(t) ≥ Qth

k

} ≤ ε is satisfied, i.e.,
to achieve the probabilistic delay requirements (12b). This is
mainly because of the negative drift property of the Lyapunov
function [35, Ch. 4.4]. Specifically, the stability of associated
virtual queues {Zk(t)} strictly ensures that the network queues
are bounded [35, Th. 2.5], which allows achieving the desired
user-specific queue backlogs performance.
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Fig. 9. The receiver average battery energy with increasing V and different
mean arrivals.

Fig. 10. The ecdf of battery charge levels with V ∈ {1, 8} and mean
arrival α = 3.

D. Receiver Battery Dynamics

Next, we examine the performance of receiver battery
capacity in Fig. 9 and Fig. 10. It can be concluded from
Fig. 9 that the average battery capacity decreases with an
increasing V , mainly due to the decrease in BS transmit power
and corresponding less harvesting opportunities at the receiver.
As an example, by decreasing the parameter V = 8 to V = 1,
the minimum battery charge level of a given UE is improved
from Bk = 1.45 Joules to Bk = 3.1 Joules, as shown
in Fig. 10. However, the average battery capacity remains
somewhat similar with different mean arrival rates. This is due
to the fact that the arrival with a higher rate enforces higher BS
transmit power, and thus more harvested energy at the receiver
(see Fig. 6) to support the more energy-demanding receive
decoding process. Specifically, with increasing arrivals, the
battery is quickly recharged to support the receivers’ operation,
and thus the battery level remains fairly stable.

To summarize, even after the proposed relaxations to prob-
lem (12), the solution still allows to satisfy the desired
user-specific latency and maximum EH requirements. That
is, constraints (12b)-(12e) are strictly met with the minimum
BS transmit power. Thus, with the proposed dynamic control
algorithm and suitable parameterization of drift-plus-penalty

Fig. 11. Convergence behavior of Algorithm 4 and Algorithm 5 for (35)
with V = 1 and mean arrival α = 3.

Fig. 12. The queue backlog performance for different EH requirement with
V = 1 and mean arrival α = 3.

functions, one can easily handle the network queue backlogs,
optimize the BS transmit power, and the receivers’ battery
charge level, while ensuring the user-specific latency and EH
requirements of, e.g., industrial-grade delay bounded critical
applications for factory automation scenarios.

E. Delay-Bounded Batteryless Devices

For the special scenario of delay bounded SWIPT-enabled
batteryless receivers, we illustrate in Fig. 11 the run time and
the convergence performance of Algorithm 4 and Algorithm 5
for solving problem (35). Note that different from the SCA
based iterative approach in Algorithm 4, the solution of
Algorithm 5 is based on an iterative evaluation of closed-form
KKT expressions (44), thus, it does not rely on generic convex
solvers. We can observe that the solution via Algorithm 5
achieves superior performance to Algorithm 4, e.g., around
98% improvement in the run time performance. Further, the
computational complexity is mainly dominated by expres-
sion (44a), which consists of matrix multiplication and inverse
operations. Hence, each iteration requires O(N2.37

t ) arithmetic
operations using, e.g., Coppersmith–Winograd algorithm [46],
[38, Appendix C]. Thus, Algorithm 5 provides more practical,
latency-conscious, and computationally efficient implementa-
tions. At this point, it is worth highlighting that a KKT based
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closed-form iterative method may not be attained for (12) due
to underlying complexity, coupling among optimization vari-
ables, and temporally correlated user-specific battery energy
and EH constraints.

Finally, Fig. 12 illustrates the user-specific latency perfor-
mance for different minimum harvested power requirements
with the trade-off parameter V = 1 and mean arrival rate α =
3. The result shows that, irrespective of the fixed harvested
power constraint (35c), our proposed method ensures the
maximum backlogs of each user k (i.e., Qth

k = 5) within the
allowable violation probability ε = 10%. Thus, the proposed
convex relaxations to problem (35) still allow to satisfy the
desired latency requirements. The other numerical examples
are omitted due to space limitation, but similar performance
trends can easily be obtained for (35) [1], [2].

VII. CONCLUSION

In this paper, we considered a PS based SWIPT system and
provided a joint optimization of transmit beamforming vectors
and receive PS ratios, while accounting for the limited battery
energy at each UE. Specifically, we considered a long-term
average BS transmit power minimization problem concur-
rently satisfying the user-specific latency and maximum EH
requirements. The proposed radio resource allocation schemes
efficiently avoid the receivers’ battery depletion phenomenon
by preemptively incorporating the spare battery capacity and
EH fluctuations in a time dynamic mobile access network.
To provide a tractable solution, we employed the Lyapunov
optimization framework, and provided an online dynamic
control algorithm to obtain a series of per-time slot determin-
istic subproblems. Furthermore, the coupled and non-convex
constraints were handled by applying the techniques of SDR-
FP and SCA framework. A closed-form iterative algorithm was
designed by solving a system of KKT optimality conditions for
a special case of delay bounded batteryless UEs. The simula-
tion results manifested the robustness of the proposed design to
realize an energy-efficient SWIPT system for industrial-grade
delay bound applications.
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