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The field of computer science has undergone rapid expansion due to the

increasing interest in improving system performance. This has resulted in

the emergence of advanced techniques, such as neural networks, intelligent

systems, optimization algorithms, and optimization strategies. These innovations

have created novel opportunities and challenges in various domains. This

paper presents a thorough examination of three intelligent methods: neural

networks, intelligent systems, and optimization algorithms and strategies. It

discusses the fundamental principles and techniques employed in these fields,

as well as the recent advancements and future prospects. Additionally, this

paper analyzes the advantages and limitations of these intelligent approaches.

Ultimately, it serves as a comprehensive summary and overview of these

critical and rapidly evolving fields, o�ering an informative guide for novices and

researchers interested in these areas.
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1. Introduction

In recent years, the fields of computer science and communication electronics have

undergone rapid growth and development, primarily due to the increasing interest in

techniques that can enhance the performance of systems. The advancement of technologies

such as neural networks, intelligent systems, optimization algorithms, and strategies has

resulted in significant progress and created new opportunities and challenges in the areas

of artificial intelligence, automation, and data science.

Neural networks, a potent machine learning algorithm, have garnered considerable

attention due to their ability to solve intricate problems in diverse fields, such as speech

recognition, image processing, and reinforcement learning. Inspired by the human brain’s

structure, neural networks consist of interconnected layers of nodes or “neurons” that

process input data and generate output predictions. The primary advantage of neural

networks stems from their self-learning capability, which enables them to assimilate

knowledge from vast amounts of data and make accurate predictions without explicit

programming. Consequently, they find extensive applications in domains where traditional

programming is arduous and cumbersome. Additionally, neural networks can handle non-

linear relationships between inputs and outputs, rendering them highly suitable for complex

non-linear problems that are challenging to solve with linear models. However, neural

networks also possess certain limitations, such as: (1) Black-box nature: Neural networks are

often regarded as black-box models due to the challenge in comprehending how they arrive

at their prediction outcomes. Consequently, diagnosing and rectifying errors in the model

can be difficult; (2) Overfitting: Neural networks are susceptible to overfitting, which implies
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that they may perform well on the training data but poorly

on new and unseen data. This can be mitigated by utilizing

regularization techniques, but it continues to pose a challenge.

(3) Training complexity: Neural networks are computationally

intensive and time-consuming to train, particularly for large and

complex datasets. In general, neural networks are potent tools in

the realm of machine learning and have demonstrated considerable

potential in solving intricate problems (Xiao et al., 2018b; Long

et al., 2022; Peng and Liao, 2022; Liao et al., 2023). With sustained

research efforts and continued development, they may offer even

greater utility across a broad range of applications.

Intelligent systems have evolved into a pervasive and

indispensable element of modern society. These systems utilize

artificial intelligence and electronic communication technology

to provide solutions for diverse applications, ranging from self-

driving cars to home automation systems (Khan et al., 2022e). The

widespread implementation of intelligent systems can be attributed

to the steady advancement of technologies such as design,

recognition, detection, prediction, and evaluation. Furthermore,

the exceptional performance of intelligent system components,

including communication systems and oscillators, assumes a

crucial role. Communication systems are indispensable for

transmitting data and commands between distinct components of

the system (Zhang et al., 2022a), while oscillators provide accurate

timing and synchronization to ensure the proper operation of the

system (Jin et al., 2017a).

Optimization represents a fundamental challenge in multiple

domains, entailing the identification of the optimal solution to a

problem that complies with prescribed criteria and constraints.

Optimization algorithms and strategies seek to automate this

process and attain the optimal solution efficiently. Over time,

diverse optimization algorithms have been developed, which can

be broadly categorized into classical and metaheuristic approaches.

Classical methods rely on mathematical techniques such as linear

programming (Hu et al., 2019a), quadratic programming (Xiao,

2016; Xiao et al., 2019c), and dynamic programming (Lv et al.,

2018; Liao et al., 2019), while metaheuristic methods are more

heuristic and often inspired by natural phenomena (Sun et al.,

2016; Khan et al., 2020a; Qu et al., 2020; Zhang et al., 2022b).

Optimization methods and strategies play a critical role in the

efficacy and competitiveness of various fields (Khan et al., 2021).

For instance, optimization technologies can be employed to

enhance the performance of machines or systems while reducing

costs. Furthermore, optimization methods can have a favorable

impact on society by improving the efficiency of public services and

infrastructure, and addressing societal challenges such as poverty,

inequality, and climate change. Overall, optimization methods and

strategies constitute a crucial aspect from all perspectives.

This paper aims to present a comprehensive survey of

three areas of research: neural networks, intelligent systems,

and optimization algorithms and strategies. The basic principles,

techniques, recent advances, and future directions of these

intelligent methods will be explored in depth. This paper will

provide a detailed examination of the models, algorithms, and

applications used in each of these research fields. Furthermore, the

advantages and limitations of these technologies will be thoroughly

analyzed and discussed to aid readers in understanding and

FIGURE 1

General structure of a single neuron in the most basic type of neural

networks, where xi denotes the ith input of the neuron, wi is the

corresponding weight, yi represents the ith output of the neuron,

and the activation functions (AFs) can be linear or non-linear.

evaluating these intelligent methods. The structure of this paper is

presented as follows. In Section 2, we categorize neural network

models into real-valued and complex-valued types, and examine

the activation function, robustness, and convergence of these

models. Moreover, this section illustrates the relevant application

domains of neural networks, including linear systems, non-linear

systems, and robotic and motion planning. Section 3 discusses

the pertinent technologies and components of intelligent systems,

comprising system design, recognition, and detection methods,

prediction and evaluation methods, and intelligent communication

systems and oscillators. In Section 4, we explore bio-inspired

optimization algorithms and optimization strategies and systems.

Finally, Section 5 provides concluding remarks.

2. Neural networks

2.1. Background

Neural networks are mathematical models that simulate

the processing of complex information by the human brain’s

nervous system, based on the principles of neural networks in

biology. These models abstract the structure of the brain and its

response mechanism to external stimuli, and are represented by

a large number of interconnected nodes (called neurons) with

specific output functions (called activation functions or AFs).

Connections between nodes represent weighted values (called

weights) for signal transmission, allowing neural networks to

simulate human memory. The network’s output depends on its

structure, connections, weights, and activation functions, which

are typically approximations of algorithms, functions of nature, or

logical strategies. Figure 1 illustrates the structure of a single neuron

in the most basic type of neural network.
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The neural network model has gained significant attention

across various scientific domains due to its distinctive properties,

which are as follows:

• Self-learning and self-adaptive ability: The neural network

model is capable of adjusting its network structure parameters

automatically when exposed to changes in the external

environment (such as new training samples), to achieve the

desired output corresponding to a specific input. Compared

to traditional expert systems with fixed reasoning, neural

network models are more adaptable and mimic the thinking

style of the human brain.

• Non-linearity: Many real-world problems are viewed as

non-linear complex systems, while neural networks store

information in the number of neurons and connection

weights, allowing for various non-linear mappings.

• Fault-tolerance and robustness: The distributed nature of

information storage in neural network models ensures that

local damage to the model moderately weakens the operation

of the neural network without producing catastrophic errors.

Moreover, neural networks can handle incomplete or noisy

data, possess generalization function, and exhibit strong fault

tolerance.

• Computational parallelism and distributed storage: The

structural features of neural networks result in natural

parallelism. Each neuron can perform independent operations

and processing based on the received information and output

the result. Different neurons in the same layer can perform

operations simultaneously and then transmit to the next

layer for processing. As a result, neural networks can take

advantage of parallel computing to increase their operation

speed significantly. Neural networks use distributed storage

to represent information. By distributing the activation signals

on the network neurons in response to the input information,

the features are accurately remembered in the connection

weights of the network through training and learning,

enabling the neural network to make quick judgments when

the same patterns are input again.

In the preceding subsection, we have acquired an initial

comprehension of the fundamental architecture and characteristics

of neural network models. In the following analysis, we will

examine the models in greater detail from the standpoint of

their various categories, problem-solving approaches, and practical

applications.

2.2. Real-valued neural network model

Real-valued neural networks are a type of machine learning

model that can process continuous data, making them highly

versatile and effective in various domains, such as computer vision,

natural language processing, and signal processing. For example, in

image recognition, real-valued neural networks can take the pixel

values of a digital image as input and produce the corresponding

label as output. In stock price prediction, these networks can model

historical stock data and provide trend predictions for future stock

prices. In voice recognition, acoustic signals can be transformed

into textual output through the use of real-valued neural networks.

The activation function (AF) is a crucial component of the neural

network architecture as it enables the transformation of the input

into an output. Without an AF, the neural network can only

represent linear functions. The addition of a non-linear AF allows

the neural network model to achieve non-linear transformations

from input to output, thereby enhancing its expressive power.

2.2.1. Neural network model with linear AF
Let us first consider the neural network model with a linear

AF. In this case, the gradient, or derivative, of the neural network

remains constant for each iteration, making it difficult for the

model to capture complex information from the data. However,

linear AF is still suitable for simple tasks that require high

interpretability. In their study (Ding et al., 2014), the authors

proposed a class of static recurrent neural network (SRNN) models

with linear activation function and time-varying delays. To assess

the stability of the SRNN model, they introduced a new Lyapunov-

Krasovskii function and derived improved time delay-dependent

stability conditions in the form of linear inequalities. They then

provided numerical results that are consistent with the theoretical

findings by specifying the SRNN model parameters. In another

study (Zhang et al., 2019), the authors extended the original linearly

activated fixed-parameter neural network to a linearly activated

varying-parameter neural network model, where the parameter is

chosen as ζ (t) = α + αt . Subsequently, Xiao et al. proposed an

improved varying parameter neural network model (Xiao et al.,

2020c). The parameter value of this model is

ζ (t) =

{

α + tα , if 0 < α ≤ 1,

α2 + 2tα + αt+2, if α > 1,

which can better meet the needs of the model hardware

implementation.

The integration of various neural network approaches has

garnered significant interest in addition to the investigation of

individual neural network models. A novel strategy combining

gradient-based neural networks (GNNs) and zeroing neural

networks (ZNNs) was proposed in Dai et al. (2022) to

solve dynamic matrix inversion online. The proposed strategy

incorporates fuzzy adaptive control, which allows for adaptive

adjustment by regulating the fuzzy factors based on real-

time residual error values. The authors demonstrate the global

convergence and efficacy of this GNN-ZNN model based on fuzzy

control through theoretical analysis and numerical experiments.

Different papers have employed various neural network models

for the same problem, each with their own unique characteristics

(Zhang et al., 2019; Xiao et al., 2020c; Dai et al., 2022). Therefore,

exploring how to effectively combine the strengths of multiple

neural networkmodels in different scenarios is an important area of

research. Fuzzy control theory, a mathematical theory dealing with

fuzziness, is based on the concept of fuzzy sets and has been widely

studied, including applications such as fuzzy inference (Zeng et al.,

2022) and fuzzy Petri nets (Zhou et al., 2015, 2018a,b, 2019). These

fuzzy control methods offer guidance for extending single neural

networks to multi-neural networks.
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2.2.2. Neural network model with non-linear AF
Non-linear AFs are a crucial element of neural networks,

contributing to their expressive power and learning capability,

leading to superior performance in handling complex tasks. Based

on convergence properties, non-linear AFs can be categorized into

two types: general AFs and finite-time convergent AFs.

(i) General AFs: In recent years, several studies have proposed

neural network models with non-linear activation functions for

solving a variety of problems. For example, in Jian et al.

(2020), a class of neural network models was presented for

solving the time-varying Sylvester equation, where the authors

considered three different types of non-linear activation functions

and provided a detailed theoretical derivation to validate the

convergence performance of the proposed models. Similarly, Lei

et al. proposed an integral structured neural network model with

a coalescent activation function optimized for the solution of the

time-varying Sylvester equation (Lei et al., 2022). For non-convex

and non-linear optimization problems, an adaptive parameter

convergence-differential neural network (CDNN) model with non-

linear activation functions was proposed in Zhang et al. (2018d),

and the authors verified the global convergence and robustness

of the model by theoretical analysis and numerical experiments.

Non-linear activation functions are also widely used in many

fields, such as wheeled mobile robot control (Xiao et al., 2017b),

surgical endoscopic robot control (Li et al., 2022b), and distributed

collaborative networks (Zhang et al., 2018a).

(ii) Finite-time convergent AFs: Contrary to the general non-

linear activation functions with infinite time convergence, the

activation functions with finite time convergence facilitate fast

convergence of neural network models, with a time upper bound.

In Xiao et al. (2018a), the authors proposed a neural networkmodel

for online solution of Lyapunov equations in non-linear systems.

The model’s fast convergence was achieved by incorporating non-

linear activation functions, and an upper bound on themodel’s time

convergence was established via theoretical analysis as

Timeup <
α1 + β1

α1β1(1− ζ )
max

{

|r−(0)|(1−ζ ), |r+(0)|(1−ζ )
}

,

where α1 and β1 are scale factors, ζ ∈ (0, 1), r+(0) = max{R(0)},
and r−(0) = min{R(0)} with R(0) denotes the initial value of the
error function R(t). Finally, the stability and finite-time properties

of themodel were confirmed in an application involving the control

of a six-link robotic arm. In a similar vein, Xiao et al. developed an

accelerated convergence recurrent neural network (RNN) model

(Xiao, 2017a, 2019) for time-varying matrix square root finding

(Zhang et al., 2015), and provided a time upper bound for the

convergence of the model, which is expressed as

Timeup =
α2

β2(α2 − γ )
ln

β2A(0)(α2−γ )/α2 + λ

λ
,

where β2 and λ are scale factors, α2 > γ and all are odd integers,

and A(0) is a random initial value of the error matrix. For dynamic

non-linear optimization problems (Liao et al., 2015; Xiao and Lu,

2019; Lu et al., 2020), the authors proposed a sign-bi-power AF and

use it for dynamic neural network model design, and express the

upper bound of the model convergence time mathematically as

Timeup < max

{

|k
+
0 |

(1−α3)

β3(1− α3)
,
|k

−
0 |

(1−α3)

β3(1− α3)

}

where α3 is the scale factor, 1 < β3 < 1, k+0 and k
−
0 represent

the maximum and minimum initial values of the error vector k,

respectively. In order to account for the effects of rounding errors

and external noise disturbances in practical problem solutions,

Xiao and colleagues proposed a neural network model in Xiao

et al. (2019d) with the capability to suppress noise and achieve

predefined time convergence. The authors provided detailed

theoretical proof of the robustness and finite-time convergence

of the model. They also verified through numerical experiments

that the model can still achieve finite-time convergence in the

presence of external noise. In Liao et al. (2022a), a predefined

time-convergent neural network model with harmonic-like noise

suppression was designed for adaptively solving time-varying

problems by leveraging the properties of harmonic signals. The

burgeoning demand for real-time performance has become a

critical requirement for many scientific, industrial, and commercial

applications, such as computational biology, weather forecasting,

autonomous vehicles, and financial analytics. This requirement

is largely driven by the rapid progress in computer technology,

including advances in hardware and software, which have

enabled the processing of vast quantities of data in real-time

(Tan and Dai, 2017; Dai et al., 2018; Tan, 2021; Li et al.,

2022a). Real-time performance is essential for many time-sensitive

applications, where delays or inaccuracies in processing can

have severe consequences, such as in real-time monitoring of

critical physiological signals or detecting anomalies in sensor data.

Furthermore, real-time performance enables immediate feedback

and adaptive decision-making, leading to increased efficiency and

performance. In Zhang et al. (2022c), the authors proposed a

unified GNN model for handling both static matrix inversion

and time-varying matrix inversion with finite-time convergence

and a simpler structure. As the authors conclude, compared with

the existing GNN model and ZNN model dedicated to time-

varying matrix inversion, the proposed unified GNN model has

advantages in convergence speed and robustness to noise. At

the same time, the authors further extend this GNN model for

finding the dynamic Moore-Penrose inverses in real-time (Zhang

et al., 2022d), and the paper concludes that this method does

not require the time derivatives of the relevant dynamic matrices

and has finite time convergence. In short, high-precision and low-

complexity real-time solutions are a highly active area of research,

with numerous open problems and opportunities for innovation in

both fundamental algorithms and system-level optimizations.

To facilitate the reader’s understanding, we present a list of the

linear and non-linear activation functions discussed in Section 2

and provide a detailed description of each function in Table 1.

(1) Linear activation function (LAF):

A(x) = x. (1)

(2) Power activation function (PAF):

A(x) = xµ with µ > 3 indicating an odd integer. (2)
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TABLE 1 Details of various linear and non-linear activation functions.

AFs Type References

LAF (1) Linear (Ding et al., 2014; Zhang et al.,

2019; Jian et al., 2020; Xiao

et al., 2020c; Dai et al., 2022)

PAF (2) Non-linear (Jian et al., 2020)

BPAF (3) Non-linear (Zhang et al., 2018a; Lei et al.,

2022)

PSAF (4) Non-linear (Zhang et al., 2018d)

HSAF (5) Non-linear (Xiao et al., 2017b; Li et al.,

2022b)

SBPAF (6) Non-linear &

Finite-time convergence

(Xiao, 2017a, 2019; Xiao et al.,

2018a, 2019d)

TSBPAF (7) Non-linear &

Finite-time convergence

(Liao et al., 2022a)

(3) Bipolar sigmoid activation function (BPAF):

A(x) = (1− exp(−µx))/(1+ exp(−µx)) with µ > 1. (3)

(4) Power-sigmoid activation function (PSAF):

A(x) =







xµ, if |x| ≥ 1,
1− exp(−µx)

1+ exp(−µx)
·
1+ exp(−µ)

1− exp(−µ)
, otherwise.

(4)

(5) Hyperbolic sine activation function (HSAF):

A(x) = (exp(µx)− exp(−µx))/2 with µ > 1. (5)

(6) Sign-bi-power activation function (SBPAF) :

A(x) = (|x|µ + |x|1/µ)sgn(x)/2 with 0 < µ < 1, (6)

thereinto,

sgn(x) =











1, if x > 0,

0, if x = 0,

-1, if x < 0.

7) Tunable sign-bi-power activation function (TSBPAF):

A(x) =
1

2
ρ1|x|

µsgn(x)+
1

2
ρ2x+

1

2
ρ3|x|

1/µsgn(x), (7)

where µ ∈ (0, 1), ρ1, ρ2, and ρ3 are greater than 1.

2.3. Complex-valued neural network model

In recent years, neural network-based machine learning

techniques have found broad application in practical settings.

Notably, the majority of current neural network models are

designed for real-valued inputs, outputs, and weights. However,

this raises the question of the existence and purpose of complex-

valued neural network models. What are complex-valued neural

network models, and why are they necessary? Complex-valued

neural network models utilize complex numbers as inputs, outputs,

and weights and are inspired by the natural properties of complex

numbers and the existence of complex-valued neurons in biology.

They are employed in specific application scenarios where the input

and output data can be represented in complex form, and therefore,

complex-valued neural networks can better describe and process

these data. Compared to real-valued neural networks, complex-

valued neural networks offer several advantages:

• They can better represent complex-valued data in the real

world, such as sound waves and electromagnetic waves.

• They can achieve better results with a smaller network size due

to the effectiveness of complex-valued weights in expressing

correlations and symmetries in the data.

• They can better handle asymmetrical data by allowing for

expression rotation and scaling, which can map asymmetric

data into a more symmetric space.

• They can better handle phase information, which is important

for complex-valued data, as traditional real-valued neural

network models struggle to handle the phase information

effectively.

Complex-valued neural networks have been extensively

employed in image recognition, speech recognition, and

natural language processing, and are currently under thorough

investigation. In the following sections, we will delve into the

complex-valued neural network model and scrutinize it through

the lenses of noise-tolerance and finite-time convergence.

2.3.1. Noise-tolerance
The precision and robustness of neural network models can be

adversely affected by computational rounding errors and external

noise perturbations. Therefore, it is crucial for these models to

possess the dual capability of solving problems and suppressing

noise simultaneously.

In Xiao and Lu (2017), a complex-valued gradient neural

network model was proposed for solving complex-valued linear

matrix equations. This model has a simpler theoretical analysis

and lower computational complexity compared to the widely

used real-valued gradient-based neural network model. In Lei

et al. (2020), the authors proposed a neural network model for

computing the inverse of complex-valued time-varying matrices.

The model’s convergence in solving time-varying problems and

its robustness against external noise disturbances were analyzed

and validated. The effect of design parameters on the speed of

model solving was also elucidated based on experimental results.

Moreover, a complex-valued noise-resistant neural network model

based on an integral-type design formulation was presented in

Xiao et al. (2019f) for the same problem. The convergence

and robustness of the model were verified through detailed

analysis and proofs. The experiments considered various noise

types, including constant noise, linear noise, bounded linear

noise, harmonic noise, and exponential-type noise. The model

proposed in this work has a better noise suppression effect

compared to the traditional gradient-based neural network model.

To further improve the noise tolerance of the neural network
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model, a complex-valued noise-tolerant neural networkmodel with

a double-integral structure was proposed in Liao et al. (2022b),

which was capable of simultaneously solving the problem and

suppressing the noise. The authors verified the robustness of the

model under constant noise, linear polynomial noise, and quadratic

polynomial noise via numerous theoretical analyses. According

to the numerical experimental results, this model can achieve

the effective suppression of constant noise, linear polynomial

noise, and quadratic polynomial noise. In Ding et al. (2019b),

Ding et al. proposed an improved complex-valued recurrent

neural network (ICVRNN) model for solving the complex-valued

time-varying Sylvester equation. This work gives a large number

of theoretical proofs and experimental cases to analyze the

effectiveness, convergence, and stability of the ICVRNN model.

Additionally, the authors further extend this ICVRNNmodel to the

solution of complex-valued linear equations (CVLEs) (Ding et al.,

2018). As the authors conclude, the ICVRNN model has better

performance for solving CVLEs compared to traditional neural

network models. In addition, noise-tolerant complex-valued neural

network models are widely used for solving many problems, such

as matrix pseudo-inverse solving (Lei et al., 2019), robotics (Liao

et al., 2022d), and non-linear optimization (Xiao et al., 2019a), etc.

2.3.2. Finite-time convergence
Finite-time convergence is a crucial characteristic of neural

network models as it allows for achieving the desired level of

performance in a shorter amount of time. Specifically, if a neural

network model can attain convergence within a finite time, the

parameter selection and tuning process can be expedited to obtain

the desired results more quickly. The non-linear activation function

used in complex-valued neural network models plays a pivotal role

in achieving finite-time convergence. This function is based on the

non-linear activation function in the real domain but generalized

to the complex domain. Unlike its counterpart in the real domain,

the complex-valued non-linear activation function operates on

complex inputs and outputs, which enables better handling of the

non-linear characteristics of complex-valued data.

In Li and Li (2013), Li et al. proposed two ways to generalize the

AF from the real domain to the complex domain, as follows.

i) Complex-valued AF Type I:

F(a+ ib) = A(a)+ iA(b),

where F(·) is a complex-valued AF defined in an element-wise

manner, and a and b denote the real and imaginary parts of the

complex number a+ bi, respectively.
ii) Complex-valued AF Type II:

F(a+ ib) = A(ϒ) ⋄ exp(i2),

where the symbol ⋄ denotes themultiplication of the corresponding

subelements of two vectors or matrices (i.e., c ⋄ d = [cjdj] for real
vectors c = [cj] and d = [dj]), and ϒ ∈ R and 2 ∈ (−π ,π]

represent the modulus and argument of the complex number a+bi,
respectively.

In Xiao et al. (2020b), the authors proposed two non-linear

equivalent models for solving complex-valued problems. One

model focused on the real and imaginary parts of the complex

numbers, while the other was from the perspective of the modulus

of the complex numbers. The authors introduced a non-linear

activation function to ensure fast convergence and applied these

models to solve the complex-valued Sylvester equation. Both

models performed well, as reported by the authors. In Xiao

et al. (2022b), the authors designed an arctan-type variable-

parameter complex-valued neural network model with finite-

time convergence. This model takes into account the reality that

the convergence factor is time-varying in the actual hardware

environment. During the solution process, the model can adjust

its convergence scale parameters (CSPs). When the model achieves

convergence, the CSPs converge to a constant greater than zero.

The CSPs and finite-time upper bounds of this model are supported

by theoretical analysis, as the authors conclude. The excellent

performance of this model has been demonstrated in numerical

experiments. Furthermore, the authors extended this variable-

parameter neural network model to solve time-varying complex-

valued matrix equations (Ding et al., 2018; Xiao et al., 2021b).

In Zhou et al. (2022), the authors aimed to improve the

robustness and solution speed of complex-valued noise-resistant

neural network models for practical problem-solving, while

meeting the dual requirements of noise tolerance and real-time

performance. To this end, the authors introduced non-linear

activation to the model. In this work, the authors employed this

improved model to solve the problem of trajectory tracking for

manipulators, and the results demonstrate that this model can

effectively suppress noise while meeting real-time requirements

of the task. In another work (Xiao et al., 2021a), the authors

utilized a complex representation to convert the quaternion-valued

matrix into the corresponding time-varying complex-valuedmatrix

(TVCVM), and then proposed a complex-valued neural network

model to solve this TVCVM. The authors introduced a versatile

non-linear-sign activation function to achieve the predefined time

convergence of the model. According to the authors’ summarized

results, theoretical analysis provided an upper bound for the

convergence time of this model. Finally, the authors applied

this model to a mobile manipulator and demonstrated its good

performance.

2.4. Neural networks for linear system
solving

A linear system is characterized by the linear property, which

states that the system response is homogeneous and additive,

such that the output signal changes in proportion to the input

signal of the system. Solving linear systems with neural networks

is of significance as it enables fast processing via learning

and optimization, particularly for problems that are difficult

or computationally complex to solve by traditional methods.

Compared to traditional solution methods, using neural networks

to solve linear systems has the following advantages.

• Strong solving ability: It can handle large-scale, high-

dimensional linear systems, where traditional methods may be

computationally overloaded or numerically unstable.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2023.1190977
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Hua et al. 10.3389/fnbot.2023.1190977

• Good adaptability: It can adaptively learn the mapping

relationship between input and output, this allows neural

networks for more complex linear system solving.

• High accuracy in solving: It can improve the accuracy of

the model by increasing the number of layers and neurons

of the neural network, this makes the neural network

applicable to the solution of linear systems with high accuracy

requirements.

2.4.1. Linear equation
In many real-time applications, including control and signal

processing, precise analysis and control of linear systems are

crucial. To this end, various neural network models have been

proposed for the online solution of time-varying linear systems.

For instance, in Lu et al. (2019), the authors introduced a novel

recurrent neural network (RNN) model for solving time-varying

underdetermined linear systems while satisfying the constraints of

state variables and residual errors. This work presented extensive

theoretical analyses and numerical cases to demonstrate the

effectiveness and validity of the proposed RNN model, which was

further applied to control the PUMA560 robot under physical

constraints. In Xiao et al. (2019b), the authors developed a neural

network model for time-varying linear matrix equations and

provided a theoretical analysis of the upper bound on the time

convergence of the model. The study concluded that this model

demonstrated exceptional performance in solving time-varying

linear equations. Additionally, in Zhang et al. (2018b), the authors

proposed a varying-gain RNN model for solving the linear system

H(t)J(t)K(t) = L(t), with the design parameters of the model

being characterized by time-varying properties. The finite-time

convergence of this model was also verified by theoretical analysis.

In Xiao et al. (2019e), two non-linear neural network models

were investigated for solving the dynamic Lyapunov equation

HT(t)J(t) + J(t)H(t) = −K(t), and the study noted that the

solution outcomes of these models were independent of the choice

of initial values. Similarly, in Xiang et al. (2018a), the authors

proposed a discrete Z-type neural network (DZTNN) model for

the same dynamic Lyapunov equation, which exhibited inherent

noise tolerance and exact solution attainment under various types

of noise. Additionally, various neural networkmodels (Xiao, 2017b;

Jin et al., 2019; Xiao and He, 2021; Lei et al., 2022; Han et al.,

2023) have been put forward for solving the time-varying Sylvester

equations H(t)J(t)− J(t)H(t) = −K(t).

2.4.2. System of linear equations
The system of linear equations is a fundamental mathematical

concept used in various fields as a powerful tool to solve practical

problems due to its linearity, simultaneousness, infinite solutions,

and suitability for multiple methods. In Xiao et al. (2022a),

the authors proposed a neural network model with adjustable

parameters and demonstrated its fast convergence speed, low

upper limit of convergence time, and short parameter adjustment

time. The study also applied the model to achieve synchronous

control of chaotic systems and validated its effectiveness. The

authors concluded that this model performed excellently. In Xiao

et al. (2017a), a gradient-based dynamic model was proposed for

the simultaneous solution of systems of linear equations. The

authors demonstrated that the model had a zero error bound at

convergence and provided an upper bound on the convergence

time. Additionally, this class of dynamic models was extended to

the online solution of complex-valued systems of linear equations

(Xiao, 2015; Xiao et al., 2021b). To meet the requirements of

high real-time and strong robustness in solving linear systems of

equations in engineering practice, in Xiao et al. (2020a), the authors

developed a dynamic control model with noise robustness for

online solution of systems of linear equations. The paper designed

a non-linear activation function with noise tolerance and added it

to the dynamic control model. The authors theoretically analyzed

the noise immunity, convergence, and robustness of the model.

Furthermore, the authors applied the dynamic control model to

the motion tracking of the robot, and the results demonstrated

good performance in the elliptical path tracking control of the

robot. In Katsikis et al. (2023), the authors proposed a dynamic

neural network model, based on neutrosophic numbers and a

neutrosophic logic engine, which exhibits superior performance

compared to the traditional ZNN design. The primary objective of

this model is to estimate the matrix pseudo-inverse and minimum-

norm least-squares solutions of time-varying linear systems. The

observed enhancement in efficiency and accuracy of the proposed

model over existing techniques is attributed to the advantages

of neutrosophic logic over fuzzy and intuitionistic fuzzy logic.

The authors utilized neutrosphication, de-fuzzification, and de-

neutrosophication instead of the conventional fuzzification and

de-fuzzification methods. The efficacy of the proposed model was

assessed through simulation examples and engineering applications

in the domains of localization problems and electrical networks.

2.5. Neural networks for non-linear system
solving

Non-linear systems present a significant challenge for

modeling, analysis, and control because their output cannot be

described simply by a linear relationship with the input, and

their dynamics may exhibit complex behaviors such as chaos or

periodicity. The study of non-linear systems is critical to many

fields, including control engineering (Xiao et al., 2017b; Zhou et al.,

2022), signal processing (Jin, 2014; Luo and Xie, 2017), dynamics

analysis (Tan and Dai, 2016; Tan et al., 2017, 2019a; Lu et al., 2020),

and communication systems (Jin and Yu, 2012; Jin and Fu, 2013;

Jin et al., 2015b; Zhao et al., 2020; Xiang et al., 2022), owing to the

following properties.

• Abundant kinetic behavior:Unlike linear systems, the kinetic

behavior of non-linear systems can be very abundant and

diverse. For example, they can generate chaotic phenomena,

periodic oscillations, and stable immobile points, etc.

• Better modeling of complex phenomena in the real world:

Many natural and social phenomena are non-linear, such

as ecosystems, economies, and neural systems. Non-linear

systems can simulate these phenomena and provide relevant

behavioral information.
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• Available for control and optimization: Non-linear control

theory is an important tool for applying non-linear systems to

control and optimize problems. For example, in robotics and

industrial control, non-linear control enables highly accurate

and efficient solving of tasks.

In particular, non-linear systems can exhibit sensitivity to initial

conditions, bifurcations, and singularities, making them a rich

area of investigation for researchers. Furthermore, non-linear

systems are capable of representing a wide range of phenomena,

including self-organization, emergence, and adaptation, which are

not captured by linear models. Thus, developing effective methods

for modeling, analysis, and control of non-linear systems remains

an important area of research in many disciplines.

Neural network methods are a powerful tool for real-time

parallel processing that can be utilized to solve challenging non-

linear systems, particularly for situations in which an analytical

solution is elusive. These methods have found application in

various domains, including non-linear control problems (Xiao

et al., 2019g; Li et al., 2020c; Jia et al., 2021), non-linear differential

equations (Zhang et al., 2017, 2018d; Liao et al., 2021), and non-

linear optimization problems (Liu et al., 2016; Lan et al., 2017; Xiao

et al., 2019a; Zhang et al., 2020).

2.5.1. System of non-linear equations
Non-linear systems frequently appear in real-world

applications, and the online solution of systems of non-linear

equations has been a subject of extensive research. One popular

approach for solving such systems is through the use of neural

network methods, which can be particularly useful when the

analytical solution is difficult to obtain. In Xiao et al. (2019g),

the authors proposed a class of recurrent neural network (RNN)

models with finite-time convergence for solving systems of

non-linear equations. The effectiveness of this RNN model was

demonstrated through numerical simulations, and the model

was extended to solve more complex non-linear systems, such

as the motion tracking control of robotic manipulators. The

authors concluded that this RNN model is highly feasible and

applicable. Additionally, the authors constructed a discrete noise-

resistant recurrent neural network (DNTRNN) model (Li et al.,

2020c) based on the five-step finite difference method for the

solution of non-linear systems of equations, and demonstrated

the effectiveness of the DNTRNN model. In Liu et al. (2016), the

authors proposed an RNN model for time-varying non-linear

optimization, providing both continuous and discrete forms of

the model. The paper concludes that both types of RNN models

have superior noise immunity and convergence performance.

In Zhang et al. (2018d), the authors designed and proposed a

differential neural network with varying parameters and non-linear

activation for solving non-convex optimization and non-linear

problems online. The global convergence of this neural network

model was proven through theoretical analysis, and the authors

concluded that this neural network model performs well for

solving non-convex and non-linear optimization problems in

various numerical experiments.

2.5.2. Quadratic programming (QP)
The quadratic programming method is widely used in practice

and is a powerful tool for solving practical problems, which has the

following merits.

• Can describe complex problems: QP can describe numerous

complex optimization problems, such as optimization

problems with non-convex functions.

• Available for constraint handling: QP can handle

optimization problems with constraints, such as inequality

constraints, equation constraints, etc. This allows for a

broader application of quadratic planning.

• Extensive solvingmethods: The solution methods of QP have

been relatively mature, such as the gradient descent method,

conjugate gradient method, and neural network method.

These methods can be used in practice and can handle large-

scale problems.

• Global optimality: QP guarantees global optimality for

convex quadratic problems, which means that the solution

found is guaranteed to be the best possible solution.

Neural network methods offer certain advantages in solving

QP problems and are capable of solving large-scale QP problems.

Additionally, they avoid the need for mathematical modeling and

solving of problems in traditional algorithms. In Liao et al. (2021),

the authors introduced neuro-dynamic methods for QP solving

and pointed out the limitations of traditional neuro-dynamic

methods in the presence of noise. Consequently, they proposed

a predetermined time convergence neuro-dynamic method with

inherent noise suppression and concluded that this method can

achieve a fast and accurate solution to time-varying QP problems

in noisy environments. In Zhang et al. (2020), the authors studied

a power-type RNN (PT-RNN) model with varying parameters for

time-varying QP and quadratic minimization (QM) solving under

external perturbations. In this work, the authors provided a detailed

design process of this PT-RNN model and analyzed the robustness

and convergence of the model theoretically. Lastly, the authors

used this model for venture investment and robot tracking. As

the authors concluded, this PT-RNN model has great robustness

and wide applicability. In Jia et al. (2021), the authors proposed

a neural network approach based on an adaptive fuzzy control

strategy for time-dependent QP solving. As summarized in the

paper, this neural network method can automatically adjust the

convergence parameters according to the residual error, which

has better results compared with the traditional fixed-parameter

neural network method. Similar to QP, non-linear programming

(NLP) has also received much attention and is a powerful way

to describe complex problems. In Katsikis and Mourtas (2021),

the authors aimed to minimize portfolio insurance (PI) costs and

presented a multi-period minimum-cost PI (MPMCPI) problem,

which incorporates transaction costs, as a more practical version

of the classical minimum-cost PI problem. The MPMCPI problem

was formulated as a NLP problem, and the authors proposed an

approach using intelligent algorithms to solve it. The efficacy of

the proposed approach was evaluated using real-world data and

compared with other meta-heuristic and commercial methods. The

study results contribute to the optimization of portfolio insurance
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TABLE 2 Comparison of the properties of neural network models in solving various types of problems.

Problems Properties of NNs References

Linear system Linear equation Finite-time convergence (Xiang et al., 2018a; Zhang et al., 2018b; Lu et al., 2019; Xiao et al.,

2019b,e; Xiao and He, 2021)

Noise suppression (Xiao, 2017b; Xiang et al., 2018a; Jin et al., 2019; Xiao et al., 2019b,e)

System of linear equations Finite-time convergent (Xiao, 2015; Xiao et al., 2017a, 2022a)

Noise suppression (Xiao et al., 2020a)

Non-linear system System of non-linear equations Finite-time convergent (Zhang et al., 2018d; Xiao et al., 2019g; Li et al., 2020c)

Noise suppression (Liu et al., 2016; Li et al., 2020c)

Quadratic programming Finite-time convergent (Jia et al., 2021; Liao et al., 2021)

Noise suppression (Zhang et al., 2020; Liao et al., 2021)

NNs in this table indicate neural networks.

costs using intelligent algorithms and provide insights into the

comparative performance of different approaches. Table 2 provides

a summary of the works on neural network models for solving

linear and non-linear systems.

2.6. Related applications

Neural networks are widely applied in various fields owing to

their parallel computing capability, adaptive learning, and non-

linearity. In this subsection, we provide a concise overview of the

research on neural networks for redundant robot manipulators.

A redundant robot manipulator is a robotic arm that has more

degrees of freedom than required. The additional degrees of

freedom are known as redundant degrees of freedom. Due to

these redundant degrees of freedom, the robotic arm can be more

flexibly adapted to different tasks and environments, as well as

avoid obstacles or enhance motion performance by adjusting its

posture. As a potent tool for real-time parallel processing, neural

network models can be used for precise and flexible control of

redundant robot manipulators (Xiao and Zhang, 2014; Zhang et al.,

2014, 2018c; Liao and Liu, 2015; Jin et al., 2017b; Guo et al., 2018;

Tan et al., 2019b; Xiao et al., 2019g; Li et al., 2020d, 2022b; Tang

et al., 2022; Zhou et al., 2022). More specifically, neural networks

can be used in two ways.

• Inverse kinematic solving: The redundant robot manipulator

has additional degrees of freedom, and it can move the target

position in multiple ways, thus the inverse kinematics needs

to be solved to determine the best solution for the motion.

Traditional inverse kinematics methods are susceptible to

locally optimal solutions, while neural networks can obtain

more accurate inverse kinematics solutions by autonomously

adjusting the network structure and parameters.

• Motion planning: Redundant robot manipulators can use

multiple postures to perform the same task, so the optimal

sequence of postures needs to be determined for the optimal

motion path. Adopting a neural network to solve the optimal

posture sequence of the robot manipulator can achieve higher

movement efficiency (Khan et al., 2022b).

2.6.1. Inverse kinematic solving
In Xiao and Zhang (2014), a dynamic neural network

model is proposed for solving the inverse kinematics of mobile

robot manipulators. The authors provided a theoretical analysis

demonstrating the global convergence of the model to the inverse

kinematic solution of the mobile robot manipulator, which is

also supported by numerical experiments. The paper concludes

that this dynamic model outperforms traditional gradient-based

neural network models for the inverse kinematic solution of

mobile robot manipulators. Liao et al. propose a bi-criteria pseudo-

inverse minimization strategy for the redundancy problem of robot

manipulators at the joint acceleration level (Liao and Liu, 2015),

which can avoid high joint speeds of the manipulator. This method

has been validated on a 4-degree-of-freedom robot manipulator

and is found to perform well in solving the redundancy problem

of robotic manipulators. Tang et al. used an enhanced planning

scheme for redundant robot manipulator control (Tang et al.,

2022), and a tuning strategy based on this scheme is found to

achieve good results in the limit case. Zhang et al. propose a

differential scheme with varying parameters for the joint-angle

drift (J-AD) problem of redundant robot manipulators (Zhang

et al., 2018c). The J-AD problem is formulated as a standard QP

problem to be solved, and the authors validate this scheme through

computer simulations and physical experiments, concluding that

it performs well for solving the J-AD problem of redundant

robot manipulators. Figure 2 depicts the schematic structure of a

three-degree-of-freedom robot manipulator. In Zhang (2022), the

authors discussed the problem of redundancy of manipulators in

intelligent systems and designed a dynamic neural network with

triple projections, called a tri-projection neural network (TPNN),

which is developed for quadratic programs with a constraint on the

state evolution of the neuron states. This paper concludes that the

TPNN has advantages in fully employing the acceleration capability

of the manipulator.

2.6.2. Motion planning
In Guo et al. (2018), a bi-criteria minimization scheme was

proposed for motion planning of redundant robot manipulators,

which incorporates joint velocity, joint acceleration, and joint

angular constraints into the scheme. The authors design this
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FIGURE 2

Schematic structure of a three-degree-of-freedom planar robot

manipulator.

scheme based on the infinity norm acceleration minimization and

minimum weighted velocity criterion. The authors evaluated the

scheme through experimental simulations and physical validation,

concluding that it is both excellent and physically realizable for

redundant robot motion planning. In Jin et al. (2017b), the

authors solved the distributed cooperative motion of redundant

robot manipulators by reformulating it as a QP problem and

designing a neural network model with noise tolerance for

this QP problem. The authors validate this neural network

model for the problem of the distributed cooperative motion of

redundant robotic manipulators in noise-free and noise-containing

environments, demonstrating its effectiveness on the PUMA560

redundant robot. Similarly, Li et al. investigated a neural network

scheme with noise suppression and use it for redundant robot

repetitive motion planning (Li et al., 2020d). The authors verified

the effectiveness of this scheme on a four-link and a PA10 robot

manipulator, concluding that its performance was superior to

conventional motion planning schemes. In Zhang et al. (2014),

a QP-based feedback control and motion planning scheme was

designed and used for feedback control and motion planning

of a mobile robot manipulator. The effectiveness of this scheme

has been verified by dynamics analysis, and the authors conclude

that it is reliable and superior for feedback control and motion

planning of mobile robot manipulators. Figure 3 provides the

geometric and kinematic model of an omnidirectional mobile

wheeled robot.

2.7. Development directions and challenges

In recent years, neural networks have become a dominant

technology in machine learning and artificial intelligence. They

have achieved state-of-the-art results in various fields, such as

image recognition, natural language processing, and game playing.

However, neural networks still face several challenges, such as

overfitting, data efficiency, and hardware constraints:. In this

FIGURE 3

Geometric and kinematic model of an omnidirectional mobile

wheeled robot, where (xce, yce) denotes the geometric center of the

wheeled robot.

section, we will discuss the current state and future development

directions of neural networks, as well as the challenges that may be

faced in the future.

2.7.1. Development directions
Neural networks are expected to evolve in several directions in

the future. There are some of the most promising directions:

• Explainability:One of the main challenges of neural networks

is their lack of interpretability. It is often difficult to

understand why a neural network makes a particular decision.

Explainable AI (EAI) aims to address this issue by providing

human-understandable explanations of the decisions made by

neural networks. EAI is expected to become an essential aspect

of AI in the future, especially in fields such as healthcare,

finance, and autonomous systems.

• Federated learning: Federated learning is a distributed

machine learning technique that allows multiple parties to

collaboratively train a model without sharing their data. It is

expected to become increasingly popular in the future due to

its privacy-preserving nature. Federated learning can be used

in various scenarios, such as personalized recommendation,

fraud detection, and predictive maintenance.

• Quantum neural networks: Quantum neural networks

(QNNs) are a type of neural network that utilizes quantum

computation to process information. QNNs have the potential

to outperform classical neural networks in various tasks,

such as optimization, simulation, and cryptography. QNNs

are expected to become increasingly important as quantum

computing technology advances.
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2.7.2. Challenges
Despite the many advancements in neural networks, they still

face several challenges that need to be addressed in the future. There

are some of the main challenges:

• Overfitting: Overfitting occurs when a neural network learns

the noise in the training data instead of the underlying pattern.

This can lead to poor generalization performance on new data.

• Data efficiency: Neural networks typically require a large

amount of labeled data to achieve good performance. This can

be a major bottleneck in real-world applications, especially

in domains where data is scarce or expensive to obtain. One

potential solution to this challenge is the development of

transfer learning techniques that allow pre-trained models to

be fine-tuned on smaller datasets.

• Hardware constraints: Neural networks require large

amounts of computation and memory resources, which can

be challenging to deploy on resource-constrained devices such

as mobile phones and IoT devices. One potential solution is

the development of hardware optimized for neural network

computations, such as specialized processors and accelerators.

3. Intelligent systems

An intelligent system is an automated system that leverages

computer and artificial intelligence technology to enable intelligent

decision-making, control, and management. It facilitates automatic

control and optimization of various complex systems by collecting

sensor data, processing information, and executing operations.

Intelligent systems typically include the following components.

• Sensors and actuators: Used for sensing and controlling the

state and operation of physical systems.

• Data collection and processing module: Used to collect,

process and store sensor data, extract features of the system,

and make decisions based on those features.

• Decision and control algorithms: Using artificial intelligence

technology to analyze and process the data and achieve

intelligent control of the system by control algorithms.

Intelligent systems have numerous applications, including

industrial automation, intelligent medical care, intelligent home,

and intelligent transportation. The wide range of potential

applications suggests that the use of intelligent systems will become

more widespread in the future, driving innovation and progress in

numerous industries.

3.1. Design and control of intelligent
systems

The design process plays a crucial role in determining

the performance, reliability, maintainability, and scalability of

intelligent systems. In this section, we will provide an overview of

the current research on intelligent system design and control.

In Ding et al. (2021), the authors proposed an intelligent system

combining a pseudo-rigid body approach and a constant force

FIGURE 4

Detailed design framework of micro-positioning stages (MPSs),

where the content in the red dotted box is the basic framework of

MPSs.

output mechanism for workpiece contact force control. In this

work, the intelligent system was constructed as a mathematical

model and provided a theoretical analysis to verify it. To obtain the

optimal parameters and structure, a particle swarm optimization

(PSO) method was used and experimentally verified by the authors.

As the paper concludes, this intelligent system is excellent and

generalizable. In Lan et al. (2016), the authors studied an observer

design method for fractional-order one-sided Lipschitz intelligent

systems. Also, the asymptotic stability of the full-order observer

error system has been ensured by using an indirect Lyapunov

method and an equivalent model. In Ding et al. (2019a), the authors

investigated a design scheme for a reconfigurable planar micro-

positioning stages (MPSs) based on different functional modules,

and details the flexibility and functionality of this scheme were

presented in the paper. Finally, the authors point out that the

system provides a new idea for the design of MPSs. Facing the

practical need for higher precision MPSs (Liao et al., 2022e),

the authors proposed a novel assembly concept (both planar and

spatial configurations) that further improves the flexibility and

functionality of intelligent systems. Figure 4 presents the detailed

design framework of MPSs.

In Ding et al. (2022), an intelligent system of constant force

mechanism based on the combination of negative and positive

stiffness was presented. In this work, the authors have modeled

and validated the system. The results of this paper indicate that

in numerical experiments, this intelligent system can achieve

the required constant force output and was consistent with the

theoretical results. In addition, a class of semi-interactive intelligent

systems has been proposed for the creation of robotic dance works

(Peng et al., 2015, 2016). The authors point out that this system

was capable of self-adaptive and self-learning capabilities and has

been validated on the NAO robot with good performance. Besides

the above instances, the intelligent system also has widespread

application scenarios, such as equipment processing control (Tang

et al., 2015; Wu et al., 2021), substation management (Hu et al.,

2021), and UAV collaborative control (Xu et al., 2022).
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3.2. Identification and detection in
intelligent systems

Recognition and detection technology, integrated with

computer vision technology and machine learning algorithms,

has become a critical component of intelligent systems. The

fundamental concept of this technology is to analyze, process,

and comprehend input images or videos to identify and detect

target objects or events. By accomplishing automatic recognition,

classification, localization, and tracking functions, recognition and

detection technology can augment the intelligence and automation

of intelligent systems. It has extensive applications, including but

not limited to, facial recognition, autonomous driving, and security

monitoring. The development of recognition and detection

technology relies on advancements in computer vision, machine

learning, and signal processing techniques, which are enabling

the creation of more efficient and accurate recognition and

detection algorithms. Ongoing research is focused on enhancing

the robustness, accuracy, and real-time performance of recognition

and detection technology, thereby expanding its applicability to a

diverse range of real-world scenarios (Qin et al., 2017; Hu et al.,

2019b; Zhuo and Cao, 2021; Niu et al., 2022).

3.2.1. Identification methods
In Zhuo and Cao (2022), the authors presented a novel

approach for identifying damage in bolt connections of steel truss

structures using sound signals. The proposed method employed

support vector machine (SVM) classification, optimized with a

genetic algorithm, to accurately recognize signals associated with

bolt connection damage. The study demonstrated the effectiveness

of SVM classification for signal recognition in structural health

monitoring, specifically for detecting damage in bolt connections.

In Wu et al. (2022c), a new scheme based on a low-strain

pile integrity test and convolutional neural network (CNN) was

proposed to identify concrete pile foundation defects with a

remarkable accuracy of 94.4%. The authors described this method

asmore accurate, more reliable, and less destructive than traditional

methods. Similarly, in Wu et al. (2022a), the authors proposed

a method for the defect identification of foundation piles under

layered soil conditions. In Tang et al. (2020), a human action

recognition scheme was proposed, introducing and using the RGB-

D image feature approach, which is a current research hotspot for

effectively resisting the influence of external factors and improving

the generalization ability of the classifier. The proposed scheme

achieved excellent identification results on the public CAD60

and G3D datasets, utilizing three different patterns for human

action feature extraction: The RGB modal information, based the

histogram of oriented gradient (RGB-HOG), the depth modal

information, based on the space-time interest points (D-STIP),

and the skeleton modal information based on the joints’ relative

position feature (S-JRPF). In Xiang et al. (2018b), the authors

identified Markov chains on trees (MCoT) through derivative

constraints on the univariate distribution of sojourn time and/or

hitting time, concluding that all MCoT can be identified using this

method.

3.2.2. Detection methods
In Luo et al. (2020), the authors investigated a novel chaotic

system and its associated signal detection method, demonstrating

high detection accuracy and noise immunity in experimental

studies. The effectiveness and feasibility of the proposed method

were verified through theoretical analysis, circuit simulation,

and FPGA implementation, highlighting its potential as a

reliable solution for signal detection in chaotic systems. In Wu

et al. (2022b), a deep learning-based system was proposed for

structural damage detection of engineering steel beams, where

the vibration signals were used to extract features and detected

by CNN. The experimental results show that the accuracy of

this detection method achieved 95.14%. The authors concluded

that this method has superior performance for structural damage

detection of engineering steel beams compared to the SVM

method. Furthermore, in Chen et al. (2022a), the authors provided

a comprehensive review of the techniques for detecting code

duplication in software development, analyzing the advantages and

disadvantages of each approach.

3.3. Prediction and evaluation in intelligent
systems

Prediction and evaluation are crucial elements in intelligent

systems, facilitating accurate decision-making, pattern

identification, model optimization, and goal attainment. These

components interact with other aspects of intelligent systems,

including learning algorithms and models, prediction and

planning, evaluation and optimization, and self-adaptation and

self-optimization, leading to enhanced system optimization and

development.

3.3.1. Prediction methods
Prediction is a crucial aspect of intelligent systems that can

enable more informed decision-making, facilitate the discovery of

regularities and patterns in data, optimize models, and support the

attainment of system goals. Prediction can be achieved through

the analysis of historical data to identify patterns and trends

using intelligent systems. For instance, in Huang et al. (2022), the

authors proposed a non-linear intelligent system for predicting the

anti-slide pile top displacement (APTD) and identified multiple

factors that affect the APTD. The proposed system was validated

using four prediction methods, namely ELMAN, long short-

term memory neural network (LSTM), support-vector regression

(SVR), andmaximal information coefficient-SVR (MIC-SVR), with

results indicating superior performance in practical applications.

Additionally, an integrated model based on wavelet transformation

was introduced in Ding et al. (2013) for the prediction of both

steady-state and dynamic-state network traffic. Low-frequency

components were predicted using an improved gray theory,

while the high-frequency components were predicted using a BP

neural network algorithm, leading to increased prediction accuracy

and reduced uncertainty. Moreover, an intelligent algorithm was

introduced in Deng et al. (2019) for predicting the effective

wind speed in wind turbines by considering the rotor speed,
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aerodynamic characteristics, and extreme learning machine. The

authors reported that this algorithm is more efficient and accurate

compared to traditional Kalman filter-based methods. Finally, an

efficient search algorithm and optimization method were proposed

in Song et al. (2020) to predict wind speed and extract the

maximum wind energy.

3.3.2. Evaluation methods
Evaluation is a fundamental aspect of intelligent systems that

allows for the assessment of the accuracy and performance of data,

models, or decisions. During the evaluation process, the system

compares actual values with ideal values to determine the accuracy

and reliability of the model or decision. In the field of robotics,

various methods have been proposed for the aesthetic evaluation

of robotic dance movements. For instance, in Peng et al. (2022),

the authors presented a method for aesthetic evaluation of robotic

dance movements that employs key pose descriptors and integrated

classifiers to train machine learning models. This method has been

tested in a virtual environment and shown good performance.

In Peng et al. (2019a), a brain-like intelligent system resembling

the visual cognitive system of humans was proposed for the

aesthetic evaluation of robotic dance poses. The system extracted

features such as color, shape, and orientation and applied machine

learning methods for evaluation. A computational framework for

instantiating an intelligent evaluation method for robotic dance

poses was presented in Figure 5. Similarly, in Li et al. (2020b), an

automated method was proposed to evaluate the aesthetic level of

robot dance movements by integrating multi-modal information.

Features were extracted from visual and non-visual channels, and

ten machine-learning algorithms were employed for evaluation,

with the highest accuracy reaching 81.6%. Additionally, in Peng

et al. (2019b), a feature fusion method was proposed for the

automatic evaluation of robotic dance poses, which extracted four

types of features, including color block, contour feature, region

feature, and kinematic feature.

3.4. Intelligent communication systems

The intelligent communication system refers to a

communication system that utilizes modern communication

technology and artificial intelligence algorithms to dynamically

adjust its parameters and structure based on varying

communication needs, thereby achieving optimal communication

performance and resource utilization efficiency. In this paper, we

briefly describe three key aspects of the intelligent communication

system: high-speed communication transmission methods,

up-conversion mixer design, and spectrum sensing methods.

3.4.1. High-speed communication transmission
In Sun et al. (2022), the authors proposed a method to enhance

the rate range and reduce power consumption in high-speed serial

links by utilizing an adaptive continuous time linear equalizer

(CTLE) and a half-rate decision feedback equalizer (DFE) with a

hybrid filter and a current-integrating summer. The system was

tested using 10 Gb/s PRBS7 signals transmitted through an 18-

inch FR4 backplane, and the post-simulation results demonstrated

a rate range of 6.25-10 Gb/s with excellent performance. In Zhang

and Yang (2020), the authors proposed an adaptive CTLE based

on slope detection and a half-rate inferred DFE with intermediate

frequency compensation and a small amount of equalization for the

middle frequency range. The measurements showed an effective

equalization loss of 24 dB at Nyquist frequency with a clear eye

diagram at 36 Gb/s. Both works provide solutions to the challenges

of high-speed transmission and offer valuable insights into the

design of receiver equalizers for high-speed serial links.

3.4.2. Up-conversion mixer design
In Chen et al. (2013), a folded up-conversion mixer was

proposed by the authors, which employs a current reuse technique

and achieves a conversion gain of 9.5 dB at a 1 V supply voltage

while consuming only 258 µW of power. In Jin et al. (2014b),

the authors presented a sub-harmonic up-conversion mixer that

halves the required local oscillator frequency and achieves a

higher conversion gain of 14.4 dB, albeit at the cost of increased

power consumption of 1.65 mW at 1 V supply voltage. In Jin

and Yu (2013), a current-reuse current-mirror-switch mixer was

investigated by the authors, which features 8.5 dB conversion

gain, 1.16 mW power consumption, lower supply voltage, higher

linearity, and smaller chip area. All three works proposed novel

mixers for wireless applications using 0.18-micron radio-frequency

CMOS technology, with a focus on high performance, low power

consumption, and small chip area, albeit with differences in specific

technologies and performance metrics.

3.4.3. Spectrum sensing
In Yang et al. (2017), the authors investigated a multi-

band spectral sensing method based on eigenvalue ratios, which

employs random matrix theory to determine the distribution

of new statistics solely in the presence of noise. This approach

allows for the reliable establishment of theoretical thresholds and

exhibits superior performance in small sample scenarios. In Lei

et al. (2016), the authors introduced a blind broadband spectrum

sensing algorithm based on principal component analysis. This

algorithm transforms the wide-band spectrum sensing problem

into a sequential binary hypothesis test utilizing a generalized

likelihood ratio test, enabling simultaneous operation on all sub-

bands and overcoming noise uncertainty issues. Both studies

propose innovative approaches to addressing the multi-band

spectral perception challenge, without requiring prior knowledge.

The authors emphasized the practical significance of these methods

for applications such as radio spectrum allocation, spectrum

sharing, and dynamic spectrum access.

3.5. Intelligent oscillator systems

Intelligent oscillation systems are complex devices designed

to generate controlled vibration signals that exhibit adjustable

amplitude and frequency. Generally, these systems comprise

several essential components, including a vibration source (e.g.,
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FIGURE 5

Computational framework for instantiating an aesthetic intelligence evaluation method for robotic dance poses. This evaluation method includes

several components such as target localization, feature extraction, feature selection and combination, neural training, and decision-making.

a motor or piezoelectric device), a controller, sensors, and

feedback loops. With a diverse range of applications, these systems

have demonstrated their effectiveness in areas such as structural

vibration control, acoustic and mechanical system testing, and

medical devices.

3.5.1. Quadrature oscillator design
The quadrature oscillator is a passive oscillator that produces

a sinusoidal wave with frequency and impedance determined by

the inductor and capacitor values. This oscillator generates two

orthogonal signals, sine and cosine waves, making it widely used in

wireless communication systems. In Jin et al. (2015a), two variable

frequency third-order quadrature oscillators (TOQOs) were

proposed based on current differential transconductance amplifiers

(CDTA). These TOQOs were completely resistorless and provided

four quadrature current outputs at high output impedance

terminals. In Jin and Liang (2013), a new resistorless current-

mode quadrature oscillator based on CDTA was introduced, which

provided two well-defined quadrature outputs at high-impedance

terminals for easy cascading. Both works utilized CDTA for

building the quadrature oscillator with the resistorless circuit,

enabling monolithic integration, explicit orthogonal current

outputs, direct cascading with other current-mode circuits, and

controllable oscillation frequencies.

3.5.2. Quadrature voltage-controlled oscillator
design

The quadrature voltage-controlled oscillator (QVCO) is an

active oscillator that generates a sinusoidal wave, where the

oscillation frequency is determined by an external control voltage.

QVCO typically consists of two orthogonal oscillation circuits,

which can vary the oscillation frequency by altering the phase

difference between the two circuits. In Jin and Tan (2019), the

authors proposed a novel low-voltage and low-power QVCO that

is coupled by four P&N transistors, yielding a wide tuning range

and low phase noise while consuming a meager 2.31 mW. In

Jin (2018a), the authors introduced a novel QVCO architecture

that employs four capacitors to achieve enhanced phase noise

and reduced power dissipation compared to conventional designs.

Furthermore, Jin et al. (2014a) developed a programmable current-

mode multi-phase voltage-controlled oscillator (MPVCO) using

cascaded first-order all-pass filters, which provides multiple

outputs. These studies have introduced significant advancements in

the design of voltage-controlled oscillators, resulting in enhanced

performance, compact size, and reduced power consumption.

These advancements are crucial for numerous applications in

wireless communication systems.

3.5.3. Chaotic oscillator design
The chaotic oscillator is a non-linear dynamical system that

exhibits complex, unpredictable behavior. It can be realized either

throughmathematical equations or physical circuits. In Jin (2018b),

the authors proposed a novel digitally programmable multi-

directional chaos oscillator (DPMDCO), which employs MOS

switches for controlling the chaotic oscillation in three different

directions. The DPMDCO achieves a compact size and low power

consumption, making it suitable for practical applications. In

Ouyang et al. (2022), a fully integrated chaotic oscillator (FICO)

based on operational amplifiers and multipliers was presented.

This system integrates all necessary circuit elements into a single

chip, providing ease of implementation and compactness. Both

DPMDCO and FICO were evaluated using the Cadence IC design

tool, with DPMDCO consuming 99.5mWat± 2.5 V supply voltage

and occupying 0.177 mm2 of chip area, while FICO consumed

148 mW and had a larger chip area of 6.15 mm2. These works

demonstrate the potential for achieving compact and low-power

chaotic oscillators through digital programmability and circuit

integration.

3.6. Development directions and challenges

Intelligent systems are already being used in a wide range of

applications, from virtual assistants and chatbots to self-driving

cars and medical diagnoses. However, as these systems become

more prevalent, they also face significant challenges, both in

terms of technical limitations and ethical concerns. This section

will explore the future of intelligent systems and the challenges

they face.
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3.6.1. Development directions
Intelligent systems have been advancing at a rapid pace, and

they will continue to transform our lives in the coming years. There

are some of the most promising directions:

• Healthcare: Intelligent systems can help diagnose diseases,

monitor patient health, and provide personalized treatment

recommendations. In addition, intelligent systems can also be

used to develop new drugs and therapies.

• Transportation: Self-driving cars are already being tested

on public roads, and they have the potential to improve

road safety and reduce traffic congestion. Intelligent systems

can also be used to optimize transportation routes, improve

logistics, and reduce carbon emissions.

3.6.2. Challenges
Intelligent systems have the potential to transform our lives

and revolutionize industries. However, they also face the following

challenges:

• Interpretability: It is essential for intelligent systems to

provide transparent and interpretable results, especially in

critical decision-making processes. However, many of the

state-of-the-art machine learning models are often considered

“black-boxes,” making it difficult to understand how they

arrived at their results. This lack of interpretability can hinder

trust in the system.

• Cybersecurity and privacy: Intelligent systems collect, store,

and process a vast amount of data, which makes them

vulnerable to cyber attacks. There is also a risk of data breaches

that may compromise the privacy and security of individuals.

4. Optimization algorithms and
strategies

Optimization is a fundamental process of finding the optimal

solution within a given set of constraints. In computer science,

optimization algorithms constitute a class of algorithms employed

to obtain the optimal solution, and they can be categorized into two

types:

• Stochastic algorithms: The stochastic algorithms leverage

random properties to achieve better solutions through

corresponding probabilistic strategies. Such algorithms fall

into the category of optimization algorithms in computer

science. Examples of commonly used stochastic algorithms

include genetic algorithms, particle swarm algorithms, and

beetle antennae search algorithms (Khan et al., 2022a). While

these algorithms can find near-optimal solutions in a relatively

short time, they are not guaranteed to obtain the optimal

solution.

• Deterministic algorithms: The deterministic algorithms

always generate the same output for a given input.

Linear programming, integer programming, and dynamic

programming are some examples of deterministic algorithms.

These algorithms can provide efficient solutions to

optimization problems. However, their computational

power and time may be limited when dealing with complex

optimization problems.

Subsequently, we will present an overview of bio-inspired

optimization algorithms and intelligent optimization strategies.

4.1. Bio-inspired optimization algorithms

Bio-inspired optimization algorithms are a type of stochastic

algorithms that draw inspiration from the principles of biological

evolution and swarm intelligence observed in nature. These

algorithms aim to mimic the behavior of individual organisms or

groups for solving complex optimization problems (Khan et al.,

2020b, 2022c; Chen et al., 2022b).

4.1.1. Particle swarm optimization (PSO)
algorithm

In a study by Peng et al. (2020), an enhanced chaotic quantum-

inspired particle swarm optimization (ICQPSO) algorithm was

introduced to address the issues associated with Takagi–Sugeno

fuzzy neural networks (TSFNNs), such as slow convergence

rate and extended computation time. The flow chart illustrating

the training and testing process of the ICQPSO algorithm for

optimizing TSFNNs can be found in Figure 6. In another study by

Yang et al. (2022), an improved particle swarm optimization (IPSO)

algorithm was proposed to identify the parameters of the Preisach

model, which is utilized to model hysteresis phenomena. The

authors demonstrated that the IPSO algorithm outperformed the

traditional PSO algorithm in terms of faster convergence, reduced

computation time, and improved accuracy.

4.1.2. Genetic algorithm (GA)
In Ou et al. (2022), a hybrid knowledge extraction framework

was developed by the authors, utilizing the combination of genetic

algorithms and back propagation neural networks (BPNNs). An

improved adaptive genetic algorithm (LAGA) was incorporated

in the optimization of BPNNs. The efficacy of the LAGA-

BPNNs approach was demonstrated through a case study

involving the Wisconsin breast cancer dataset. Meanwhile, in

Li et al. (2020a), the authors also investigated the applicability

of the harmonic search algorithm to this knowledge extraction

framework.

4.1.3. Cuckoo search (CS) algorithm
In Zhang et al. (2021), the authors presented an improved

cuckoo search (ICS) algorithm that addressed the limitations

of the original cuckoo search (CS) algorithm. The proposed

ICS algorithm incorporated non-linear inertial weight, which

enhances the local optimization capability, and the differential

evolution algorithm, which improves convergence accuracy. The

performance of the ICS algorithm was evaluated, and it was

found to outperform the original CS algorithm in terms of both

global search and robustness. In Ye et al. (2022), the authors
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FIGURE 6

Training and testing flow chart for optimizing Takagi-Sugeno fuzzy

neural networks (TSFNNs) by using an improved chaotic quantum

particle swarm optimization (ICQPSO) algorithm. Mean square error

(MSE) is a widely used metric to measure the average squared

di�erence between the actual and predicted values of a regression

problem. A lower MSE indicates that the predicted values are closer

to the actual values, while a higher MSE indicates that the

predictions are farther away from the actual values.

proposed an improved multi-objective cuckoo search (IMOCS)

algorithm to solve multi-objective optimization problems. The

IMOCS algorithm demonstrated good convergence performance

by dynamically adjusting the balance between development and

exploration, compared to existing CS algorithms. The proposed

algorithm provides an effective approach to deal with multi-

objective optimization problems, which often involve multiple

competing objectives.

4.1.4. Beetle antennae search (BAS) algorithm
In Khan et al. (2022d), a distributed beetle antennae search

(DBAS) algorithm was proposed to solve the multi-portfolio

selection problem, while ensuring privacy of investment portfolio

data. The DBAS algorithm was shown to be efficient and robust

in selecting the optimal investment portfolio. The paper also

presented a data exchange framework for multi-portfolio selection,

illustrated in Figure 7. In Liao et al. (2022c), the authors proposed

a non-linearly activated beetle antenna search (NABAS) algorithm

for fraud detection of publicly traded firms. They compared

the performance of the NABAS algorithm to that of other

popular methods, including the SVM-FK algorithm and the logistic

regression model, and concluded that the proposed algorithm was

more efficient and accurate for fraud detection. In Katsikis et al.

(2021), a novel approach utilizing the BAS algorithm was proposed

for solving the problem of time-varying mean-variance portfolio

selection under transaction costs and cardinality constraints. This

approach is based on state-of-the-art meta-heuristic optimization

techniques and offers a more realistic solution to the problem

as compared to conventional methods. The effectiveness of the

proposed method was verified through numerical experiments

and computer simulations, which demonstrated its superiority

FIGURE 7

Framework of data exchange in the distributed beetle antenna

search (DBAS) algorithm for solving multi-portfolio selection

problem, where the search particles share only the gradient (Gra)

and not the private information of the portfolio, such as customer

information, stock information, and private databases.

over traditional approaches. Overall, the study presents an online

solution that addresses the limitations of static methods for solving

time-varying financial problems.

4.2. Optimization strategies and systems

Optimization strategies and systems have become increasingly

important across various fields as they offer effective solutions

to complex problems by finding the best possible outcomes.

In this subsection, we will provide an overview of the related

research on optimization strategies and systems. Optimization

strategies refer to the methods and techniques that are used to

optimize a system or process. These strategies include but are

not limited to heuristic algorithms, mathematical programming,

and simulation-based optimization. Optimization systems, on the

other hand, are computer programs or platforms that employ

optimization strategies to solve complex problems. These systems

can be standalone applications or integrated with other software

tools. By exploring the latest research in optimization strategies

and systems, we can gain a better understanding of how these

techniques can be applied in different fields to improve efficiency,

productivity, and overall performance.

4.2.1. Optimization strategies
In Chen et al. (2014), the authors presented a cooperative

obstacle avoidance model and an improved obstacle avoidance

(OA) algorithm for mobile wireless sensor networks, aimed at

enhancing the adaptability and robustness of the network in

complex environments. The proposed strategies optimized path

planning and achieved higher obstacle avoidance efficiency by
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predicting the motion path of obstacles and defining the steering

direction. In Xiang et al. (2021), the authors proposed a new

approach for automatic skeleton design that utilizes physical

simulation and optimization algorithms to better adapt to various

application scenarios. The paper concludes that the proposed

optimization strategy outperforms other mainstream optimizers in

robot design and animation applications.

4.2.2. Optimization systems
The optimization system is a crucial tool to reduce the time

and effort needed to find the optimal solution while guaranteeing

its optimality. In Li and Zhang (2022), the authors presented

an optimization system for generating benchmark dynamic test

functions. The proposed system represents an advancement in

the field of benchmark dynamic test functions, which is currently

underdeveloped. In Deng et al. (2020), the authors proposed an

optimal torque control system for controlling variable-speed wind

turbines. As per the conclusion, this optimized system improved

the effective wind speed estimation accuracy by 2%–7% and the

efficiency of electrical energy generation by 0.35%. The proposed

system offers a promising approach to enhancing the performance

of wind turbines for electricity generation.

4.3. Development directions and challenges

Optimization algorithms and strategies have been widely

used in various fields, including engineering, finance, and

operations research, among others. The goal of optimization

is to find the best solution to a problem within a given

set of constraints. Optimization algorithms and strategies

are continually evolving to meet the increasing demands

of complex problems. This section will explore the future

development and challenges of optimization algorithms

and strategies.

4.3.1. Development directions
Optimization algorithms and strategies are constantly evolving,

driven by advances in mathematics, computer science, and various

application domains. There are some potential directions that

optimization algorithms and strategies may be headed:

• Deep learning-based optimization:Deep learning techniques

such as neural networks have shown tremendous success in

various applications, including optimization. One potential

direction is to use deep learning techniques to optimize the

parameters of optimization algorithms, making them more

efficient and effective.

• Optimization with uncertainty: Many real-world

optimization problems involve uncertainty, such as noisy

measurements, incomplete information, or uncertain

parameters. One potential direction is to develop new

optimization algorithms that can handle uncertainty

explicitly, such as robust optimization or stochastic

optimization.

4.3.2. Challenges
Despite the optimization algorithms and strategies have been

widely developed and used, there are also significant challenges that

need to be addressed:

• Big data: The growth of big data and the increasing

complexity of data structures pose significant

challenges for optimization algorithms and strategies.

Dealing with large-scale, high-dimensional, and

heterogeneous data requires advanced optimization

techniques that can handle data efficiently

and effectively.

• Interdisciplinary applications: Optimization problems

are increasingly being used in interdisciplinary

applications, such as healthcare, finance, energy, and

transportation. These applications require optimization

algorithms and strategies that can handle complex,

multi-disciplinary problems, and that can effectively

integrate domain knowledge, data analytics, and

decision-making.

5. Conclusion

In this paper, we have analyzed and outlined the work

related to neural networks, intelligent systems, and optimization

algorithms and strategies in the rapidly evolving intelligence

approach. Through an analysis and comparison of related

work, we have shown that these intelligent approaches

have rapidly evolved and have facilitated the efficient

solution of practical problems. However, there are still

emerging challenges that need to be addressed. Overall, this

paper provides a valuable introduction and supplement to

these important and rapidly evolving areas, highlighting

their positive results and encouraging future research in

these fields.
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