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Abstract—5G New Radio (NR) mmWave operates with narrow
beams. Beam-based connections require careful management of
beams to ensure a reliable connection, specially when the user has
mobility. 5G NR beam management achieve this, at the expense of
periodic reporting with increased overheads and resource usage.
Concurrently, recent interest in sensing for assisting wireless
systems provides an opportunity to extract situational awareness
information which can aid in proactive decisions for the network.
In this work, we utilize an infrastructure-mounted light detection
and ranging (LiDAR) sensor system simultaneously operating
with the wireless system to predict future beam decisions. A
recurrent neural network (RNN) based learning model is pro-
posed for the beam prediction, employing tracking information of
users facilitated by the LiDARs and beam sequence information
from the wireless system. Furthermore, a method for predictive
beam management with increased periodicity of the reporting
mechanism and aperiodic reporting is analyzed. The results for
the considered scenario reveal 86.8% of the resources can be
saved compared to the conventional beam reporting procedure,
while achieving an 88.7% accuracy for optimal beam decisions.

Index Terms—LiDAR, 5G, machine learning, vision aided
communications, mmWave, THz.

I. INTRODUCTION

Exploring the higher bands in the 3rd Generation Partner-
ship Project (3GPP) 5G NR with frequency range 2 (FR2),
provides a new opportunity to utilize the enormous bandwidth
available in the higher frequencies which enables a plethora
of applications with higher data rates and lower latency. How-
ever, several challenges exist for the communication in these
bands such as higher path loss and higher scattering, which
effectively reduces the coverage area. Nevertheless, the smaller
wavelength allows more antennas to be packed in a compact
form factor encouraging the use of multi-antenna technologies
to overcome the challenges to a certain extent. These massive
antenna arrays support ultra-narrow pencil beams which can
concentrate the transmission power to an intended direction
mitigating the effect of path loss and interference. Thus,
beam-based communication is the prominent candidate for
these higher frequency bands. However, these higher frequency
beams are formed using the analog beamforming technology
which can support only a single beam from both base station
(BS) and user equipment (UE) side. Furthermore, use of
these narrow beams increases the vulnerability to random

blockages. Thus, one key drawback in such a beam-based
system is the requirement of beam alignment which demands a
significant effort from the communication system to maintain
a reliable connection, specially when the user has mobility.
5G beam management procedures are designed effectively to
monitor the link through periodic measurements to achieve a
reliable connection at the expense of increased overhead and
exhaustive search over the possible directions [1]. The BS or
the access point (AP) transmits synchronization signal block
(SSB) beams which are used for the initial access process
by the UE. When the UE is transferred to the connected
state, refining the served beam-pair to a narrower beam-pair
is done from both UE and AP ends through channel state
information reference signal (CSI-RS) beams. Once such a
refined beam-pair is identified, the beam management proce-
dures try to maintain the beam alignment. This is achieved
through sending periodic beam measurement reports (BMR)
from the UE to the AP which monitors the received power of
the transmitted beams. In case of a beam misalignment due
to the mobility of the user or some blockage, a new beam-
pair to correct the beam misalignment is identified using the
BMR. Therefore, the periodic beam measurement reporting is
essential for maintaining the link quality, although it involves
a high resource usage and overhead. Moreover, the 5G NR
defines aperiodic CSI-RS triggering which allows on-demand
BMR [1].

Alternatively, the factors effecting the beam misalignment
can be proactively inferred to a satisfactory level by monitor-
ing the environment dynamics utilizing sensing technologies.
These sensing technologies facilitate positioning and tracking
of users carrying the UE. Such positioning and tracking infor-
mation enables the prediction of the movement trajectory, in-
coming blockages and line-of-sight (LOS)/Non-LOS (NLOS)
transition of the users which cause the beam misalignment
invoking the beam switching procedure. Recently, the research
on utilization of both radio frequency (RF) sensors and non-
RF sensors for aiding communication gained widespread at-
tention. MmWave-RADARs, LiDARS and cameras are some
candidate sensing technologies which are being investigated.
Furthermore, a new study item [2] has been established in
SA1 working group which is responsible for the service and



system aspects of the Release-19 in the 3GPP standard to
incorporate sensing to provide new services and enhancements
to the communication system. Moreover, 3GPP RAN1-led
Rel-18 study item on artificial intelligence/machine learning
for NR air interface will also consider beam prediction as one
use case of exploiting machine learning in the air interface
[3]. Motivated by these factors and the ability to provide
detailed yet privacy-persevered data, we employ LiDAR as the
sensing modality in this work. We consider an infrastructure-
mounted LiDAR system following our previous works [4],
[5], [6] for beam prediction assisting a 5G NR system. We
focus on predicting the future downlink beams while reducing
the frequency of the beam reports, thus reducing the resource
usage for beam measurements.

The paper is organized as follows. Section II discusses the
related work on beam prediction. The proposed LiDAR aided
beam prediction method is described in Section III and in
Section IV, we describe the details of the evaluated scenario
and the data generation methods. Section V presents the
simulation results and discusses the improvements identified.
Section VI concludes the paper.

II. PREVIOUS WORK

The use of LiDAR data to enhance the beam selection
and prediction has been discussed in [7],[8] and [9]. Authors
in [7] introduce a deep learning-based beam selection in a
vehicular scenario studying the LOS/NLOS classification and
top-K beam selection. The same setup and two centralized
schemes have been studied in [8], which concludes that the
distributed architecture in [7] performs better. The authors
in [9] present a novel method using convolutional neural
networks (CNN) with knowledge distillation, and introduce
a curriculum training approach for improved convergence.
Furthermore a non-local attention module has been introduced
to improve the performance in NLOS cases. The use of
camera images as side information for the beam and blockage
prediction is discussed in [10]. In [11] the optimal beams are
predicted adopting object detection from camera images to
locate the positions of the users. Then an angle prediction
model has been used to estimate the angles between the users
and the cameras which is finally used for beam selection from
a predefined code book.

Use of an RNN for the beam prediction task is reported in
[12] where the beam prediction problem has been considered
as a sequence generation problem. A sequence-to-sequence
(Seq2Seq) model has been proposed and the prediction model
confidence is used for assessing the beam accuracy with
refinement from 5G beam management procedures.

III. LIDAR AIDED BEAM PREDICTION

We utilize an infrastructure-mounted LiDAR system which
provides 3D information on the communication environment,
to predict beam decisions for the future instances. This reduces
the need of frequent conventional measurement-based beam
selection procedure which saves a significant amount of RF
resources. The motivation arises since the requirement for

beam switching occurs infrequently compared to the frequency
of the CSI-RS periodic BMR, unless the UE is travelling at
very high speeds or there are rapid variations in the blockage
conditions. We consider a low mobility scenario such as in an
indoor environment which also facilitates user detection and
tracking using the deployed LiDAR sensors and utilize the data
for predicting the future beams for the connected users. The
location information of a UE which can be extracted from
the LiDAR data, has a high correlation with the beam that
is required to serve the UE. This correlation further expands
in the temporal dimension resulting in a beam sequence
corresponding to the trajectory of the UE. Thus the trajectory
history of a user implies the future movement pattern can be
utilized for the proactive beam decisions.

A. System model

An indoor scenario is considered with a single access point
(AP) serving the users in the higher frequencies (i.e. mmWave
/ THz) with beam-based connections. The AP consists of
N antennas which are uniform planar arrays (UPA), each
supporting analog beamforming with a beam codebook of M
beams, mounted at an elevated position (e.g. on the ceiling)
with a mechanical tilt such that the UEs on the indoor area
can be served. For simplicity, humans who are moving or
static within the indoor area carrying single-antenna UEs are
considered. The initial connections between the UEs and the
AP are assumed to be established in the initial access phase.
The AP selects the serving beams based on the 5G beam
management procedure using the beam sweeping and periodic
BMRs as described in Section I. For simplicity, the beam
selection procedure is abstracted with selecting a beam index
btu ∈ {0, ...,M×N} at the t-th time instance for the u-th user.
The position of the u-th user in the considered area at the t-th
time instance is denoted by pt

u = [xt
u ytu]

T .
A co-existing LiDAR system with L LiDAR sensors

mounted to monitor the indoor area is considered. These
LiDAR sensors are connected to a central computing unit
in the system which processes the captured point cloud data
for detection and tracking of users visible in the area. Then
the tracking information is communicated to the AP though
a back-haul connection. Prior to the operation, the static
background environment is mapped using the LiDAR sensors
and stored as the global map c0 ∈ ℜV×3, which does not
contain any users, where V is the number of points in the
point cloud. At the time of operation, the central unit creates
a combined 3D point cloud ct of the total area covered by the
sensors using the relative 3D transformation matrices [13] with
a rate of fl synchronized with the output rates of the sensors.
This input LiDAR point cloud ct is processed based on the
method proposed in [14] adapted for static sensors which
was also used in our prior work in [6]. When ct becomes
available, the algorithm first subtracts c0 from ct to isolate
the foreground points. The remaining foreground points are
then clustered using Euclidean clustering and further refined
using Haselich’s split-merge clustering algorithm [15]. Then
a Kalman filter with a constant velocity model predicts the
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Fig. 1. Machine learning model.

position of the cluster and the nearest neighboring cluster in
ct is identified to keep tracking the same user in ct+i ,∀ i >
0. We consider an observation window of w instances for
building the beam history, bt

u = [bt−w+1
u bt−w+2

u . . . btu] and
trajectory history, Pt

u = [pt−w+1
u pt−w+2

u . . . pt
u]

T extracted
from Ct = [ct−w+1 ct−w+1 . . . ct]

T . The objective of the
proposed method is to predict the optimal beam index for the
next time index, bt+1

u such that

bt+1
u = argmax

b∈{0,...,M×N}
IP(bt+1

u = b | bt
u,P

t
u).

B. Proposed prediction model

A recurrent neural network (RNN) is proposed to predict
bt+1
u as shown in Figure 11. First, bt

u is one-hot encoded and
stacked for the observation window w. Then, Pt

u is encoded
using the random Fourier features (RFF) which provide a
better emphasis for the location information [16]. It has been
shown that classical neural networks which use MLPs cannot
capture the low-dimensional features such as raw location data.
The authors in [16] demonstrated the efficiency improvement
for location-aided beamforming utilizing an RFF layer. Fol-
lowing a similar approach for the location encoding, trajectory
history for u-th user is encoded using an RFF layer. This RFF
layer is a fixed layer which can be expressed as

RFF (Pt
u) = [cos (2πBPt

u), sin (2πBPt
u)]

T , (1)

where B ∈ ℜR×2 with a Gaussian kernel B ∼ N (0, s2I)
such that the variance s2 affect the frequency range involved
in the RFF. The one-hot encoded beam sequence and RFF

1Only a basic RNN cell is shown in the Figure 1 to represent the use of
the RNN.

layer output are concatenated and inputted to the RNN layer
which encodes the time series data. Then the output from the
RNN layer is sent to a fully connected layer with softmax
activation which outputs the probability of each beam being
the next beam. The most probable beam is selected as the next
beam index for the considered user.

C. Predictive beam management for 5G

In this section we describe an algorithm to utilize the beam
predictions from the proposed model in 5G beam management
inspired from the method in [12]. At the inference mode,
when a sufficient trajectory and beam history based on periodic
BMRs has been accumulated, the model can start predicting
the next beam index. Recall that our main objective was
to reduce the frequent measurement-based beam selection
or in other words increase the interval between two BMRs
obtained through the beam sweeping. This can be achieved
by increasing the interval between periodic beam reports and
utilizing the predicted beam from the proposed model. The
model also provides the confidence on its prediction which
can be used to monitor the beam prediction accuracy. From
the next time instance onward, the window will be updated
with the latest tracking information while the oldest will be
discarded. Similarly, the latest beam used will be updated in
the beam history. The confidence score of the model gives
the probability of a beam being the next serving beam. If the
confidence score falls, this means there can be more than one
beam that is suitable to be the next serving beam. Therefore,
based on a threshold on the confidence score, we trigger an
aperiodic CSI-RS BMR if the confidence score is less than
the threshold value (δ). Here the BMR is requested for the
top-k beams whose sum of the confidences scores satisfy the



threshold value. This will ensure that the best beam is selected
and if none of the beams in the top-k beams meet the minimum
RSRP criteria [1], the conventional 5G beam selection can be
utilized or skip serving at the particular time instance.

IV. EVALUATION

In this section, we present the setup for evaluation of the
proposed model and the beam management algorithm using
simulations with a synthetic dataset. The dataset parameters
were chosen referring the 3GPP Indoor hotspot scenario[17].

A. Scenario and dataset

The dataset for evaluation of the proposed model was built
using Blensor [18], a LiDAR simulator based on Blender and
ray tracing for wireless channel simulations using Wireless
Insite [19]. The layout of the indoor area is shown in Figure
2. The parameters used in the simulation are listed in Table I.

Fig. 2. Considered simulation environment

Parameter Value
Carrier frequency 28 GHz
Bandwidth 396 MHz / 275 RBs
Subcarrier spacing 120 KHz / 0.125ms
AP antennas (N ) 3 - 8x8 UPA
No. of beams per antenna (M ) 64
AP and LiDAR height 3 m
Antenna boresight 30◦, 150◦, 270◦

Mechanical downtilt 20
Element spacing 0.5 λ
Tx Power 20 dBm
UE antennas Single isotropic
UE trajectories 10 per scene
Max velocity UE 0.833 m/s
No. of LiDAR sensors (L) 2
LiDAR frequency (fl) 20 Hz

TABLE I
SIMULATION PARAMETERS

The user trajectories were simulated using ORCA simulator
[20] where the starting and ending points are randomly se-
lected from the corners of the layout and the user tries to reach
to the opposite side of the area avoiding collision with others.
We simulated 20 scenes spanning 300 frames per scene with
10 users. The positions were sampled with 100 ms intervals
along the trajectory of a user. Then, the channel matrices
between the positions and antennas were generated using the
raytracing tool. Then, communication-based beam decisions
were calculated for each position by applying the precoders

for the 64 beams per antenna. The beams corresponding to the
highest SNR was selected as the serving beams simulating
the 5G beam selection procedure. Then each beam index
was duplicated to simulate a 50 ms sampling interval which
matches with the LiDAR location update running at 20 Hz.
This serves as the ground truth data for training and evaluation
of the model. For simulating the increased CSI-RS BMR
periodicity, we simply pick generated beam index with the
required multiple of the interval corresponding to the LiDAR
location update frequency. Similarly, aperiodic CSI-RS BMR
is simulated by picking the corresponding data for the time
instance of the BMR from the ground truth data.

B. Training

We considered long short-term memory (LSTM) and gated
recurrent unit (GRU) as RNNs with same hidden state di-
mension. Furthermore an MLP model replacing the RNN
layer and a model using an MLP layer for location embed-
ding followed by an LSTM layer were considered. All the
models were trained with categorical cross-entropy loss with
Adam optimizer and a 80:20 data split between train and
validation sets for 10 epochs. The observation time window
for the training was considered as 10 frames. The hidden
state dimension was set to 32 while the RFF layer was fixed
with 200 non-trainable parameters with 100 parameters per
dimension, and the Gaussian kernel with a variance s = 1

2π
after hyper-parameter tuning. We considered top-k accuracy
as the evaluation metric which means the ground truth beam
index is within the first k most probable beam predictions
from the model for a given time index. We used leave-one-out
cross-validation (LOOCV) for calculating the top-k accuracy
and we average over the number of scenes which gives us
an unbiased and reliable estimate of the model performance
as we have a smaller dataset, which is restricted by the high
computation time of ray tracing.

V. RESULTS AND DISCUSSION

In this section, we present the performance of the considered
models for the beam prediction problem, and then evaluate
the predictive beam management algorithm based on the best
performing model. In Figure 3, we compare the top-k accuracy
of the considered models by varying the number of beams
searched (k). Overall, the model with an RFF layer for location
encoding and an LSTM layer (RFF+LSTM) for capturing the
time series effect gives the best performance. Clearly, the
sequential nature of the beam prediction problem has given
better performance in all the three models using an RNN layer
compared to the RFF+MLP model which uses fully connected
layers only.

Next, we investigate the impact of the RFF layer. For this,
we increase the periodic CSI-RS based BMR interval by
multiplying the conventional BMR interval with a factor (F )
and provide only the location updates from LiDAR in between
the two BMRs. Therefore if F = 4, the conventional CSI-RS
BMRs are sent every 4-th time instance. The system relies on
the past predicted indices and the location update from the
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LiDAR data to predict the next beam index for the rest of the
time instances. In Figure 4, we plot the top-1 accuracy of the
RNN models (with and without RFF layer) and the proposed
method in [12], which employs a Seq2Seq model (beam-only)
utilizing only the beam sequence data. Both RFF+LSTM and
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RFF+GRU models, which use RFF layer to embed the location
updates from the LiDAR data perform better compared to
the other models. They reach top-1 accuracy values of 85%
and 84.7% respectively even when F = 10. Interestingly, the
beam-only model delivers the highest accuracy among all the
models when F = 2. However, the top-1 accuracy of the
beam-only model deteriorates drastically as the periodicity
increases with F . Thus, the potential of the location updates
to aid in increasing the BMR interval is evident. Similarly, the
MLP+LSTM model performs comparably to the other RNN
models when F = 2. However, the performance decreases
as F increases compared to the RFF equipped models. The
reason behind this is, the MLP layer does not embed the
location data in an efficient manner although the location data
from LiDAR is utilized to support the prediction. Therefore,
we can notice the importance of utilizing the location data and
its efficient embedding using the RFF layer. The models with
the RFF layer have the ability to rely entirely on the location
updates, resulting in a noticeable performance improvement
compared to the other models with its efficient location embed-
ding. The performance difference between RFF+LSTM and
RFF+GRU models is negligible in this case and the RFF+GRU
model achieves slightly a better accuracy with less number
of parameters. Hence, we can conclude that the proposed
model, RFF+GRU provides a significant accuracy using lesser

parameters with infrequent BMR by relying on the location
data from the LiDARs.
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Then we analyze the effect of using aperiodic CSI-RS BMR
to further refine the proposed method as described in Section
III-C. The RFF+GRU model is used in these simulations.
We use threshold values δ ∈ {0.6, 0.75, 0.85, 0.95} and the
variation of top-1 accuracy with F is shown in Figure 5.
Clearly, the top-1 accuracy in Figure 5 improves when the
aperiodic CSI-RS BMRs are used, compared to the case of not
using them. Naturally, all the top-k accuracy values increase
with this approach, although we have shown only the top-
1 accuracy. The improvement in the accuracy comes at the
expense of increased resource usage. To analyze this, we plot
the fraction of the CSI-RS BMRs used with each δ value,
against the increasing F in Figure 6. The fraction in this
context means the total number of beams scheduled for the
report with both periodic and aperiodic BMRs with a corre-
sponding F and δ, divided by the total number of BMRs that
would have been used, if there was no predictive mechanism.
In other words, it reflects the amount of resources used by the
predictive mechanism compared to the conventional BMRs.
When the δ is set to a higher level at 0.95, the model decision
is scrutinized by an increase of 7% aperiodic beams compared
to the no aperiodic BMR case when F = 10. Note that, we



focus on a higher F because it gives the maximum resource
saving, which was our primary objective. The benefit of using
a higher δ is the improvement in top-1 accuracy to 89.6%, with
the cost of increased resource usage. The considered lower
values of δ, 0.6 and 0.75 give a top-1 accuracy improvement
of nearly 1.6% and 3%, while increasing the BMR fraction
by 1% and 2.1% respectively. The δ value of 0.85 strikes
a balance between the accuracy and resource usage since it
provides an increased accuracy of 88.7% while only using
a 3.2% increase in resource usage for aperiodic BMRs when
F = 10. Nevertheless, the subset of beams to be scheduled for
these aperiodic BMRs are minimal, which is evident from the
Figure 6 as we have relatively small increments (≤ 7%) in the
fraction of CSI-RS BMRs for all the δ values. It is worthwhile
to note that the value of δ will depend on the requirements of
the application. If more reliability is needed, a higher δ should
be used at the expense of high resources usage. Otherwise a
lower δ value can be used compromising reliability to save
maximum amount of resources.

Single-antenna UEs were considered in the study due to
the prohibitively high computation time of ray-tracing for the
considered scenario. However, UEs with multiple-antennas
capable of UE-side beam refinement will be considered in
the future studies. Furthermore, the results analyzed in this
work contained perfect detection and tracking in the LiDAR
point clouds with the simplicity of the simulation scenario. In
a practical situation, detection errors and missing of tracking
data of users can occur and the robustness of the model to rely
on the BMRs needs to be evaluated in such a case. Moreover,
the considered scenario had LOS for majority of the time
instances and the performance under NLOS will be a direction
of future work.

VI. CONCLUSIONS

This paper proposed a method for beam prediction for a 5G
NR UE based on a co-existing infrastructure-mounted LiDAR
system in an indoor hotspot scenario. The system utilizes the
LiDAR data to detect and track the users, which provides a
trajectory history. The trajectory and beam sequence history
were used to predict the future beam index for a certain user
using an RNN model. The model consists of an RFF layer
which encodes the trajectory data efficiently while a GRU
layer is used to capture the sequential nature of the data.
Furthermore, a predictive beam management method utilizing
the proposed model to increase the periodicity of the reports
and trigger on demand aperiodic reports was analyzed. The
results demonstrated that the proposed method achieves an
acceptable accuracy while saving a significant amount of re-
sources. This shows utilizing LiDARs with the network can be
useful to enable efficient beam-based operation with very low
over-the-air signaling overhead, which is promising for a 5G
NR system. However, a more comprehensive system specific
study with dynamic simulations are needed to understand the
true 5G NR system gains, which will be the scope of further
work.
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