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Relay Selection and Power Allocation for Energy
Efficiency Maximization in Hybrid Satellite-UAV

Networks with CoMP-NOMA Transmission

Sedighe Mirbolouk, Morteza Valizadeh, Mehdi Chehel Amirani, Samad Ali

Abstract—Non-orthogonal multiple access (NOMA) and co-
ordinated multi-point (CoMP) are two fundamental techniques
considered for the fifth generation (5G) of wireless communica-
tions. In this paper, a hybrid satellite-unmanned aerial vehicle
(UAV) relay network (HSURN) is proposed where the UAV relays
(URs) employ CoMP transmission to serve the terrestrial users
(UEs). Furthermore, all UEs associated with the CoMP-URs
form a single NOMA cluster. For this model, an optimization
problem is formulated subject to the minimum quality of services
(QoSs) requirements of the UEs, transmission power budgets
and, successive interference cancellation (SIC), to select URs and
allocate their transmission powers for the energy efficiency (EE)
maximization. With this insight, first, a computationally efficient
sub-optimal UR selection scheme is proposed. Then, the powers
are allocated to the selected URs via the Lagrange multipliers
optimization (LMO) method. Due to the non-convex nature of the
considered problem, it is relatively difficult to be solved. Hence,
a metaheuristic teaching-learning-based optimization (TLBO)
algorithm is employed to achieve an efficient solution. Simulation
results are provided to verify the effectiveness of the proposed
sub-optimal relay selection scheme and the TLBO-based power
allocation method compared to the LMO conventional method.
Besides, the obtained results also reveal that the CoMP-NOMA
transmission in the proposed scenario significantly improves the
spectral efficiency (SE) and outage probability (OP) of the system
compared to non-comp NOMA transmission case.

Index Terms—Non-orthogonal multiple access (NOMA), Co-
ordinated multi-point (CoMP) transmission, energy efficiency
(EE), UAV relay selection, satellite terrestrial network, outage
probability (OP).

I. INTRODUCTION

The 5G-satellite networks in the integrated architecture have
emerged as a valuable infrastructure to meet the future radio
access of smart devices. Combining satellite components into
wireless systems is not only an indispensable way to provide
seamless coverage and large capacity for users all over the
world but also to ensure high QoS expectations [1]. Mobile
satellite networks have been viewed as a promising technique
for the smart grid, internet-of-thing (IoT), wireless sensor
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networks, vehicular ad-hoc networks, and massive machine-
type communication. However, in situations where the line
of sight (LOS) link between the satellite and ground user
is blocked by obstacles, system performance significantly
degrades. In this regard, UAV communications are an attractive
technique that can provide better performances [2]. Despite the
limited life, UAVs have recently been used as cheap relays
in different conditions, especially emergencies where hybrid
satellite-terrestrial relay networks are disabled. UAVs, as flying
base stations (BSs) in the sky, can adjust their locations
dynamically to prepare flexible and on-demand services to the
terrestrial users according to their locations [3]. Therefore,
to support reliable and high remote transmission rate, it is
imperative to integrate UAV relays into satellite networks.
UAV, NOMA, and CoMP are envisioned as critical key tech-
niques in 5G and beyond [4], [5]. In the past generations of
cellular networks, resources are orthogonal allocated to users
for reducing intra-cell interference. However, the insistence on
orthogonality limits the number of users who could access the
network resources. NOMA merges the superposition coding
technique at the transmitters with the successive interference
cancellation (SIC) technique at the receivers. Thus, users can
decode their signals even though they are employing the
same frequency channel simultaneously. Hence, the NOMA
scheme improves the spectral efficiency of users and system
capacity as well as the fairness of the network [6]. In multi-cell
heterogeneous network scenarios, the inter-cell interference
(ICI) seriously degrades the QoS of the cell edge users.
To solve this problem, NOMA should be combined with
the third generation partnership project (3GPP) interference
degradation techniques like CoMP to obtain higher SE. In joint
transmission CoMP, the set of BSs coordinate to serve a UE
simultaneously. Thus, JT-CoMP in NOMA-based downlink
transmission can significantly enhance the QoS of users [7].

In this work, the application of CoMP with NOMA in
HSURN is investigated. To meet the requirements of the 5G
green communication and decrease the energy consumption of
the URs, the relay selection and power allocation for energy
efficiency are analyzed. Also, OP is employed as the criterion
to show the performance of the proposed approach. We often
encounter complex computations for EE maximization. Thus,
efficient algorithms are necessary for the UR selection and
power allocation in a way to optimize the EE in HSURN while
utilizing CoMP-NOMA transmission.
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A. Prior Works

Many works on the satellite-terrestrial integrated networks
(STINs) have been focused on enhancing system performance
by power or resource allocation. A joint user pairing and power
allocation scheme in a NOMA-based geostationary earth orbit
(GEO) and low earth orbit (LEO) multi-layer satellite net-
works (MLSNs) was investigated in [8], in which a novel
NOMA framework with two uplink receivers was considered
to maximize the system capacity. In [9], the NOMA was
utilized into massive multiple input multiple output (mMIMO)
LEO satellite communication system (SCS) to enhance SE by
considering the transmitted power, QoS constraints, imperfect
SIC and imperfect channel state information (CSI). A joint
beamforming design for NOMA-based cognitive STIN was
presented in [10], where the satellite network and the terrestrial
network employed OMA and NOMA schemes, respectively.
The main idea was to maximize the sum secrecy rate of
satellite UEs under the imperfect CSI, while meeting the
QoS requirements of ground UEs and transmission power
constraints of the cognitive STIN. In [11], maximization of
the energy-efficient transmission for a STIN with a multi-
antenna UR was investigated. For solving the non-convex
maximization problem, two new beamforming schemes were
proposed by jointly exploiting array signal processing. In
[12]–[15], NOMA was employed in terrestrial networks or
satellite-terrestrial links. In [12] a joint iterative algorithm was
proposed to maximize the total system capacity and in [13],
the exact analytical expression for the OP, and the ergodic
capacity expression of the considered system were derived.
In [14], the SE was improved and the decay of retrieving
the content for the satellite user was reduced. The effects
of both imperfect CSI and imperfect SIC were studied in
[15], and its OP was evaluated. Also, the expressions of the
ergodic spectral efficiency and system throughput were derived
in the presence of channel estimation errors and residual
interference. The performance of NOMA-based relaying-aided
STIN was investigated in [16] and [17]. In [16], the SE was
enhanced in the presence of multiple primary UEs under
a spectrum sharing environment. In [17], the partial relay
selection algorithm was employed to reach a trade-off between
system performance and complexity. Also, the imperfect SIC
was considered for practical constraints to derive the OP and
ergodic capacity. Despite the benefits of the STINs, without
considering the energy-efficient power allocation strategy in
the previous papers, the STINs may not meet the increasing
demands for reducing the power consumption.

The UR as an aerial BS for providing the connectivity to
terrestrial UEs in the downlink NOMA system was studied
in [18], and the joint trajectory design and resource alloca-
tion algorithms were investigated to maximize the minimum
achievable rate of UEs. To improve the EE by power allocation
optimization in a 6G enabled UR network, a combination of
NOMA and spatial modulation techniques were proposed in
[19]. A power allocation scheme for NOMA-UR networks
with circular trajectory was proposed in [20] which maximizes
the SE of common UEs subject to increase the security for a
specific UE. For SE maximization, considering the limitations

on transmission power, QoS of UEs and UR’s position, a
joint problem of power allocation and UR’s location was
formulated in [21] where a harris optimization approach was
proposed to solve the considered non-convex problem. A
two-stage relay selection scheme for NOMA networks with
decode and forward (DF) and AF protocols with different
QoS requirements for the users was investigated in [22], and
OP as well as diversity order were obtained. To improve the
transmission reliability, a dynamic relay detection strategy was
designed, which fully exploits the available side information
to mitigate the inter-UE interference and maximizes the cell-
center UE successful decoding probability [23]. The pre-
coding optimization for UAV-assisted NOMA networks were
investigated in [24] and [25]. In [24], an artificial jamming
technique was utilized to guarantee security. In [25], the SE
was maximized by jointly optimizing the UAV trajectory and
the NOMA precoding in which the optimization problem
was solved by an iterative algorithm. Actually, none of the
mentioned works considered the CoMP transmission among
the URs for improving the EE.

The CoMP-enabled NOMA was studied in downlink homo-
geneous multi-cell networks subject to increase SE [26] and
to mitigate the OP [27] where cell-edge users were able to
be served by CoMP-NOMA transmissions simultaneously. In
[28], the integration between CoMP transmission and NOMA
in the downlink heterogeneous cloud radio access networks
was investigated proving that inter-cell interference and SE.
The amalgamation between the reconfigurable intelligent sur-
face technology and the JT-CoMP was analyzed to boost the
ergodic rate of a cell-edge UE in a two-user NOMA cluster
without decreasing the performance of the NOMA cell-center
UE [29]. The combination of CoMP with mutual SIC was
utilized in NOMA multi-cell networks to deteriorate the inter-
cell interference and enhance the spectral efficiency of the
cell-edge user [30]. A generalized coordinated multi-point
transmission enabled NOMA scheme in a multi-cell network
was proposed in [31], which unlike previous works improved
the SINR of both cell-edge UEs and cell-centre UEs. As seen,
all these reviewed researches have restricted the application of
CoMP transmission in ground NOMA networks.

B. Motivation and Contributions

Despite the firm structure on air-to-ground networks and the
NOMA scheme depicted in the mentioned works, there are still
great research opportunities on satellite-UAV communications.
To the best of our knowledge, there have been no existing
works investigating CoMP among URs with downlink NOMA
transmission. In this paper, a new framework for HSURN
based on NOMA along with CoMP among aerial relays is
proposed. Further, the EE maximization for HSURN consid-
ering joint transmission (JT) for selected URs as CoMP set
is presented. Therefore, the CoMP in our work means the
same as JT-CoMP. For efficient performance, the CoMP URs
serve all UEs simultaneously, which significantly enhances
the overall SINR performance. Also, computationally-efficient
sub-optimal UR selection and power allocation algorithms
are provided to maximize the EE subject to the minimum
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Fig. 1. CoMP-enabled NOMA in hybrid satellite-UAV relay network

SE requirements, transmission powers and, SIC constraints.
The power allocation problem is solved by LMO. Since this
problem is non-convex, it is mainly challenging to tackle
it. Therefore, the TLBO algorithm is utilized to achieve an
efficient solution. Further, an analytical expression for the OP
of the network is presented. Finally, the network performance
for URs in various heights is evaluated, and the EE of the
suggested sub-optimal solution is compared to the optimal one.

The main contributions of our work are listed as follow:
• Introducing a new framework for HSURN based on the

downlink NOMA transmission and CoMP among URs
• Problem formulation for UR selection and power alloca-

tion to maximize the EE in the suggested transmission
scheme

• Employing a convex relaxed method based on a meta-
heuristic algorithm for optimization problem besides the
Lagrange multipliers optimization method

• Deriving analytical results for the OP of the system

C. Organization and Notation

The rest of this paper is organized as follows: Section
II describes the system model of the proposed framework
in downlink transmission. Section III characterizes the relay
selection scheme and the power allocation algorithms. Section
IV discusses the computational complexity. Section V provides
the outage performance of the proposed model. section VI
verifies the numerical results and finally, section VII concludes
the paper.

Notation: Scalars are depicted by small letters, vectors and
matrices are shown by bold and capital letters, respectively.
For a value x, |x| denotes its absolute value.

II. COMP-ENABLED NOMA HSURN MODEL

The proposed HSURN based on downlink NOMA trans-
mission along with CoMP among URs is illustrated in Fig. 1.
A satellite (S) simultaneously communicates with K single
antenna terrestrial UEs that are randomly distributed. The
communication is aided by J single antenna URs. The indices
for the UEs and URs are defined as k ∈ {1, 2, ...,K} and
j ∈ {1, 2, ..., J}. It is assumed that URs and UEs are located
in the same spot beam of the satellite. In practical scenario, be-
cause of the existence of obstacles, the links between satellite

and terrestrial UEs are usually non-line of sight (NLOS). Thus,
UEs cannot be well covered by the satellite individually, and
their accessible SINRs are usually very low. Hence, UAVs as
aerial relays above UEs is employed to decode and forward the
wireless signals transmitted by satellite. All URs are connected
and have the ability of CoMP. Since the S-URs and URs-UEs
links are somewhat LOS, and also URs are CoMP-enabled,
the SINR of the UEs is significantly improved. Every UE can
be served by Nc URs which refers to the CoMP order. As
well as, NOMA is incorporated into JT-CoMP-URs to further
improve the SINR of UEs. All the UEs associated with the
CoMP URs form a NOMA set. As illustrated in Fig. 1, the
satellite transmits signals to the URs in the first time slot.
Then, the selected URs decode and retransmit the signals to
all UEs. In the power domain NOMA, there is a difference
in the power levels of the received signals from URs. Hence,
UEs decode the signals by applying the SIC technique. Two
UE categories are considered: the weak UEs and the strong
UEs. The weak users have poor channel conditions, while
the strong users have better channel conditions. Fig.1 shows
CoMP transmission based on the relay selection scheme which
is described in section III. Perfect CSI is considered to be
available at all nodes.

Let hs,j represents the channel power gain from the satellite
to URj and follows shadowed-Rician fading distribution,
i.e. hs,j = h′s,j + h

′′

s,j . The LOS component h′s,j follows
Nakagami-m′ distribution, h′s,j ∼ Nakagami (m′,Ω′) with
the fading parameter m′ and the average power of the LoS
component Ω′. The entries of the scattering components h

′′

s,j

follow Rayleigh distribution, h
′′

s,j ∼ Rayleigh (b
′′
), where

2b
′′

is the average power of the scatter component [32]. Let
hj,k represents the channel power gain from the URj to the
UEk which, hj,k = Lj,kĥj,k. The free space loss is set to
Lj,k = d

−α/2
j,k , where, α denotes the path loss exponent and

dj,k =
√
d2h,j + d′2j,k, where, dh,j is the height of URj and

d′j,k is the distances between the vertical projections of URj

and UEk. In channel fading model the URj −UEk link, ĥj,k
is independent and identically distributed (i.i.d) Nakagami-m̂
distribution, ĥj,k ∼ Nakagami (m̂, Ω̂) [33].

Satellite broadcasts signal xs with transmission power ps,
the received signal at each UR is yj =

√
pshs,jxs+nj , where

xs includes desired signals of users and nj is the additive
white Gaussian noise (AWGN) of the URj link with the
standard deviation of the σj,k. It is assumed that the selected
URs for CoMP set, i.e., jc ∈ {1, 2, ..., Nc}, adopt the NOMA
principle. The URs transmit the signals to UEs based on the
NOMA strategy. Hence, superposition coding at the URs and
SIC at the users are utilized in this way the users can be
multiplexed on the same sub-band. In other words, the URs
employ a specific sub-band for all UEs. The UEs with higher
SIC ordering can decode and remove the interference signal of
the users who have lower SIC ordering. Thus, UEk receives
the following signal:

zk =
∑
jc∈Sc

(
√
pjc,k xjc,k +

K∑
t=k+1

√
pjc,t xjc,t)h̃jc,k+nk, (1)
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where Sc shows the CoMP set, pjc,k and xjc,k are the
allocated power and the modulated symbol to UEk by URjc ,

respectively, h̃jc,k =
|hjc,k|2

σ2
jc,k

is the normalized square channel

gain, h̃jc,k ∼ Gamma (ajc,k, bjc,k) where ajc,k = m̂, bjc,k =
σ2
jc,k

m̂

|Ljc,k|2Ω̂
and nk is AWGN. The first term in (1) represents

the received signal transmitted from the URjc at the UEk.
The second term is the interference caused by the transmitted
signal to UEs with higher SIC order compared to the UEk. In
general, the SIC order of the UEs is different for the URs, only
those URs can be selected for CoMP transmission that the SIC
order of each UE is the same for all of them [26]. Therefore,
the normalized channel gains between the UEk and the
selected URjc are sorted as |h̃jc,1| ≤ |h̃jc,2| ≤ ... ≤ |h̃jc,K |.
Hence, the total sum-rate/spectral efficiency of the UEs can
be expressed as

Rsum =

K∑
k=1

Rk =

K∑
k=1

log2(1 + γk), (2)

where Rk is the achievable rate for the UEk after SIC
operation and γk is the SINR at the UEk as follow:

γk =

Nc∑
jc=1

pjc,kh̃jc,k

Nc∑
jc=1

K∑
t=k+1

pjc,th̃jc,k + 1

, (3)

To reach Rk at the UEk, the UEs with a higher order of
SIC should be able to decode the message of UEk. In other
words, for successful SIC operation at the UEk, it is necessary
for all UEf to satisfy [34]:

Rf
k = log2(1 +

Nc∑
jc=1

pjc,kh̃jc,f

Nc∑
jc=1

K∑
t=k+1

pjc,th̃jc,f + 1

) ≥ Rth
k

∀f = k + 1, 2, ...,K, (4)

where Rf
k is the rate of the UEf to decode the message of

the UEk, and Rth
k is a threshold data rate for UEk. On the

other hand, (4) can be reduced to:

Nc∑
jc=1

pjc,kh̃jc,k+1 −
Nc∑

jc=1

K∑
t=k+1

pjc,th̃jc,k+1 − 1 ≥ δ

∀k = 1, 2, ...,K − 1, (5)

where δ is the least difference between the power of decoded
signal and inter-NOMA-user interference [26], [35]. The Eq.
(5) will be considered as SIC constraints in our optimization
problem.

III. PROPOSED RELAY SELECTION AND POWER
ALLOCATION

In this section, the relay selection and power allocation
problem is formulated mathematically to maximize the entire

system EE under NOMA power budget, QoS requirement, and
SIC constraint. EE is defined by dividing the SE by the total
power consumption:

ηEE =
Rsum

Nc∑
jc=1

K∑
k=1

pjc,k + pcir

, (6)

where pcir is the circuit power of the system.
In the following, firstly, the relay selection scheme is

presented and then, the power allocation is discussed.

A. Relay Selection Scheme

For the HSURN, the aim of the optimal relay selection al-
gorithm is the assurance of successful transmission of the UEs
signals as well as maximization of the EE that provides reliable
transmission for the system. The algorithm runs through three
stages.

stage 1: A subset of existing URs, Sr, is selected that
can guarantee successful reception in the S-URs links and
prepare reliable signal forwarding to UEs. All the URs in
Sr need to satisfy the decoding threshold rate of the UEs
desired signals, i.e., Sr = {URj |Rj ≥ Rmin}, where Rj

presents the achievable rate at URj . If Sr is empty, none of
the URs can provide successful signal transmission to the UEs.
Therefore, there is no candidate UR for the next selection
stage. In contrast, if Sr is not empty and at least Nc URs can
satisfy the transmission conditions, the next stage of the UR
selection will be performed.

stage 2: This stage tries to solve the challenge of the NOMA
principle to determine the appropriate SIC ordering of UEs.
In the CoMP transmission, several URs using the specific
resource block at the same time send multiple streams of
equal data to each UE. The UEs and the CoMP-URs set form
a NOMA cluster that makes them experience inter-NOMA-
user interference (INUI) depending on their SIC ordering. As
mentioned before, for each UE, having the same SIC ordering
with respect to all URs is necessary. Hence, from the Sr, those
URs which satisfy this constraint are selected and placed in
the new set, So. Each UE may experience different channel
conditions, i.e., weak or strong channel gains, thus, different
SIC orders can be considered for it. In this work, we consider a
SIC ordering based on the required QoS of the UEs, in which,
the URs in So are selected so that a user with a higher QoS
has a higher SIC order (stronger channel gains) compared to
others.

stage 3: For achieving the optimal selection, it is necessary
to investigate the EE of UEs for all possible Nc-combination of
So,
(|So|
Nc

)
, where |So| is the cardinality of the set of all existing

URs, So. The subset of URs which leads to the maximum
value of EE is considered as Sc. Due to the delay and high
complexity caused in the optimal selection, a sub-optimal relay
selection is proposed, which its results are close to the results
of the optimal case with less complexity. In this situation,
the Nc UAV relays with highest sum of their channel fading

gain,
K∑

k=1

h̃j,k, is selected as Sc among So. The stages of UR

selection are summarized in Algorithm 1.
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Algorithm 1 Pseudo-code of the proposed sub-optimal relay
selection scheme

1: Initialize Sr = So = Sc = ϕ
2: for j = 1 to J do
3: if (Rj ≥ Rmin) then
4: Sr = Sr ∪ URj

5: if (h̃j,k < h̃j,k+1, ∀k ∈ 1, 2, ...,K − 1) then
6: So = So ∪ URj

7: end if
8: end if
9: end for

10: Select Nc relays with highest
K∑

k=1

h̃j,k as Sc

B. Power Allocation Scheme

To maximize the EE of CoMP-URs, the power allocation
problem can be formulated as:{

p∗jc,k
}
= argmax

{pjc,k}
(ηEE) (7)

subject to:

C1 :

K∑
k=1

pjc,k ≤ ptot, ∀jc = 1, 2, ..., Nc

C2 : pjc,k ≥ pmin, ∀jc = 1, 2, ..., Nc, k = 1, 2, ...,K

C3 : Rk ≥ Rk,min, ∀k = 1, 2, ...,K

C4 :

Nc∑
jc=1

pjc,kh̃jc,k+1 −
Nc∑

jc=1

K∑
t=k+1

pjc,th̃jc,k+1 − 1 ≥ δ

∀k = 1, 2, ...,K − 1,

where
{
p∗jc,k

}
shows the optimum transmission powers set of

the CoMP-URs to the UEs. C1 and C2 show the transmission
power budget constraints. C3 gives the basic rate requirement
of each NOMA UE and C4 represents the SIC constraint.

The EE maximization problem formulated in (7) is a power
allocation problem among the CoMP-URs. Therefore, for each
desired and specified UR from the CoMP set, for example,
URĵc

, it is required the problem (7) to be solved in view of
all the feasible solutions for other URs of set Sc. Thus, the
power allocation of URĵc

is optimized as follows:

{p∗
ĵc,k

} = argmax
{pĵc,k

}
(ηEE) (8)

subject to:

C1 :

K∑
k=1

pĵc,k ≤ ptot

C2 : pĵc,k ≥ pmin, k = 1, 2, ...,K

C3 : Rk ≥ Rk,min, ∀k = 1, 2, ...,K

C4 :

Nc∑
jc=1

pjc,kh̃jc,k+1 −
Nc∑

jc=1

K∑
t=k+1

pjc,th̃jc,k+1 − 1 ≥ δ

∀k = 1, 2, ...,K − 1,

The above problem is solved by two different methods;
LMO and TLBO. Because of the non-convex nature of this

problem the standard LMO method is relatively challenging.
Hence, a convex relaxation meta-heuristic algorithm, TLBO, is
examined to find an efficient solution. Unlike the conventional
solutions like gradient-based methods, TLBO does not utilize
the gradient of the objective functions. Also, its implemen-
tation is straightforward, and it is capable of escaping local
optima.

C. Lagrange Multiplier Optimization Method

The formulated optimization problem (8) is a nonlinear frac-
tional programming. It can be transformed into an equivalent
concave non-fractional form as follows [36]:

q∗ = max
{pĵc,k}

 Rsum

Nc∑
jc=1

K∑
k=1

pĵc,k + pcir

 =

Rsum({p∗
ĵc,k

})
K∑

k=1

p∗
ĵc,k

+
Nc∑

jc=1

jc ̸=ĵc

K∑
k=1

pjc,k + pcir

. (9)

Considering (9), subtractive transformation of the problem in
(8) subject to C1 − C4 can be shown as:

p∗
ĵc,k

= argmax
pĵc,k

(Rsum − q(

Nc∑
jc=1

K∑
k=1

pjc,k + pcir)). (10)

where q is a scaling parameter for the weight of the total power
consumption of URs. For traceability of the problem, the lower
bound is utilized to obtain the optimal solution iteratively.
Considering the lower bound achieved in [37], the data rate
of UEs can be expressed as:

R′
k = ck log2(γk) + dk ≤ Rk = log2(1 + γk), (11)

where ck = γ̂k

1+γ̂k
, dk = log2(1 + γ̂k)− ck log2(γ̂k) and γ̂k is

the SINR of UEk from the last iteration. Thus, problem (10)
can be transformed to:

p∗
ĵc,k

= argmax
{pĵc,k}

(

K∑
k=1

R′
k − q(

Nc∑
jc=1

K∑
k=1

pjc,k + pcir)) (12)

subject to:

C1, C2, C4

C3 : R′
k ≥ Rk,min, ∀k = 1, 2, ...,K,

Dinkelbach iterative algorithm [38] is utilized to solve (12)
assuming initial value for q is small. The concavity of the
above problem is proved in Appendix. Hence, according to the
Karush-Kuhn-Tucker (KKT) conditions [39] the Lagrangian
function of the problem (12) can be written as:
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L({pĵc,k}, q, α,β,λ, ζ)

=

K∑
k=1

R′
k − q(

Nc∑
jc=1

K∑
k=1

pjc,k + pcir)

+α(ptot −
K∑

k=1

pĵc,k)

+

K∑
k=1

βk(pĵc,k − pmin)

+

K∑
k=1

λk(R
′
k −Rk,min)

+

K−1∑
k=1

ζk(

Nc∑
jc=1

pjc,kh̃jc,k+1

−
Nc∑

jc=1

K∑
t=k+1

pjc,th̃jc,k+1 − 1− δ), (13)

where α ≥ 0, β ≥ 0, λ ≥ 0 and ζ ≥ 0 are the Lagrange
multipliers of constraints on the transmission power, SE and
SIC limitation, respectively. The problem in (14) can be
decomposed into a maximization and a minimization sub-
problem. The maximization sub-problem finds the optimal
power allocation and then the results is minimized to obtain
the optimal Lagrange multipliers as follow:

min
q,α,β,λ,ζ

max
{pĵc,k

}
L({pĵc,k}, q, α,β,λ, ζ). (14)

By taking the partial derivative of the above problem with
respect to pĵc,k, we have

∂L(pĵc,k, q, α,β,λ, ζ)

∂pĵc,k

=
−1

ln2

k−1∑
ν=1

cν(1 + λν)
h̃ĵc,ν

Nc∑
jc=1

K∑
t=ν+1

pjc,th̃jc,ν + 1

+
1

Ln2
ck(1 + λk)

h̃ĵc,k

pĵc,kh̃ĵc,k +
Nc∑

jc=1

jc ̸=ĵc

pjc,kh̃jc,k

+(q + α− βk) + ζkh̃ĵc,k+1
−

k−1∑
ν=1

ζν h̃ĵc,ν+1. (15)

where (ζkh̃ĵc,k+1
= 0 for k = K). By setting (15) to zero, the

power allocation along with a fixed point policy of UEk(k ̸=
K) can be achieved as (16).

The outer layer in problem (14) can be solved by the gra-
dient method. Hence, the Lagrange multipliers are calculated
as follows:

α(l + 1) = [α(l)− s(l)× (ptot −
K∑

k=1

pĵc,k)]
+

βk(l + 1) = [βk(l)− s(l)× (pĵc,k − pmin)]
+

λk(l + 1) = [λk(l)− s(l)× (R′
k −Rk,min)]

+

ζk(l + 1) = ζk(l)− s(l)× (

Nc∑
jc=1

pjc,kh̃jc,k+1

−
Nc∑

jc=1

K∑
t=k+1

pjc,th̃jc,k+1 − 1− δ), ∀k = 1, 2, ...,K − 1,

(17)

where [x]+
∆
= max{0, x}. The positive value step size at

iteration l, s(l), is obtained based on a trade-off between
the optimally and convergence speed. The algorithm keeps
improving the Lagrange multipliers at each iteration until it

converges to the optimum EE, i.e., the condition (
K∑

k=1

R′
k −

q(
Nc∑

jc=1

K∑
k=1

pjc,k + pcir)) ≤ ε is satisfied, where ε is the

maximum tolerance.

D. Teaching-Learning-Based Optimization

The TLBO is a population-based meta-heuristic algo-
rithm inspired by the cooperation among teacher and stu-
dents/learners. Generally, it can be utilized for any continuous
unconstrained and constrained optimization problem. Math-
ematically, solving the problem by TLBO can be modeled
in two main stages: 1) teaching stage, and 2) learning stage
[40]. Due to several constraints, adjusting the problem (8)
is necessary. Hence, a constraint-handling approach in the
following is utilized for transforming the problem (8) into
a suitable form. The TLBO model uses Npop learners that
denoted as pn = [pn,1, pn,2, ..., pn,K ], n ∈ {1 : Npop}. The
vector pn consists of K design variables, and each variable,
pn,k, corresponds to an allocated power value. In the initial-
ization stage the value of pn,k is randomly assigned satisfying
the SIC constraint, i.e., pn,k ≥ pn,k+1. The corresponding
fitness function, fn, related to the objective function in (8) is
calculated via (23). Both of teaching and learning stages is
executed at each iteration that described in the following.

1) Teaching stage
In this stage, a teacher, pT , tries to updates the mean

value of the class in the corresponding taught subject. Since
the teacher is usually a highly learned person who trains
other learners for improving the class results, the algorithm
considers the best-identified learner n∗ as the teacher:

pT = pi
n∗ , {n∗ = argmax

n
(f in)}, (18)

and its corresponding fitness value as the best fitness function
in the iteration i, f ibest. The average value of the learners is
determined as follows:

p̄i =
1

Npop

Npop∑
n=1

(pi
n), (19)
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p∗
ĵc,k

=
ck(1 + λk)

ln2(q + α− βk − ζkh̃ĵc,k+1) +
k−1∑
ν=1

(ζkh̃ĵc,ν+1 +
cν(1+λν)h̃ĵc,ν

Nc∑
jc=1

K∑
t=ν+1

pjc,th̃jc,ν+1

)

−

Nc∑
jc=1

jc ̸=ĵc

pjc,kh̃jc,k

h̃ĵc,k
. (16)

where pi
n is the allocated power vector of learner n in

iteration i. Then, it is weighted by the teaching factor tn by
taking values either 1 or 2 [41]. Because the tn is selected
randomly, it is not considered as the algorithm parameter.
The knowledge difference between the class weighted average,
tnp̄

i, and teacher is weighted by a random value rn from [0,1].
Considering this difference, the learner knowledge is updated
in teaching action as follows:

pn,new = pin,k + rn(p
T − tnp̄

i). (20)

The output of the teaching stage, pT
n,out and fTn,out is equal

to the updated values if the fitness function is improved (lines
14,15 of Algorithm 2). Among the solutions of all populations,
the one who obtains the best fitness function value is named
as the best solution (lines 16,17). The outputs of this stage are
considered as the inputs for the next learning stage.

2) Learning stage
In this stage, learners increase their knowledge by interact-

ing with themselves. A learner interacts randomly with other
learners to enhance his knowledge. A learner learns new things
if an other learner is better than he. Suppose learner n wants
to interact with learner m which is randomly selected m ̸= n.
For this end, the difference of knowledge between two learners
is determined as follows:

△p =

{
pT
m,out − pT

n,out fTm,out > fTn,out
pT
n,out − pT

m,out otherwise ,
(21)

The next step is to calculate a new value for each learner,
pnew, based on ∆p as follows:

pn,new = max{pmin,p
T
n,out + rn∆p}. (22)

The updating process performs similarly to the teaching stage.
The teaching and learning stages are iteratively continued

until TLBO algorithm convergences to the optimal power and
energy. The steps of TLBO optimization are summarized in
Algorithm 2.

3) Constraint-handling approach
Several constraints exist in our problem formulated in (8).

Hence, a penalty mechanism is presented to deal with the
constraints. The aim of the penalty mechanism is to create
a fitness function such that the constrained problem (8) is
transformed into an unconstrained problem. Thus, the penalty
function is defined as:

f in = ηEE(p
i
n)−G(pi

n), (23)

where G(pi
n) is the penalty function and can be calculated as:

G(pi
n) =

4∑
z=1

wzgz (24)

in which:

g1 = ([ptot −
K∑

k=1

pn,k]
−)2

g2 =

K∑
k=1

([pn,k − pmin]
−)2

g3 =

K∑
k=1

([Rn,k −Rk,min]
−)2

g4 =

K−1∑
k=1

([

Nc∑
jc=1

pjc,kh̃jc,k+1 −

Nc∑
jc=1

K∑
t=k+1

pjc,th̃jc,k+1 − 1− σ]−)2

where wz is penalty factor and [x]−
∆
= min{0, x}.

IV. COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of power
allocation steps through LMO and TLBO algorithms is in-
vestigated for each UR. In both algorithms, each UR requires
to solve the problem for all feasible answers of others.

As described before, the dual problem in (14) is
decomposed into two parts. It is supposed that the
counts of iterations for inner part, i.e., the power allo-
cation maximization and outer part, i.e., Lagrange mul-
tiplier minimization is denoted by Imax and Lmax, re-
spectively. For Lagrange calculations, ImaxLmax(K(Nc −

1) +
K∑

k=1

(4k + (Nc − 1) +
k−1∑
v=1

(K − v − 1)) − 1) additions,

ImaxLmax(K(Nc − 1) + Nc

K∑
k=1

(3k + (Nc

k−1∑
v=1

(K − v)))

multiplications and ImaxLmaxK comparisons are needed
for inner part. In the outer part, totally ImaxLmax(8K +

Nc(K − 1) + (Nc − 1)
K−1∑
k=1

(K − k − 1) − 7) additions,

ImaxLmax(3K+Nc(K−1)+Nc

K−1∑
k=1

(K−k)) multiplications,

and ImaxLmaxK are required. The TLBO-based method, that
is represented in Algorithm 2, needs Imax(3Npop − 1)K
additions, 2ImaxNpopK multiplications and ImaxNpop(K+3)
comparisons in teaching stage; and 2ImaxNpopK additions,
ImaxNpopK multiplications and ImaxNpop(K + 3) compar-
isons in learning stage. Therefore, the total complexity order
of LMO and TLBO algorithms is O(MNc−1ImaxLmaxNcK

2)
and O(MNc−1ImaxNpopK), respectively. The results were
summarized in the table I and table II.
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE LMO METHOD

Inner Maximization Outer Minimization

Number of additions

ImaxLmax

(
K(Nc − 1) +

K∑
k=1

[4k + (Nc − 1)

×
k−1∑
v=1

(K − v − 1)]− 1

)
ImaxLmax

(
8K +Nc(K − 1)

+ (Nc − 1)

K−1∑
k=1

(K − k − 1)− 7

)

Number of multiplications

ImaxLmax

(
K(Nc − 1) +

K∑
k=1

[3k

+Nc

k−1∑
v=1

(K − v)]

)
ImaxLmax

(
3K +Nc(K − 1)

+Nc

K−1∑
k=1

(K − k)

)
Number of comparisons ImaxLmaxK ImaxLmaxK

Order of total complexity (Inner and Outer) O(MNc−1ImaxLmaxNcK
2)

TABLE II
COMPUTATIONAL COMPLEXITY OF THE TLBO METHOD

Teaching stage Learning stage

Number of additions Imax(3Npop − 1)K 2ImaxNpopK

Number of multiplications 2ImaxNpopK ImaxNpopK

Number of comparisons ImaxNpop(K + 3) ImaxNpop(K + 3)

Order of total complexity (Teaching and Learning) O(MNc−1ImaxNpopK)

V. OUTAGE PROBABILITY

In this section, a closed-form expression for the OP of the
proposed system is derived. The OP is defined as the probabil-
ity of the instantaneous achievable SINR in the NOMA users
falling below a threshold. Low values of OP show the reliable
link between URs and UEs. Thus, information about the state
of the communication system can be provided.

The UEk will be in the outage if it fails to decode its
signal successfully or the SIC process cannot be performed
correctly. So, the successful detection probability of UEk can
be formulated as [31]:

Psuc,k = Pr (γµ→k > γth) ; 1 ≤ µ ≤ k, (25)

where γth = 2Rmin − 1 is the decoding threshold, considered
the same for simplicity. According to the principle of NOMA,
user k decodes zk from received signal by treating zµ as
interference. The decoding SINR γµ→k can be written as

γµ→k =

Nc∑
jc=1

pjc,µh̃jc,k

Nc∑
jc=1

K∑
t=µ+1

pjc,th̃jc,k + 1

. (26)

If γµ→k > γth holds for the smallest SINR, i.e.,
min
µ

{γµ→k} > γth, then, it will hold for the rest, thus, Psuc,k

become

Psuc,k = Pr

(
min
µ

{γµ→k} > γth

)

= Pr

(
min
µ

 Nc∑
jc=1

h̃jc,k(pjc,µ (27)

−
K∑

t=µ+1

pjc,tγth)− γth

)
> 0

)
.

By considering the same power allocation for all transmitters,

pjc,µ = pµ and
K∑

t=µ+1
pjc,t =

K∑
t=µ+1

pt, we have:

Psuc,k = Pr

 Nc∑
jc=1

h̃jc,k min
µ

(
pµ −

K∑
t=µ+1

pt

)
> γth

 .

(28)
After some straightforward calculations, the following equa-
tion is obtained:

Psuc,k =1−Pr


Nc∑

jc=1

h̃jc,k ≤ γth

max
µ

(
pjc,µ −

K∑
t=µ+1

pjc,tγth

)
 ,

(29)
thus, the probability of successful signal detection at UEk can
be expressed as:

Psuc,k = 1− Fhk
(h0) , (30)
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Algorithm 2 Pseudo-code of the TLBO algorithm
1: Initialize Imax, ε and Npop

2: set i=1
3: for n = 1 to Npop do
4: Initialize pi

n such that pin,k ≥ pin,k+1; k =
{1, 2, ...,K − 1}

5: Calculate f in according to (23)
6: end for
7: Initialize pi

best = pi
n∗ according to (18) and f ibest = f in∗

8: while i ≤ Imax do
9: ▷ Teaching stage

10: Calculate p̄i

11: set pT = pi
n∗ according to (18)

12: for n = 1 to Npop do
13: Calculate pn,new acordind to (20) and fn,new via

(23)
14: if fn,new > f in then
15: set pT

n,out = pn,new and fTn,out = fn,new
16: if fTn,out > f ibest then
17: set pi

best = pT
n,out and f in,best = fTn,out

18: end if
19: else
20: set pT

n,out = pi
n and fTn,out = f in

21: end if
22: end for
23: ▷ Learning stage
24: for n = 1 to Npop do
25: Select learner m randomly (m ̸= n)
26: Calculate △p via (21)
27: Calculate pn,new according to (22) and fn,new via

(23)
28: if fn,new > fTn,out then
29: pi+1

n = pn,new and f i+1
n = fn,new

30: if f i+1
n > f ibest then

31: pi+1
best = pi+1

n and f i+1
best = f i+1

n

32: else
pi+1
best = pi

best and f i+1
best = f ibest

33: end if
34: else
35: pi+1

n = pT
n,out and f i+1

n = fTn,out
36: end if
37: end for
38: if ηEE(p

i+1
best)− ηEE(p

i
best) ≤ ε then

39: p∗ = pi+1
best and η∗EE = ηEE(p

i+1
best)

40: break
41: end if
42: i = i+ 1
43: end while
44: Return p∗ and η∗EE

where h0 = γth

max
µ

(
pjc,µ−

K∑
t=µ+1

pjc,tγth

) , and the cumulative

distribution function (CDF) Fhk
(h) is given by

Fhk
(h) = 1+

Nc∏
jc=1

(
ajc,k
bjc,k

)ajc,k

H̄0,Nc+1
Nc+1,Nc+1

 eh I

Ξ
(1)
Nc,k

,(1,1,1)
I

Ξ
(2)
Nc,k

,(0,1,1)


(31)

where H̄ is the Fox’s function [42], and the coefficient sets
Ξ
(1)
n,k and Ξ

(2)
n,k, n ∈ N are defined as:

Ξ
(1)
n,k =

n−bracketed terms︷ ︸︸ ︷
(1− ajc,k

Ω̃1,k

, 1, ajc,k), ..., (1−
ajc,k

Ω̃n,k

, 1, ajc,k) (32)

and

Ξ
(2)
n,k =

n−bracketed terms︷ ︸︸ ︷
(
ajc,k

Ω̃1,k

, 1, ajc,k), ..., (−
ajc,k

Ω̃n,k

, 1, ajc,k) . (33)

When fading parameter takes integer values, the Fox’s H̄
function reduces to the familiar Meijer’s function G [43] and
(31) can be expressed as:

Fhk
(h) =

Nc∏
jc=1

(
ajc,k
bjc,k

)ajc,k

ḠN̂+1,0

N̂+1,N̂+1

[
e−h Ψ

(1)

N̂,k
, 1

Ψ
(2)

N̂,k
, 0

]
,

(34)
where N̂ = Nc×ajc,k and the coefficient sets Ψ(1)

n,k and Ψ
(2)
n,k,

k ∈ N are defined as:

Ψ
(1)
n,k =

ajc,k−times︷ ︸︸ ︷
(1 +

ajc,k

Ω̃1,k

), ..., (1 +
ajc,k

Ω̃1,k

), · · ·

· · · ,

ajc,k−times︷ ︸︸ ︷
(1 +

ajc,k

Ω̃Nc,k

), ..., (1 +
ajc,k

Ω̃Nc,k

), (35)

Ψ
(2)
n,k =

ajc,k−times︷ ︸︸ ︷
(
ajc,k

Ω̃1,k

), ..., (
ajc,k

Ω̃1,k

), · · · ,

ajc,k−times︷ ︸︸ ︷
(
ajc,k

Ω̃Nc,k

), ..., (
ajc,k

Ω̃Nc,k

),(36)

On the other hand, the improbability of the system outage will
happen if all users can decode their signal, and the procedure
of SIC is properly performed. Therefore, it is given by

P c
out =

K∏
k=1

P k
suc =

K∏
k=1

(1− Fhk
(h0)) , (37)

where P c
out is the complement of Pout. Therefore, the close

form of outage probability for the proposed system is obtained
as:

Pout = 1−
K∏

k=1

(1− Fhk
(h0)) . (38)

VI. NUMERICAL RESULTS AND SIMULATIONS

In this section, numerical results are provided to assess the
suggested UR selection and power allocation approaches under
different parameters of the system. The results for EE, SE,
their trade-off, the convergence speed of the used algorithms
and OP are provided. The Monte-Carlo simulation runs is 105.
The main simulation parameters are given in Table III [33],
[44] - [45].
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TABLE III
SIMULATION PARAMETERS

Parameter Value
Satellite transmission power (Ps) 80 W
UR transmission power 3 W
Number of URs (J) 10
Number of CoMP relays (Nc) 3
Number of UEs (K) 2
Noise power -174 dBm/Hz
Path-loss component 4
Minimum SE of the weak UE 3 bit/sec/Hz
Minimum SE of the strong UE 5 bit/sec/Hz

A. Energy Efficiency Performance

Fig. 2 depicts the EE versus UAV relay height that shows
the decreasing behavior of EE with increasing UR height
due to the path loss. Fig. 2(a), compares the EE of the
sub-optimal relay selection presented in Algorithm 1 with
the optimal case. The transmission powers are obtained by
the optimal method. As we can see, the sub-optimal curve
has a slight difference from the optimal one, about three
percent. Besides, as mentioned before, the sub-optimal relay
selection decreases the complexity. Hence, it is preferred for
the following simulations. In Fig. 2(b), the EE performance
of the LMO, TLBO and optimal power allocation methods
is investigated. As illustrated in the magnified area, there is
a negligible gap among the curves of the two sub-optimal
methods including LMO and TLBO compared to the optimal
one. The difference is smaller in the TLBO method.

Fig. 3 shows the EE performance of the proposed TLBO
algorithm in different situations, i.e., UR height, power budget
per UR and the number of UR. Fig. 3(a) shows the EE per UE
with variant CoMP orders in different UR heights. In general,
the EE curve is decreasing with respect to the height of UR
due to path loss, the amount of the drop in the non-CoMP
transmission is more tangible than CoMPs. This means that,
the non-CoMP transmission is more sensitive to an increase
of the UR height. From (6), it is observable that an increase of
CoMP order leads to growth in the circuit power of the system,
pcir. Hence, the non-CoMP curve placed higher than CoMP
curve. Nevertheless, it will be shown in Fig. 7 that increment
of the CoMP order significantly reduces the outage probability.
Fig. 3(b) shows the comparison of EE performance with
different heights of UR for power budgets per UR. Note that
with the increase of transmitted power, the EE performance is
enhanced. This enhancement is more remarkable at the lower
height of the URs due to less path loss. The effect of both
URs height and the number of existing URs on the EE for the
3-CoMP scenario is shown in Fig. 3(c). It can be seen that
both increasing in the number of UAVs and decreasing in the
UR height have a positive effect on the EE, and vice versa.
As the number of URs increases, the selection of URs with
better channel conditions becomes more likely.
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Fig. 2. Energy efficiency versus height of UAV relays: (a) Optimal and sub-
optimal comparison of relay selection (b) EE of the TLBO and Lagrange
methods compared to the optimal case.

B. Spectral Efficiency Performance

In Fig. 4, the SE value in different CoMP orders are
compared versus UR height. Flying URs in the higher height
leads to more path loss, hence, degrading SINR. Since the
SE is mainly determined by UEs SINR, the SE is decreased
accordingly. Furthermore, with the growth of CoMP order, the
SE of UEs improves significantly, which is verified based on
(2).

C. Spectral and Energy Efficiency Trade-Off

In this part, the EE and SE trade-off for the HSURN is
analyzed. From Fig. 5, we can see that the EE is equal to
its optimal value until SE reaches to the threshold point, i.e.,
Rsum(p∗

ĵc,k
), after that, EE begins to decline. The reason is

that just for SE values below the SE threshold, the optimal EE
of the system can satisfy the minimum SE requirements. For
values higher than SE threshold, the system consumes more
power than p∗

ĵc,k
, causing the EE degradation. Comparing

CoMP transmission modes in Fig. 5(a) shows that the EE drops
significantly in larger SE values as the CoMP order grows,
i.e., CoMP scenario can preserve EE in optimal value for a
wider range of SE. In Fig. 5(b) EE for 3-CoMP transmission
scenario in different UR heights is shown. As illustrated, in
lower heights of UR due to the stronger link between UR and
UE, the EE curve drops for greater value of SE.
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Fig. 3. EE performance for variant situations. (a) EE versus UAV height. (b)
EE versus power budget per UR. (c) Comparison of the EE in UAV height
and number of UAVs.
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D. Convergence Analysis

In Fig. 6, the convergence speed for the EE optimization
problem through both TLBO and Lagrange algorithms is
shown. The results for different heights of URs are averaged.
Both algorithms converge after a few iterations, but the con-
vergence speed of the TLBO algorithm is more than LMO.
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Fig. 5. Trade-off between the EE and SE of UEs. (a). In different order of
CoMP. (b). In different UR height.

0 5 10 15 20

Iteration Number

0

0.5

1

1.5
A

v
e
ra

g
e
 E

E

TLBO

Lagrange

h=100m

h=500m

h=2000m

h=1000m

(a)

Fig. 6. Convergence speed of TLBO and LMO algorithms.

E. Outage Probability Performance

In Fig. 7, the effect of CoMP-NOMA transmission on out-
age probability is investigated. Since the CoMP transmission
improves diversity gain and raises the LoS link between URs
and UEs, it leads to a decrease in OP and more reliable
communication. In Fig. 7(a), outage probability versus dif-
ferent heights of URs is shown considering the transmitted
power as −3 dB. In a practical application, increasing the
URs height causes to degrade the OP because of path loss.
Fig. 7(b) demonstrates the decreasing of the system OP versus
the increasing of the transmitted power per UR for the height
of 500m in which the curves drop faster in the CoMP cases.

VII. CONCLUSION

In this paper, we considered the HSURN with JT-CoMP
among selected URs to serve terrestrial NOMA users. Our
goal was to maximize the EE of the suggested model via UR
selection and power allocation approaches. For this end, we
have proposed a sub-optimal relay selection scheme. Then,
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Fig. 7. Outage probability performance for variant CoMP order. (a) OP versus
UR height. (b). OP versus transmitted power.

to avoid the complexity of the non-convex EE problem, we
utilized the TLBO algorithm. We also derived an analytical
analysis for the outage probability of the system. Numerical
results verified the effectiveness of the proposed sub-optimal
relay selection and utilized power allocation algorithm. The
simulations also have verified that the utilized power alloca-
tion solution has performance closer to the optimal solution
compared to LMO. As well as, we have shown that the CoMP
scenario significantly improves the OP and SE.

APPENDIX A
CONCAVITY PROOF OF PROBLEM (12)

In the proposed approach, each UAV relay of the CoMP set
optimizes its transmission power by taking into account all
feasible solutions of the other CoMP-URs. Therefore, during
optimization of allocated power to users by URĵc

, the value of
{pjc,k}, jc ̸= ĵc have not effect on the behavior of the objective
function and can be ignored. According to these conditions,
we focus on the concavity of the following objective function:

{p∗
ĵc,k

} = argmax
{pĵc,k

}


K∑

k=1

(ck log2(
pĵc,kh̃ĵc,k

K∑
t=k+1

pĵc,th̃ĵc,k + 1

) + dk)

−q(
K∑

k=1

pĵc,k + pcir)

)
, (39)

As we can see, the last term −q(
K∑

k=1

pĵc,k + pcir) is a linear

function of pĵc,k, thus with the expanding of the rest terms,

we obtain
K∑

k=1

(ck log2(
pĵc,kh̃ĵc,k

K∑
t=k+1

pĵc,th̃ĵc,k + 1

) + dk

=

K∑
k=1

ck log2(pĵc,k) + ck log2(h̃ĵc,k) + dk

−ck log2(
K∑

t=k+1

pĵc,th̃ĵc,k + 1)), (40)

It is obvious that the ck log2(pĵc,k) is a concave function of
variable pĵc,k and the second term and third term are constant
values. Hence, It is sufficient to show that the last sentence
is concave. For concavity proving of this term, the following
function is defined:

f(z)
∆
= ck log2(

K∑
t=k+1

ezt h̃ĵc,k + 1), (41)

where z = ln(pĵc,k),∀k and z = [z1, ..., zK ]T . Therefore, the
Hessian matrix H with of f(z) respect to z is

H =
ck

ψ2 ln 2


ψω1 − ω2

1 −ω1ω2 · · · −ω1ωK

−ω2ω1 ψω2 − ω2
2 · · · −ω2ωK

...
...

. . .
...

−ωKω1 −ωKω2 · · · ψωK − ω2
K


=

ck
ψ2 ln 2

[ψ.diag(ω)− ωωT ]K×K , (42)

where ω = [ω1, ..., ωK ], ωt = pĵc,th̃ĵc,k and ψ =
K∑
t=1

ωt + 1.

It is noteworthy that 1st to the (k-1)-th elements of ω are zeros.
By assuming of an K × 1 arbitrary vector θ = [θ1, ..., θK ]T ,
we reach to:

θTHθ

=
ck

ψ2 ln 2

ψ K∑
t=1

θ2tωt −

(
K∑
t=1

θtωt

)2


>
ck

ψ2 ln 2

( K∑
t=1

ωt

)(
K∑
t=1

θ2tωt

)
−

(
K∑
t=1

θtωt

)2


=
ck

ψ2 ln 2

( K∑
t=1

(
√
ωt)

2

)(
K∑
t=1

(θt
√
ωt)

2

)
−

(
K∑
t=1

θtωt

)2


≥ 0 , (43)

where in the last inequality, an upper bound according to the
Cauchy-Schwartz inequality by applying a =

√
ω and b =

θT√ω are employed that holds (aTa)(bTb) ≥ (aTb)2. As
we can observe θTHθ ≥ 0 for any θ. Hence, the Hessian
matrix H is positive semi-definite. Thus, f(z) is a convex
function of z and −f(z) is concave. Therefore, the objection
function in (40) is concave with respect to z. On the other
hands, for specific q at each iteration, the object function and
constraints in (12) are concave. So, this equation is a concave
optimization problem.
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