
1. Introduction
Arctic soils contain large amounts of carbon (1,035 ± 150 Pg C (Hugelius et al., 2014)) and nitrogen (22–106 
Pg N (Strauss et al., 2022)) in the form of frozen organic matter (0–3 m), much of which was sequestered during 
the Pleistocene and early Holocene with radiocarbon ages ≥5,000 years before present (BP) (Miner et al., 2022). 
Rapid climate change and permafrost thaw (Box et al., 2019; Rantanen et al., 2022) renders this “legacy” carbon 
and nitrogen vulnerable to microbial decomposition, and its emission as carbon dioxide (CO2), methane, or 
nitrous oxide will further increase greenhouse gas concentrations in the atmosphere and accelerate climate 
change (Miner et al., 2022; Schuur et al., 2022; Voigt et al., 2020).

The net impact of climate change on the carbon balance of permafrost ecosystems and soils remains uncer-
tain and excluded from climate mitigation policy (Natali et al., 2022). Some of this uncertainty arises from the 
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increasing productivity of Arctic plants (Arndt et al., 2019), which will affect carbon and energy inputs to soils 
(Shur & Jorgenson, 2007). Climate change and permafrost thaw are expected to alleviate temperature, moisture, 
and nutrient (nitrogen) constraints on plant growth (Salmon et al., 2018; W. Xu et al., 2021). However, much of 
this uncertainty also stems from cold season processes (Fahnestock et al., 1999; Welker et al., 2000). Increasing 
soil temperatures in fall and winter allow soil microorganisms that decompose organic matter to remain active 
for longer (Pedron et al., 2022). Cold season CO2 emissions are beginning to offset plant CO2 uptake during the 
growing season and turn the Arctic into a source of carbon emissions (Natali et al., 2019; Pedron et al., 2022; 
Schiferl et al., 2022).

In the Arctic, winter conditions can persist for two-thirds of the year, and the effect of freezing air temperatures on 
vegetation and soils is mediated by the depth of the snowpack. Deeper snow, especially in fall, insulates soils from 
cold air temperatures (Lafrenière et al., 2013) and leads to a deepening of the seasonally freezing/thawing active 
layer (Pattison & Welker, 2014). Soil thaw occurs even though deeper snow extends the snow cover period and 
leads to cooler soil temperatures during the growing season (Hinkel & Hurd, 2006; M. D. Walker et al., 1999). 
Deeper snow also facilitates the mineralization of plant nutrients (such as nitrogen) (Leffler & Welker, 2013; 
Schimel et  al., 2004), changes the composition of vegetation communities (Christiansen et  al., 2018; Cooper 
et al., 2019; Wahren et al., 2005), and often stimulates gross primary productivity (GPP) (Leffler et al., 2016). 
Furthermore, deeper snow can trigger rapid and substantial losses of nitrogen (Salmon et  al.,  2018; W. Xu 
et al., 2021) and carbon from soils (Christiansen et al., 2018; Natali et al., 2011; Plaza et al., 2019; Semenchuk 
et al., 2019). The latter is particularly concerning because snow mass has been increasing across parts of the 
Arctic (Callaghan et al., 2011; Pulliainen et al., 2020; Stuefer et al., 2020).

Here, we report the impacts of deeper snow on the carbon and nitrogen balance of permafrost ecosystems and 
soils, capitalizing on a 25-yearlong International Tundra Experiment (ITEX) (Henry et al., 2022; M. D. Walker 
et al., 1999) snow addition experiment in a common tundra system in Northern Alaska (Jones et al., 1998). The 
unique duration of this experiment overcomes the challenge posed by large inter-annual weather variability when 
assessing climate manipulation effects in the Arctic (Lupascu et  al.,  2013,  2014) and has allowed a realistic 
cascade of interacting physical and ecological changes to accumulate that offer a unique window into one future 
Arctic scenario.

2. Materials and Methods
Field research took place at Toolik Field Station (68°38′N, 149°36′W, 760 m a.s.l.) in the northern foothills of 
the Brooks Range, Alaska, USA, where maximum winter snow depth ranges from 0.5 to 1 m (September through 
May). The vegetation type is moist acidic tussock tundra, a common form of Low Arctic tundra consisting of 
raised Eriophorum vaginatum L. tussocks and swales covered by dwarf shrubs (Betula spp., Salix spp., Rhodo-
dendron spp., and Vaccinium spp.), lichens, and mosses. To simulate forecasted increases in Arctic snow, a 2.8 
m-tall, 60 m-wide wooden snow fence was installed perpendicular to the prevailing wind direction in 1994 that 
accumulates a tapered snowdrift on its leeward (north) side (DeFranco et al., 2020). This study was conducted 
about 30 m from the fence (intermediate zone).

2.1. Bulk Soil Properties and Microbial CO2 Fluxes (Incubations)

To analyze the effects of deeper snow on bulk soil properties, we harvested soil cores between 2015 and 2019 
down to 164 cm depth below the surface (n = 25). Cores were collected with a powered auger (2015, n = 19) or 
a hole saw modified to be driven by cordless drill (2019, n = 6), and stored frozen. Cores were separated into 
horizons and further divided for bulk analyses or incubations. Bulk samples were oven dried at 60˚C, ground 
to powder, and analyzed for their elemental (carbon and nitrogen) and stable isotope (δ 13C and δ 15N) compo-
sition by EA-IRMS (Fisons NA-1500NC, DeltaPlus XL, Thermo, USA) along with processing blanks and 
standards. We report measurement uncertainties (1σ) of 0.1 and 0.2‰ for δ 13C and δ 15N respectively, based on 
long term secondary standard records. For  14C analysis, samples were first converted to graphite by sealed-tube 
zinc reduction, and then analyzed using accelerator mass spectrometry (NEC 0.5MV 1.5SDH-2 AMS) at UC 
Irvine's KCCAMS facility with a measurement uncertainty of <3‰ from processing standards and blanks (X. 
Xu et al., 2007).

To assess the rate and isotopic signature of microbial respiration, laboratory incubations of field-moist soils were 
performed in the dark at −20, 7, and 22°C. Samples were placed in 0.5–2 L glass mason jars with ports in the lids 
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and flushed with CO2-free air after a 24-hr period. We measured [CO2] at regular intervals using a LI-COR 820 
(LI-COR Biosciences, USA) and terminated incubations before 30% [CO2] was reached (17–49 days).

To calculate stocks at defined depths and to inform the ecosystem respiration (Reco) Δ 14C model with data span-
ning the top and bottom of each core segment (rather than just a mean segment depth), we aggregated bulk soil 
data into 1-cm increments spanning the surface of the top organic horizon (0 cm) to the bottom depth of the deep-
est +Snow core (88 cm). Core segments which overlap each depth step were averaged into that depth, creating a 
weighted average that includes multiple unique core segments.

2.2. Sources and Fluxes of CO2

Sources of soil CO2 were quantified with passive CO2 traps (Pedron et al., 2021). We installed 12 access wells 
(diffusive silicone inlets attached to steel wells, in each zone at 20, 50, and 80 cm depth below the surface (n = 4 
per depth and zone)) in June 2019. CO2 was collected continuously via diffusion over periods of 5–18 weeks 
on molecular sieve traps from June 2019 to April 2021 (n = 376 unique samples), and then thermally desorbed, 
purified, and analyzed for its  14C content at the KCCAMS facility.

We assessed the rate of soil CO2 fluxes using two different techniques. First, Reco was continuously monitored in 
swales (excluding shrubs; 5 min to 4 hr observation frequency) via forced diffusion chambers (n = 1 per zone, 
eosFD, eosense, USA) from July 2019 to June 2022. Weather-related power supply issues caused intermittent 
data loss in both the +Snow and Control probes such that only the Control has a complete year of data averaged 
by month (13/35 and 20/35 months measured, respectively; June and October were not captured in the +Snow).

Second, Reco and net ecosystem exchange (NEE) were measured at weekly intervals during the 2021 growing season 
at the plot level (including shrubs) during snow-free periods via a closed dynamic chamber technique (Leffler 
et al., 2016). A clear acrylic chamber (70 cm 2 by 70 cm height) containing four small fans and a quantum sensor 
(LI-COR 190) was sealed against the tundra with a 30 cm-wide flexible plastic skirt weighted with a heavy chain and 
attached to a CO2/CH4 sensor (LI-COR 7810). We measured the CO2 concentration in the chamber every second for 
2 min and calculated NEE using the FluxCalR package in R (Zhao, 2019). At each plot (n = 5 per zone) we measured 
NEE under five light levels (implemented with shade cloths), ventilating the chamber between light levels by tipping 
it upright for 30 s to allow the CO2 concentration to return to the ambient level. From these measurements, GPP was 
estimated by fitting rectangular hyperbola light response curves with the minpack.lm package (Elzhov et al., 2016) 
using the equation: NEE = Reco − (GPP × PAR)/(k + PAR) where NEE is the flux of CO2 measured in the cham-
ber, Reco is modeled ecosystem respiration, GPP is a fitted parameter indicating maximum assimilation rate of CO2 
measured in μmol m −2 s −1, PAR is the incident flux of photosynthetically active radiation measured in the chamber 
as μmol photons m −2 s −1, and the modeled parameter k is the PAR value at half GPP in μmol photons m −2 s −1.

3. Ancillary Data
To gauge the effect of deeper snow on soil temperature and volumetric water content, we installed soil tempera-
ture (105T-L, Campbell Scientific, USA) and moisture (EC5, Decagon, USA) sensors at equivalent depths to the 
passive trap inlet depths (at 20 and 50 cm below the surface, n = 3 per zone and at 80 cm n = 2 per zone). Site 
conditions have also been monitored by the Toolik Field Station Environmental Data Center for over 10 years 
with meteorological stations that measure air temperature, relative humidity, and wind direction and speed in 
each zone, and monthly snow depth surveys.

3.1. Thaw Depth

Our team intermittently measured thaw depth in the Control and +Snow zone between May and September 2015 
to 2020 by pushing a steel rod to the frost table. We also compiled data collected at the experimental site by the 
Boreal Ecology Cooperative Research Unit (1994–2002) and M. Ricketts (2012–2016, Pers. Com. 2018), and 
nearby within the 1 km-Toolik grid (U12A) by the Circumpolar Active Layer Monitoring network (1995–2020) 
(Figure S1 in Supporting Information S1).

3.2. Snow Depth

We use snow depth data collected on request by the Toolik Environmental Data Center team (Environmental Data 
Center Team, 2022), and for ITEX (1995–2001, 2002) (M. D. Walker, 2007a, 2007b).
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3.3. Vegetation Community Composition

Vegetation composition has been monitored intermittently using the 
point-frame technique since the snow fence installation. All previously avail-
able data (Leffler, 2015; M. Walker, 2007) and surveys conducted by us in 
2021 (n = 5 per zone) are shown in Figure S2 of Supporting Information S1. 
However, we excluded the 2021 data from our statistical analysis because 
some shrubs had been partially harvested from the +Snow zone for a differ-
ent project in 2016.

3.4. Statistical Analyses

To examine the effects of added snow on the vegetation communities, we 
used a 2-way ANOVA for each vegetation type (e.g., deciduous shrubs, 
graminoids) with year and snow (and their interaction) as fixed effects. To 
examine the effects of added snow on GPP, soil temperature, bulk soil prop-
erties, as well as passive trap Δ 14C values, we used Welch's Two Sample 
t-test.

To develop full growing season estimates of Reco and NEE from our 2021 
static chamber-based point estimates, we used an ensemble stack of machine 
learning-based regression models (LeDell et  al.,  2022). Features included 
in the models were our chamber environmental data (PAR, air temperature 
and relative humidity), NEE data from a local tussock tundra Ameriflux 
site collected at 30-min intervals (Euskirchen et al., 2022), and the contin-
uous meteorological record from Toolik Field Station collected at 1-min 
intervals (Environmental Data Center Team, 2022). The individual models 
were gradient-boosted regression (h2o.gbm), random-forest regression (h2o.
randomForest), general linear model (h2o.glm), and deep learning (h2o.
deeplearning). To avoid overfitting, our data were split into training and 
validation sets, and individual models were fit to a training set. Ensem-
ble stacks were then developed while allowing h2o to select the optimum 
metalearner algorithm. Confidence intervals were formed by bootstrapping 
the data set with replacement and repeating the fitting and ensemble stack 
process 1,000 times. NEE predictions from this approach fit observed values 

better when developed from separately modeled GPP and Reco rather than from a modeled NEE value, thus we 
used the sum of modeled GPP and Reco as our NEE estimate.

We used a multivariate adaptive regression spline (earth package (Milborrow,  2023)) model to evaluate the 
complete profile of Reco Δ 14C values, extrapolating between the shallowest inlet depth (20 cm) and the soil surface 
for each month of year. The model uses nonparametric regression with generalized cross-validation to deduce 
nonlinearities and interactions between multiple predictors, penalizing the number of terms while optimizing for 
goodness of fit. The model was driven by simple, easily measured predictor variables anticipated to be poten-
tial drivers of soil respiration source apportionment: snow depth, day-of-year, incubation Δ 14C, bulk soil Δ 14C, 
treatment (i.e., +Snow vs. Control), and depth from surface. To fully utilize the available, highly depth-resolved 
predictor data, the model was driven by linear interpolations between the individual inlet depths for incubation 
and bulk soil Δ 14C. Nonetheless, these were eliminated in favor of simpler predictors (in decreasing importance): 
treatment, snow depth, and depth from surface (Figure S3 in Supporting Information S1).

4. Results and Discussion
4.1. More Snow Transforms Tussock Tundra Into a Shrubland

Twenty-five years of deeper snow has transformed the tundra from a graminoid- to a deciduous shrub-dominated 
ecosystem, which coincides with increases in plant-available nitrogen, leaf-level photosynthesis, and active layer 
depth (ALD) (Figure 1). Between 1994 and 2021, deciduous shrubs have expanded in both zones, from 16% to 

Figure 1. Transformation of Arctic tundra under ambient climate (Control) 
and in response to long-term snow addition (+Snow). Fraction of soil 
organic carbon (ave. ±SE) as a function of depth below the soil surface, 
shaded by bulk soil age (radiocarbon content (Δ 14C)) and density. Legacy 
carbon has Δ 14C < −470‰ (radiocarbon ages >5,000 years before present), 
modern carbon has Δ 14C ≥ 0‰ (CO2 assimilated by photosynthesis from 
the atmosphere since 1950). Dashed horizontal lines indicate the interface 
of organic and mineral soil and solid lines with shading the depth of the 
seasonally thawed active layer (Aug. ave. ±SD, 1995–2022).
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20% cover under ambient snow and to more than 26% under deeper snow (Figure S2 in Supporting Informa-
tion S1) (Leffler et al., 2016; Leffler & Welker, 2013). This shift in vegetation raised the productivity of the 
tundra (GPP was 45% greater in +Snow in 2021, P < 0.05) and resulted in approximately 6%–13% greater carbon 
sequestration during the growing season (Figure 2a–2c), when NEE was −229 ± 4 g C m −2 in +Snow (weeks 
25–38) versus −203 ± 4 or −217 ± 4 g C m −2 in Control during weeks 25–38 or the total snow free period (weeks 
22–38), respectively.

Belowground, this vegetation shift was accompanied by a 20% increase in ALD (Figure 1, Table 1). Under deeper 
snow, soil temperatures (20–80 cm below the surface) were higher and remained near zero for longer during the 
winter (Figure 2d–2f; +Snow = −0.75 ± 0.55°C, Control = −8.6 ± 4.1°C, December through May (P = 0.01)). 
These findings align with other studies showing that cold season, not growing season, soil temperatures dominate 
the thermal regime of permafrost soils (Kropp et al., 2020; Way & Lapalme, 2021).

Figure 2. Soil properties of Arctic tundra under (left panels) ambient climate (Control), (center) after long-term snow addition (+Snow), and (right) expressed as 
treatment difference. (a–c) Monthly net ecosystem CO2 exchange (net ecosystem exchange (NEE), ave. with shrubs (2021) and without shrubs (derived from eosFD Reco 
for non-growing season, 2019–2021); positive values connote release to the atmosphere) and gross primary productivity (GPP, ecosystem-scale photosynthesis, with 
shrubs, 2021), and monthly winter ecosystem respiration (Reco, CO2 emissions from soil microbes and, or plants (with shrubs, 2021) and without shrubs (thicker black 
line, 2019–2021)) measured with closed dynamic or forced-diffusion chambers, and snow depth (gray bars, ave. ±SE, 1995–2022). Cumulative NEE is shown by the 
thick translucent red line. (d–f) Monthly soil temperature as a function of depth. (g–i) Monthly age of soil CO2 (Δ 14C) as a function of depth. Dots indicate when soil 
temperatures are near freezing (zero-curtain conditions). Squares indicate tile-probe of active layer depth (ave. ±SE, 1995–2022).
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Deeper snow quadrupled the amount of carbon and nitrogen in the active layer (Figure 1, Table 1). This increase 
is not just a consequence of active layer deepening due to the higher soil temperatures under +Snow but of soil 
compaction and subsidence. Organic horizons were four times denser with added snow (P < 0.01) and the age 
of the bulk soil (estimated from its  14C content) increased nearly 10-fold, from 200 to 2,000 years BP (Figure 1). 
From the differences in soil density and age, we conclude that the heavier snowpack, higher rates of decomposi-
tion and/or a loss of ground ice caused approximately 40 cm of soil loss (Table 1). More importantly, we find that 
deeper snow exposed ancient legacy nitrogen and carbon (with a mean Δ 14C of about −470‰ or ∼6,000 years 
BP) formerly preserved below the long-term average ALD (Table 1). This dramatic increase in the amount of 
available legacy carbon and nitrogen, which cannot be estimated from routinely monitored permafrost properties 
such as ALD, further highlights the significant risk of thermokarst (Hinkel & Hurd, 2006) and greenhouse gas 
emissions (Natali et al., 2011; Plaza et al., 2019; Rodenhizer et al., 2020; Turetsky et al., 2020; Voigt et al., 2020) 
associated with increasing snow mass.

The amounts of carbon and nitrogen found under deeper snow are larger than expected from active layer deep-
ening and compaction and, or subsidence (Table 1). Some of this difference can be explained by the large spatial 
variability of carbon pools in cryoturbated soils. However, we also see evidence for greater rates of carbon 
sequestration in the topsoil under deeper snow. A younger soil age at the organic-mineral interface (at 25–40 cm 
below the surface, Figure 1) indicates greater inputs of modern carbon (CO2 assimilated by photosynthesis since 
1950), presumably from the rhizosphere. This modern carbon input is consistent with our observations of greater 
GPP (Figure 2a–2c) and with earlier work that reported two to three times greater carbon accumulation rates in 
the topsoil (2.8 ± 0.2 to 4.6 ± 0.3 mg cm −2 yr −1, 0–15 cm depth) (DeFranco et al., 2020). In summary, more snow 
triggered soil thaw, compaction, and subsidence, which together with greater plant activity, greatly increased the 
amount of carbon and nitrogen in the active layer.

4.2. More Snow Accelerates Legacy Carbon Emissions From Permafrost

Our year-round CO2 efflux observations show that more snow resulted in three times greater carbon loss during 
the winter (October–May 2021), when Reco was about 267 g C m −2 in +Snow versus 87 g C m −2 in Control 
(Figure  2a–2c). Our cold season estimates are slightly higher than previous estimates for tussock tundra of 
20–70 g C m −2 (Sullivan et al., 2008). Our results also indicate that the deeper snow turned the tundra into a 
year-round carbon source (Figure 2a–2c).

Continuous monitoring of the age of soil CO2 (Pedron et al., 2021) reveals that the higher CO2 emissions under 
deeper snow during the cold season are fueled by newly exposed legacy carbon that is being actively decomposed 
year-round (Figure 2g–2i). At similar depths, pore space CO2 was significantly older (3.5 times lower Δ 14CO2 

Scenario Active layer depth Carbon Nitrogen

Snow level Soil processes

Average SD Average SE Average SE

cm kg C m −2 kg N m −2

+Snow Observed ALD a 59 11 5.0 1.7 0.27 0.08

Control (ambient climate b) Observed ALD a 50 12 1.3 0.2 0.06 0.01

Thaw c 59 NA 1.2 0.2 0.07 0.01

Compaction and Subsidence d 89 NA 1.9 NA 0.11 NA

Compaction and Subsidence and Thaw e 97 NA 2.1 NA 0.13 NA

Note. Twenty-five years of experimentally increased snowpack (+Snow) in Northern Alaska resulted in a quadrupling of the amount of total soil organic carbon and 
nitrogen available for microbial decomposition. Approximately half of the greater amounts in +Snow can be attributed to a combination of the thaw of the permafrost 
surface and the compaction and subsidence of the permafrost surface and overlying soil. NA, not applicable.
 aDepth of seasonal thaw of the surface soil (active layer depth (ALD) as measured from the soil surface to the permafrost table between 1995 and 2022).  bMaximum 
winter snow depth ranges from 0.5 to 1 m (September–May); amount of carbon or nitrogen in Control assuming.  cObserved Control-ALD is equal to observed +Snow-
ALD,  dBulk soil  14C in Control matches that of bulk soil  14C in +Snow, or  eBulk soil  14C in Control matches that in +Snow and ALD is 9 cm deeper (as observed in 
+Snow).

Table 1 
Soil Properties Under Ambient (Control) and Deeper Snow (+Snow)
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under +Snow (−350‰) than Control (−100‰), P < 0.001). While both treatments follow the expected seasonal 
trend toward younger CO2 during the growing season (Pedron et al., 2022), legacy carbon is a dominant fraction 
of the CO2 produced under deeper snow during the growing season. These data prove that legacy carbon is readily 
metabolized, possibly because more fresh seasonal carbon is also available (Keuper et al., 2020).

Most of the legacy carbon is emitted, however, during the fall and winter, when seasonal inputs of fresh carbon 
have ceased. Cold season emissions are amplified under deeper snow, where emissions of CO2 were larger 
(Figure  2a–2c) and much older (Figure  2g–2i). As such, our study provides further evidence that microbial 
decomposition of soil organic matter during fall and winter drives the losses of (legacy) carbon from permafrost 
soils (Natali et al., 2019; Pedron et al., 2022).

Previous research at this site documented the slow, but lengthy loss of CO2 during the winter and suggested that 
these systems may be net carbon emitters (Fahnestock et al., 1999; Sullivan et al., 2008; Welker et al., 2000). Yet, 
it is only with this study that we can attribute these cold season emissions to the decomposition of legacy carbon 
that, like the combustion of fossil fuels, are injecting ancient carbon into the modern atmosphere and contributing 
to climate change.

5. Conclusions
Twenty-five years of snow addition to Arctic tundra reveal that increases in snow mass associated with the 
ongoing wetting of the Arctic climate (Box et al., 2019) will significantly accelerate the thaw of permafrost with 
severe implications for Arctic ecosystems, communities, and global climate. Deeper snow liberates plant nutri-
ents (nitrogen) and promotes the expansion of deciduous shrubs (Sturm et al., 2005; W. Xu et al., 2021), which 
results in greater carbon uptake by the ecosystem during the growing season. Greater carbon sequestration in 
woody biomass and the topsoil, however, is accompanied by microbial decomposition of legacy carbon at depth 
year-round and converts the tundra into a year-round source of climate-warming legacy carbon. Our unique long-
term climate manipulation experiment in Northern Alaska demonstrates that we urgently need a comprehensive 
observation system to quantify legacy carbon emissions from permafrost and can no longer afford to ignore the 
Arctic in climate change projections and mitigation policy.
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