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Abstract: With the explosive growth of edge computing, huge amounts of data are being generated
in billions of edge devices. It is really difficult to balance detection efficiency and detection accuracy
at the same time for object detection on multiple edge devices. However, there are few studies to
investigate and improve the collaboration between cloud computing and edge computing considering
realistic challenges, such as limited computation capacities, network congestion and long latency. To
tackle these challenges, we propose a new multi-model license plate detection hybrid methodology
with the tradeoff between efficiency and accuracy to process the tasks of license plate detection at
the edge nodes and the cloud server. We also design a new probability-based offloading initialization
algorithm that not only obtains reasonable initial solutions but also facilitates the accuracy of license
plate detection. In addition, we introduce an adaptive offloading framework by gravitational genetic
searching algorithm (GGSA), which can comprehensively consider influential factors such as license
plate detection time, queuing time, energy consumption, image quality, and accuracy. GGSA is helpful
for Quality-of-Service (QoS) enhancement. Extensive experiments show that our proposed GGSA
offloading framework exhibits good performance in collaborative edge and cloud computing of license
plate detection compared with other methods. It demonstrate that when compared with traditional all
tasks are executed on the cloud server (AC), the offloading effect of GGSA can be improved by 50.31%.
Besides, the offloading framework has strong portability when making real-time offloading decisions.

Keywords: task offloading; edge computing; internet of things; resource allocation

1. Introduction

With the rapid development of deep learning [1], a large number of complex applications often rely
on high-end hardware, which is difficult for resource-constrained edge devices to handle. Although
the emergence of 5G technique can immigrate tasks from edge devices to central servers more quickly
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to mitigate this issue, problems such as network instability, transferring delay, and load imbalance
have become new challenges [2]. Compared with traditional centralized cloud computing, exploring
a collaborative edge and cloud computing by taking both efficiency and accuracy into account can
effectively reduce load imbalance and system latency.

For tens of thousands of surveillance cameras in smart cities, it is really tough to achieve real-time
license plate detection and recognition [3]. Currently, many license plate detection systems rely on
server-grade hardware with unlimited resources to solve it [4]. However, cost reduction and energy
conservation are of great importance in energy-constrained edge environments.

The development of edge computing has made task offloading gradually become popular [5]. In
general, there are two computation offloading models: binary offloading [6–10] and partial
offloading [11–15]. In the binary offloading model, the task can only be computed by an edge device
or a cloud server as a whole. Partial offloading splits a task into two parts and partially executes one
of them on an edge device or an cloud device. Selecting binary or partial offloading exactly rests with
the requirements of tasks. For powerful central servers, complex deep learning models are more
suitable to achieve high accuracy. Unfortunately, there still exists a challenge to balance the load and
effectiveness between edge computing and cloud computing. Moreover, due to the high cost of GPUs,
it is impossible to equip GPUs for all edge devices. Therefore, a single-model license plate detection
scheme is not efficient enough in the environment of edge computing.

For the purpose of effectively mitigating the conflict between energy consumption and execution
efficiency of different devices, we propose a brand-new multi-model license plate detection binary
offloading framework to cope with the problem. The multi-model license plate detection framework
takes full advantage of the fast detection speed of traditional machine learning model and the high
detection accuracy of deep learning model. It is conducive to deploy traditional machine learning
models on edge nodes with less resource consumption and low latency. Benefit from the deep learning
model deployed in the cloud server, the accuracy of license plate detection is guaranteed.

A new criterion of QoS is identified, including task execution time, network delay, task queuing
time, energy consumption, etc. In order to minimize the transmission time including task uploading
time and results downloading time, it is necessary to optimize the initial offload decision. Therefore,
the offloading scheme proposed in this paper introduces a novel task initial assignment scheme in
combination with the size, brightness and other characteristics of the image.

In addition, the offloading decision generated by our proposed GGSA can improve the overall
service quality. It can also reduce the time and energy consumption of license plate detection. In a
word, this paper proposes an adaptive offloading framework for license plate detection in
collaborative edge and cloud computing, which can locate the position of license plates in real-time
for tens of thousands of surveillance cameras in smart cities with minimal cost. The main
contributions of this paper can be summarized as follows:

• A new multi-model license plate detection scheme is applied to meet the requirements of real-
time and accuracy at the same time. It can effectively mitigate issues such as network instability,
transferring delay, and load imbalance.
• We propose a new probability-based offloading initialization assignment scheme, which can

achieve near-optimal offloading decisions with a smaller number of iterations.
• We design a novel GGSA to generate the most appropriate offloading decisions with a minimum

weighted sum of time and energy consumption.
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The rest of this paper is organized as follows: Section II provides a review of related work. We
present a multi-model license plate detection model in Section III. A new initial offloading
assignment scheme and an offloading scheme called GGSA are proposed in Section IV. Section V
shows parameter settings, data sets, and experiments in details. Conclusions and future work are
summarized in Section VI.

2. Related works

In recent years, computation offloading can improve computational capabilities and provide better
latency [16]. However, computation offloading problems are often considered as constrained
optimization problems, which are NP-hard [17]. Scholars have investigated a variety of architectures
and offloading policies to solve it. Saeik et al. [18] provided a detailed survey of how the Edge and
Cloud can be combined together to facilitate the task offloading problem.

On the one hand, deep learning methods have been proposed to deal with the offloading
problem [19]. In [20], Huang et al. [20] proposed a distributed deep learning-based offloading
(DDLO) algorithm for MEC networks. They adopted a shared replay memory to store newly
generated offloading decisions. And they also investigated a Deep Reinforcement learning-based
Online Offloading (DROO) framework in [21]. This framework can learn the binary offloading
decisions from the experience in the wireless powered mobile edge computing networks. An
autonomous computation offloading framework in [22] is proposed to address some challenges related
to time-intensive and resource-intensive applications. And Mao et al. [23] researched a
deep-learning-based offloading policy optimization strategy. Their policy considered the long
short-term memory model to address the dynamics of energy harvesting performance. Wu et al. [17]
proposed a distributed deep learning-driven task offloading (DDTO) algorithm. The hybrid offloading
model can effectively generate near-optimal offloading decisions in edge and cloud
computing environments.

On the other hand, heuristic optimization algorithms showed great advantages in many studies.
In [24], Kuang et al. [24] formalized an offloading decision problem in such environment with
multiple users, multiple offloading points, and structured tasks as a cost-minimization problem. And
they designed an improved genetic algorithm (GA) to solve the minimization problem under
constraints. Liao et al. [25] formulated a distributed offloading strategy based on a binary-coded GA.
Peng et al. [26] proposed three constrained multi-objective evolutionary algorithms (CMOEAs) for
solving IoT-enabled computation offloading problems in collaborative edge and cloud computing
networks. Xu et al. [27] researched non-dominated sorting genetic algorithm III (NSGA-III) to
address the multi-objective optimization problem in IoT. Bi et al. [28] formulated a genetic simulated
annealing-based particle (GSP) swarm optimization hybrid algorithm to produce a close-to-optimal
solution. Alfakih et al. [29] presented a dynamic task scheduling and load-balancing technique based
on an integrated accelerated particle swarm optimization (APSO) algorithm with dynamic
programming as a multi-objective.

In the past few decades, some weakly supervised learning and semi-supervised learning methods
show advantages in the field of object detection,such as [30–32]. License plate detection has been a
valuable topic in the field of object detection [33]. Many algorithms study license plate detection in
terms of both traditional machine learning and deep learning. Yuan et al. [33] located license plates
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by their shape and the aspect ratio of them. A novel technique to detect license plates regardless of
their color, size, and content was proposed in [34]. A deep end-to-end model to localize and recognize
Pakistani license plates with non-uniform and non-standardized sizes, fonts, and styles was
introduce in [35].

Many research efforts like [36–40] have been devoted to energy-efficient offloading in mobile cloud
computing. However, few studies have explored the offloading of multi-model object detection tasks
in collaborative edge and cloud computing. For real-time detection, the images generated by terminals
have to be processed locally or nearby to avoid the high latency and the performance bottleneck of
servers in a centralized data center. However, for countless terminal cameras in a city, equipping GPUs
to them is impractical and outweighs the gain. The motivation of this paper is to find the optimal
approximation cost of energy and delay of such problems.

3. System model and problem formulation

In this work, we consider one central cloud server and multiple edge devices in collaborative edge
and cloud computing. A large number of license plate detection tasks are captured by surveillance
cameras and transmitted to nearby edge devices. Then, the edge devices transmit the specific
information of each license plate detection task to the cloud server for offloading decisions, such as
the size of the data, and the brightness of each picture.

Figure 1 shows the framework of multi-model license plate detection in collaborative edge and
cloud computing. The cloud server collects the license plate detection picture information from the
edge device and uploads it to the server. Then, the cloud server generates the appropriate offloading
decision for edge devices and the cloud server through the offloading framework. Depending on the
offloading decision, different images will be processed on different devices.

Due to the limited computing power, we employ a traditional machine learning model to detect
license plates for edge devices. Firstly, we let the input image be transformed into an enhanced image
by Gaussian filtering and median filtering. Then, we extract the color and edge features from filtered
image and Sobel image. We form preliminary candidate images based on these features and
morphological approaches. And a binary edge image is generated by thresholding each pixel
adaptively in the fused image. Then, closed image is formed by reducing noise and removing small
background structures. Finally, the candidate license plate is selected by combining the aspect ratio of
the plate and the difference between the text and the background pixels. Therefore, the license plate
candidates are selected by the machine learning model.

In addition, an improved Retina license plate detection deep learning model was deployed on cloud
server. This model includes the feature pyramid network, the context head module, and the cascade
multi-task loss. The feature pyramid network outputs three feature maps at different scales based on the
input images. Then, the context head module obtains a feature map of a particular scale and calculates
the multi-task loss with cascade regression to locate license plates. The Retina license plate detection
model is an improved Chinese open source license plate detection model based on RetinaFace [41].

Edge devices are denoted by a set N = {1, 2, ..., n}. Each edge device has multiple independent
license plate detection tasks processed locally or offloaded to the cloud server. License plate detection
tasks are denoted by a set M = {1, 2, ...,m}. Each task has a corresponding offloading decision denoted
by On,m ∈ {0, 1}. On,m = 0 denotes that task m on edge device n is executed locally, whereas On,m = 1
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denotes that the task m on edge device n is offloaded to the cloud server for execution. Notations used
in this paper are described in Table 1. The detailed operations of edge computing and cloud computing
are illustrated as follows.
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Figure 1. Framework of multi-model license plate detection in collaborative edge and cloud
computing.
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Table 1. Notations used in this paper

Notation Definition

N The set of edge devices
M The set of tasks on a edge device

ds
n,m(B) The size of picture task m on edge device n.
db

n,m The brightness of picture task m on edge device n.
On,m The offloading decision of task m on edge device n.

Te(ms) The total time cost of task m on edge device n.
T e,p

n,m(ms) The execution time of task m on edge device n.
T e,q

n,m(ms) Queuing time on edge device n before processing the task m.
fm(hz) The CPU cycles per bit of data processed by machine learning models on edge devices.
fn(hz) The CPU cycles of edge devices.

tw
n,i(ms) The average waiting time of the edge device n before processing the task i .
Ee(J) The total energy cost of task m on edge device n.

Ee,p
n,m(J) The energy consumption of task m on edge device n.

Ee,q
n,m(J) Queuing energy consumption before processing the task m on edge device n.

Pp
n(W) The average power consumed by processing tasks of edge device n.

Pq
n(W) The average queue CPU power consumed on edge device n.

Tc(ms) The total time cost of cloud server.
T c,p

n,m(ms) The time of cloud server processes task m on edge device n.
T e,q

n,m(ms) Queuing time before the cloud server processing the task m on edge device n.
fd(hz) The CPU cycles per bit of data processed by deep learning models on cloud server.
fc(hz) The CPU cycles of cloud server.

tw
n,o(ms) The average waiting time of cloud server before processing the task o on edge device n.

Rn,m(%) The transmission rate of task m on edge device n.
Pn(W) Signal power of edge device n.
Hn,c The channel gains of edge device n to cloud server.
θ2(dBm) The receiver noise power from edge device n to the cloud server.

Ec(J) The total energy cost of the cloud server.
Ec,p

n,m(J) The energy cost of the cloud server when executing task m .
Ec,q

n,m(J) Queuing energy consumed by cloud server before processing task m on edge device n.
Ec,q

n,m(J) Energy consumed during transmission for task m from edge device n to the cloud server.
Pc

n(W) The average power used by CPU processing tasks of cloud server.
Pq

c(W) The average queue CPU power used of the cloud server.
Pt

n,c(W) The average power during transmission from edge device n to cloud server.
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3.1. Edge computing

When the offloading decision is On,m = 0, which means task m is executed on edge device n locally.
We model the time cost of this task in Eqs (3.1)–(3.3).

Te = T e,p
n,m + T e,q

n,m (3.1)

T e,p
n,m =

ds
n,m · d

b
n,m · fm

fn
(3.2)

T e,q
n,m =

m−1∑
i=1

tw
n,i (3.3)

where T e,p
n,m is the execution time of task m on edge device n locally. fm is the CPU cycles per bit of

data processed by the local model. We note fn as CPU cycles of edge devices n. The execution time
of a picture is not only related to the size of the picture data ds

n,m but also affected by the brightness
distribution of the picture db

n,m. T e,q
n,m represents the time of the picture task m queuing on edge device n.

To calculate its queue time, we evaluate the wait time tw
n,i of tasks ahead on edge devices n.

After that, we calculate the total energy cost for task on edge device as:

Ee = Ee,p
n,m + Ee,q

n,m (3.4)

Ee,p
n,m = T e,p

n,m · P
p
n (3.5)

Ee,q
n,m = T e,q

n,m · P
q
n (3.6)

where, Ee,p
n,m is the energy consuming of task m on edge device n locally. Ee,q

n,m represents the energy cost
of the task m queuing on edge device n. Pp

n and Pq
n express the power used by CPU processing tasks

and the energy queued in unit time, respectively.

3.2. Cloud computing

The license plate detection task is assigned to the cloud server only when the offloading decision is
On,m = 1 . In this scenario, it is necessary to consider not only the cost of cloud server, but also the cost
of network transmission. Therefore, we denote the total time cost for edge device n offload task m to
the cloud server in Eq (3.7):

Tc = T c,p
n,m + T c,q

n,m + T t
n,m (3.7)

where, T c,p
n,m is the time cost of processing tasks m on the cloud server transmitted from the edge device

n. When multiple tasks are offloaded to the cloud server, the queuing cost of the subsequent tasks is
expressed by T c,q

n,m. Meanwhile, the network delay of transmission is denoted by T t
n,m.

T c,p
n,m =

ds
n,m · d

b
n,m · fd

fc
(3.8)

T c,q
n,m =

n∑
i=1

o−1∑
i=1

tw
n,o (3.9)
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Rn,m =
W
N
· log2

(
1 +

Pn · Hn,c

θ2

)
(3.10)

T t
n,m =

ds
n,m

Rn,m
(3.11)

where, fd is the CPU cycles per bit of data processed by the deep learning model. ds
n,m and db

n,m are the
data size and brightness distribution of picture task m, respectively. fc denotes CPU cycles of cloud
server. And T c,q

n,m represents the time of the m picture task during the queue on cloud server. tw
n,o is the

waiting time for tasks offloaded to the cloud server. In addition, we denote W as channel bandwidth,
Pn as signal power, Hn,c as the channel gains, and θ2 as the receiver noise power.

Additionally, we make an evaluation model for the total energy cost on cloud server. It consists of
three parts, which are the energy used by the cloud server to process the task Ec,p

n,m, the energy consumed
during task queuing Ec,q

n,m , and the energy consumed by the transmission task Et
n,m. Pp

c represents the
power used per unit time on cloud server. We denote Pq

c and Pt
n,c as the power used per unit time of

queue and transmission, respectively. The formulas are shown in Eqs (3.12)–(3.15).

Ec = Ec,p
n,m + Ec,q

n,m + Et
n,m (3.12)

Ec,p
n,m = ds

n,m · P
p
c (3.13)

Ec,q
n,m = T c,q

n,m · P
q
c (3.14)

Et
n,m = T t

n,m · P
t
n,c (3.15)

3.3. Problem formulation

The authors explore the criterion of QoS Q for the collaborative edge computing and cloud
computing, which is comprehensive consideration of energy consumption and task efficiency [20]. An
mixed-integer optimization problem is formulated to minimize Q in Eq (3.16).

OP : min Q =
N∑

n=1

(
M∑

m=1

(αEe + βEc) +max{Te,Tc}) (3.16)

where, α = 1 − On,m, β = On,m. In collaborative edge and cloud computing environment, the energy
consumption of edge devices and cloud servers is cumulative. Since different devices can perform
tasks simultaneously, the time cost is only considered the maximum one.

4. Offloading algorithm

Since OP in Eq (3.16) is a NP-hard problem, it is indeed necessary to solve it with an approximation
algorithm efficiently in tolerable time. The proposed heuristic algorithm can respond quickly and find
the approximate optimal solution in limited iterations.
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4.1. Probability-based offloading initialization algorithm

A large amount of heuristics initial solutions are usually generated randomly within the permitted
ranges [42]. However, it takes a great deal of time to search the approximate optimal solution.
Therefore, it is really essential to generate suitable initial solutions to provide better convergence
efficiency. Here, we propose a probability-based offloading initialization algorithm to conquer it.

The pseudo-code of our algorithm is presented in Algorithm 1 (Table 2). We denote the set of edge
devices as N, the set of tasks on an edge device as M, the brightness of picture task m on edge device n
as dn,m. Firstly, the process of data probability initialization is shown from line 1 to 6. We normalize all
the brightness of pictures on different edge devices in line 3. And according to the normalization of the
brightness of picture, the picture’s normal distribution dataprobability is calculated in line 4. The result
of the normal distribution dataprobability is the basis for the offloading probability of a picture. Secondly,
line 7 to 14 is the process of offloading decision making. Line 7 is to generate an array of initialization
all-zero offloading decisions. And the number of tasks that can be offloaded by each edge device relies
on the number of edge devices N and the number of tasks M in line 8. At last, we choose the task
with the highest probability in dataprobability to offload in line 10 to 11. Line 12 is to free the assigned
offloading task from dataprobability.

Table 2. Probability-based offloading initialization algorithm pseudo-codes.

Algorithm 1: Probability-based offloading initialization algorithm
Input:

the set of edge devices N,
the set of tasks on a edge deviceM,
the brightness of edge device n task m picture dn,m

Output:
datao f f load

1: for n in range N do
2: for m in range M do
3: dn,m ← dn,m /

∑M
i=1 dn,m

4: dataprobability ←
1
√

2π
e
(
−

(dn,m)2

2

)
5: end for
6: end for
7: datao f f load ←

∑N
i=1

∑M
i=1 = 0

8: o f f loadcount ← ⌈
M
N ⌉

9: for i in range o f f loadcount do
10: o f f loadi

index ← dataindex max(dataprobability)
11: datao f f load ← o f f loadi

index = 1
12: pop(max(dataprobability))
13: end for
14: return datao f f load
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4.2. GGSA

To find the optimal approximate solution, the offloading decision generated by Algorithm 1 has
to iterate several times for obtaining a converged solution. Traditional heuristic algorithms are poor
efficient to handle this issue. Thus, we investigate a new GGSA in Algorithm 2 (Table 3), which shows
better performance.

Table 3. GGSA pseudo-codes.

Algorithm 2: GGSA
Input:

The offloading decision array o f f loadstates, a dictionary memory structure
memory = {q, o f f load}, initialization v,G,K, iter = 0, maximum number of iterations itermax

Output:
f inalo f f load, f inalq

1: while iter < itermax do
2: f itness← Eva(o f f loadstates, dataprobability, datasize)
3: if min( f itnessq) < memoryq then
4: memoryq ← min( f itnessq)
5: memoryo f f load ← datao f f load[ f itnessindex]
6: iter ← 0
7: else
8: Mass← calculateMass( f itness)
9: topK ← f indTopK( f itness,K)

10: G ← G ∗ exp(−20 ∗ iter/itermax)
11: acceleration← cal( f itnesses,Mass,G, topK)
12: for i in range(len( f itness)) do
13: indexv ← int((v + acceleration)%M)
14: indextopK ← randint(0, len(topK) − 1)
15: o f f loadnewstates ← o f f loadstates[i][: indexv] + o f f loadstates[indextopK][indexv :]
16: end for
17: iter ← iter + 1
18: end if
19: o f f loadstates ← o f f loadnewstates

20: end while
21: f inalo f f load ← memoryo f f load

22: f inalq ← memoryq

23: return f inalo f f load, f inalq

For the purpose of fast convergence, we simultaneously employ Algorithm 1 to generate X sets
of initial offloading decisions. Then, we store them into an array represented by o f f loadstates. And
a dictionary memory structure is used to store minimum offloading decisions with memoryo f f load and
corresponding quality of service with memoryq. The initialization velocity is denoted by v, and G is
the gravitational parameters. K is the top k best values. Furthermore, itermax is the number of iterations
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that memoryq does not change anymore, which is the threshold to terminate the iteration. The final
output is the optimal approximate solution, which includes final offloading decisions f inalo f f load and
final QoS f inalq.

GGSA consists of three parts. Line 1 to 7 is to update the minimum offloading decision as the first
part. Lines 8 to 11 as the second part is the process of gravitational search. And the third part is
lines 12 to 16, which is used for genetic search. In detail, Eva() is to evaluate the Q of the
o f f loadstates in line 2. If the Q of the offloading decision in f itness is less than that in memoryq, we
update memoryq and the corresponding offloading decision memoryo f f load in line 3 to 5. Then, we
calculate Mass, topK,G, acceleration in line 8 to 11. After that, we make the offloading decision in
the corresponding o f f loadstates[i][: indexv] according to indexv. We concatenate it with the selected
o f f loadstates[indextopK][indexv :] into a new offloading decision o f f loadnewstates in line 13 to 19. In
the end, the final optimal results are obtained by f inalo f f load and f inalq from memoryo f f load and
memoryq, when itermax is satisfied in line 21 to 22.

4.3. Theoretical analysis of adaptive offloading framework

The implementation of the adaptive offloading framework relies on the combination of
probability-based offloading initialization algorithm and GGSA. The quality of the initial offloading
decision can have an impact on the performance of the heuristic search algorithm. A good initial
offloading decision will be useful to speed up the heuristic search process. The probability-based
offloading initialization algorithm makes a preliminary decision on the offloading position of the
image based on the characteristics of the image, such as brightness, size, etc. Based on the above
offloading decision, the GGSA can perform the search for the approximate optimal solution faster.
Then, the final offloading decision of GGSA is sent back to each edge device and cloud server for
license plate detection.

Thus, an adaptive offloading framework for license plate detection in collaborative edge and cloud
is formed. The framework takes full advantage of the initial offloading decision and the heuristic search
algorithm to approach the optimal approximate solution.

5. Performance evaluation

In this section, we conduct numerical simulations to evaluate the performance of proposed
algorithm. We set the number of edge devices N = [3, 5, 7, 9] and the number of tasks on an edge
device M = [100, 300, 500, 700, 900]. We set the CPU rate of the edge device as 10 × 107 cycle/s. The
cloud server CPU rate is 100 times as much as the edge device. In addition, We assign W as 20
Mhz [43]. The channel gains Hnc are generated using a distance-dependent pathloss model given as
L[dB] = 140.7 + 36.7log10d[km] [44]. Pn is set to 20 dBm and the background noise θ2 is θ2 = −100
dBm [43] . itermax is 10, as the threshold for stopping the iteration. And in order to avoid random
chance of the experiment, each group of experiments is conducted ten times.

5.1. Datasets

The data size ds
n,m and brightness db

n,m of each license plate detection image are obtained from the
Chinese City Parking Dataset (CCPD) [45]. CCPD collects data from roadside parking in all the streets
of one provincial capital in China where residuals own millions of cars.
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5.2. Evaluation indicators

Q: Comprehensive consideration of energy consumption and task efficiency. Q value of different tasks
on different edge devices.

Performance improvement: The performance improvement of GGSA compared with other
algorithms of different tasks on different edge devices.

Average energy consumption: Average energy consumption of different tasks on different edge
devices.

Number of iterations: Number of iterations on different edge devices with different heuristic
algorithms.

Time of iterations: Time of iterations on different edge devices with different heuristic algorithms.

5.3. Algorithm comparison

We compare the performance of our proposed GGSA method with other offloading algorithms,
specifically, the Simulated Annealing (SA) algorithm [46] and the GA [47]. An improved particle
swarm optimization based algorithm (PSO) is also used for comparison [48]. And AE means that all
tasks are processed on edge devices locally, whereas AC means all tasks are executed on the
cloud server.

Figure 2 demonstrates the Q value of 100 tasks computed on different edge devices. And Table 4
is the performance improvement of GGSA compared with other algorithms for different edge devices.
In general, the Q value of GGSA is better than other algorithms. With the increase of the edge device
number, the Q value gap between GGSA and AC gradually increases. When the number of edge device
is 3, the Q value of GGSA is 46.19% of AC. Furthermore, GGSA is 32.79% of AC as the number of
device increases to 9. And the GGSA is 61.02% better on average than that of AC. The reason is that
the transmission delay and server load skyrocketing increase when all tasks are offloaded to the cloud
server. Besides, GGSA is 17.66% better than SA when edge device is 3. As the edge device number
increases to 9, GGSA is 21.34% better than SA. The Q value of GGSA is on average 19.54% better than
GA. In general, the Q values of the GA, SA, PSO algorithm are very close. The performance of GGSA
improved by 20.75 and 21.08% over SA and PSO, respectively. The reason is that they cannot further
improve the performance during the search process. In a word, the efficiency of GGSA is significantly
improved than other offloading algorithms. The average energy consumption of 100 tasks on different
edge devices is shown in Figure 3. The average energy consumption of GGSA is the lowest on different
edge devices. Due to the limited transmission rate of edge devices, the average energy consumption
of AC is the highest among these algorithms. In detail, the average energy consumption of GGSA
is 17.21% better than GA and 61.56% better than AC. The average energy consumption of AE, SA,
PSO are also higher than that of GGSA. GGSA improved by 37.65% over AE. Compared to SA and
PSO, GGSA improved by 19.30 and 17.40%, respectively.
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Figure 2. Q value of 100 tasks on different edge devices.

Table 4. The performance improvement of GGSA compared with other algorithms under
different edge devices.

Algorithms 3 5 7 9 Average improvement rate
SA 18.89% 20.27% 21.14% 22.68% 20.75%
GA 17.66% 19.31% 19.83% 21.34% 19.54%
AE 31.58% 34.68% 37.76% 40.49% 36.13%
AC 53.81% 59.29% 63.75% 67.21% 61.02%
PSO 18.73% 20.15% 21.91% 23.55% 21.08%

Figure 3. Average energy consumption of 100 tasks on different edge devices.
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We compare the number of iterations on different devices in Figure 4. Since the offloading decisions
of AE and AC are deterministic, they do not need to iterate to find the optimal offloading decision. The
average number of iterations of GGSA is 12.75, which performs best among these algorithms. The
number of iterations of SA is the most on different edge devices among these algorithms. The number
of iterations of GA decreases gradually with the number of devices, while the number of iterations of
PSO increases gradually. In general, the number of iterations of the other algorithms is higher than that
of GGSA. In addition, Figure 5 is the time of total iterations on different edge devices. The average
iteration time of GGSA is 25.37 ms. However, the average iteration time of SA is 3.36 times as much
as GGSA. While the average iteration of PSO is 1.94 times longer than that of GGSA. The average
iteration time of GA also takes 32.06 ms, which is 6.69 ms slower than GGSA. Fewer iterations and fast
convergence indicate the superiority of GGSA offloading framework, which means GGSA algorithm
is faster for searching the approximate optimal offloading solutions.

Figure 4. Number of iterations on different edge devices.

Figure 5. Time of iterations on different edge devices.

Figure 6 shows the Q value of different tasks on three edge devices. As we can see, GGSA always
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has the lowest Q value in these different algorithms. The Q of AE is higher than AC as the tasks on
edge devices. The reason is that the time for the edge device to process the task is better than cloud
server. So the task queue time on edge device increases. When the number of tasks on the edge device
is 900, GGSA is 61.41% better than AE. SA, GA, PSO have similar Q values for different tasks. The
performance of GGSA is better than that of them. From Table 5, Q of GGSA compared with SA
reduced by an average of 18.01%. And GGSA reduced by an average of 17.07% than GA. GGSA also
outperformed PSO by 17.34. Additionally, the performance of GGSA is significantly better than that
of AE and AC. GGSA is 48.76 and 50.31% better than AE and AC, respectively.

Figure 6. Q value of different tasks on three edge devices.

Table 5. The performance improvement of GGSA compared with other algorithms under
different tasks.

Algorithms 100 300 500 700 900 Average improvement rate
SA 18.89% 19.22% 17.22% 17.62% 17.06% 18.01%
GA 17.66% 18.11% 16.71% 16.74% 16.14% 17.07%
AE 31.58% 42.98% 50.83% 57.01% 61.41% 48.76%
AC 53.81% 51.80% 49.99% 48.72% 47.23% 50.31%
PSO 18.73% 18.34% 16.86% 16.72% 16.05% 17.34%

The average energy consumption of different tasks on three edge devices is illustrated in Figure 7.
Generally, the average energy consumption of GGSA is the lowest among these algorithms. Due
to the CPU processing power of edge devices are limited, the average energy consumption of AE
increases as the number of tasks increases. Moreover, the average energy consumption of GGSA
is 15.14 and 57.26% better than GA and AE, respectively. And the average energy consumption of
GGSA was also 16.88, 15.24 and 50.47% better than SA, PSO and AC, respectively.
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Figure 7. Average energy consumption of different tasks on three edge devices.

In Figure 8, it reveals the effect of different tasks on the number of iterations. It is obvious that
the average number of iterations for GGSA is less than that for GA and SA. The average number
of iteration of GGSA is 14.64. However, the average number of iterations of GA and SA are 17.48
and 31.36, respectively. And the average number of iterations of pso is 15.74. The time of iteration
also shows the same trend in Figure 9. The average time of iterations of GGSA is 75.59 ms. While
GGSA is 13 and 72% better than GA and SA, respectively. And GGSA is 36% better than PSO.

Figure 8. Number of iterations on three edge devices with different tasks.
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Figure 9. Time of iterations on three edge devices with different tasks.

The average accuracy of different algorithms is shown in Figure 10. AC has the highest license
plate detection accuracy of 97.53%. The reason is that all license plate images are detected with a deep
learning model on a powerful gpu. While the average detection rate of AE was only 76.69%. This
is mainly due to the low detection efficiency of traditional machine learning models on edge devices.
In addition, the average accuracy of license plate detection for SA, GA and PSO is 85.45, 86.61 and
85.84% respectively. However, the average license plate detection accuracy of GGSA is 96.02%.

Figure 10. Average accuracy of different algorithms.

It is easily come to the conclusion that GGSA can get close to the optimal solution in the least
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amount of time among these algorithms. GGSA offloading framework shows better performance in
collaborative edge and cloud computing compared with other methods. Extensive experiments have
shown that this adaptive framework for license plate detection in collaborative edge and cloud
computing not only ensures the speed of detection, but also the accuracy of detection.

6. Conclusions

This paper proposes an adaptive offloading framework for license plate detection in collaborative
edge and cloud computing. On the one hand, we propose a new multi-model license plate detection
scheme based on network delay, task queue number, task execution time, and energy consumption,
etc. On the other hand, we investigate a refreshing probability-based offloading initialization
algorithm to solve the problem of imbalanced initial offloading decisions. We also introduce a new
heuristic algorithm called GGSA to solve the contradiction between energy consumption and
execution efficiency. Simulation results demonstrated the priority of the proposed method in terms of
minimizing the weighted sum of energy consumption and time cost. This framework can be used in
collaborative edge and cloud computing to meet realistic challenges, such as limited computation
capacities, network congestion and long latency.

There are some rooms for improvement in our multi-model license plate detection scheme and
adaptive offloading framework. For example, better multi-models can be constructed to replace the
current ones. At present, the scope of application of this offloading framework is relatively narrow. In
the future, we will apply this framework to other object detection tasks in edge computing, such as
face detection. Furthermore, we will study more complex environments and more powerful offloading
algorithms in collaborative edge and cloud computing.
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