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ABSTRACT The concept of sensor clouds has been populated for utilizing data from massive amount of
IoT devices. In the sensor cloud, a large number of sensors and users are connected and sensor data are
traded among them. A number of market frameworks for such data ecosystems have been proposed so far,
most of which assumes multiple stakeholders and coordinates their interests using techniques such as the
traditional economic theory and game theory. However, because of the duplicability of IoT data, designing a
natural pricing scheme based directly on market principles, such as the balance between seller competition
and consumer demands, is still a challenge. In this paper, we propose a new pricing scheme for IoT stream
data, where prices are determined by the balance between seller competition and consumer demand. Unlike
conventional methods, our method is based on simulation. By simulating the market and sellers’ pricing
behaviors on the broker’s platform, fair pricing is achieved without causing undesirable phenomena such as
price wars. The evaluation results show that the proposed pricing method has desirable characteristics for an
IoT data market.

INDEX TERMS Data market, pricing, IoT, sensor stream.

I. INTRODUCTION
Sensors have become essential devices in the digital world.
The number of sensors has exceeded 30 billion in 2022, and
many useful IoT application services have appeared. In many
cases, however, sensors are usually owned by companies for
their own use, and not shared among multiple companies and
organizations. Recently, several studies proposed the concept
of Sensors as a Service (Se-aaS) or the sensor cloud, and the
effectiveness of sharing sensor data through a data eco-system
has been recognized [1], [2]. In such a sensor ecosystem, data
generated by sensors should be appropriately priced accord-
ing to some market mechanisms and sold to consumers in a
fair manner. To incorporate the nature of markets, data prices
should be updated dynamically depending on the quality
of data, the demand of buyers, and the competition among
sensor owners, etc.

The associate editor coordinating the review of this manuscript and
approving it for publication was Shaohua Wan.

One of themain difficulties in sensor data trading is that the
data is freely duplicable. Several studies have tried to apply
traditional economic theory [3], [4], [5]. However, since the
economic theory assumes limited stocks of commodities [6],
it is usually hard to be directly applied to the market of dupli-
cable data. In the studies of IoT ecosystems in the literature,
auctions are often used to make competition [7]. However,
since the auction system by nature aims at a competition
for limited resources, such proposals assume computational
power, network capacity, or residual batteries as limited
resources, and are not directly applicable to the market of
duplicable data. To design a natural sensor data market of
duplicable data, we need to consider a new principle of the
market to determine data prices according to the balance of
conflicting requirements of multiple stakeholders.

Unlike traditional economic theory, the demand and supply
curves cannot be defined for the markets of duplicable data,
and no alternative economic theory has been established for
such data markets. If we would like to build a natural data
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market, at least the balance between consumer demand and
competition among data providers should determine prices.
However, no study has proposed a mechanism to determine
the price of duplicable data under this balance. In this paper,
we design a basic pricing framework for the sensor data
market based on the idea that sensor data pricing requires a
balance between these two factors. Specifically, we assume
a scenario in which owners of stationary sensors sell data to
buyers through a data broker. As the nature of the data market,
we consider the following principles.

(a) Duplicable Data: Sensor owners sell data to buyers,
which are freely duplicable. Consequently, no compe-
tition among buyers exists.

(b) Demand: Data buyers make data purchase decisions
based solely on their own demand and do not consider
the seller’s circumstances.

(c) Competition: Sensor owners compete on price to sell
sensor data to buyers. They want to find prices for their
sensors that will maximize their total profit.

As stated in (b) above, the cost of preparing and maintain-
ing sensors by the owners should not be taken into account,
as it has no impact on buyers’ behavior.

In this paper, we assume a simple geographic scenario of
a sensor data market, where fixed sensors that are geograph-
ically distributed on a map continuously generate measure-
ment data (i.e., streams), which are then purchased by buyers
who wish to monitor specific areas on the map. To mediate
between these two stakeholders, a single broker is introduced
and is primarily responsible for matching sensor data with
buyer requirements. We do not adopt a game-based approach
for two reasons. First, non-cooperative price competition in
a game framework causes price wars, leading unreasonably
low prices. To avoid this, some criteria to raise prices are
needed, but due to the market nature of the duplicable data,
such criteria would be difficult to find. Second, in the geo-
graphic scenario, competition among sensor owners is highly
dependent on the location of both sensors and demands. Such
complex location-based competition is hard to address within
a game-theoretic framework.

Instead of using a game-based framework, our scheme uses
an simulation-based approach that simulates a free data mar-
ket with price competition while introducing partial coopera-
tion in a fair manner. The simulation-based approach allows
us to deal with geometric competition among sensor owners.
The contribution and the novelty of this paper are as follows.

1. We propose a new pricing scheme for a sensor stream
market that balances prices by considering both buyer
demand and seller price competition without causing
price wars.

2. We model the competition caused by the geographical
distribution of both sensors and demand, which is new
in the literature.

3. We introduce a new simulation-based approach that
fairly incorporates additional rules to achieve a more
realistic price dynamism based on market principles.

The organization of this paper is as follows. In Section II,
we describe related work. In Secction III, we present our
system model, and the proposed pricing method is presented
in Section IV. We evaluate the method in Section V. After
discussing related issues in Section VI, we finally conclude
the work in Section VII.

II. RELATED WORK
A number of market architectures and pricing approaches for
sensor data ecosystems have been proposed [3], [4], [5], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22]. One straightforward approach is based on
traditional economic theory, in which prices are determined
according to the balance of supply and demand functions.
In the duplicable data market, these two functions may cor-
respond to willing-to-sell (WTS) and willing-to-buy (WTB)
functions, respectively. Thus, Oh et al. proposed a pricing
method in which prices are determined based on the balance
of WTS and WTB functions [3]. This method calculates the
optimal price that maximizes the broker’s profit. However,
the WTS function is generally limited in its scope of applica-
tion, typically targeting personal data that the owner does not
want to sell at a lower price. It also does not take into account
competition among sellers.

Auctions are often used in pricing schemes for IoT
ecosystems. Chavali et al. proposed an ecosystem of tar-
get tracking services where data prices are determined by
two-sided auctions [8]. However, their system model is
not applicable to the market for duplicable data because
data is treated as a limited resource. Li et al. also
used the double-sided auction in edge-cloud-assisted IoT
services, which determines prices of limited computing
resources [9]. Baek et al. compare three auction-based pric-
ing methods in which end users compete for the offloading
computing resources of edge computers [10]. In general,
auction-based methods compete for limited resources and
are not applicable directly to the market of duplicable
data.

Another commonly used method in IoT ecosystems is the
Stackelberg game. Fan et al. proposed an edge offloading
ecosystem based on the Stackelberg game [11]. Wang et al.
proposed an edge-offloading ecosystem among three stake-
holders (cloud, edge, and end users) based on a double-layer
Stackelberg game. Chakraborty et al. proposed an ecosystem
based on the Stackelberg game as a sensor-cloud infrastruc-
ture where sensors, service providers, and end users compete
on price [12]. However, because they are all resource-based
problemmodels, they are not applicable to the duplicable data
market.

Several proposals assume that data is duplicable, which
are based on games among multiple stakeholders. A typ-
ical strategy is to determine prices based on the cost of
preparing the data. Al-fagih et al. proposed an ecosystem
for public IoT sensing over multi-hop sensor networks, with
data pricing based on cost and network performance [13].
Roy et al. addressed the concept of Safety-as-a-Service in
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vehicular networks, which provides mobile sensor-based
safety decisions as a service [14]. The service provider col-
lects sensor data from sensor/device owners in response to
the user’s request, makes the decision, and offers a price
to the users based on the cost of the data required for
the decision. Rajavel et al. proposed a trust-aware pricing
scheme based on Stackelberg game in mobile IoT sensor
clouds, where, for a user request, the service provider asks
for sensor participation in the Stackelberg game and the
cost of sensor participation is reflected in the price offered
to the user [15]. The end user then determines the time
of use of the service. Roy et al. also proposed a trust-
aware Stackelberg-game-based mobile sensor data pricing
method [16]. Although they introduce the concept of trust,
they basically determine the price based on the cost of col-
lecting data from sensor/device owners. Ding et al. proposed
two-stage Stackelberg-based IoT eco-systems considering
variations of interaction relationships among three stake-
holders, cloud service providers, IoT service providers, and
end customers [17]. Their models also determine the data
price based on the cost of service providers, and end users
decide the amount to buy. The cost-based pricing approaches
often account for the balance among multiple stakeholders
in a multi-level game framework. However, in a market for
duplicable data, sellers expect costs to be compensated by
the total sales price, rather than the sales in each transaction.
Therefore, considering cost as a lower bound on the selling
price of each small purchase is not well justified. Further-
more, in the cost-based approach, prices are not determined
by the balance between seller competition and consumer
demand.

The budget-based approach is an alternative found in the
literature. The buyer first determines a budget for the data
request, and the data broker collects the data within that
budget. Kim proposed a two-stage game model among three
stakeholders (sensors, data centers, and consumers), in which
consumers send a data request with an expecting price level,
and data centers and sensors work together to send data back
if the price level is acceptable in terms of the cost to prepare
the data [18]. Chuang et al. proposed a Trust-aware IoT data
ecosystem that incorporates a client-centric data value assess-
ment model [19]. A buyer first submits a budget, service
providers calculate quality as an estimate of service latency
if the cost is acceptable, and the buyer selects the best service
provider to purchase the data. In the budget-based approach,
the business transaction begins with the buyer’s data request
with a pre-determined budget, and the data sellers compete
for that budget. However, this does not result in a balanced
price, even if the buyer lowers the offered budget when
the requested data is not available at the initially submitted
budget.

To the best of our knowledge, no pricing method for dupli-
cable data has been proposed that finds the balanced price
based on natural market principles, which takes into account
seller competition and consumer demand.

III. SYSTEM MODEL
In our sensor cloud scenario, sensors owned by sensor owners
are geographically distributed over a certain area, and each
buyer wants to watch a part of the area. For simplicity,
we assume that each sensor is owned by a distinct owner.
Let S and B be a set of sensors and buyers, respectively. Let
W b be the set of point of interests (PoIs) of buyer b ∈ B to
be watched on. Both sensors s ∈ S and PoIs wbi ∈ W b are
distributed over the entire area. A sensor watches the circular
area with radiusD. Thus, if the distance between sensor s ∈ S
and PoI wbi ∈ W

b of buyer b ∈ B is smaller than or equal to
D, wbi is covered by s.
To sell sensor data, the sensor owner contracts with a

broker. In our framework, the sensor owner must trust the
broker and delegate the pricing of sensor data to the bro-
ker. Each sensor continuously takes measurements and sends
them to the broker’s platform. Each sensor s has its own
quality qs(> 0), which we assume is computable by the
broker when the data is collected to the broker’s platform by
using a quality estimation method such as [23]. Also, in the
broker’s platform, each sensor s has its own price ps, which
dynamically changes according to the sales performance.

Each buyer requests the broker to find the sensor data
set S ′ ∈ S that covers all the PoIs of the buyer, and the
quality of the sensors s ∈ S ′ are all larger than Tq(> 0),
where Tq is the requested quality of the buyer. We assume
that, in the broker’s platform, the quality and the price of all
sensors in S are managed. Thus, when a request comes from a
buyer, the broker calculates the optimal sensor set S ′, which
has the lowest price while satisfying the quality condition.
Specifically, S ′ satisfies the following: sensors s ∈ S ′ cover
all PoIs wbi ∈ Wb, every sensor s ∈ S ′ satisfy qs > Tq, and∑

s∈S ′ ps is the minimum.
In response to the broker’s offer, the buyer decides whether

or not to purchase.We assume that this decision ismade based
on the buyer’s demand for the data. In our model, we define a
willingness to buy (WTB) function that represents the pur-
chase probability of buyers based on the price and quality
of the data. Here, we also assume that the WTB function is
not known a priori by the broker platform. According to the
buyer’s decision, the platform adjusts the price of the sensor
s ∈ S ′. Buyers submit requests at regular intervals to watch
their PoI over time, and this series of data requests allows the
price to converge to a reasonable value.

Figure 1 illustrates the system model described above.
Sensors are distributed in the area. When a buyer requests
data for three POIs shown in the figure, the broker returns
two sensors covering all POIs (the blue ones), all of which are
above the requested threshold in quality, and the total price is
the minimum.

Table 1 shows the notations including those that will appear
later.

Our system dynamically updates prices according to the
purchase decision of buyers. To demonstrate the natural data
market for duplicable data, price updates must be made in a
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TABLE 1. Notation.

FIGURE 1. System model.

manner thatmimics sellers’ behavior tomaximize their profit.
Thus, our framework assumes that the buyers trust the broker
and delegate data pricing, and that the broker’s platform
dynamically operate prices by simulating buyers’ behaviors.
In order for sellers to trust brokers, brokers should allow
outsiders to verify their pricing trends. For example, by dis-
closing algorithms, price trends, the volume of demand, etc.,
it would be possible to verify that there is proper price com-
petition among sensors or demand-aware price dynamics.

Note that non-cooperative price competition among buyers
in a real market would result in a price war and prices would
certainly converge near zero. When this happens, the seller’s
profit will be fatally reduced and the market will be disrupted.
To avoid this inconvenience, we introduce two techniques in

the market simulation, which reduce excessive price com-
petition, maintain appropriate prices, and broadly distribute
profits among many sellers. Our simulation-based approach
allows for the introduction of those measures to maintain
the market in a favorable state, while maintaining fairness to
sellers, and allows the broker to gain the trust of sellers by
making these methods transparent to the public.

In our framework, prices are balanced due to seller com-
petition and buyer demand. By the nature of the market,
sellers search for the prices that maximize the total sales.
Note that seller competition work to lower prices, sellers’
profit maximization works in the opposite direction to raise
prices, and buyer demands work to both directions. As a
result, prices will be balanced within that trade-off. Since
buyer demands has a dependency on geographic location and
the quality of sensors, the balanced price of each sensor will
vary accordingly. If there are sensors that are located close
together and of similar quality, price competition is inevitable
and will result in a price war. By controlling this situation
in a reasonable manner, the prices will be converged to an
appropriate value, and the market will be stable and reliable.

By simulating this within the broker’s platform, each stake-
holder can receive their own benefit. That is, sellers can
maximize their total sales, and buyers can purchase data
within their expected price (according to the demand func-
tion). We do not take the benefit of brokers into account
while several game-based studies in the literature maximize
it. In actual business, however, brokers can earn income by
charging commissions on transactions. Our proposal aims to
create a favorable data market that allows as many stake-
holders as possible to participate. From this perspective, it is
desirable that the market makes a wide distribution of profits
among many sellers rather than the oligopoly of profits by
a few sellers, as is often the case in the digital markets.
Consequently, our market scheme should share sales among
many sellers while allowing a moderate level of competition
among sellers.

IV. PRICING MECHANISMS
A. OVERVIEW
Figure 2 shows the pricing mechanism in our method.
We repeat the price adjustment at regular intervals. When an
adjustment time comes, we first solve all optimization prob-
lems corresponding to all requests from buyers that arrived
during that interval. Based on the results of that calculation,
the broker offers the optimal data sets with their prices to
the buyers. Next, all buyers make their purchase decisions.
The broker then activates the market simulation process and
adjusts the price. By repeating this process, sensor prices are
dynamically updated to approach balanced values.

B. OPTIMAL SELECTION OF SENSORS
When the broker receives a buyer’s data request, the broker
computes the optimal data set for the buyer to purchase.
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FIGURE 2. Pricing mechanism.

We formulate the optimization problem as a mixed integer
and linear problem (MILP) and solve it.

Let xbs be the decision variable whether the broker select
sensor s ∈ S for the offer for buyer b ∈ B where xbs = 1 if
s is selected and xbs = 0 otherwise. Let cbis be the variable
where cbis = 1 if sensor s covers the i-th PoI wbi of buyer b,
and cbis = 0 otherwise. Then, the problem formulation for the
request from b ∈ B is shown as follows.

Minimize :
∑

s∈S,b∈B

psxbs (1)

Subject to :
∑
s∈S

cbisx
b
s ≥ 1

(for each i where wbi ∈ W
b) (2)

M (1− xbs )+ qsx
b
s ≥ Tb (for each s) (3)

Formula (1) represents minimization of the total purchase
price. Formula (2) is the constraint for PoI coverage, all of
which are satisfied only if all PoIs wbi are covered by the
selected sensors. Formula (3) is the constraint to guarantee
that all sensors has a quality higher than the requested quality
Tb of buyer b. By introducing a sufficiently large constantM ,
this formula is activated only for the sensors selected by the
broker, i.e., for sensors s ∈ S ′ where xbs = 1.

C. BUYER’s WILLING-TO-BUY (WTB) FUNCTION
We define the buyer’s WTB function that determines the
consumer’s probability of purchase decisions based on the
quality and price of sensors. We designed the demand func-
tion by enhancing the definition of [3]. The demand function
of [3] is defined as the probability of purchase decisions
with respect to the price p, and is supported by market data.
We have added the quality q of the sensor to the argument
of this function and decided to consider a satisfactory price
for the data of quality q. Specifically, we assume that there
exists a satisfactory price for quality q at which the buyer has
a 100% probability of purchasing. Then, the WTB function
is defined as follows,

f (p, q) = exp((p− τ (q))/Q), (4)

where Q is a constant that determines the curve of the func-
tion, and τ (q) is the satisfactory function for quality q that

FIGURE 3. Willing-to-buy function.

indicates the maximum price at which buyers has a 100%
probability of purchasing.

The WTB function is depicted in Fig. 3 where the hori-
zontal axis is the exceeded price from the satisfactory price,
i.e., p− τ (q) where p is the price, and the vertical axis is the
probability of purchase. The curve is identical to that of [3],
with the only difference being that the horizontal axis has
been replaced from price p to p− τ (q). In this function, when
the price exceeds τ (q), the purchase probability gradually
decreases according to the value of Q. By making τ (·) a
monotonically increasing function, higher quality leads to
higher prices. In this study, we define the WTB function as
a linear function τ (q) = 50 + uq where u is the coefficient
representing the value for unit quality.

The WTB function is used when a buyer receives an offer
for a data set and decides whether to purchase the data. Since
the offered data set contains measurements from multiple
sensors, the average price per sensor is first calculated. Then,
the probability of purchase is determined from that average
price and the buyer’s required quality using WTB function.

D. PRICE ADJUSTMENT STRATEGY
As mentioned earlier, the price of each sensor is determined
by the broker’s platform entrusted by the seller. Since the
seller trusts the broker in price determination, the broker is
required to make appropriate pricing decisions that try to
maximize the seller’s profit. To this end, the broker’s platform
makes pricing decisions by simulating sellers’ competition
within the platform according to a predetermined algorithm.
However, as is already mentioned, non-cooperative game
leads to severe price competition and prices converge near
zero. In our model, there is also a problem of following low-
quality demand, which causes prices to drop to unjustifiably
(for sellers) low levels that are not commensurate with the
quality of the sensors. The proposedmethod attempts to simu-
late free competition within the platform while incorporating
a mechanism to solve these problems.

The basic strategy for price adjustment is to find the
expected optimal price p̂s of each sensor s around the current
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FIGURE 4. Basic strategy of price adjustment.

price and update it so that it approaches p̂s. We first deter-
mine the initial price and repeat such an adjustment at regu-
lar time intervals, referring to the actual sales performance.
Since the platform cannot know the WTB function of buy-
ers, it searches for the expected optimal prices by randomly
fluctuating prices of sensors and observing the change in its
sales performance. Specifically, we define cps as the central
price of the sensor s, repeat selling at a randomly set price
according to the normal distribution N (cps, σ ), and adjust the
price using the past t sales results. We adjust the price by
finding the price p̂s as the highest total sales in the past t trials
and increasing cps by 1p if that price is greater than cps, and
conversely decreasing cps by 1p if p̂s is less than cps.

Figure 4 illustrates the basic strategy of our method. In this
example, we have tried six distinct prices, i.e., t = 6, and
observed the corresponding total sales. Because the sales was
the highest when the price was cps + 1, we increased cps
by 1p. If the highest price was less than cps, we decrease
cps by 1p. In the next round, a new price trial is added, the
oldest trial is omitted, and the same operation is carried out.
By repeating this operation, we expect to mimic the inter-
sensor competition where each sensor pursues higher sales,
and then the prices converge to the optimal price.

E. PROBLEM: PRICE WARS
The above basic strategy searches for the price that maxi-
mizes each seller’s sales. However, when there are competing
sensors (sensors that are installed in close proximity and of
similar price), price competition causes prices to converge
near zero because the sensor with the lower price than its
opponent gets most of the sales. To avoid this problem of
severe price competition, we introduce a method of seller
dynamic cooperation, in which sellers dynamically share
sales when price competition occurs.

Figure 5 shows the idea to avoid price competition. Assume
that sellers A and B are in a competitive relationship.
In Fig. 5(a) seller B’s sales are lower because the price of
seller A’s sensors is lower. In response to this situation,
seller B lowers its price and tries to take away A’s sales,
which in turn lowers A’s sales. Seller A then lowers its price
in the same way. This kind of competitive behavior occurs
when the basic strategy is used alone. In contrast, Fig. 5(b)
illustrates our solution to this problem. In our method, A does
not adjust its price based only on the amount of its own sales,

FIGURE 5. Price wars.

but based on the combined sales of A and its competing
sensor B. (B adjusts its price in the sameway.) In other words,
whichever sensor the buyer purchases, it will be accounted
for in the virtual sales of both A and B, and prices of A and B
are adjusted based on the virtual sales. As a result, instead of
initiating a price war, competing sensors would cooperatively
adjust their prices based on the buyers’ WTB functions and
share profits among themselves.

In terms of the market, it is desirable to increase the overall
market transaction value by setting appropriate prices based
on the cooperative relationship among competing sensors.
In our idea, competitive sensors dynamically cooperate with
each other, sharing sales from customers instead of competing
with each other. In our simulation-based approach, by imple-
menting this dynamic mechanism in the broker’s platform,
neither sensor can unfairly undervalue the other. It also
avoids cartels in which both parties unfairly cooperate to raise
prices.

F. PROBLEM: FOLLOWING LOWER PRICES
There is another essential problem with the basic strategy,
even if it incorporates measures to deal with the price wars.
Assume that there are two sensors X andY nearby and that the
quality of sensor X is substantially lower than that of sensor
Y. In this case, market prices are usually formed such that
sensor X is traded at a lower price than sensor Y. In reality,
however, the price of sensor Y will drop significantly, and
take away sales from sensor X. This is because, the sales of
Y will increase if it sells at a lower price to all A, B, C, and
D, rather than selling at a higher price to only C and D.

Figure 6 shows a concrete example, where the current
prices of sensors X and Y are 80 and 110, respectively. In this
case, if buyers A and B purchase sensor X at price 80 because
the quality of sensor X satisfies their requirements, and buy-
ers C and D purchase sensor Y at price 110 because they
need the quality of sensor Y, they can trade at the appropriate
price for the quality, respectively. In this way, it seems that
sensors X and Y can coexist without competition, supported
by different customers. In practice, however, sensor Y will
then move to lower its price and take away X’s customers,
A and B. From a market perspective, it is desirable that
X and Y have independent customers and trade at prices
commensurate with their quality, both in terms of total sales
and sales distribution in the market.

16218 VOLUME 11, 2023



T. Yoshihiro, S. Hosio: Simulation-Based IoT Stream Data Pricing Incorporating Seller Competition

FIGURE 6. Pursuing low-price demand problem.

Note that one might think that X and Y should be consid-
ered as sensors competing with each other (as mentioned in
the previous section), but this will be the matter of balance.
That is, if the qualities of those two are relatively close, they
should compete; if they are relatively far apart, it is better to
be independent. To consider both cases, we take measure for
the latter case, because this problem occurs even if the quality
of two sensors are not so close with each other. If two sensors
have close quality values and should be in competition, the
method in the next section applies.

Our approach to solve this problem of following low-
quality demand is to limit the set of potential buyers that each
sensor targets. Again, look at Figure 6. If sensor Y is not
priced intending to sell to all buyers A, B, C, and D, but only
to target C andD, then the price of Ywill not go down. Rather,
sales of sensor Y could be improved by selling at a higher
price to C and D. By narrowing down the target consumers
so that each sensor maximizes its own profit, it is possible
to set prices that optimize the sales of each sensor while
maintaining the principle of competition among sensors.

G. SOLUTION: PRICE WARS
We define competing sensors, which are used to avoid price
wars. Note that, in the proposed model, there are two com-
peting dimensions: location and price. A location conflict is a
situationwhere two ormore sensors are located close together
and can cover common PoIs of buyers. A price conflict is a
situation where two ormore sensors are sold at approximately
the same price. When both location and price conflict occur,
those competing sensors enter into a cooperative relationship
and avoid competition by combining their sales and sharing
profits.

First, we define a location conflict. Two sensors s1 and s2 in
a location conflict relationship are defined by the existence
of a common PoI that both sensors can cover. In other words,
when a PoIw exists and both sensors s1 and s2 coverw, s1 and
s2 are in a location conflict relationship. Therefore, loca-
tion conflict is represented by a binary value of 1 (conflict)
and 0 (non-conflict). Based on this definition, the number
of sensors in the location conflict relationship for sensor s
is expressed as Ls.
Next, we define price conflict. Price conflict is defined as

the degree of competition in range [0,1], considering that a
closer selling price of two sensors s1 and s2 is associated with
a higher degree of competition. The degree of competition
is defined using Sigmoid function to set the boundary of the

FIGURE 7. Price conflict function.

competing pricemargin, as well as to achieve smooth changes
in the degree of competition. For the prices p1 and p2 of
s1 and s2, respectively, the degree of price conflict is defined
as follows.

g(ps1 , ps2 ) =
1

1+ exp (−5(
T−|ps1−ps2 |

G ))
, (5)

where G is the gain value of Sigmoid function, which controls
the slope of the curve, and T is the threshold value at which
the value changes from 1 to 0. The curve of price conflict
function is illustrated in Fig. 7, where the horizontal axis show
the difference of two prices, i.e., |ps1 − ps2 |, and the virtical
axis shows the degree of conflict. Fig. 7(a) shows the case
where the value of G is varied, and (b) shows the case where
the value of T is varied.

As is mentioned in Sec. IV-E, we define the virtual sales
of each sensor to avoid price wars. Remember that buyers
decide whether or not to purchase sensor data in each round.
The virtual sales of a sensor s obtained from a purchase of
b ∈ B is the weighted sum of the sales of its own and those
of conflicting sensors computed in each round, defined as
follows.

Vbs = psxbs +
∑
s2∈Ls

ps2x
b
s2g(ps, ps2 ) (6)
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In each round of our simulation on the broker’s platform,
we select for each s the price with the highest virtual sales
Vs(=

∑
b∈B

Vbs ) from the history of past t rounds as the expected

optimal price p̂s. By adjusting the price so that it approaches
p̂s in each round, the sensor prices converge after a sufficient
number of rounds.

H. SOLUTION: FOLLOWING LOWER PRICES
We solve the problem of following lower prices by limiting
the targeted buyers of each sensor. The problem is that the
price of a high quality sensor s can be significantly reduced
when s tries to sell it to a buyer b who demands a lower
quality.We keep the price of sensors commensurate with their
quality by preventing sensor s from expecting such a buyer b
as a potential customer. Specifically, we introduce a cutoff
quality cqs, and let buyers b satisfying cqs ≤ Tb ≤ qs be the
potential customers of s, and only the sales from the potential
customers are accounted for in the virtual sales Vs of s. This
means that buyers with quality requirements less than cqs are
not considered in the price adjustment.

We compute the cutoff quality cqs as the optimal value
that achieves the highest expected sales. The expected sales
is approximately computed based on each PoI covered by
sensor s. The expected sales from each PoI wbi in a single
round is obtained as the expected payment for wbi by buyer
b divided by the number of competing sensors covering that
PoI. Specifically, let Sbi be the set of sensors covering w

b
i , and

the expected sales of sensor s obtained from wbi under cutoff
quality cqs is written as follows.

Es(wbi , cqs) =
eps
|Sbi |

, (7)

where eps is the expected price of sensor s if its quality were
the same as the cutoff quality cqs. Here, we assume that
the current price ps is appropriate and that quality and price
has a linear relationship. Accordingly, the expected price is
expressed as follows.

eps = ps − v(qs − cqs), (8)

where v is the constant representing value per unit quality.
From above, the expected sales of sensor s with cutoff

quality cqs is estimated as the sum of expected sales from
the PoIs that s covers, as shown in the following.

Es(cqs) =
∑
wbi ∈Ws

Es(wbi , cqs), (9)

where Ws is the set of PoIs covered by sensor s. The optimal
cutoff quality ˆcqs is calculated as follows,

ˆcqs = arg max
Tb,(b∈Bs)

Es(Tb). (10)

where Bs is the set of buyers b who have PoIs wbi covered by
s. Note that, without loss of generality, we can assume that
cqs takes one of the values Tb among all buyers b ∈ Bs.
In the previous section, we explained that the total sales

used in price adjustment is computed as the virtual sales

shown as formula (6). We must extend it by considering the
concept of the quality cutoff, where we compute the virtual
sales as

Vs =
∑
b∈Bcqs

Vbs , (11)

where Bcqs is the set of buyers that satisfies cqs ≤ Tb ≤ qs.

I. ALGORITHM DESCRIPTION OF OUR SYSTEM
Finally, we describe the algorithm of the simulation exe-
cuted in the broker’s platform. As is already mentioned, the
simulation repeat executing the process of a round. In each
round, the broker collect data requests of buyers, offers the
optimal data set to the buyers in return, and adjust the prices of
sensors according to the buyers’ purchase decisions. The for-
mal description of the algorithm for a single round is shown
in Algorithm 1. In the broker’s platform, this algorithm is
repeatedly executed to dynamically and continuously update
the prices of sensors.

In lines 1-4, the broker collects data requests, computes
the optimal solution, and obtains purchase decisions from
all buyers who submitted requests. After line 6, the broker
adjusts the price for each sensor s ∈ S. In line 7, the virtual
sales of s in that round is computed according to formula (11),
and find the optimal price p̂s using the virtual sales com-
puted in the past t rounds as shown in Sec.IV-H. Lines 9-13
are the price adjustment process described in Sec. IV-D.
In lines 14-19, the optimal cutoff ˆcqs is calculated and the
cutoff value cqs is adjusted by approaching it.
This process is repeated over and over again to pro-

vide a continuous stream of sensor data to buyers with the
converged optimal prices. On the other hand, by repeating

Algorithm 1 Pricing Algorithm for Each Round
1: collect data requests from buyers.
2: for all requests of buyers b ∈ B do
3: compute optimal sensor data set by solving the prob-

lem defined in Sec. IV-B.
4: obtain purchase decision from buyer b.
5: end for
6: for all s ∈ S do
7: compute virtual sales Vs according to formula (11).
8: find optimal price p̂s as shown in Sec. IV-D.
9: if ps < p̂s then

10: ps← ps +1p.
11: else if ps > p̂s then
12: ps← ps −1p.
13: end if
14: find optimal cutoff ˆcqs as shown in Sec. IV-H.
15: if cqs < ˆcqs then
16: cqs← cqs +1c.
17: else if cqs > ˆcqs then
18: cqs← cqs −1c.
19: end if
20: end for
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TABLE 2. Parameter values in evaluation.

micro-purchases of sensor data to continuously watch PoIs,
buyers contribute to price adjustment that reflects the demand
of buyers.

V. EVALUATION
A. METHODS
We evaluated the proposed method through simulation.
We implemented the proposed method with C language.
To solve the optimization problem that select the optimal
sensor set for each buyer’s request is solved by CPLEX [24].

We assume 1000 × 1000 m square area as a target area.
Sensors and PoIs are located randomly in the field. The
coverage distanceD is set as 300m. There are 200 sellers with
1 sensors each and 50 buyers, and each buyer has 20 PoIs.
Sensor qualities are randomly set following the normal dis-
tribution with average µs = 12.0 and standard deviation
σs = 2.0. Quality requirements of buyers are also randomly
set following the normal distribution µb = 10.0 and standard
deviation σb = 2.0. For simplicity, we assume that every
buyer submits a data request in every round to continuously
watch their PoIs. In WTB function, described as formula (4),
we set u = 5 in function τ (·). In Price conflict function shown
as formula (5), we set gain asG = 1 and threshold as T = 12.
We show all the parameter values in our simulation in Table 2.
We examined several criteria from the market point of

view, and evaluated whether the proposed method exhibits
desirable properties as an IoT data market. The desirable
properties for a digital market that we consider from the
viewpoint of three stakeholders are the following.

A. Sellers: Sensors are stable in price, allowing sensor own-
ers to earn an income that is less volatile.

B. Sellers: Sales are not concentrated in a few sellers, but
are distributed among many sellers.

C. Sellers: Sensor prices vary as a result of competition by
location and quality, but overall are proportional to their
quality.

D. Buyers: Buyer’s purchase rate, which represents the
degree of opportunity to purchase the requested data at
a satisfactory price, must be high enough to allow for
continuous monitoring of its PoIs.

E. Brokers: The total sales volume of the market should be
high in order to earn sufficient transaction fees.

We did not compare results with other conventional meth-
ods because there is no comparable method in the litera-
ture that prices IoT data based on demands in a geometric
scenarios.

B. MAIN RESULTS
After running 2000 rounds, simulation results were obtained.
Figure 8(a) shows the transition of the central prices cps for
all sensors.We see that the prices converge and become stable
after about 500th rounds. This means that the price is stable
after convergence, satisfying one of the required conditions
of the IoT stream market (A).

Figure 8(b) shows the scatterplots of sensor price and
quality. We see that there is a correlation between price and
quality. Note that the price depends primarily on the distri-
bution of demand, i.e., geographic conditions determined by
the buyer’s POI. We examined that there is a tendency that
the sensors with less competitors are sold in higher prices,
showing that prices are determined according to geographic
competition among sellers. Quality and competition deter-
mine price, which is one of the desirable characteristics of
the IoT stream market (C).

Figure 8(c) shows the rate of purchase decisions by buyers.
We see that more than 90% of the buyers’ decisions are
positive ones, i.e., they decided to purchase the offered data
in most cases. This indicates that the offer of the broker was
in most cases satisfactory for buyers w.r.t. the WTB function,
and only a small portion of negative decisions are enough to
keep prices in an appropriate level. This corresponds to the
desirable caracteristic (D).

Figure 8(d) shows the sum of sales of all sensors. Similar
to the price transition shown in Fig. 8(a), the total sales also
converge to a certain value. This stability of the sales is a
necessary characteristic of the IoT data market (A). From this
figure, it is not possible to confirm that characteristic (E) is
satisfied. However, we must remember that this is the result
of the seller’s greedy strategy to maximize total sales. Thus,
the converged sales are considered to be near optimal under
the constraints of the Willingness-to-buy function.

Figure 8(e) shows the distribution of sales among sellers in
the last 50 rounds of the simulation. About 10% of the sellers
exhibit high sales values, and their values are less than about
10 times the average of all sellers. Although a small number
of sellers exhibit high sales values, this does not appear to be
a very extreme concentration of sales. In addition, despite a
large number of sensors installed, most sensors have sales,
and sales are widely distributed among sellers. This corre-
sponds to a desirable characteristic (B).
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FIGURE 8. Main evaluation results.

C. INFLUENCE OF PARAMETERS
We varied several parameter values t , v, T , and G to examine
the impact of these parameters on the data market.

Fig.9 (a) and (b) show the results when t , the number of
past rounds considered in price adjustment, is varied. In (a),
we find that the average price of all sensors in the final
100 rounds is higher when t is higher. This is because higher
prices will result in higher sales if the data is sold to the same
set of buyers, and such high-sales records raise prices in a
longer duration as t increases. Fig.9(b) shows the conver-
gence speed for each value of t . Unexpectedly, convergence
speed is almost the same for any value of t . This means that
the adjustment process works well enough even for small t ,
and the sales estimation for each trial of prices is accurate
enough.

Fig.9 (c) and (d) show the results when v, the expected
value per quality in the cutoff calculation, is varied. In (c),
we see that the price increases as v increases, but sales volume
is the highest when v = 6. Note that we set the price per
quality to u = 5 in the simulation. This means that the sales
is good if the expected price per quality is approximately the
same as the value used in the Willing-to-buy function. In (d),
we see that as v increases, i.e., as the price decreases, the
average purchase rate of buyers decreases. In other words,
it shows that buyers are less likely to buy the product when
the expected price per quality is estimated to be larger than
the actual. These indicate that it is important to estimate the
price per quality and to set v correctly.
Fig.9 (e) and (f) show the results when the threshold T in

the price conflict function, denoted by formula (5), is varied.

In (e), the price increases as T increases, while the sales
remain flat when T is greater than 8. At the same time, in (f),
the purchase rate and its standard deviation worsen as T
increases. Since a larger purchase rate is preferable in the data
markets, this result indicates that there exists an optimal value
of T where both sales and purchase rate are favorable. Also
note that when T is large, sensors are more likely to cooperate
with each other. This result indicates that cooperation among
sensors does not increase sales above a threshold value.

Fig.9 (g) and (h) show the results where gain G of the
price conflict function is varied. In (g), we see that as G
increases, price and sales decrease, and in (h), we see that
as price decreases, the purchase rate increases. To balance the
purchase rate and sales, it is desirable to keepG at a moderate
value.

VI. DISCUSSION
In this section, we discuss about a few issues in face of real
operation of our system.

Brokers’ potential profits matter as well. In a real-world
implementation of our model, brokers can profit by earn-
ing commissions on purchase transactions. There are also
several studies based on games such as [18] and [19] that
enable brokers to pursue optimal benefits by adjusting prices,
or consider competition among multiple brokers. However,
as mentioned in Section II, their methods do not determine
prices based on the natural balance of market principles,
i.e., the balance of demands and competitions between buy-
ers. We believe that pricing based on market principles has
a higher priority. We propose as future work to design a
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FIGURE 9. Effects of parameter values.

framework in which broker’s profit optimization or competi-
tion among brokers is incorporated under the natural balance
of the data market principles.

Similarly, we can potentially extend this work to afford
more than three stakeholders, as is considered in many related
studies [13], [14], [15], [16], [17], [18], [19]. As one of the
possible extensions, we may regard the buyer as a service
provider, and consider subscriptions of consumers to support
the service. Because these long-term subscriptions potentially
create continuous demand, the micro-purchases addressed
by this framework will occur more constantly, allowing us
to see how the framework responds to long-term demand
fluctuations. Relatedly, note that prices may not be stable
when demand is low. Since the amount of demand varies
depending on the location where the sensors are installed,
it is possible that demand is particularly low in a certain
location. Price movement in such cases is not considered in
this study and is one of the issues to be addressed in the
future.

The economic activities of each stakeholder can also be
discussed. Typically, sellers want to promote their products
to improve sales. However, in this framework, the broker
controls price and sales based on data quality and demand.
Thus, the seller would promote by improving quality, chang-
ing the location of the sensor to a more demanding loca-
tion, or stimulating demand to measure that location. Buyers,
on the other hand, can manipulate prices solely by purchasing
goods. To lower the price, they can simply reduce the time
interval or frequency of data purchases. In exchange, the
amount of data they get is reduced and their utility is reduced.
Buyers should decide their actions based on this balance.

Another consideration is the robustness of the proposed
system to the buyer’s diverse andmalicious behaviours. In the
real world, buyers may not act according to the willing-
to-buy function defined in this paper. They may act in a
deliberately cunning manner to lower the price. They may
also use algorithms to lower prices or disrupt the system.
Since our system determines the price purely based on the
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seller’s sales, and the frequency of their decisions not to buy
does not affect the price, it is not easy for them to take cunning
actions. However, verification for practical use is also a future
task.

Similarly, there is room to consider seller and broker fraud.
Sellers may send false data to brokers. In many cases, brokers
will be able to detect fraud through data quality estimation,
but there may be cases where multiple sellers work together
to commit fraud, so countermeasures may be necessary. The
broker may favor some sellers or buyers instead of following
a fair algorithm. As already mentioned, disclosure of the
algorithm and third-party verification of price, quality, and
other performance may deter this to some extent. However,
countermeasures against fraud may be necessary. These may
be in the realm of business and law, but there is potential for
technological contributions as well.

Finally, we point out that while there are similarities
between this framework and traditional economics, differ-
ences need to be recognized. For example, there are vari-
ations in the demand functions of economics, including
Sweezy’s [25]. These functions have some similarities to the
willing-to-buy functions used in this study, but the essential
difference is whether or not they take inventory into account.
For this reason, careful consideration should be given when
applying conventional demand functions as Willing-to-buy
functions. Another example is Baumol’s sales maximization
theory [26]. In this theory, it is considered that a firm gen-
erally tries to maximize sales, instead of profits. Our study
is similar in that it maximizes sales, but differs in that our
study grounds its reasoning on the inability to estimate the
cost of production of data goods. For this reason, Baumol’s
argument should also be considered carefully when applied
to this study.

VII. CONCLUSION
We proposed a new simulation-based market architecture and
a pricingmethod that determine the prices of IoT data streams
based directly on the market principles, i.e., on the balance
between seller competition and consumer demands. In this
scheme, many sellers and buyers participate on the broker’s
platform to trade data; the price of IoT data is determined
and continuously adjusted based on a pre-determined fair
algorithm that mimics market principles. With freely dupli-
cable data as a commodity, price competition through non-
cooperative games usually lead to unfavorable phenomena
such as price wars and following low-price demand. As a
countermeasure, techniques to avoid such undesirable phe-
nomena in a fair manner were incorporated into the market-
simulation algorithm. The evaluation results confirmed that
these techniques exhibit appropriate price convergence and
desirable characteristics for the IoT data market.

One of the future challenges is, as mentioned in Sec. VI,
to validate the behavior of buyers’ purchase decisions and
to improve the stability and robustness of the system against
unexpected behavior of buyers. In this study, it is assumed
that buyers behave rationally according to the WTB function,

but in reality they may behave differently. Confirming per-
formance under these unexpected conditions will help to
enhance the reliability of the system as a practical ecosystem.
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