
1

Deterministic Latency/Jitter-aware Service Function
Chaining over Beyond 5G Edge Fabric

Hao Yu, Tarik Taleb, Senior Member, IEEE, and Jiawei Zhang

Abstract—Deterministic network (DetNet) recently attracts
much attention which aims at studying the deterministic bounded
latency and low latency variation for time-sensitive applications
(e.g., industrial automation). To improve the quality of service
(QoS) guarantee and make the network management efficient,
it is desirable for Internet Service Provider (ISP) to obtain an
optimal service function chain (SFC) provision strategy while
providing deterministic service performance for the time-sensitive
applications. In this paper, we will study the deterministic SFC
lifetime management problem in beyond 5G edge fabric with the
objective of maximizing the overall profits and ensuring the de-
terministic latency and jitter of SFC requests. We first formulate
this problem as a mathematical model with the maximal profits
for ISP. Then, the novel Deterministic SFC Deployment algorithm
(Det-SFCD) and SFC Adjustment algorithm (Det-SFCA) due to
traffic load variation have been proposed to efficiently solve
the SFC lifetime management problem. Extensive simulation
results show that our proposed algorithms can achieve the higher
performance in terms of SFC request acceptance rates, overall
profits and latency variation compared with the benchmark
algorithm.

Index Terms—Deterministic Network (DetNet), Network Func-
tion Virtualization (NFV), Service Function Chain (SFC), Beyond
5G Edge Fabric

I. INTRODUCTION

The emerging applications, e.g., video transporting fed from
cameras that is used to control robots in the Industrial IoT
(IIoT) [1], autonomous automotive vehicles [2], foster the
development of 5G and beyond 5G. Both high data rates
and low latency requirements should be ensured by using
a dedicated mechanism in the 5G and beyond 5G network
environments. Especially, the real-time communication within
few milliseconds issued by industrial applications [3] requires
the networks to provide deterministic end-to-end connectivity
to users. To this end, IETF Deterministic Networking (DetNet)
WG [4] [5] defines an architecture focusing on layer 3 routed
segments to provide a deterministic data path which aims at
supporting deterministic worst-case bounds on latency, packet
delay variation (jitter), and extremely low/zero packet loss. In
this paper, we extend this concept into softwarized network
service management field to study the deterministic network
service provisioning mechanism.

Hao Yu is with the Center for Wireless Communications, Oulu University,
Oulu 90570, Finland. E-mail: hao.yu@oulu.fi. (Corresponding Author)

Tarik Taleb is with the Center for Wireless Communications, Oulu Uni-
versity, Oulu 90570, Finland, and also with the Department of Computer and
Information Security, Sejong University, Seoul 05006, South Korea. E-mail:
tarik.taleb@oulu.fi.

Jiawei Zhang is with the State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of Posts and Telecommuni-
cations, 100876, China E-mail: zjw@bupt.edu.cn.

With the advent of network function virtualization (NFV)
and software-defined networking (SDN) technologies, Internet
service providers (ISPs) can deploy their network services
flexibly and efficiently. Upon receiving user requests, ISP has
to configure the required virtual network functions (VNFs)
into suitable physical servers and steer the traffic to traverse
the VNFs concatenated in a specified order to comply with
performance policy, which is defined as service function chain
(SFC) [6] [7]. Optimal SFC embedding onto physical networks
has drawn much attention in the past, most of the existing
work in the literature focused on maximizing network through-
put/resource efficiency regarding the latency requirements.
Whereas maximizing network resource efficiency while keep-
ing the service latency and latency variation (jitter) within a de-
terministic bound has received less attention. As shown in Fig.
1, in traditional networks, the end-to-end latency/jitter curves
have a wide probability distribution with a long tail. Whereas,
the expected result of this research is to realize bounded
end-to-end latency and delay variation with no long tails in
an end-to-end converged network supporting for deterministic
services. It is also desirable to increase the profits of ISPs
by optimizing the resource allocation and placement of VNF
instances while ensuring deterministic latency performance.
Moreover, due to highly dynamic nature of traffic load which
will result in the variation of network load, it is a challenge
to embed SFC requests with deterministic latency bounds and
lower jitter during the SFC lifetime.

As shown in the Fig.2, edge nodes {V1, V2, ..., V7} are
equipped with a certain amount of processing resources and
switching ability. At cell sites (CSs) side, user devices generate
SFC requests over time. And the SFC requests are featured
with latency requirements, which are comprised of commu-
nication latency and VNF processing latency. Once a new
SFC request arrives, optimal path selection and processing
resource allocation should be performed in order to meet its
latency requirement. For example, SFC 2 is newly arrived
in the networks and its end-to-end latency requirement is
LE2E 6 15 ms. After considering the network load status
and distance between source and destination nodes, Path 2 is
selected with communication latency Lc = 2 ms. Then the
VNF processing budget is 13 ms and we need to determine
how to allocate appropriate processing resources to the VNF
instances of this SFC and to make sure that the processing
latency L1

p + L2
p + L3

p + L4
p ≤ 13 ms and the total cost for

VNF processing is minimized.
In this paper, given the SFC requests and finite physical

resources in 5G edge environments, we try to address the de-
terministic SFC lifetime management (Det-SFCLM) problem.

2

P
ro

b
a

b
il

it
y

End-to-End Latency

P
ro

b
a

b
il

it
y

Delay variation
La

te
n

cy

re
q

u
ir

em
en

t

Average
P

ro
b

a
b

il
it

y

End-to-End Latency

P
ro

b
a

b
il

it
y

Delay variation

Average

Traditional networks

Deterministic networks

La
te

n
cy

re

q
u

ir
em

en
t

Fig. 1: Comparison of latency performance between traditional
networks and deterministic networks.

It is easy to keep the QoS of single SFC to be deterministic,
however, it is challenging to ensure most SFCs deployed in the
network to be deterministic under the restricted resource ca-
pacity during their lifetime. Thus we try to solve this problem
from two aspects: (i) how to optimize the resource allocation
and path selection for SFC deployment; (ii) how to adjust
resource allocation to ensure the bounded service latency
and jitter under the traffic variation, which can ultimately
maximize the overall incomes for ISP. This two aspects form
the whole procedure of lifetime management for SFCs. For
the first sub-problem, we try to solve it in two directions: (i)
improve the service acceptance ratio (i.e., increase the revenue
derived from providing service to users); (ii) reduce the
resource consumption by optimizing the resource allocation to
VNF instances (i.e., reduce the network cost for ISPs). Given
that the propagation, transmission latency are deterministic, we
need to bound the non-deterministic VNF processing latency
in order to achieve an overall deterministic end-to-end latency
and jitter for time-sensitive services. For the second sub-
problem, we will investigate on the optimal VNF scaling
up/down scheme in response to the traffic variation to keep the
bounded latency by considering the historical network load,
which will help avoid resource bottleneck and reduce network
congestion.

Note that, we formulate the Det-SFCLM problem in the
5G edge environments where an open and smart radio access
network (RAN) architecture, led by an industry alliance, O-
RAN Alliance [8], is assumed to be the part of the envi-
ronments. The main idea of O-RAN concept includes RAN
function disaggregation via open interface and open-source
platform, which facilitates an open and virtualized 5G edge
networking ecosystem. By employing NFV concepts in O-
RAN architecture, the baseband processing units in the new
architecture can be implemented as RAN VNFs instantiated
in the edge servers.

We extend our previous work in [9] to further address

the problem of provisioning SFC requests with deterministic
latency and jitter. First, we formulate it as a mathematical
model and the objective is to maximize the overall profits for
ISP over a time period. Then, we propose two novel algorithms
named Deterministic SFC Deployment (Det-SFCD) algorithm
and Deterministic SFC Adjustment (Det-SFCA) algorithm.
Det-SFCD obtains the optimal placement and processing re-
source allocation for VNF instances by considering defined
deployment cost based on an extended shortest path algorithm.
Det-SFCA optimizes the processing resource adjustment to
make the latency, caused by the traffic variation, stable by
considering historical network load. The contributions are
listed as follows:
• We study the QoS-based (i.e., deterministic latency and

jitter) end-to-end SFC management in 5G edge environ-
ments including radio access and core networks. Then
formulate the SFC lifetime management problem by
mathematical model with the objective of the optimal
resource allocation and VNF instance placement.

• We propose efficient composition algorithms for the auto-
mated deployment of SFCs, which consists of Det-SFCD
algorithm which is designed for optimal path selection
and resource allocation for VNF instance, and Det-SFCA
algorithm which tries to adjust resource allocation of
VNF instances on the basis of the traffic variation in order
to ensure deterministic latency.

The reminder of this paper is organized as follows. Section
II introduce the related works. Section III presents the system
model. Section IV formulates the deterministic SFC provi-
sioning problem and our proposed algorithms are presented in
Section V. The performance evaluation results are discussed
in Section VI. Section VII concludes this work.

II. RELATED WORK

Service function chaining problem have been widely studied
and many solutions have been proposed. From the perspective
of network optimization objectives, some works studied how
to maximize the QoS of SFCs under the network resource
restriction, e.g., minimizing the total service latencies. The au-
thors in [10] introduced “COLAP”, a predictive framework to
place the participating VNFs of a SFC in a cloud environment
while optimizing the service latency. In summary, this work
has considered the service latency as the main metric while
overlooking the VNF instances’ dependencies and availability
metrics. Gouareb et al. [11] studied the problem of virtual
network functions placement and routing across the physical
hosts to minimize overall latency defined as the queuing
delay within the edge clouds and in network links. Jinke et
al. [12] formulated a joint communication and computation
resource allocation problem with the objective of minimizing
the weighted-sum latency of all mobile services. Then, the
closed-form optimal task splitting strategy is derived as a
function of the normalized backhaul communication capacity
and the normalized cloud computation capacity. Qu et al.
[13] formulated an MILP model and a heuristic approach
to minimize the SFC end-to-end delays while overcoming
the scalability of an optimization model. The authors have

3

𝑓ଵ 𝑓ଶ 𝑓ଷ

𝑓ଵ 𝑓ଶ 𝑓ଷ 𝑓ସ

𝑉ଵ

𝑉ଶ

𝑉ଷ

𝑉ସ

𝑉ହ

𝑉଺

𝑉଻

𝐿ாଶா ൌ 𝐿𝐶 ൅ 𝐿𝑃 ൑ 10 𝑚𝑠

𝐿ாଶா ൌ 𝐿𝐶 ൅ 𝐿𝑃 ൑ 15 𝑚𝑠

SFC 1

UEs
Newly arrived VNF1

Newly arrived VNF2

Newly arrived VNF3

SFC 2
UEs

CS 1

CS 2

Newly arrived VNF4

Path 2: LC=2 ms

LP_1=4 ms

LP_2=2 ms

LP_3=3 ms

LP_4=3 ms

Path 1

Fig. 2: Embedding SFC requests in 5G edge networks.

proposed an algorithm that selects a subset of VNFs that are
needed to generate an SFC and its redundant.

On the other hand, some works considered the network
utilization, e.g., computational resources, as main metric to
achieve better resource utilization. The authors in [14] for-
mulated the VNF placement problem as bin-packing and
open Jackson network problems to maximize the compute
resource utilization. Benkacem et al. [15] formulated the VNF
placement problem as two Linear Integer problem models,
aiming at minimizing the cost and maximizing the quality
of experience (QoE) of the virtual streaming service. Then
they ensured an optimal tradeoff solution between the cost
efficiency and QoE by applying the bargaining game theory.
Bari et al. [16] solved the VNF placement problem with a sim-
plified set of constraints, which only considers the deployment
cost, the resources requirement, and the processing delay and
discards the placement constraints, such as the VNF chaining,
reliability, and delay tolerance constraints. Taleb et al. [17]
proposed a VNF placement algorithm to minimize the cost
in terms of the total number of instantiated VNFs in a cloud
environment. The authors in [18] and [19] solved the VNF
placement and routing optimization problem by using mixed
integer linear programming (ILP) models. Nevertheless, the
ILP and mixed linear programming model (MILP) can only be
solved offline. Due to the high complexity, it is usually applied
in small-scale network. Otherwise, many works have solved
the service function chaining problem by proposing efficient
heuristics which can be used to configure and manage SFCs
online with higher scalability. Basically, the SFC placement
problem can be partitioned into two sub-problems: i) a VNF
placement problem and ii) a routing problem. A fast heuristic
framework, called Holu, that can efficiently solving the power-
aware and delay constrained joint VNF placement and routing

(PD-VPR) problem has been proposed in [20] by addressing
these two sub-problems sequentially, which improves the
system performance in terms of total power consumption and
acceptance rate.

In terms of the SFC lifetime management, the service func-
tion chaining can also be partitioned into two parts: embedding
phase and adjusting phase. The authors in [21] studied the
service function chaining problem in geo-distributed cloud
system by proposing SFC eMbedding APproach (SFC-MAP)
and VNF Dynamic Release Algorithm (VNF-DRA) to effi-
ciently embed SFC requests and optimize the number of placed
VNF instances. Junjie et al. [22] jointly optimized the deploy-
ment of SFCs and the readjustment of in-service SFCs while
considering the trade-off between resource consumption and
operational overhead and they designed a column generation
(CG) model for solving the optimization problem. Xincai et al.
[23] derived the requested instances with adaptive processing
capacities and called two other algorithms for new instance
assignment and service chain rerouting, respectively, while
achieving good competitive ratios. The problem of dynamic
placement reconfiguration of 5G User Plane Functions (UPFs)
in a MEC ecosystem was studied in [24], a scheduling tech-
nique based on Optimal Stopping Theory (OST) was proposed
to adapt to changes in user locations while ensuring QoS and
network operator expenditures reduction. The authors in [25]
studied the joint SFC deployment and resource management
problem (JSDRM) in heterogeneous edge environments to
minimize the total system latency and proposed a scheme
based on a game model to jointly deploy SFCs and manage
resources.

Researchers have been addressing various aspects of service
function chaining challenges. For instance, they propose differ-
ent optimization models and heuristic solutions for the SFC

4

placement problem and SFC lifetime management problem.
Despite all the significant literature studies on service function
chaining, SFC deployment and adjustment still need to be
further investigated and exploited to satisfy the deterministic
latency requirements as shown in Fig. (1). Minimizing network
latency or maximizing network utilization traditionally from
a single side or both sides cannot meet the new requirements
exposed by 5G and beyond 5G networks. Deterministic latency
performance, rather than latency minimization, for the SFCs
can fit the network performance requirements of the time-
critical services and should be the new direction of network
resource optimization. Deterministic latency provides a more
stable latency distribution which can benefit the time-sensitive
tasks from the upper layer. In addition, the work [26] first
used stochastic network calculus (SNC) to study the end-
to-end delay bound with given traffic demand and resources
and propose a solution to find the amount of resources that
should be allocated with given traffic distribution and end-to-
end delay bound, which is beneficial for the network service
provision under deterministic end-to-end delay requirements.

Different from the literature mentioned above, in this paper,
we focus on the optimal SFC lifetime management, i.e., SFC
deployment and SFC adjustment, under the deterministic end-
to-end latency and jitter requirements in 5G edge environ-
ments. Latency minimization is not the objective of this paper,
the proposed algorithms try to keep the end-to-end latency
experienced by SFCs within a bounded time interval below
the latency requirements.

III. SYSTEM MODEL

A. Network model

We start with a system description that identifies the scope
of our study. In the paper, we consider a 5G edge network
comprised of edge nodes and cell sites (CSs) forming a
multi-cell coverage area for mobile users. Each edge node
is equipped with limited computational capacity utilized for
running 5G RAN and core network VNFs, where RAN VNFs
perform the RAN protocol stack (e.g., baseband processing
function). We denote by G = (N , E) the physical networks
consisting of N physical edge nodes, N = {1, 2, ..., N}
and E physical edges connecting edge nodes in N , i.e.,
E = {1, 2, ..., E}. We use n,m ∈ N to indicate nodes and
(n,m) ∈ E to represent the link connecting node n and m.
The edge nodes are equipped with different amounts of CPUs,
RAM, etc. The node capacity of each edge node in terms of
processing and memory is given as Ccpu

n and Cmem
n . For each

direct link (n,m) ∈ E , the bandwidth of (n,m) is expressed
as B(n,m).

B. SFC model

A total number of K SFC requests arrive during T =
{1, 2, ..., T}. We use Ĝk = (Vk,Lk), k ∈ K to denote the
service function graph of SFC request k. Each SFC Ĝk is
defined as a vector {sk, dk, ak, qk, λk,t, Lk} to dictate the
property of this SFC. sk and dk correspond to the source and
destination nodes of SFC k. ak and qk represent the arrival
time and departure time. Tk = {t : ak ≤ t ≤ qk} denotes

TABLE I: Notation and variables

Notation Description

Topology
G Substrate networks
N Set of nodes in substrate networks
E Set of edges in substrate networks
n,m physical nodes in the network G
(n,m) physical edge in the network G
Ccpu

n ,Cmem
n CPU/memory capacity of node n

B(n,m) Bandwidth resource capacity of link (n,m)

Service requests
T Set of time slots in the system
K Set of SFC requests
Ĝk Graph of SFC request k
Vk Set of VNFs in SFC k
Lk Set of virtual links in SFC k
Tk The time duration of SFC k
sk Source node of SFC k
dk Destination node of SFC k
ak Arrival time of SFC k
qk Departure time of SFC k
λk,t Data rate of SFC k at time t
Lk E2E latency requirement of SFC k
vk,n̂, vk,m̂ VNFs of SFC k
lk,(n̂,m̂) Virtual link between VNFs of SFC k
mk,n̂ Memory requirement of SFC k
ρk,n̂ The number of CPU cycles for processing one

information bit by VNF vk,n̂
Decision Variables

xn̂k,n Whether VNF vk,n̂ of SFC k is placed in edge
node n

πn̂
k,t The amount of allocated processing resources

for VNF vk,n̂ of SFC k at time t
π̂n̂
k The amount of allocated memory resources for

VNF vk,n̂ of SFC k

y
(n̂,m̂)
k,(n,m)

Whether virtual link lk,(n̂,m̂) of SFC k tra-
verses physical link (n,m)

y
(n̂,m̂)
k,n Whether virtual link lk,(n̂,m̂) of SFC k tra-

verses physical node n
η
(n̂,m̂)
l,t The allocated bandwidth for virtual link

lk,(n̂,m̂) of SFC k at time t
τpk,n̂,t Processing latency of VNF vk,n̂ of SFC k at

t
lpk,t Processing latency of SFC k at t
dprop
k,(n̂,m̂),t

Propagation latency of virtual link lk,(n̂,m̂) of
SFC k at time t

dtrans
k,(n̂,m̂),t

Transmission latency of virtual link lk,(n̂,m̂)
of SFC k at time t

τc
k,(n̂,m̂),t

Communication latency of ith virtual link of
SFC k

lck,t Communication latency of SFC k at t
lk,t Experienced E2E latency by SFC k at time t

System Parameters
ε Coefficient of latency variation bound of SFC
α1, α2 Coefficient of CPU/memory resource cost
β Coefficient of bandwidth cost
δ Coefficient of revenue from data rate
ω Coefficient of revenue from latency require-

ment
Nk The number of aggregated radio resource

blocks (RBs) allocated to the users in SFC k
aj RAN Layer 1 computational resource model-

specific constant
iMCS,k Indices of the MCSs of SFC k
θ1 Scaling factors of the Layer 1
θ2 Scaling factors of the high-layer VNFs

5

the duration time that SFC k is running in the networks.
Since each SFC k ∈ K consists of a given number of
ordered VNFs except source and destination nodes, we use
Vk to denote the set of VNFs in SFC k where vk,n̂, vk,m̂
is the nth and mth VNFs in SFC k. We assume that the
processing latency of a VNF instance is only related to the
processing resource allocated to it. The amount of resources
allocated to a certain VNF can be arbitrary provided that the
overall processing latency of this SFC can satisfy the latency
requirement. We assume the memory resources requested by a
VNF is constant, we use a vector {mk,1,mk,2, ...,mk,n̂, ...} to
denote the memory requirement of SFC k. In addition, there
are a set of virtual links connecting the source node sk, ordered
VNFs and the destination node dk, we denote the link between
the nth VNFs and the mth VNFs in SFC k as lk,(n̂,m̂) ∈ Lk.
Each SFC supports one service associated with a data rate
λk,t at time t which is an aggregated bit rates of multiple
users belonging to this SFC.

Note that, the processing resources (e.g., CPU cores) are sta-
tistically multiplexed if multiple VNF instances are deployed
on the same CPU core, the sharing of processing resources is
not considered since it cannot ensure deterministic processing
latency. As shown in [27], as more VNFs share the same CPU,
the CPU access latency experienced by each VNF increases
substantially. The processing latency of VNFs that are already
mapped will be degraded by the newly instantiated VNF in
the same CPU core, which leads to the latency uncertainty of
existing SFCs. Thus, in this paper, we assume that different
SFCs can not share the same types of VNF instances, even
if the VNF instances with the same types exist in a edge
node. Each VNF instance occupies the exclusive processing
resources and can only belong to a certain SFC.

IV. DETERMINISTIC SFC PROVISIONING PROBLEM

A. Problem Description
In a NFV-enabled edge system, Internet Service Provider

(ISP) should make optimal planning for SFC request deploy-
ment to maximize its profit while ensure the deterministic
requirements of SFC requests. The problem can be described
as: Given: a physical network topology G = (N , E) and a
set of SFC requests K. For each SFC request, determine:
1) how to select path between source and destination nodes
and place VNF instances along the path, 2) how to allocate
processing and bandwidth resources for corresponding NFVs
and traffic, 3) how to adjust resource allocation when traffic
load varies, to 4) maximize: the overall profits of ISP from
running SFC requests, meanwhile, 5) ensure: deterministic
latency performance. The traffic of SFC request will traverse a
series of ordered VNF instances and the path selected on which
the ordered the VNFs instances are mapped will influence
the resource consumption on edge nodes and edges. How to
select available path and allocate resources for SFC requests
remains a challenge for deterministic latency performance and
maximum resource efficiency.

B. Problem Formulation
The SFC deployment basically consists of path selection and

resource allocation. These two parts are actually interactive to

each other and should be coordinated to achieve the objective
mentioned above.

VNF instance deployment: We denote by binary variable
xn̂k,n the placement of NFV vk,n ∈ V , xn̂k,n = 1 iff VNF vk,n̂
is placed in edge node n ∈ N , otherwise, xn̂k,n = 0. Based
on the observation that one edge node can instantiate multiple
VNF instances and one VNF instance can only run on top of
a edge node, the placement constraint of VNF instance vk,n̂
can be given as follows∑

n∈N
xn̂k,n = 1,∀k ∈ K,∀vk,n̂ ∈ Vk, k ∈ K (1)

Since the computing capability of edge node is shared by
all NFV instances that are placed on it, the total CPU and
memory capability allocated to VNF instances can not exceed
the total capability of the edge node, then we have∑

k∈K,n̂∈Vk

xn̂k,n · π̄n̂
k ≤ Cmem

n ,∀n ∈ N , (2)

∑
k∈K,n̂∈Vk

xn̂k,n · πn̂
k,t ≤ Ccpu

n ,∀n ∈ N , t ∈ Tk (3)

where we define πn̂
k,t, π̄

n̂
k to indicate the amount of processing

and memory resources allocated to VNF vk,n̂ of SFC k at time
t. The unit of processing resource is set as the CPU cycles
times by the number of CPU cores and the unit of memory
resource is GB in the paper, and π̂n̂

k = {0,mk,n̂}. Ccpu
n , Cmem

n

represent the resource capability of CPU and memory in edge
node n.

Traffic routing: For SFC k, we define the binary variable
y
(n̂,m̂)
k,(n,m) and y

(n̂,m̂)
k,n to denote whether the lk,(n̂,m̂) ∈ Lk

traverses link (n,m) ∈ E and the node n ∈ N , respectively. If
(n,m) ∈ E is traversed by lk,(n̂,m̂) ∈ Lk, n,m ∈ N must be
traversed as well. Then the following routing constraint must
be ensured as

y
(n̂,m̂)
k,n y

(n̂,m̂)
k,m = 1 if y

(n̂,m̂)
k,(n,m) = 1 (4)

∑
lk,(n̂,m̂)∈Lk

∑
m∈N

(
y
(n̂,m̂)
k,(n,m) − y

(n̂,m̂)
k,(m,n)

)

=

 1, n = sk
−1, n = dk
0, otherwise

, k ∈ K
(5)

Constraint (4) ensures the physical nodes and link that a
virtual link traverses to be consistent. Constraint (5) guarantees
that the links on the path to embed SFC k are connected heal-
to-tail. If node n ∈ N is selected to serve the VNF n̂ ∈ V of
SFC k, this node must ensure to be traversed as

xn̂k,n ≤ y
(n̂,m̂)
k,n ,∀n ∈ N ,∀vk,n̂ ∈ Vk, lk,(n̂,m̂) ∈ Lk, k ∈ K

(6)

Also, since the bandwidth resource of physical edge (n,m)
are shared by the virtual links that are mapped on it, the total
bandwidth consumed by these virtual links can not exceed the
total bandwidth resource of physical edge (n,m). Firstly, we

6

define the following real variable: η(n̂,m̂)
k,t to denote the amount

of bandwidth resource allocated to the virtual link between
nth and mth VNF of SFC k. Then, we add the following
constraints. Constraints (7) ensures that the sum of bandwidth
resource allocated to virtual links can not exceed the total
bandwidth of physical edge (n,m) at time t.

∑
k∈K,lk,(n̂,m̂)∈Vk

y
(n̂,m̂)
k,(n,m) × η

(n̂,m̂)
k,t ≤ B(n,m),

∀(n,m) ∈ E , t ∈ Tk
(7)

Deterministic Latency
For a SFC, latency will be incurred by data processing

in edge nodes and data transmission in physical edges ac-
cordingly, i.e., processing latency and communication latency.
The service latency of a SFC is determined by both resource
requirement of SFC and the amount resource allocated to it.

(1) Processing Latency of VNFs: The SFC we consider in
the 5G edge fabric contains different types of VNFs, e.g., RAN
and core network functions, etc. Different kinds of network
functions works in a different way and the processing resource
requirement depends on different factors.
• RAN VNF modelling
For RAN functions, the RAN VNF performs layers of RAN

protocol stack (e.g., baseband processing). The computational
complexity of the specific RAN VNF depends on the user’s
traffic load (e.g., RAN Layer 3 and Layer 2), while Layer 1
processing is performed per assigned Resource Block (RBs)
and is mainly dependent on channel condition. The condition
in the channel dictates the appropriate coding rate and modula-
tion for the data to be transmitted successfully which leads to
different computational demand on Layer 1. Thus, the compu-
tational complexity of Layer 1 functions depend on the amount
of RBs assigned and Modulation and Coding Scheme (MCS).
The higher layer RAN VNFs (Layer 3 and Layer 2) and other
common VNFs (e.g., core network functions) processing are
user load dependent and the processing requirements depend
on the aggregated users’ data rates.

A VNF is usually instantiated by associating with a certain
combination of resources (e.g., CPU, RAM and etc.) and
the RAN VNF processing latency can be calculated as the
function of CPU frequency allocated if the number of RBs
and MCS indices are known. Therefore, given the amount of
CPU frequency πn̂

k,t allocated to Layer 1 RAN VNF of SFC
k if we assume vk,n̂ to be Layer 1 RAN VNF, according to
experimental results running on the general purpose processors
(GPPs), the processing time of Layer 1 functions vk,n̂ of SFC
k regarding with the allocated CPU frequency πn̂

k,t at time t
is given as [28]

τpk,n̂,t =
θ1Nk

(πn̂
k,t)

2

2∑
j=0

aj(iMCS,k)j ,

vk,n̂ = RAN Layer 1, t ∈ Tk, k ∈ K

(8)

where Nk denotes the number of aggregated resource blocks
(RBs) allocated to the users of SFC k. aj is the Layer 1 compu-
tational resource model-specific coefficient, which is related to

the type of RAN functionality, e.g., modulation/demodulation,
encoding/decoding, and the corresponding values are given in
[28]. iMCS,k is the indices of the MCSs of SFC k as defined
in 3GPP TS 38.214 [29]. For the sake of simplicity, we assume
that all users within SFC k are assigned with the same MCS
indices. θ1 is the scaling factor of the Layer 1 [30]. Equation
(8) provides a closed-form approximation for processing time
in RAN function, which can be used to determine the required
number of CPUs and their working frequency for provisioning
each VNF.
• Other VNFs
For the other common network function types, such as core

network, gateway, load balance, etc, the computation resource
model is different from the RAN functions, which is user data
rate related. Considering each computation task of an SFC k
can be processed in the edge servers, we can use a two-field
notation Ak,n̂ = {λk,t, ρk,n̂} to denote the computation task
of the VNF n̂ of SFC k, where λk,t is the input data-size (in
bits) per second at time slot t, which also represents the data
rate of this SFC and ρk,n̂ denotes the number of CPU cycles
that are required to compute one-bit data by this VNF vk,n̂.
Note that, the value of ρk,n̂ varies from the type of VNF vk,n̂.
Similar to [31], the processing latency of the other VNFs vk,i
in the SFC k is given as:

τpk,n̂,t = θ2
ρk,n̂λk,t
πn̂
k,t

,

∀vk,n̂ ∈Vk/{RAN Layer 1}, t ∈ Tk, k ∈ K
(9)

where λk,t is the aggregated users’ data rate under this SFC,
θ2 is the scaling factor of the functions on the other layers
[30] with regard to RNA Layer 1. Thus, The total processing
latency for VNFs of SFC k is:

lpk,t =
∑

vk,n̂∈Vk

τpk,n̂,t (10)

(2)Communication Latency of Virtual Links: The communi-
cation latency of each SFC consists of the propagation latency,
transmission latency. Based on the study in literature [21], the
communication latency of SFC k on virtual link lk,(n̂,m̂) ∈ Lk

can be formulated as:

τ ck,(n̂,m̂),t = dpropk,(n̂,m̂),t + dtransk,(n̂,m̂),t (11)

Hereby, the first term of equation (11) indicates the prop-
agation latency on physical edges that virtual link lk,(n̂,m̂)

traverses by, which is related with length of the physical edges.
The second term indicates the transmission latency, which is
calculated by dividing the size of transmitted packet with the
bandwidth capacity allocated to the virtual links:

dtransk,(n̂,m̂),t =
bk

η
(n̂,m̂)
k,t

, k ∈ K, lk,(n̂,m̂) ∈ Lk, t ∈ Tk (12)

Then the communication latency of SFC k is formulated as:

lck,t =
∑

lk,(n̂,m̂)∈Vk

τ ck,(n̂,m̂),t (13)

7

Finally, considering the deterministic E2E latency require-
ment Lk of SFC k, the E2E latency constraint is given as:

Lk(1− ε) ≤ lpk,t + lck,t = lk,t ≤ Lk(1 + ε) (14)

where ε represents the latency variation (i.e., jitter) that net-
work services can tolerate, ε ∈ (0, 1).

Profit Model:
1) Cost Model: The cost of SFC k can be defined similar

to the one in [32] as follows:

Ck =
∑
t∈Tk

(∑
lk,n̂∈Vk

(α1π
n̂
k,t + α2π̄

n̂
k)+

∑
lk,(n̂,m̂)∈Lk

βη
(n̂,m̂)
k,t

)
, k ∈ K

(15)

where α1, α2 denotes the cost factor of allocating one resource
unit of CPU and memory, β represents the cost factor of
allocating one bandwidth unit.

2) Revenue Model: We define the revenue of each SFC
k ∈ K within its lifetime as follows:

Rk =
∑
t∈Tk

(δλk,t + ω/Lk), k ∈ K (16)

As the E2E latency requirement Lk can be seen as the most
important QoS indicator for the safety-critical service and the
performance assurance that it can provide to users, so we take
into account the Lk as the part of revenue that SFC k can
make. Besides E2E latency, data rate λk,t should also been
considered as another QoS indicator by which ISP can charge
from users, it will consume more network resource (processing
and bandwidth resource) to provision a service with higher
data rate than lower data rate while ensure the same E2E
latency requirement Lk.

Thus, for each SFC k, the overall profit of SFC k is
formulated as:

Pk = Rk − Ck (17)

3) The total profits of the system: The total profits of the
system, denoted by P , is formulated by the summation of
profits of all the SFCs deployed as follows:

P =
∑
k∈K

Pk (18)

Thus, the deterministic SFC lifetime management problem
in this paper is formulated as an optimization problem which
maximizes the overall profits of system:

maxP (19)
s.t.(1− 18) (20)

The formulated problem is NP-hard as result of the non-
reasonable calculation time. To prove the NP-hardness of this
problem, we need to to reduce it to a well-known NP-hard
problem. We simplified our problem and considered only one
SFC which contains a series of VNFs, the problem can be
denoted by P where the grouping of multiple VNFs and
placing these VNFs into edge nodes is similar to the knapsack
problem, which is known to be NP-hard. In this problem, the

edge nodes can be considered as knapsacks while the VNFs are
considered as different objects. We try to reduce the resource
cost while the total CPU and memory capacity of VNFs
within a edge node do not exceed the node capacity, which
is equivalent to the cost in the knapsack problem. Besides,
we also consider the latency requirement which will increase
complexity. Thus, deterministic SFC lifetime management is
an NP-hard problem. In addition, in this paper, we consider the
CPU resource sharing can not ensure the processing latency,
the CPU resource allocation should be discrete, thus it is hard
to find a integer solution to make the E2E service latency equal
to the latency requirement exactly. We propose a heuristic
solution to solve this problem in acceptable timescales.

V. DETERMINISTIC SFC LIFETIME MANAGEMENT

In general, we can maximize the overall profits for ISP
from two aspects: 1) accepting more SFC requests to increase
the revenue; 2) reduce the resource cost caused by optimally
allocating network resources to SFC requests. In addition, we
need to ensure the latency experienced by SFC requests to be
deterministic.

We divide the procedures on SFC lifetime management into
two phases: SFC deployment and SFC adjustment, which are
solved by Det-SFC deployment (Det-SFCD) algorithm, Det-
SFC adjustment (Det-SFCA) algorithm, respectively. In SFC
deployment phase, 1) optimal paths need to be selected to
avoid the resource bottleneck when deploying SFCs, ultimately
increase the SFC acceptance rate; 2) VNF instances need to
be created optimally to minimize the resource costs while
ensuring the latency requirements. In SFC adjustment phase,
optimal VNF instance scaling up/down scheme should be
designed in order that the latency variation is controlled within
a small range.

A. Deterministic SFC Deployment (Det-SFCD) algorithm

1) Path Calculation based on Deployment Cost: To derive
optimal paths for deploying SFCs in the network, we define
”deployment cost” for physical edges and nodes which will
indicate overloaded edge/node, so that balancing the network
load and reducing resource bottleneck ultimately. We use ccpuk,n ,
cmem
k,n and cbwk,n,m to represent the deployment costs of CPU

and memory on node n and bandwidth on edge (n,m) when
deploying SFC k as follows.

ccpuk,n = φn ·
max
n∈N

Ccpu
n

Ccpu
n rcpuk,n

(21)

cmem
k,n = φn ·

max
n∈N

Ccpu
n

Cmem
n rmem

k,n

(22)

cbwk,(n,m) = φ(n,m) ·
max

(n,m)∈E
B(n,m)

Bn,mrbwk,(n,m)

(23)

where rcpuk,n , rmem
k,n and rbwk,(n,m) ∈ [0, 1] denote the CPU

remaining rate (i.e., the amount of residual CPU cores divided
by the the total amount of CPU cores) on node n, memory
remaining rate on node n and bandwidth remaining rate on

8

edge (n,m). In Eqs. (21)-(23), when the network load are
low, the value of ccpuk,n , cmem

k,n and cbwk,(n,m) are relatively small
and increase slowly. Whereas if the resource consumption
are comparative to resource capabilities, the values will be
very large and increase quickly.Besides network load, we
also take into account the node or link capacity itself. With
max
n∈N

Ccpu
n /Ccpu

n , the nodes with higher capacities and lower

network load are more likely to be selected. Thus, ccpuk,n ,
cmem
k,n and cbwk,n,m can be used to facilitate path selection. In

addition, we use the coefficients φn and φ(n,m) to set the
criticalities of different nodes and links, since some nodes
and links are located in critical places, which may have much
background traffic. Furthermore, we define the load status of a
path by summing up the deployment costs along the path. The
deployment cost of the path l when deploying SFC request k
is defined as:

Rk,l =
∑
n∈Nl

max{ccpuk,n , c
mem
k,n }+

∑
(n,m)∈El

cbwk,n,m (24)

where Nl and El denote the nodes and links along the selected
path l. According to Eq.(24), we can infer that there are no
bottleneck edge nodes, links along the selected path if the cost
Rk,l is small each time when deploying SFC k. Conversely, if
the cost Rk,l of the selected path is very large, there must exist
some bottleneck edge nodes or links which are overloaded
along the path l, then we need to choose other paths with
smaller cost to deploy SFC k. We then sort the candidate
paths in ascending order according to Rk,l.

A

B D

C

E

F

G

H

𝑷𝟏

𝑷𝟐

6

2.5
5

3

1.3

1.7 1.2

6.5

1.8

1

1.2 2.6

2.5

1.22.6

1.2

1.6

Path 𝑳𝒄 𝑹
𝑷𝟏
𝑷𝟐

𝟒 𝒎𝒔
𝟑 𝒎𝒔

𝟏𝟑. 𝟗
𝟏𝟐. 𝟐

𝑷𝟑 𝟒 𝒎𝒔 𝟔. 𝟖

𝑷𝟑

Fig. 3: Weighted topology with deployment costs.

Based on the traditional shortest path algorithm, we extends
it to obtain shortest paths with deployment cost Rk,l from
the source node s to destination node d on the graph G. As
shown in Alg. 1, we first set the weight of this topology as
link length (distance between two adjacent edge nodes) and
use KSP algorithm [33] to get Γ shortest paths. Then we
update the deployment cost of each physical node and edge.
For deployment cost of physical nodes, we set the value of
deployment with max{ccpuk,n , c

mem
k,n }. As we aim at finding the

bottleneck nodes, so we consider it as a bottleneck node as
long as one of the CPU load ccpuk,n and memory load cmem

k,n is
high. We set deployment cost of physical links with cbwk,(n,m).
After updating the deployment cost of the whole topology, we
calculate the Rk,l for each candidate path. As shown in Fig.3,
even if the latency path 2 is lowest (three hops) among all the
candidate paths between node A and H , the deployment cost
of path 2 is higher compared with the cost of path 3, which
means path 2 is overloaded on some link (e.g., link(C,G)).

Algorithm 1: Path calculation with Extended Dijk-
stra’s Algorithm
Input: G = (V, E), sk, dk
Output: Γ candidate paths with Rk,l

1 Perform KSP algorithm to get Γ shortest paths
between sk and dk

2 Update the deployment cost of physical nodes with
max{ccpuk,n , c

mem
k,n }

3 Update the deployment cost of physical links with
cbwk,n,m

4 for l ∈ [1,Γ] do
5 Calculate the deployment cost Rk,l of path l

6 Sort the paths in ascending order according to Rk,l

Therefore, when deploying an SFC request between node A
and H , path 3 should be selected even it is not the shortest
path, which is the best path for SFC k with least deployment
cost. In this case, the deployment cost has the higher priority
to be considered than path latency. The benefits of deploying
the SFC into the path with least deployment costs are twofold:
1) it can exclude the paths with bottleneck nodes or edges to
increase the acceptance ratio; 2) it can avoid making nodes or
edges to be the bottlenecks in the networks.

2) SFC Deployment Scheme with Minimal Resource Cost:
Next, we need to decide each VNF instance’s size for SFC k,
i.e., the processing resource allocation to each VNF instance,
based on the chosen path. As we know that each VNF has its
specified resource demand according to the user load and VNF
type. The latency of a VNF instance is decided by the amount
of resource demand and the resources allocated to it. It is
obvious that allocating processing resources to different VNF
instances can lead to different processing latency, which will in
turn result in different resource costs. Thus, given SFC request
k, creating VNF instances with minimal processing resource
while ensuring a certain E2E service latency remains a ques-
tion to be solved. After an available path is selected for SFC
k, the propagation and transmission latency are known, which
can be calculated according to this route. Note that, to focus
on the processing allocation, we set the bandwidth allocation
in line with the data rate of SFC k. Given a total E2E service
latency requirement, in other words, latency budget, we need
to determine the latency distribution on each VNF instance of
SFC k. Fig.9 gives an example. We assume the total latency
budget of SFC k is 15 ms, the communication latency on the
selected path 3 is 4 ms, thus the remaining latency budget for
VNF1/VNF2/VNF3 are 11 ms. For VNF 1 (e.g., Layer 1 RAN
VNF), the required processing resources are relatively larger
than the that of VNF 2&3 (e.g., Layer 2&3 RAN VNF) as we
can see that the resulted latency of allocating 1 CPU core to
VNF instance 1/2/3 are 8.5/4.5/2.5 ms respectively. To derive
the CPU core allocation combination of VNF instances within
SFC k, we will calculate lpk for all the combinations of CPU
core allocation options as shown in CPU-latency-cost table of
Fig.9 and choose a combination of CPU core allocation with
minimal resource cost among the combinations in which the
resulted latency is also near to Lk. In this case, the CPU core

9

allocation (2 cores, 2 cores, 2 cores) for VNF instance 1/2/3
results in the minimal resource cost 3.9 $ with VNF processing
latency lpk = 10.1 ms < 9 ms. Note that, the CPU resource
allocation is discrete in terms of the amount of CPU cores,
thus it can not usually derive a latency value exactly equal to
latency requirement.

𝑉𝑁𝐹ଵ 𝑉𝑁𝐹ଶ 𝑉𝑁𝐹ଷ

1 core
2 cores
4 cores
8 cores

VNF instance 1
CPU Latency Cost

6.1 ms
4.5 ms
2.6 ms

8.5 ms 1 $
1.3 $
2.4 $
6 $

1 core
2 cores
4 cores
8 cores

VNF instance 2
CPU Latency Cost

2.6 ms
1.5 ms
0.8 ms

4.5 ms 1 $
1.3 $
2.4 $
6 $

1 core
2 cores
4 cores
8 cores

VNF instance 3
CPU Latency Cost

1.4 ms
0.8 ms
0.4 ms

2.5 ms 1 $
1.3 $
2.4 $
6 $

6.1+2.6+1.4=10.1

1.3+1.3+1.3=3.9 $

𝐿ாଶா ൌ 𝐿௖ ൅ 𝐿௣ ൑ 15 𝑚𝑠

𝑳𝒑

𝑪𝒐𝒔𝒕

Fig. 4: CPU core allocation to VNF instances

The pseudocode of Det-SFCD algorithm is shown in
Algorithm.2 which is designed to solve the joint SFC place-
ment and resource allocation problem. For a newly arrived
SFC request k, we first calculate the deployment cost of CPU,
memory and bandwidth according to the network load status
and update the topology with the deployment costs in Line
1-5. With Algorithm.1, we then obtain Γ available paths with
deployment costs in Line 6. Based on the path pk, optimal
VNF processing resource allocation scheme will be applied
into SFC k in Line 8. In Line 9, the system will check if
the selected path can meet the resource requirements in terms
of CPU, memory and bandwidth demand. If the path pk has
enough resource for SFC k, we next need to determine the
physical nodes to instantiate the VNFs along the path. Given
the allocated CPU core and memory of each VNF, we try to
map the VNF instances into physical nodes in a load-balancing
way. Specifically, place the VNF instance with higher CPU
demand in the node with more CPU resource, while keeping
the VNF order along the SFC. After embedding the SFC k
successfully, update the network status.

B. Deterministic SFC Adjustment (Det-SFCA) algorithm

In this section, we try to solve the SFC adjustment problem
caused by the traffic variation during the SFC lifetime. To this
end, we propose a deterministic SFC adjustment algorithm
with objective of minimizing the latency variation. First, we
need to adjust the resource allocation (i.e., CPU core alloca-
tion) to follow the traffic load variation of SFCs, so that the
E2E latency requirements are met. Second, we will consider
the historical network load when adjusting the SFCs, to avoid
network congestion and reduce adjusting failure ultimately.

As the traffic load of SFCs change over time, the resource
demand also change according to the traffic load which
will in turn affect the E2E service latency. If the changed
service latency cannot satisfy the constraint (14), correspond-
ing resource adjustment should be performed to control the
latency variation, i.e., scaling up/down VNF instances. To

Algorithm 2: Det-SFCD

Input: SFC set k, weighted topology G̃
Output: SFC deployment scheme

1 for each n ∈ N , (n,m) ∈ E do
2 ccpuk,n ← The deployment cost on CPU of n at

current network status
3 cmem

k,n ← The deployment cost on memory of n at
current network status

4 cbwk,n,m ← The deployment cost on bandwidth of
(n,m) at current network status

5 Update the topology G̃ with ccpuk,n , cmem
k,n and cbwk,n,m

6 Pk ← Γ candidate paths
7 for pk in Pk do
8 Q(Vk)← Optimal resource allocation scheme

along the selected path pk
9 Bool← Check whether pk satisfies SFC k in

terms of CPU, memory and bandwidth allocation
10 if Bool == true then
11 Embed the VNF instances (along with virtual

links) into the nodes in a load-balancing way
12 Update the network status
13 Return True

14 Return False

achieve VNF instance scaling up/down optimally, we need
to solve two problems: 1) which VNF instance(s) should be
scaled up/down? 2) how much processing resource should be
provisioned to this VNF instance(s)? For the first problem,
we need to take into account the current residual resource of
edge nodes and historical network load status to decide VNF
instance(s) to be scaled up/down. Basically, when network
load is relatively high, we need to design the scaling scheme
carefully to avoid network congestion. Network load indicator
is defined to describe the variation of network load. We use
ψn(t) to denote the past network load of physical node n from
time t.

ψn(t) =
∑
k∈Dn

(λk,t − λk,t−T) (25)

where λk,t − λk,t−T represents the traffic variation of SFC
k during (t − T, t]. Dn denotes the set the SFCs that are
embedded in physical node n. Since the network throughput
could not change rapidly in a short time interval, ψn(t) can
indicate the trend of network load in the next time units. If the
value of ψn(t) is positive, the network load in physical node n
is supposed to increase in the future. While the value of ψn(t)
being around 0 means that the network load in physical node
n keeps stable and decreasing network load lead to ψn(t) < 0.
When the service latency of SFC k increases beyond the
latency requirement, that is, lk,t > Lk(1 + ε), we should
scale up this SFC k according to the network load indicator
ψn(t), n ∈ Dk. We will choose the VNF instance(s) located
in a physical node with lower ψn(t) to scale up. For example,
as shown in Fig.(5), the three SFCs are featured with different
traffic profiles and they are all partly deployed on node n. Take

10

SFC 1 as an example, the VNFs of this SFC are deployed on
node m,n, o. If it needs to be scaled up at time t, we will
first calculate the ψm, ψn, ψo for each node, then we find the
ψn at time t is minimum among three nodes, which means
the network load will decrease in the following time slots in
node n. Thus we should scale up VNF 1.2 to fit the latency
requirement of SFC 1 in a load-balancing way. With network
load indicator ψn(t), we can avoid overload of some node and
reduce the network bottleneck by using complementary traffic
profiles between different SFCs.

VNF 1.2

VNF 2

VNF 3

SFC 1

SFC 2

SFC 3

tt-T

𝝀𝟏,𝒕

tt-T

𝝀𝟐,𝒕

tt-T

𝜆ଷ,௧

tt-T

𝜓௡

Node n

tt-T

𝜓௠

tt-T

𝜓௢

VNF 1.1 VNF 1.3

Node oNode m
𝑙ଵ,௧ ൐ 𝐿ଵሺ1 ൅ 𝜖ሻ

Fig. 5: SFC adjustment.

As shown in Algorithm 3 (scaling up case), the actual
service latency lk(t) of SFC k and ψn(t) are updated based
on the network status at time t at Line 1. If the service latency
of SFC k exceeds service latency Lk(1 + ε) (i.e., traffic load
of SFC k increases, (λk,t > λk,t−1)), we need to determine
which VNF instance(s) to scale up. Let Dk denote the physical
nodes in which SFC k is embedded. Since VNF instance
scaling up/down will consume extra time and resource [34],
scaling as fewer VNF instances as possible is beneficial for
service continuity. Det-SFCA will first sort the nodes in the
Dk with ascending order in terms of max{ccpuk,n , c

mem
k,n }. We

set a threshold ξ to control the scaling of VNFs. We scale
up the VNFs in the descending order of residual resources of
nodes in Dk, that is, try to scale up the VNFs in the node with
more residual capacity.

To derive the new CPU core allocation scheme for the VNF
instance(s) in the node n ∈ Dk with minimal ψn(t), CPU-
latency table for SFC k is updated according to the traffic
load at time t. Based on the CPU-latency value, new CPU core
allocation should be applied to satisfy the latency constraints:
Lk(1 − ε) < lk(t) 6 Lk(1 + ε). We assume that there is a
maximum of CPU cores for VNF instance, if it fails to make
lk(t) within the latency range above, iterate this procedure
until the latency constraint is met in Line 6-14. If there is
not node n whose max{ccpuk,n , c

mem
k,n } ≤ ξ, we need re-sort the

nodes in Dk in terms ψn(t) and scale up VNFs of SFC k
until the latency constrains is satisfied. For the scaling down
case, the principle is to scale down the VNFs in the nodes
whose residual capacity is relatively small or network load is
increasing.

Algorithm 3: Det-SFCA (scaling-up case)

Input: SFC k at time t, weighted topology G̃
Output: SFC adjustment

1 For SFC k at t,
2 Update lk(t), max{ccpuk,n , c

mem
k,n } and ψn(t)

3 if lk(t) > Lk(1 + ε) then
4 Update the path latency and re-calculate the

latency-CPU table for SFC k
5 Sort the nodes in Dk with ascending order in terms

of max{ccpuk,n , c
mem
k,n }

6 for n ∈ Dk do
7 if max{ccpuk,n , c

mem
k,n } ≤ ξ then

8 Increase CPU core allocation for VNFs
iteratively and calculate new E2E latency
according to new CPU core scheme

9 if Lk(1− ε) < lk(t) 6 Lk(1 + ε) then
10 Scale up this VNF instance(s) with new

CPU core allocation option
11 Update the network status
12 return True
13 else
14 Scale up VNF instance(s) with highest

CPU cores

15 else
16 Break

17 Re-sort the nodes in Dk with ascending order in
terms of ψn(t)

18 for n ∈ Dk do
19 Increase CPU core allocation for VNFs

iteratively and calculate new E2E latency
according to new CPU core scheme

20 if Lk(1− ε) < lk(t) 6 Lk(1 + ε) then
21 Scale up this VNF instance(s) with new

CPU core allocation option
22 Update the network status
23 return True
24 else
25 Scale up VNF instance(s) with highest

CPU cores

26 return False

C. Deterministic SFC Lifetime Management (Det-SFCLM)

Finally, we will introduce the deterministic SFC lifetime
management solution, as shown in Algorithm.4. We set the
total time period as T . At time t, the system will detect
the events that happen in the networks. We divide the events
into three types: arrival events, departure events and traffic
load variation events. The SFCs which are associated with
these events will be put into Ki,t, Ko,t and Kv,t, respectively.
For arrival events, we sort the incoming SFC requests with
descending order in terms of latency requirements to let the
SFC request with stricter latency requirement be deployed first
in Line 5. Then use the Det-SFCD algorithm to perform the

11

Algorithm 4: Det-SFCLM

Input: SFC set K, weighted topology G̃
Output: Resource allocation during SFC lifetime

1 for t ∈ T do
2 Update weight (deployment cost) of topology G̃
3 Collect events at time t
4 Divide the events into three classes: arrival events

Ki,t, departure events Ko,t, traffic load variation
events Kv,t.

5 Ki,t ← Sort SFCs with arrival events in terms of
latency requirements in descending order

6 for k ∈ Ki,t do
7 Perform SFC deployment with Det-SFCD

algorithm for SFC k

8 Ko,t ← Sort SFCs with traffic load variation events
in terms of latency requirements in descending
order

9 for k ∈ Kv,t do
10 Perform SFC deployment with Det-SFCA

algorithm for SFC k

11 Ko,t ← Sort SFCs with departure events
12 for k ∈ Ko,t do
13 Release corresponding resource for SFC k

TABLE II: Notations in Algorithms

Notation Description
rcpuk,n , rmem

k,n , rbw
k,(n,m)

CPU, memory and bandwidth remaining rate
of node n and link (n,m)

ccpuk,n , cmem
k,n , cbw

k,(n,m)
Deployment cost of CPU and memory on node
n, bandwidth on edge (n,m)

Rk,l The overall deployment cost of embedding
SFC k in path l

Dn The set of SFC requests embedded in node n
Dk The set of nodes that the VNFs of SFC k are

deployed on
lk(t) The actual experienced latency of SFC k at t
ψn(t) Historical network load of node n
Pk Current path of SFC k
T Traffic sample period

SFC deployment in Line 7. For traffic variation events, we also
deal with the SFC requests with stricter latency requirements
first using Det-SFCA algorithm in Line 9-10. For departure
events, we just need to release the corresponding network
resource in Line 12-13.

D. Complexity Analysis

In Det-SFCD, the complexity of calculating the costs of
nodes and links is no more than O(|V| + |E|). Executing the
shortest path algorithm in physical topology G = (V, E) run in
O(|E|+|V |log|V |). Given that Γ candidate paths and Ik VNFs
in a SFC, the total complexity of Det-SFCD is O(ΓIk(|E| +
|V |log|V |)).

In Det-SFCA, for the SFC k that need to be scaled up/down
based on the latency violation, assuming that the path length
is |Pk| and the SFCs that are embedded on each node along
this path is sn, n ∈ Pk, the time complexity of calculating the

0 200 400 600 800 1000
Time (unit)

0

2

4

6

8

10

SF
C

Re
qu

es
t A

rri
va

ls
(p

er
 1

0
tim

e
un

its
)

Fig. 6: SFC request arrival rate over time.

Fig. 7: Network Topology.

network load indicator is O(|Pk|sn), n ∈ Pk. As Det-SFCA
needs to scale this SFC until its service latency meets the
latency constraints, the maximum time complexity for VNF
instance scaling is O(|Pk|(Ik + sn)).

VI. PERFORMANCE EVALUATION

A. Simulation Setup

We considered a reference metro-regional network with 52
nodes, comprised of 2 Metro Core Backbone Nodes (MCBNs),
6 Metro Core Nodes (MCNs), and 44 Metro Aggregation
Nodes(MANs) and 72 bidirectional links as shown in Fig.7.
In the topology, we select the 44 MANs as edge nodes and
the other nodes act as switching nodes. Each edge node is
associated with 3 CSs (not shown in the figure for the sake
of clarity). The memory capacity and CPU capacity of each
edge node are set differently according to different node types,
as shown in Tab.III. The maximum number of CPU cores
permitted to be allocated per VNF instance is set as 8. The
bandwidth capacity per link is 100 Gbps (e.g., 10 * optical
wavelengths at 10Gbps). The radio configuration of CSs are
in line with the RAN VNF parameters specified in [30].

12

0.6 0.7 0.8 0.9 1
Processing capacity scaling factor a

40

50

60

70

80

90

SF
C

Ac
ce

pt
an

ce
 R

at
e(

%
)

Det-SFCLD
KSP-LE

(a)

10 ms 15 ms 20 ms
Latency Requirement

60

65

70

75

80

85

90

95

SF
C

Ac
ce

pt
an

ce
 R

at
e(

%
)

Det-SFCLD
KSP-LE

(b)

0 200 400 600 800 1000
Time (unit)

0

2

4

6

8

10

12

14

La
te

nc
y

vi
ol

at
io

n
(%

)

Det-SFCLA
KSP-LE

(c)

Fig. 8: (a) The comparison of SFC request acceptance rate vs. scaling factor a; (b) The comparison of SFC request acceptance
rate vs. latency requirement; (c) Latency violation over time.

In the simulation, the source nodes of SFC requests are
selected randomly from the edge nodes (44 MANs), while the
destination nodes of SFC requests are set from the switching
nodes(8 MCNs&MCBNs) randomly. In order to capture the
dynamic load, the arrival rate of SFC requests follow the
distribution [21] as shown in Fig.6. The lifetime of SFC
requests obey the exponential distribution with an average of
100 time units. We assume that all SFCs are running with 4
VNFs (i.e., Layer 1 RAN VNF, Layer 2&3 RAN VNFs, 5G
core VNF, common VNF) [35]. For each SFC request, the
resource block Nk, mean data rate λk,t(Mbps), memory(MB)
are set as randomly distributed between [50, 100], [10, 100]
and [100,500], respectively [30]. The E2E latency requirement
for each SFC request is set as 10 ms, 15 ms and 20 ms [36].

We set the simulation period as 1000 time units and repeat
the simulation in 20 epochs to eliminate contingency, in each
of which a set of SFCs arrive and leave the environment. After
a existing SFC leaves, the corresponding network resource will
be released and the network status will be updated accord-
ingly. The coefficients φn, φn,m are set randomly between
[1,2] among the nodes and links.

B. Compared Algorithm

Since there are not existing work studying the SFC configu-
ration with deterministic latency and jitter, thus we will give a
brief introduction to a straightforward algorithm as compared
algorithm before the discussion of evaluation results.
• K Shortest Path-Latency Equalization (KSP-LE): This

algorithm use ksp algorithm without considering deploy-
ment to obtain k available shortest paths for the SFC
deployment. For the CPU core allocation, it distributes
the processing latency budget on VNF instances equally,
which does not consider the resource cost on processing
latency. In the adjustment phase, it scales up/down the
VNF instances with the internal order until the E2E
service latency is met.

C. Result analysis

In Fig.8(a), the mean acceptance rate of SFC requests is
evaluated between the algorithms. The acceptance rate of
Det-SFCD is higher. Since Det-SFCD algorithm considers

TABLE III: Simulation Parameter Settings

Description Value

System Parameters
Network Topology TIM Metro-Regional

network
Number of edge nodes 44
Number of edge links 72
CPU capacity of MAN/MCN/MCBN 32/64/128 ×102cores
Memory capacity of MAN/MCN/MCBN 16/32/64 ×102GB
Bandwidth capacity of edge links 100 Gbps
Maximum CPU core for VNF instance 8
CPU frequency 2 GHz

RAN VNF Computational Model
Upper layer scaling factor, θ2 2
Layer 1 scaling factor, θ1 1
Model [28]-specific constant, a0 32.583
Model [28]-specific constant, a1 1.072
Model [28]-specific constant, a2 0.03
Average MCS index, iMSC,k 16

SFC Parameters
SFC arrival rate Fig.6
Lifetime of each SFC X ∼ E(1

100
)

Packet size 64 Bytes
Number of VNFs per SFC request 4
Resource block Nk [50, 100]
Memory demand of VNF instance [100, 500]MB
Mean user rate, λk,t [10, 100] Mbps
Maximum tolerated latency, Lk {10, 15, 20}ms
ρ2 for Layer 2&3 functions 0.2
ρ3 for 5G core functions 0.2
ρ4 for common functions 0.1

Simulation Parameters
Execution period of Det-SFCLM 1000 time units
Jitter threshold ε 10 %
T 5 time units

the deployment cost when selecting the available paths for
SFC requests, which will reduce the resource bottleneck
and enhance the SFC request acceptance rate. Compared to
our proposed algorithm, KSP-LE pays no attention to the
remaining resources in the network. It chooses the shortest
paths simply, which will increase the probability of embedding
failure. due to the reason discussed above. Note that we also
investigate on how the network capacity will affect the SFC
acceptance rate by setting the scaling factor a of CPU resource.
With the scaling factor a increasing from 0.6 to 0.9, the SFC
acceptance rate increase from the range about 58-64% to the
range about 96-100%. This is because, if the edge nodes are

13

equipped with more resource, SFC requests are more likely to
be served in a load balancing way. Moreover, when the scaling
factor a exceeds 0.9, the impact of network capacity on the
acceptance rate is not obvious. We also present the influence
of latency requirement Lk of SFC on the acceptance rate of
algorithms. As shown in the Fig.8(B), with the increasing
of the value of latency requirement, the acceptance rate also
increases from range about 77-83% to 83-93% of Det-SFCD
algorithm. Because lower latency requirement will lead to
higher CPU resource requirement, which will in turn decrease
the overall acceptance rate.

0 200 400 600 800 1000
Time (unit)

0

20

40

60

80

Av
er

ag
e

CP
U

ut
iliz

at
io

n
(%

)

Det-SFCLA
KSP-LE

Fig. 9: Average CPU utilization over time.

We then evaluate the performance of Det-SFCA in terms
of the latency violation over time. As shown in Fig.8(c), the
service latency violation of SFCs happen earlier with KSP-
LE than with Det-SFCA. The latency violation is low since
the available resources are adequate in the beginning of the
simulation and the acceptance ratio is high. After t = 400, the
latency violation is going to decrease, due to the reduction of
SFC arrivals. Based on this, we have also shown the average
CPU utilization over the time in Fig.9. As discussed above, the
average CPU utilization increases rapidly with the deployment
of new SFCs, due to the adequate node and link capacities.
After t = 300, the CPU utilization increases slowly and even
decrease. On the one hand, the SFC arrivals at t = 300 is
decreasing, on the other hand, the node capacities are almost
occupied by the existing SFCs in the networks. Much more
SFCs will be rejected at this time than before. Compared to
KSP-LE, Det-SFCA can result in a higher utilization. Without
considering deployment cost, KSP-LE make a lower utilization
of CPU resources by rejecting more SFC requests due to
resource bottleneck. And during the adjustment phase, if the
resource adjustment is performed without taking the historical
network load into account. For example, if we scale up all
the SFCs with increasing traffic load within on edge node,
it is more likely to fail to scale up some SFCs, which will
also in turn results in lower CPU resource utilization. Finally,
Det-SFCA keeps about 85% mean CPU utilization rate under
heavy network load during the 800-1000 time units.

We evaluate the performance of Det-SFCLM and KSP-LE
on the overall profits, in Fig.10. Fig.10(a) show the evaluation

of accumulated network revenue derived by accepting SFC
requests over time units. Since the traffic data rate directly
results in the bandwidth consumption and latency requirement
affect the CPU processing resource allocation. Thus, we jointly
consider the data rate and latency requirement of a SFC, which
can be seen as the indicators of service level agreement (SLA)
with ISP, to define the revenue of accepting this SFC into
networks. According to the SFC request arrival rate shown in
Fig.6, the traffic load decreases between 200-400 time units
and increases between 600-800 time units, the growth rates
of accumulated revenue vary in these two time periods. In
addition, we add another scaling factor b of bandwidth, and
set 80% CPU capacity of physical nodes (a=0.8,b=1) and 80%
bandwidth capacity of physical links (a=1,b=0.8), respectively,
in order to investigate the impact of network capacity on
the revenue. As shown in the figure, when we scale down
the network capacity (i.e., bandwidth and CPU capacity), the
overall revenue decrease compared with the case with original
capacity, since less SFC requests are accepted. Furthermore,
compared to scaling down the CPU capacity (a=0.8), decreas-
ing the network bandwidth capacity (b=0.8) leads to more
network bottleneck when deploying SFC requests. Once an
available path is selected, the communication channel for the
traffic steering of SFC requests is fixed, whereas, there are
more candidate localities for embedding VNF instances. If
the bandwidth capacity of one of the link along the path, the
SFC will lose the opportunity to be embedded. Thus, network
bandwidth capacity is the main reason that will cause network
congestion for SFC deployment.

In Fig.10(b), we evaluate the resource cost of embedding
SFC requests. Since Det-SFCD algorithm considers the op-
timal resource cost when allocating latency budgets on the
VNF instances of a SFC, it achieves a lower overall resource
cost compared with latency equalization scheme. Next, we
investigate the impact of latency requirement Lk on the
resource cost. We set the latency requirement Lk as 10 ms,
15 ms and 20 ms. The result shows the SFC requests with
stricter latency requirements consume more network resources
and the case with Lk = 10 ms obtains about 20% higher
resource cost than the case with Lk = 15 ms. The Det-
SFCLM outperforms the KSP-LE in terms of revenue and
cost, as a result, it gains higher overall profits. As shown in
Fig.10(c), we set the Lk = 20 ms and a = 1, b = 1, Det-
SFCLM obtains about 35% higher accumulated overall profits
that KSP-LE.

Finally, we evaluate performance of Det-SFCLM on the
mean latency and jitter which is depicted in Fig.11. We set
the latency threshold ε = 10%, then we can see that the mean
latency experienced by the SFCs are closed to the latency
requirement. Although the average latency of Det-SFCLM and
KSP-LE are close, the jitter of Det-SFCLM is less the one of
KSP-LE, as the latency violation of KSP-LE is much more
compared with Det-SFCLM, as shown above. Also, the jitter
will increase with the data rate. Since the probability of failing
to scaling up SFC will increase as the data rate increases.
When data rate is lower, the required CPU resources are much
lower than the case with higher data rates. Thus, the system is
more likely to scale up the SFC with fewer processing resource

14

0 200 400 600 800 1000
Time (unit)

0

1000

2000

3000

4000

5000

Re
ve

nu
e

(k
$)

Det-SFCLM a=1,b=1
Det-SFCLM a=0.8,b=1
Det-SFCLM a=1,b=0.8
KSP-LE a=1,b=1

(a)

0 200 400 600 800 1000
Time (unit)

0

500

1000

1500

2000

Co
st

 (k
$)

Det-SFCLM L_k=10 ms
Det-SFCLM L_k=15 ms
Det-SFCLM L_k=20 ms
KSP-LE L_k=20 ms

(b)

0 200 400 600 800 1000
Time (unit)

0

250

500

750

1000

1250

1500

1750

2000

Pr
of

it
(k

$)

Det-SFCLM
KSP-LE

(c)

Fig. 10: (a) The comparison of revenue over time; (b) The comparison of cost over time; (c)Comparison of overall profits over
time

20 40 60 80 100 120 140 160 180 200
Data rate (Mbps)

10

20

30

40

50

La
te

nc
y

an
d

Jit
te

r (
m

s)

Det-SFCLM 10 ms
Det-SFCLM 20 ms
Det-SFCLM 50 ms
KSP-LE 50 ms

Fig. 11: The mean latency and jitter vs. data rate.

during the adjustment phase.

VII. CONCLUSION

In this paper, we study the deterministic SFC lifetime
management problem in 5G edge fabric with the objective
of maximizing the overall profits for ISP and ensuring the
bounded E2E service latency and jitter. Then the Det-SFCD
and Det-SFCA algorithms are proposed to solve this prob-
lem. Det-SFCD tries to select optimal paths and determine
processing resource allocation with minimal resource cost for
SFC deployment, while keeping the service latency within the
latency requirement. Det-SFCA adjust the processing resource
allocation for VNF instances of SFC due the traffic variation
in order to ensure a lower jitter (latency variation). These
two algorithms jointly solve the deterministic SFC lifetime
management efficiently. Performance evaluation shows that
the proposed algorithms obtains about more than 15% en-
hancement in SFC acceptance rate and average 35 % more
overall profits than the compared algorithm. In the future, we
will investigate on how to ensure the deterministic latency
and jitter during the SFC migration. And we also plan to
design the proactive resource management during the SFC
lifetime management including SFC deployment, adjustment
and migration with the traffic and network load prediction.

ACKNOWLEDGMENT

This work was partially supported by the European Unions
Horizon 2020 Research and Innovation Program through the
MonB5G Project under Grant No. 871780. It was also sup-
ported in part by the Academy of Finland 6Genesis project
under Grant No. 318927 and IDEA-MILL with grant number
33593.

REFERENCES

[1] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
internet of things (iiot): An analysis framework,” Computers in industry,
vol. 101, pp. 1–12, 2018.

[2] S. Samii and H. Zinner, “Level 5 by layer 2: Time-sensitive networking
for autonomous vehicles,” IEEE Communications Standards Magazine,
vol. 2, no. 2, pp. 62–68, 2018.

[3] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial
communication: Automation networks in the era of the internet of things
and industry 4.0,” IEEE industrial electronics magazine, vol. 11, no. 1,
pp. 17–27, 2017.

[4] N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic networking
architecture,” draft-ietf-detnet-architecture-03 (work in progress), 2017.

[5] E. Grossman, C. Gunther, P. Thubert, P. Wetterwald, J. Raymond,
J. Korhonen, Y. Kaneko, S. Das, Y. Zha, B. Varga et al., “Deterministic
networking use cases,” IETF draft, 2018.

[6] H. Hantouti, N. Benamar, and T. Taleb, “Service function chaining in
5g & beyond networks: Challenges and open research issues,” IEEE
Network, vol. 34, no. 4, pp. 320–327, 2020.

[7] H. Hantouti, N. Benamar, T. Taleb, and A. Laghrissi, “Traffic steering for
service function chaining,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 1, pp. 487–507, 2018.

[8] O. R. Alliance, “O-ran: towards an open and smart ran,” White Paper,
2018.

[9] H. Yu, T. Taleb, and J. Zhang, “Deterministic service function chaining
over beyond 5g edge fabric,” IEEE Globecom 2021.

[10] L. Gupta, M. Samaka, R. Jain, A. Erbad, D. Bhamare, and C. Metz,
“Colap: A predictive framework for service function chain placement in
a multi-cloud environment,” in 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC). IEEE, 2017, pp.
1–9.

[11] R. Gouareb, V. Friderikos, and A.-H. Aghvami, “Virtual network func-
tions routing and placement for edge cloud latency minimization,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2346–
2357, 2018.

[12] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[13] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in nfv-enabled
enterprise datacenter networks,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 554–568, 2017.

15

[14] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 731–741.

[15] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal vnfs
placement in cdn slicing over multi-cloud environment,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 616–627, 2018.

[16] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Transac-
tions on Network and Service Management, vol. 13, no. 4, pp. 725–739,
2016.

[17] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5g network infrastructure,” in
2015 IEEE International Conference on Communications (ICC). IEEE,
2015, pp. 3879–3884.

[18] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal network
function virtualization realizing end-to-end requests,” in 2015 IEEE
Global Communications Conference (GLOBECOM). IEEE, 2015, pp.
1–6.

[19] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in 2015 IEEE 4th In-
ternational Conference on Cloud Networking (CloudNet). IEEE, 2015,
pp. 171–177.

[20] A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer, and C. Mas-
Machuca, “Holu: Power-aware and delay-constrained vnf placement and
chaining,” IEEE Transactions on Network and Service Management,
2021.

[21] J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in
geo-distributed cloud system,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 10, pp. 2179–2192, 2018.

[22] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,” IEEE Transactions on Network and
Service Management, vol. 14, no. 3, pp. 543–553, 2017.

[23] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow
routing with proactive demand prediction,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 486–
494.

[24] I. Leyva-Pupo, C. Cervelló-Pastor, C. Anagnostopoulos, and D. P.
Pezaros, “Dynamic scheduling and optimal reconfiguration of upf place-
ment in 5g networks,” in Proceedings of the 23rd International ACM
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems, 2020, pp. 103–111.

[25] Y. Liu, X. Shang, and Y. Yang, “Joint sfc deployment and resource
management in heterogeneous edge for latency minimization,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 8, pp.
2131–2143, 2021.

[26] Q. Xu, J. Wang, and K. Wu, “Learning-based dynamic resource pro-
visioning for network slicing with ensured end-to-end performance
bound,” IEEE Transactions on Network Science and Engineering, vol. 7,
no. 1, pp. 28–41, 2018.

[27] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and D. Xu,
“vslicer: Latency-aware virtual machine scheduling via differentiated-
frequency cpu slicing,” in Proceedings of the 21st international sympo-
sium on High-Performance Parallel and Distributed Computing, 2012,
pp. 3–14.

[28] S. Khatibi, K. Shah, and M. Roshdi, “Modelling of computational
resources for 5g ran,” in 2018 European Conference on Networks and
Communications (EuCNC). IEEE, 2018, pp. 1–5.

[29] G. T. RAN, “Ts 38.214, nr; physical layer procedures for data,” V15.3.0,
Sept. 2018.

[30] J. Janković, Ž. Ilić, A. Oračević, S. A. Kazmi, and R. Hussain, “Ef-
fects of differentiated 5g services on computational and radio resource
allocation performance,” IEEE Transactions on Network and Service
Management, 2021.

[31] J. Ren, G. Yu, Y. He, and G. Y. Li, “Collaborative cloud and edge
computing for latency minimization,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 5, pp. 5031–5044, 2019.

[32] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[33] B. Y. Chen, X.-W. Chen, H.-P. Chen, and W. H. Lam, “Efficient algo-
rithm for finding k shortest paths based on re-optimization technique,”
Transportation Research Part E: Logistics and Transportation Review,
vol. 133, p. 101819, 2020.

[34] Z. Luo and C. Wu, “An online algorithm for vnf service chain scaling
in datacenters,” IEEE/ACM Transactions on Networking, vol. 28, no. 3,
pp. 1061–1073, 2020.

[35] H. Yu, F. Musumeci, J. Zhang, M. Tornatore, and Y. Ji, “Isolation-aware
5g ran slice mapping over wdm metro-aggregation networks,” Journal
of Lightwave Technology, vol. 38, no. 6, pp. 1125–1137, 2020.

[36] L. Pantel and L. C. Wolf, “On the impact of delay on real-time
multiplayer games,” in Proceedings of the 12th international workshop
on Network and operating systems support for digital audio and video,
2002, pp. 23–29.

Hao Yu received the B.S. and Ph.D degree in com-
munication engineering from the Beijing University
of Posts and Telecommunications (BUPT), Beijing,
China, in 2015 and 2020. He was also a Joint-
Supervised Ph.D. Student with the Politecnico di
Milano, Milano, Italy. He is currently a Postdoctoral
Researcher with the Department of Communications
and Networks, Aalto University, Espoo, Finland.
His research interests include network virtualization,
software defined networking, time sensitive network,
deterministic networks.

Tarik Taleb received the B.E. degree (with dis-
tinction) in information engineering and the M.Sc.
and Ph.D. degrees in information sciences from
Tohoku University, Sendai, Japan, in 2001, 2003,
and 2005, respectively. He is currently a Professor
with the School of Electrical Engineering, Aalto
University, Espoo, Finland. He is the founder and the
Director of the MOSA!C Lab, Espoo, Finland. He
is a part-time Professor with the Center of Wireless
Communications, University of Oulu, Oulu, Finland.
He was an Assistant Professor with the Graduate

School of Information Sciences, Tohoku University, in a laboratory fully
funded by KDDI until 2009. He was a Senior Researcher and a 3GPP
Standards Expert with NEC Europe Ltd., Heidelberg, Germany. He was then
leading the NEC Europe Labs Team, involved with research and development
projects on carrier cloud platforms, an important vision of 5G systems. From
2005 to 2006, he was a Research Fellow with the Intelligent Cosmos Research
Institute, Sendai. He has also been directly engaged in the development and
standardization of the Evolved Packet System as a member of the 3GPP
System Architecture Working Group. His current research interests include
architectural enhancements to mobile core networks (particularly 3GPP’s),
network softwarization and slicing, mobile cloud networking, network func-
tion virtualization, software defined networking, mobile multimedia streaming,
intervehicular communications, and social media networking.

Prof. Taleb was a recipient of the 2017 IEEE ComSoc Communications
Software Technical Achievement Award in 2017 for his outstanding contri-
butions to network softwarization and the Best Paper Awards at prestigious
IEEE-flagged conferences for some of his research work. He was a corecipient
of the 2017 IEEE Communications Society Fred W. Ellersick Prize in 2017,
the 2009 IEEE ComSoc Asia–Pacific Best Young Researcher Award in 2009,
the 2008 TELECOM System Technology Award from the Telecommunica-
tions Advancement Foundation in 2008, the 2007 Funai Foundation Science
Promotion Award in 2007, the 2006 IEEE Computer Society Japan Chapter
Young Author Award in 2006, the Niwa Yasujirou Memorial Award in 2005,
and the Young Researcher’s Encouragement Award from the Japan Chapter
of the IEEE Vehicular Technology Society in 2003. He is a member of the
IEEE Communications Society Standardization Program Development Board.
He is/was on the Editorial Board of the IEEE TRANSACTIONS ON WIRE-
LESS COMMUNICATIONS, IEEE Wireless Communications Magazine, the
IEEE JOURNAL ON INTERNET OF THINGS, the IEEE TRANSACTIONS
ON VEHICULAR TECHNOLOGY, IEEE COMMUNICATIONS SURVEYS
AND TUTORIALS, and a number of Wiley journals.

16

Jiawei Zhang received the Ph.D. degree from
the State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of
Posts and Telecommunications (BUPT), China. He
currently is an associate Professor with BUPT. Dr.
Zhang has authored and co-authored more than 30
OFC/ECOC papers and top journal papers in optical
communication and networks. His research interests
include the collaboration of optical networks with
IP, wireless and cloud/edge, currently with an em-
phasis on the advanced technologies for providing

deterministic connections for future network applications. He served on the
Technical Program Committees for the IEEE DRCN 2018-2020, IEEE ICNC
2017-2018, ACP2020, and for the Workshop on Cloud Computing Systems,
Networks and Applications at the IEEE GLOBECOM 2014-2016, ICC 2015-
2016, and INFOCOM 2017-2018 conferences. He also severed as a Guest
Editor of the special issue on Resilience in future 5G Photonic Networks of
Photonic Network Communications journal (Springer).

