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Abstract—Over-the-air federated learning (FL) is a promising
privacy-preserving edge artificial intelligence paradigm, where
over-the-air computation enables spectral-efficient model aggre-
gation by achieving simultaneous communication and aggrega-
tion. However, due to limited transmit power, the performance
of over-the-air FL is limited by the device with the worst
channel condition toward the edge server. In this paper, we
leverage reconfigurable intelligent surface (RIS) to mitigate
the communication bottleneck of over-the-air FL and explicitly
characterize the corresponding convergence upper bound. The
convergence analysis illustrates the detrimental impact of the
accumulated aggregation error over all rounds and inspires us
to formulate a time-average transmission distortion minimization
problem by jointly optimizing the transceiver and RIS phase-
shifts. To reduce the computation complexity and enhance the
model aggregation accuracy, we develop a graph neural network
(GNN) based learning algorithm to directly map channel co-
efficients to the optimized network parameters. By exploiting
permutation equivalence and invariance properties of graphs, the
parameter dimension of the proposed algorithm is independent
of the number of edge devices, which reduces the computational
complexity and improves the algorithmic scalability. Simulations
show that the proposed algorithm speeds up the computation
by three orders of magnitude compared to the baselines, while
achieving performance superiority and algorithmic robustness.

Index Terms—Federated learning, graph neural network, re-
configurable intelligent surface, over-the-air computation.

I. INTRODUCTION

The advancement of artificial intelligence (AI) is boosting
the development of many intelligent applications (e.g., virtual
reality, smart industry, autonomous driving) in future wireless
networks [1]. Numerous raw data generated by edge devices
can be exploited for intelligence distillation at the network
edge [2]. However, as the data privacy concern increases,
it is undesirable to transfer raw data from edge devices to
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an edge server. To alleviate this privacy concern, federated
learning (FL), as a privacy-preserving edge AI paradigm, has
recently been proposed [3]. In particular, FL allows multiple
edge devices to cooperatively train a global model under the
coordination of an edge server without disclosing any raw data
of edge devices.

To implement FL over wireless networks, high-dimensional
model transmission between devices and server over fading
channels is required. With limited radio resource, designing
communication-efficient model/gradient transmission schemes
has attracted much attention [4]–[12]. Specifically, the au-
thors in [4] proposed to quantize the local models as binary
sequences to alleviate the communication load. The authors
in [5] exploited the model sparsification technique to reduce
the bandwidth requirement. Device selection is another useful
technique that enables FL over bandwidth-limited wireless
networks. The authors in [6] developed a multi-armed bandit
device selection strategy to minimize the training latency of
FL. Transmission reliability was further considered for device
selection in [7] to enhance the learning performance. The
authors in [8] proposed robust FL design for both expectation-
based and worst-case noisy models. Momentum FL was pro-
posed in [9] to accelerate the convergence and in turn reduce
the communication overhead. Moreover, joint optimization of
device selection and sub-channel allocation was studied in [10]
to achieve adaptive model transmission. The authors in [11]
proposed to achieve energy-efficient FL by jointly optimizing
communication and computation resources. All the above
works utilized orthogonal multiple access schemes to achieve
reliable model aggregation. A limited number of resource
blocks restricts the amount of edge devices participating in FL
training and is the performance bottleneck of FL over wireless
networks.

To alleviate this issue, over-the-air computation (AirComp)
is an efficient technique for enabling spectrum-efficient uplink
model aggregation in FL [13]–[17]. With AirComp, multiple
edge devices that share the same radio channel simultaneously
transmit their models/gradients. Because of the inherent signal
superposition property, the edge server directly receives an ag-
gregation of the concurrently transmitted models, which can be
adopted to update the global model. To mitigate transmission
distortion due to channel fading and receiver noise, various
studies were proposed from the perspectives of transmit power
control [13], [14], receive beamforming design [15], device
selection [16], and bandwidth allocation [17]. AirComp-based
FL requires the signals transmitted by edge devices to be
aligned at the edge server. Because of limited transmit power,
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the edge device with the worst channel condition toward the
edge server determines the signal alignment error, which in
turn affects the performance of AirComp-based FL.

Reconfigurable intelligent surface (RIS) provides an ef-
fective solution to alleviate the performance bottleneck of
AirComp-based FL by adaptively reconfiguring the propaga-
tion environment [18]–[26]. RIS generally consists of many
passive reflection elements, which can be dynamically adjusted
to reflect the incident signal in the desired manner, thereby
facilitating signal alignment at the receiver. RIS has been
leveraged to enhance the differential privacy [18], perfor-
mance robustness [19], [20], energy efficiency [21], [22], and
spectrum efficiency [23]. In [24], the authors proposed an
RIS-assisted AirComp-based FL framework and developed an
effective resource allocation algorithm based on the theoretical
convergence analysis. The authors in [25] tackled the straggler
issue in AirComp-based FL by jointly optimizing device
selection, AirComp transceiver, and RIS phase-shifts. How-
ever, all these works studied the resource allocation for each
communication round but ignored a key feature of FL, i.e., FL
involves multiple communication rounds and its performance
is determined by the model aggregation errors accumulated
over all rounds. Without optimizing resource allocation from
a long-term perspective may degrade the learning performance.
Moreover, although deploying RIS can enhance the learning
performance, it incurs a high computation complexity for joint
AirComp transceiver and RIS phase-shift optimization. These
two issues motivate this paper.

Deep learning has recently been adopted to achieve
computation-efficient resource allocation by learning a map-
ping from channel state information (CSI) to system design
[27]–[32]. In particular, graph neural networks (GNN) has
a great potential in improving the algorithmic scalability for
resource allocation [33]–[35]. By leveraging the permutation
equivalence and invariance, the authors in [33] developed a
random edge GNN for power allocation for wireless networks
with frequency reuse, which was extended to the scenario with
multiple antennas in [34]. The authors in [35] developed a
GNN-based low-complexity resource allocation framework for
joint link scheduling, channel allocation, and power control.
Although GNN has been applied to maximize the network util-
ity, the salient feature of GNN (i.e., permutation equivalence
and invariance) has not been exploited to support efficient
resource allocation for over-the-air FL.

In this paper, we study an RIS-assisted over-the-air FL,
where AirComp and RIS are adopted to achieve fast and
accurate uplink model aggregation, respectively. We aim to
develop a scalable and computation-efficient algorithm that
jointly optimizes the AirComp transceiver and RIS phase-
shifts to enhance the performance of FL. Accomplishing such
a goal faces the following challenges. First, the metric for char-
acterizing the performance of FL in terms of communication
parameters is not directly available and can only be obtained
by conducting rigorous convergence analysis for the specifi-
cally designed wireless FL system. Second, the performance
of FL is determined by the communication errors accumulated
over all communication rounds, and hence should be evaluated
from a long-term perspective. This challenging issue is further

complicated by the average transmit power constraint. Third,
to enhance the FL performance, the AirComp transceiver and
RIS phase-shifts should be jointly optimized. Solving such
a joint optimization problem typically requires an alternating
optimization algorithm, which is computationally expensive.
To address these challenges, we conduct a rigorous conver-
gence analysis and formulate a joint optimization problem,
followed by developing a novel GNN-based learning algorithm
to achieve the efficient AirComp transceiver and RIS phase-
shifts design. We summarize the main contributions of this
paper as follows.

• We derive the convergence upper bound for RIS-assisted
over-the-air FL as a function of the average norm of the
global gradient, where the aggregation errors accumu-
lated over all communication rounds are taken into ac-
count. The convergence analysis motivates us to formu-
late a time-average transmission distortion minimization
problem, which requires AirComp transceiver and RIS
phase-shifts to be jointly optimized. Such a non-convex
joint optimization problem is solved by developing an
alternating optimization algorithm, which exploits the
time-sharing feature of the formulated problem.

• To reduce the computation complexity and enhance the
model aggregation accuracy, we develop a GNN-based
learning algorithm that directly maps the channel coef-
ficients to the optimized design of AirComp transceiver
and RIS phase-shifts. The proposed GNN framework
captures the intricate interaction among multiple edge
devices, RIS, and edge server, which enables the joint
optimization for signal alignment and noise suppression.
The permutation equivalence and permutation invariance
properties of GNN enhance the scalability of the de-
veloped learning framework. Moreover, the parameter
dimension of the proposed GNN-based learning algo-
rithm is independent of the number of edge devices,
which reduces the computational complexity and further
improves the algorithmic scalability.

• Simulations show the excellence of the proposed GNN-
based learning algorithm from the perspectives of test
accuracy, robustness versus different system parameters,
as well as computational efficiency. By exploiting the
unique features of GNN to jointly optimize the AirComp
transceiver and RIS phase-shifts, the proposed GNN-
based learning algorithm achieves a close performance
to the error-free transmission and significantly outper-
forms the optimization-based algorithm in terms of both
learning performance and computation complexity.

The remaining of this paper is organized as follows. Section
II presents the system model. The convergence analysis and
problem formulation are presented in Section III. We propose
an alternating optimization algorithm in Section IV. Section V
presents a GNN-based learning framework. Simulation results
are given in Section VI. Finally, Section VII concludes this
paper.

Notations: We use italic, boldface lower-case, and boldface
upper-case letters to represent scalar, vector, and matrix, re-
spectively. Mathematical operators †, diag(·), (·)T, (·)H, Tr(·),
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TABLE I
DEFINITION OF MAIN NOTATIONS

Notation Definition
Ω Dimension of model parameters
ξ Upper bound of local mini-batch gradient
M Total number of training samples

Υk(t) Local gradient of device k at the t-th round
Fk(w) Local loss function at device k
K Number of edge devices
γ Learning rate
η(t) Denoising factor at the t−th round
θn(t) Phase-shift of the n-th element at the t−th round
pi(t) Transmit power of device i at the t−th round

Γ Upper bounds the variance of Ω elements of Υk, ∀ k ∈ K
hci (t) Combined channel response between device i and the edge

server
T Total number of communication rounds
zd
k Representation vector of node k at layer d

E(·), | · |, and ‖ · ‖ denote the conjugate operation, diagonal
matrix, transpose, Hermitian transpose, trace, statistical expec-
tation, the cardinality of a set or the absolute value operation,
and the Euclidean norm, respectively. R and C denote the
real and complex spaces, respectively. The frequently used
notations are listed in Table I.

II. SYSTEM MODEL

A. RIS-Assisted Over-the-Air FL
As shown in Fig. 1, we consider an RIS-assisted over-

the-air FL network, where a single-antenna edge server co-
ordinates a set K = {1, . . . ,K} of K single-antenna de-
vices to train a global model with the assistance of an RIS.
Each edge device k ∈ K owns a local dataset denoted by
Dk = {(xkm,ykm) | 1 ≤ m ≤ Mk} for local model
training, where (xkm,ykm) denotes the m-th input feature
and label pair at device k, and Mk denotes the number of
training samples available at device k. We assume that the
training datasets at different edge devices are independent and
identically distributed (i.i.d.), and have the same number of
training samples, i.e., Mk = Mj ,∀ k, j ∈ K, as in [24],
[36]. We aim to find the optimal model parameter vector
w∗ ∈ RΩ that minimizes the global loss function F (w), i.e.,
minw F (w) = 1

M

∑
k∈KMkFk(w) = 1

K

∑
k∈K Fk(w), where

M =
∑
k∈KMk is the total number of training samples

and Fk(w) is local loss function at device k. In each round
t = 1, . . . , T , the following three steps are performed.
• Global model dissemination: Each edge device receives

global model w(t − 1) through the downlink channel
from the edge server at the beginning of round t.
Since the edge server transmits with a much greater
power than edge devices, it is reasonable to assume
that the distortion of the global model at each device
is negligible, as in [24], [37].

• Local model update: According to the received global
model w(t−1), each edge device k ∈ K evaluates its lo-
cal stochastic gradient Υk(t) = ∇Fk

(
w(t− 1);BFLk

)
,

where BFLk ⊂ Dk denotes the mini-batch containing
|BFLk | randomly sampled data samples.

• Local model aggregation: As the edge server only
requires the arithmetic mean of local gradients (i.e.,
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Fig. 1. Illustration of model aggregation in an RIS-assisted over-the-air FL
system.

Υ(t) = 1
K

∑
k∈KΥk(t)) for the global model update

(i.e., w(t)), we adopt AirComp to achieve low-latency
uplink gradient aggregation. With AirComp, the concur-
rently transmitted local gradients {Υk(t)}k∈K from K
edge devices can be added over-the-air, and the edge
server can directly receive a summation of these gra-
dients. Because of random channel fading and receiver
noise, the edge server recovers a noisy estimation of the
average gradient Υ(t). The achievable accuracy of local
model aggregation via AirComp is limited by the worst
channel among all device-server links [24]. To tackle this
issue, we leverage an RIS with N reflection elements
to mitigate the communication bottleneck and in turn
improve the gradient aggregation accuracy. By denoting
the recovered noisy estimation of Υ(t) as Υ̂(t), the edge
server updates the global model as

w(t) = w(t− 1)− γΥ̂(t), (1)

where γ denotes the learning rate.

B. Signal Model

To optimize RIS-assisted over-the-air FL, we describe the
signal model of the uplink gradient aggregation. After the
local training, each edge device k ∈ K calculates the mean
Ῡk(t) and variance π2

k(t) of local gradient Υk(t) as Ῡk(t) =

1
Ω

∑Ω
j=1 Υk,j(t) and π2

k(t) = 1
Ω

∑Ω
j=1

(
Υk,j(t) − Ῡk(t)

)2

,

respectively, where Υk,j(t) is the j-th element of Υk(t).
After receiving the local statistics {Ῡk(t), π2

k(t)}, the edge
server computes the global mean and variance as Ῡ(t) =
1
K

∑K
j=1 Ῡk(t) and π2(t) = 1

K

∑K
j=1 π

2
k(t), respectively, and

then broadcasts them to each edge device k for normaliza-
tion of Υk(t) as in [25]. The signal to be transmitted by
edge device k is normalized as sk(t) = Υk(t)−Ῡk(t)

π(t) , where
E[sk(t)] = 0 and E[sk(t)sk(t)T] = IΩ. We assume that the
gradient statistics {Ῡk(t), π2

k(t)} are transmitted in an error-
free manner as the size of the gradient statistics is generally
much smaller than that of the gradient vector [25].

Let g(t) ∈ CN , hr
i(t) ∈ CN , and hd

i (t) ∈ C be the channel
response vector between the RIS and edge server, channel
response vector between device i and RIS, and channel re-
sponse between device i and edge server, respectively. All
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channel responses are assumed to obey block-fading [38]. With
synchronized transmissions, the signal received at the edge
server in round t is

y(t)=
∑K

i=1

[
hd
i (t)+g(t)diag (v(t))hr

i(t)
]
bi(t)si(t)+n(t),

(2)
where bi(t) denotes the transmit scalar of device i, v(t) =
[βejθ1(t), βejθ2(t), . . . , βejθN (t)]T denotes the phase-shift vec-
tor of RIS with β being the reflection amplitude and
θn(t) being the reflection phase of the n-th element, and
n(t) ∼ CN (0, σ2I) denotes the additive white Gaussian noise
(AWGN) with variance σ2I . For simplicity, we set β to 1, as
in [24]–[26].

For notational ease, let hc
i (t) = hd

i (t)+g(t)diag(v(t))hr
i(t)

be the combined channel response between device i and
edge server. The transmit power of device i is denoted as
pi(t) ≥ 0. As many existing channel estimation strategies
[39]–[42] can be adopted to effectively estimate the CSI for
RIS-assisted wireless networks, we assume that the perfect
CSI is available in this paper. The communication overhead
due to channel estimation can be ignored as the pilot length
is generally much smaller than the size of the gradient vector,

as in [24]. By setting bi(t) =

√
pi(t)(h

c
i(t))

†

|hc
i(t)|

, the received

signal in (2) is y(t) =
∑K
i=1

(
|hc
i (t)|

√
pi(t)si(t)

)
+ n(t).

Besides, with an average power budget P̄k,∀ k ∈ K, we have
1
T

∑T
t=1 pk(t) ≤ P̄k,∀ k ∈ K. Upon receving signal y(t), the

edge server recovers the arithmetic mean of si(t) via applying
the denoising factor η(t) > 0 as follows

ŝ(t) =
y(t)√
η(t)

=
∑
i∈K

√
pi(t)|hc

i (t)|√
η(t)

si(t) +
n(t)√
η(t)

. (3)

As Υk(t) = π(t)sk(t) + Ῡ(t) and s(t) =
∑
k∈K sk(t), the

received stochastic gradient is Υ̂(t) = 1
Kπ(t)

(
ŝ(t)−s(t)

)
+

Υ(t) and the induced error in the uplink is

ē(t) =
1

K

(
ŝ(t)− s(t)

)
. (4)

By substituting (3) into (4), we have

ē(t) =
1

K

∑
i∈K

(√
pi(t)|hc

i (t)|√
η(t)

− 1

)
si(t) +

1

K

n(t)√
η(t)

. (5)

As can be observed, the aggregation accuracy of the local
gradients depends on the transmit power, the channel coef-
ficients, the RIS phase-shifts, the denoising factor, and the
receiver noise. We characterize the impact of these parameters
on FL in the following.

III. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION

In this section, we derive the upper bound of the time-
average norm of the global gradient for RIS-assisted over-the-
air FL and formulate an upper bound minimization problem.

A. Basic Assumptions

We first state several assumptions to facilitate the analysis.

Assumption 1. There always exists some constant F (w∗) that
lower bounds the global loss function, i.e., F (w) ≥ F (w∗),
∀ w.

Assumption 2. Fk(w) is continuously differentiable and is
smooth with non-negative constant S ≥ 0. The gradient
∇Fk(w) is also Lipschitz continuous with constant S, i.e.,

‖∇Fk(w)−∇Fk(w′)‖2 ≤ S‖w− w′‖2, ∀ w,w′. (6)

Assumption 3. The local mini-batch gradient Υk is an unbi-
ased estimate of ∇Fk(w) with a bounded variance, bounded
with a constant ξ ≥ 0, i.e., E [Υk] = ∇Fk(w) and Var(Υk) =
E[‖Υk −∇Fk(w)‖22] ≤ ξ2, where ξ ≥ 0 is a constant.

Assumption 4. There is a constant Γ ≥ 0 that upper bounds
the variance of Ω elements of Υk.

These assumptions are standard in the existing studies
of stochastic optimization [24], [25], [43]. With the above
assumptions, we obtain Lemma 1.

Lemma 1. The expected norm of the induced error is upper
bounded as

E[‖e(t)‖22] ≤ Ω
Γ(K + 1)

K2
Er(t), (7)

where

Er(t)=

K∑
k=1

(√
pk(t)|hd

i (t)+g(t)diag(v(t))hr
i(t)|√

η(t)
−1

)2

+
σ2

η(t)
.

Proof. See Appendix A.

According to Lemma 1, we derive the upper bound of
1
T

∑T−1
t=0 ‖∇F (w(t))‖22 in Theorem 1.

Theorem 1 (Convergence). With Assumptions 1-4, if γ < 1
2S

and after T rounds, we bound the time-average norm of the
global gradient as

1

T

T−1∑
t=0

‖∇F (w(t))‖22 ≤
2(F (w(0)− F (w∗)))

γ(1− 2γS)T︸ ︷︷ ︸
Initial optimality gap

+
2Sγξ2

K(1− 2γS)︸ ︷︷ ︸
Gradient variance induced gap

+
1 + 2γS

1− 2γS

1

T

T−1∑
t=0

E
[
‖ē(t)‖22

]︸ ︷︷ ︸
Instantaneous error︸ ︷︷ ︸

Time-average error

.

Proof. See Appendix B.

According to Lemma 1 and Theorem 1, we have the
following observations.
• Upper bound decomposition. The upper bound in

Theorem 1 consists of the initial optimality gap, gradient
variance induced gap, and time-average error. The initial
optimality gap approaches zero as T →∞. The gradient
variance induced gap is determined by the learning rate,
Lipschitz constant, number of edge devices, and the
variance of the local gradient. Specifically, enlarging
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the size of the mini-batch reduces the gradient variance
induced gap because the local mini-batch gradient can
be bounded with a smaller ξ when the batch size is
larger. Besides, having a greater number of participating
edge devices reduces the gap as well. Once these pa-
rameters are fixed, the gradient variance induced gap is
a constant. Thus, the time-average error dominates the
upper bound when parameters γ, ξ, and S are fixed and
T is large. This observation motivates us to minimize
the time-average error, which further enhances the FL
convergence performance1.

• Necessity of jointly optimizing AirComp transceiver
and RIS phase-shifts. According to Lemma 1, the time-
average error depends on the qualities of the combined
channels, which can be enhanced by optimizing the
RIS phase-shifts. In addition, the transmit power of
edge devices and the denoising factor determine the
trade-off between signal alignment and noise reduction.
Hence, to minimize the time-average error and in turn
enhance the learning performance, the RIS phase-shifts,
the transmit power, and the denoising factor should be
jointly optimized.

Observing the detrimental effect of transmission errors on
the convergence of FL, a joint optimization problem shall be
formulated to minimize the time-average error.

B. Problem Formulation

We aim to propose a scalable and efficient algorithm that
minimizes the time-average error. The corresponding opti-
mization problem is

P0 : min
{p(t)}

{v(t),η(t)}

1

T

T∑
t=1

∑
k∈K

(√
pk(t)|hc

k(t)|√
η(t)

− 1

)2

+
σ2

η(t)


s.t.

1

T

T∑
t=1

pk(t) ≤ P̄k,∀ k ∈ K,

|vj(t)| = 1,∀ j = 1, . . . , N, ∀ t = 1, . . . , T,
(8)

where p(t) = [p1(t), . . . , pK(t)] the transmit power vector of
edge devices. It is challenging to jointly optimize these vari-
ables for problem P0 because of the following reasons. First,
a large number of phase shifts leads to a high-dimensional
non-convex optimization problem. Second, the transmit power
{pk(t)}k∈K, the denoising factor η(t), and the phase-shift
vector {θj(t)}Nj=1 are coupled in the non-convex objective
function of problem P0. Third, the unit modulus constraints
of problem P0 are non-convex, which further increases the
difficulty of optimization. To solve problem P0, we first
develop an alternating optimization algorithm in Section IV,
and then propose a novel GNN-based learning algorithm in
Section V.

1The convergence result in Theorem 1 can be extended to the scenario with
non-i.i.d. data by defining a metric to characterize the divergence between
the global gradient and local gradient, and deriving an upper bound for the
accumulated difference between the global model and the individual local
model in terms of the norm of the global gradient and the metric that
characterizes the gradient divergence, as in [44]

IV. ALTERNATING OPTIMIZATION ALGORITHM

A. AirComp Transceiver Optimization

As problem P0 satisfies the time-sharing condition [45],
strong duality holds and thus the Lagrangian-duality method
can be applied. The Lagrangian function of problem P0 is

L({p(t),v(t), η(t), λk})

=
1

T

T∑
t=1

Er(t) +
∑
k∈K

λk

(
1

T

T∑
t=1

pk(t)− P̄k

)
,

where λk ≥ 0 denotes the dual variable with respect to the
transmit power constraint of device k. Hence, the Lagrangian
dual function is given by

G({λk}) = min
{p(t),v(t),η(t)}

L({p(t),v(t), η(t), λk}), (9)

and the Lagrangian dual problem is given by

max
{λk≥0}

G({λk}), ∀ k ∈ K. (10)

As the strong duality holds, problem P0 can be equiva-
lently solved by maximizing G({λk}). Note that G({λk}) is
obtained by solving the minimization problem in (9) for given
{λk | k ∈ K}. We decompose problem (9) into multiple sub-
problems as follows

min
{p(t),v(t),}
η(t),λk

∑
k∈K

(√
pk(t)|hc

k(t)|√
η(t)

− 1

)2

+
σ2

η(t)
+
∑
k∈K

λkpk(t).

(11)
When the phase-shift vector v(t) is fixed, the transmit power

and the denoising factor can be designed as follows [38]

p∗k(t) =

( √
|hc
k(t)|2η(t)

|hc
k(t)|2 + η(t)λk

)2

, (12)

where η(t) can be optimized by applying bisection search to
solve the following problem∑

k∈K

ζk(t)

(ζk(t)ν(t) + 1)
2 = σ2 (13)

with ζk(t) =
|hc
k(t)|2
λk

and ν(t) = 1
η(t) . The dual variables

{λk}k∈K can be optimized via a sub-gradient based method.
Specifically, to obtain the optimal {λk}k∈K that maximize
G({λk}), the dual variables {λk}k∈K can be updated as
follows

λk ← λk +m

(
1

T

T∑
t=1

pk(t)− P̄k

)
, ∀ k ∈ K, (14)

where 1
T

∑T
t=1 pk(t) − P̄k is the sub-gradient of G({λk}),

∀ k ∈ K and m is the step size.

B. RIS Phase-Shift Optimization

For a given p(t) and η(t), problem (11) can be rewritten as

P1 : min
v(t)

: φ(v(t))

s.t. |vj(t)| = 1,∀ j = 1, . . . , N, ∀ t = 1, . . . , T,
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where

φ(v(t)) =

K∑
k=1

[
pk(t)|hd

k(t) + ak(t)v(t)|2

η
−

2

√
pk(t)

η(t)
|hd
k(t) + ak(t)v(t)|

]
,

the constant term
∑
k∈K λkpk(t) is ignored, and ak(t) =

g(t)diag(hr
k(t)). By defining v̌(t) = [v(t), 1]T , rk(t) =

[ak(t), hd
k(t)], and matrices Rk(t) = rH

k (t)rk(t), problem P1

is given by

P2 : min
v̌(t)

K∑
k=1

(√
pk(t)

η(t)
v̌H(t)Rk(t)v̌(t)− 1

)2

s.t. |vj(t)| = 1,∀ j = 1, . . . , N,

(15)

which is non-convex due to the square root operation. Note that
the optimal v̌ for problem P2 forces

√
pk(t)
η(t) v̌

H(t)Rk(t)v̌(t)

to approach 1. Hence, we can use a convex function with
respect to v̌, i.e., pk(t)

η(t) v̌
H(t)Rk(t)v̌(t), to approximate the

square root term. By replacing
√

pk(t)
η(t) v̌

H(t)Rk(t)v̌(t) with
pk(t)
η(t) v̌

H(t)Rk(t)v̌(t), problem P2 can be converted to the
following non-convex quadratically constrained quadratic pro-
gramming (QCQP) problem

P3 : min
v̌(t)

K∑
k=1

(
pk
η
v̌HRkv̌ − 1

)2

s.t. |v̌j(t)|2 = 1, ∀ j = 1, . . . , N, ∀ t = 1, . . . , T,
(16)

where v̌n(t) is the n-th element of v̌(t). To convexify problem
P3, we adopt matrix lifting to linearize problem P3. We
denote v̌H(t)Rk(t)v̌(t) as Tr(Rk(t)V (t)), where V (t) =
v̌(t)v̌H(t). Problem P3 can be rewritten as

P4 : min
V

K∑
k=1

(
pk(t)

η(t)
Tr(Rk(t)V (t))− 1

)2

s.t. Vi,i(t) = 1, ∀i = 1, . . . , N + 1,

rank(V (t)) = 1,

V (t) � 0, ∀ t = 1, . . . , T.

(17)

For the positive semi-definite (PSD) matrix V , constraint
rank (V (t)) = 1 is equivalent to Tr(V (t)) − ‖V (t)‖2 = 0,
where ‖V (t)‖2 denotes the spectral norm of matrix V (t).
Hence, we reformulate problem P4 as

P5 : min
V (t)

K∑
k=1

(
pk(t)

η(t)
Tr (Rk(t)V (t))− 1

)2

+ µ(t)

s.t. Vi,i(t) = 1, ∀ i = 1, . . . , N + 1,

V (t) � 0, ∀ t = 1, . . . , T,

(18)

where µ(t) = ρ(Tr(V (t)) − ‖V (t)‖2). Problem P5 is a
semi-definite programming (SDP) problem. By forcing the
difference between trace norm and spectral norm to be zero,
an exact rank-one optimal solution V ∗(t) can be found.
By decomposing via Cholesky decomposition, i.e., V ∗(t) =
v̌H(t)v̌(t), we obtain a feasible solution v̌(t). If the objective

value of (18) fails to be zero, then problem P5 is considered
to be infeasible.

By now, we propose an alternating optimization algorithm to
solve problem P0. In each iteration, the phase-shift vector is
optimized by solving the convex problem P5. After updating
the combined channel coefficients with optimized v∗(t), we
can update p∗(t), η∗(t), and {λ∗k}k∈K in an alternating manner
by utilizing (12), (13), and (14), respectively.

Though the semi-definite relaxation (SDR) based method
can be applied to solve problem (17) by ignoring the rank-
one constraint, the returned solution for such a relaxed SDP
problem may fail in meeting the rank-one constraint, where
the Gaussian randomization method can then be adopted
to obtain a suboptimal solution. In contrast, the proposed
optimization-based method represents the rank-one constraint
with the difference between the trace norm and spectral norm
being zero. This mitigates the drawback of the SDR-based
method, in particular when the number of RIS reflective
elements is large. In addition, though the proposed alternating
optimization algorithm is effective in solving problem P0, it is
computationally expensive due to the following reasons. First,
the optimization of η(t) is achieved via bisection search for
the solution of (13), which is required in each inner iteration.
Second, phase-shift vector v(t) is optimized by solving several
SDP problems, and the computational complexity in solving a
single SDP problem increases exponentially with the number
of RIS elements. Third, the optimization-based algorithm is
executed in an alternating manner, which further increases the
computation complexity. From the perspective of aggregation
accuracy, the optimization-based algorithm only achieves sub-
optimal performance because of the alternating optimization.

C. Computation Complexity

We tackle problem P0 by solving a series of SDP problems.
The computational complexity of solving each SDP problem
is O((N + 1)4.5 log(1/εbis

2 )), where εbis
2 denotes the accu-

racy. Therefore, the computational complexity for RIS phase-
shifts optimization is O(J(N + 1)4.5 log(1/εbis

2 )), where J is
the number of the SDR problems. For optimizing transmit
power and denoising factor, the main iteration is bisection
search for optimal η, thereby the computational complexity
is O(log(1/εbis

1 )), where εbis
1 is the accuracy of bisection

search. Hence, the computational complexity is O(G(J(N +
1)4.5 log(1/εbis

2 ) + log(1/εbis
1 ))), where G is the number of

alternating iterations. The computational complexity is dom-
inated by the optimization of RIS, the complexity of which
grows exponentially with the number of RIS elements.

To this end, we shall develop a GNN-based learning algo-
rithm, which is of low computation complexity and achieves
joint optimization for RIS-assisted over-the-air FL.

V. GNN-BASED LEARNING ALGORITHM

In this section, we develop a novel GNN-based learning
algorithm to solve problem P0, and elaborate on the corre-
sponding architecture design and training of neural networks.
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A. Graphical Representation

To circumvent the limitations of the optimization-based
algorithm, we develop a GNN-based learning framework to
learn a direct mapping between the channel coefficients and
the optimal parameter setting. We denote the mapping function
by κ(·), which maps the channel coefficients (i.e., {hd

i (t)} and
{g(t)diag(hr

i(t))}) to devices’ transmit powers (i.e., p(t)),
denoising factor (i.e., η(t)), and RIS phase-shift vector (i.e.,
v(t)). Hence, we express the mapping function as

{p(t),v(t), η(t)} = κ(hd
i (t), g(t)diag(hr

i(t))), (19)

and solving problem P0 can be interpreted as learning the
optimal mapping function κ(·). We leverage the universal
approximation property of deep neural networks (DNN) to
parameterize the mapping function κ(·) between the channel
coefficients and the optimized parameter setting, and then
train the neural networks in a data-driven manner to learn the
optimal mapping function.

As the objective of problem P0 is to simultaneously
minimize the error due to signal misalignment and the receiver
noise, the AirComp transceiver design (i.e., transmit power and
denoising factor) and the RIS phase-shifts should be optimized
in a coordinated manner. Hence, we develop a GNN-based
learning framework to learn the mapping function and enhance
the learning performance. The graph consists of K+ 2 nodes,
which are connected by 2K + 1 edges. In particular, the K
edge devices are represented by nodes 1 to K, while the
edge server and the RIS are represented by node K + 1 and
node K + 2, respectively. The representation vector of node
k is denoted as zk, which should be trained to have all the
useful information required for establishing the mapping. The
representation vectors are updated in a layer-wise manner,
where each layer consists of both combining and aggregation
operations that take the representation vectors in the preceding
layer as the input and will be elaborated in the next subsection.
After updating, all representation vectors should have enough
information for the joint AirComp transceiver and RIS phase-
shifts design. We can then directly obtain the optimized
setting of AirComp transceiver from representation vectors
z1, . . . ,zK+1 and that of RIS from representation vector
zK+2.

Compared with conventional fully connected neural net-
works (FCNN), GNN has the following advantages. First,
GNN can capture the interaction among multiple edge devices,
RIS, and edge server via the combining and aggregation
operations, i.e., the update of each node exploits the repre-
sentation vectors of other nodes. Hence, the coupling among
the optimization variables is captured by GNN to achieve joint
optimization for aligning the signals transmitted by different
edge devices and meanwhile reducing the detrimental impact
of receiver noise, thereby enhancing the learning performance.
Second, the inherent permutation equivalence and permutation
invariance properties of GNN can be leveraged to enhance
the scalability of the developed learning framework [46]. In
particular, permutation equivalence ensures that a permutation
of device channels leads to the same permutation of the
transmit power control vector p(t), while the permutation

invariance ensures that the phase-shift vector and the denoising
factor is independent of the permutation of device channels.
Third, in each layer of GNN, all edge devices share the same
modules for combining and learning operations. Meanwhile,
GNN is trained by optimizing the parameters of these modules
in different layers, which is very different from optimiz-
ing the weights between adjacent hidden layers in FCNN.
Hence, GNN reduces the model complexity as its parameter
dimension does not depend on the number of edge devices.
As a result, the proposed GNN-based learning framework
is scalable. When the amount of edge devices changes, the
proposed framework can adapt to the new scenario by simply
adjusting the number of modules, while the FCNN-based
framework has to re-train the neural network. In summary,
the proposed framework is of low model complexity and high
training efficiency and has the features of generalizability and
scalability.

B. GNN Architecture Design

In this subsection, we describe the architecture of the pro-
posed GNN-based learning algorithm, which is deployed and
trained at the edge server. By feeding the channel coefficients
into a well-trained GNN, the edge server is capable of obtain-
ing the optimized AirComp transceiver and RIS phase-shifts
design. Subsequently, the optimized design parameters are fed
back to the edge devices and RIS controller, and then used for
uplink model aggregation. The proposed GNN-based learning
algorithm consists of an initialization layer, multiple graphical
mapping layers, and one parameter generation layer. It first
transforms the channel coefficients to the representation vec-
tors z

(0)
k ,∀ k = 1, . . . ,K + 2 through the initialization layer,

then updates the representation vectors of all nodes via D

graphical mapping layers to obtain z
(D)
k ,∀ k = 1, . . . ,K + 2,

and finally obtains the learned parameters of the AirComp
transceiver (i.e., {η(t),p(t)}) and the RIS phase-shifts (i.e.,
v(t)) via the parameter generation layer. The overall network
structure is illustrated in Fig. 2. We elaborate on the design
of all these layers as follows:

• Initialization layer: The initialization layer is designed
to transform channel coefficients {hd

k(t), g(t)hr
k(t)}k∈K

to representation vectors z(0)
k ,∀ k = 1, . . . ,K + 2. The

representation vector of each device node is initialized
by passing its channel coefficients through a multi-layer
perceptron (MLP) based encoder, denoted by f0

EC(·).
This encoder is composed of three linear layers, where
a batch normalization layer and an activation layer are
placed sequentially between two adjacent linear layers.
We adopt the Rectified Linear Unit (ReLU) as the
activation function due to its linear mapping property
and low complexity in the back-propagation calculation.
As the channel coefficients are complex-valued that
cannot be fully supported by the current deep learning
toolkits, we separate the real and imaginary components
of channel coefficients {hd

k(t), g(t)hr
k(t)} and feed them

into encoder f0
EC(·). Hence, the representation vector
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Fig. 2. (a) Overall workflow of the proposed GNN-based learning algorithm for RIS-assisted over-the-air FL; (b) Module design of the d-th graphical mapping
layer for edge device nodes; (c) Module design of the d-th graphical mapping layer for edge server node; (d) Module design of the d-th graphical mapping
layer for edge server node.

z
(0)
k of edge device node k ∈ K can be expressed as

z
(0)
k = f0

EC([R(hd
k(t) + g(t)hr

k(t)),

I(hd
k(t) + g(t)hr

k(t))]).

Note that all edge device nodes share the same encoder
to ensure permutation equivalence. This also reduces the
number of parameters required to be trained as well
as the computational complexity in forward inference.
By denoting the average of the representation vectors
of all edge device nodes as z̄(0) = 1

K

∑K
k=1 z

(0)
k , the

representation vectors of the edge server and the RIS,
denoted as f0

K+1(·) and f0
K+2(·), respectively, can be

written as

z
(0)
K+1 = f0

K+1(z̄(0)), z
(0)
K+2 = f0

K+2(z̄(0)). (20)

The averaging operation is adopted to obtain the rep-
resentation vectors of nodes K + 1 and K + 2, as the
representation vectors of all device nodes affect that of
the edge server and the RIS.
Remark 1. Note that the FCNN initializes the repre-
sentation vector by applying the matrix multiplication
on a vector composed of all channel coefficients and
the weights of neurons, where the matrix multiplication
is sensitive to the order of the channel coefficients. In
contrast, the proposed GNN architecture initializes the
representation vector based on the individual channel
coefficients, which ensures permutation invariance.

• Graphical mapping layer: Each graphical mapping layer
consists of K+ 2 modules for K+ 2 nodes. Each mod-
ule executes the aggregation and combining operations

based on the representation vectors of all nodes from
the preceding layer. In general, the update of each node
in the d-th graphical mapping layer is conducted as in
[47]

z
(d)
k = fdcomb,k

(
z

(d−1)
k , fdagg({z(d−1)

j }j 6=k)
)
, (21)

where fdcomb,k(·) and fdagg(·) denote the combining func-
tion and the aggregation function at layer d, respectively.
In particular, the aggregation function of node k is
designed to aggregate the representation vectors z

(d−1)
j

from all other nodes, while the combining function is
adopted to combine the representation vector of local
node z

(d−1)
k with the aggregated representation vectors

{z(d−1)
j }j 6=k to update the local representation vector

z
(d)
k . We follow the design in [34], [46] and approximate

functions fagg(·) as follows

fdagg

(
{z(d−1)
j }j 6=k

)
= φ

(
{fd(z(d−1)

j )}j 6=k
)
,

where φ(·) is a function that keeps permutation invari-
ance, e.g., element-wise mean pooling and fd(·) denotes
an MLP to encode the representation vector. Besides,
fdcomb,k(·) is parameterized by an MLP encoder. For
all the modules in the same layer, the same encoder
is adopted to encode the representation vector of each
node. This ensures the permutation equivalence of each
device node and also reduces the number of parameters
for improving the robustness of the neural network.
The detailed designs of different modules are different
because of the difference in aggregation and combining
operations among the nodes.
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Each device node k ∈ K aggregates the information
from all other nodes, including device nodes, RIS node,
and edge server node. This guarantees that sufficient
CSI can be acquired by each node, and the coordination
among the edge devices, the RIS, and the edge server can
be achieved. Hence, the representation vector at node k
is updated as follows

z
(d)
k = fdcomb,k

(
z

(d−1)
k , z

(d)
agg,k,

fdK+1(z
(d−1)
K+1 ), fdK+2(z

(d−1)
K+2 )

)
,

(22)

where

z
(d)
agg,k =

1

K − 1

1≤j≤K∑
j 6=k

(
fd(z

(d−1)
j )

)
, (23)

fdK+1(·) and fdK+2(·) denote the encoders specifically
designed for node K + 1 and node K + 2, respectively.
The update process is illustrated in Fig. 2. Note that we
treat the representation vectors of other device nodes
(i.e., z

(d−1)
j ) and that of the edge server and the RIS

separately in (22). Specifically, node k ∈ K aggregates
the average of the encoded representation vector of
other nodes, because the signal alignment depends on
all channels instead of the strongest one. Meanwhile,
node k ∈ K aggregates the representation vectors of
the RIS node and the edge server node, which do not
change their permutation invariance property. Such a
design also enables the neural network to better learn
the channel representation with respect to its channel
information at the RIS node and at the edge server
node. The update of the representation vectors of the
RIS node and the edge server node can be expressed
as z

(d)
K+1 = fdComb,K+1

(
z

(d)
agg , fdK+2(z

(d−1)
K+2 ), z

(d−1)
K+1

)
and z

(d)
K+2 = fdComb,K+2

(
z

(d)
agg , fdK+1(z

(d−1)
K+1 ), z

(d−1)
K+2

)
,

respectively, where[
z(d)

agg

]
j

=
1

K

K∑
i=1

[
fd(z

(d−1)
i )

]
j
,∀ j = 1, . . . , l(d).

(24)
The update flows are illustrated in Fig. 2, and Fig. 3
illustrates how the RIS node updates its representation
vector from two edge device nodes and one edge server
node. Specifically, the RIS node first aggregates the
encoded representation vectors fd(z(d−1)

1 ), fd(z
(d−1)
2 ),

and fdK+1(z
(d−1)
3 ) from the edge device nodes and the

edge server node. Then it obtains z
(d)
agg by applying the

mean pooling to the representation vectors of the edge
device nodes. By concatenating z

(d)
agg , fdK+1(z

(d−1)
3 ), and

z
(d−1)
4 and then passing them to function fdcomb,4(·), the

RIS node obtains the updated representation vector z(d)
4 .

We adopt the element-wise mean pooling as the RIS and
the edge server receive signals from all edge devices.
Note that various functions can be selected to keep
permutation equivalence and permutation invariance in
the aggregation and combining operations. We shall

Aggregation operation

Combining operation

 4
(!"1) #$+2(!)

= %Comb ,$+2! & agg(!) ,%$+1! & $+1(!"1)' ,  $+2(!"1)'%Comb ,4! (*)

%! & 1
(!"1)'

%! & 2
(!"1)'

%3! & 3
(!"1)'

UE RIS Edge server

Fig. 3. An example of how the RIS node aggregates and combines information
from edge device and edge server nodes.

show the excellent performance of the proposed design
in Section VI.

• Parameter generation layer: Through the aggregation
and combining over D graphical mapping layers, we
obtain the representation vectors that have sufficient in-
formation. Then, the generation layer maps them into the
desired transmit power, the phase-shift vector, and the
denoising factor. In particular, we apply three decoders,
denoted by fp, fv , and fη , to decode the representation
vectors of the edge server node, the RIS node, and
the edge device nodes, respectively. Mathematically, we
have pk = fp(z

(d)
k ), η = fη(z

(d)
K+1),v = fv(z

(d)
K+2).

Each decoder has the same design as the encoders in
the initialization layer. We adopt the Sigmoid activation
layer to bound the output range to be [−1, 1]. The
corresponding design of each node can be scaled to the
actual level by using an affine transformation.

Remark 2. The learnable functions in the proposed
GNN-based learning algorithms, i.e., fdComb(·), fdComb,K+1(·),
fdComb,K+2(·), fd(·), fdK+1(·), fdK+2(·), f0

EC(·), fp(·), fv(·),
fη(·),∀ d = 0, . . . , D, are independent of the number of edge
devices. Hence, the proposed GNN-based learning algorithm
is scalable and does not require re-training when the number
of edge devices varies, which is a key advantage of GNN over
the conventional FCNN.

C. Loss Function Design and Training

The proposed learning algorithm is trained offline with a
mini-batch of samples in an unsupervised manner, where the
training data are uniformly sampled from the training set. To
minimize the time-average error with average transmit power
constraints, we design the loss function as

loss =
1

B

B∑
m=1

[
Er(t) +

∑
k∈K

Reg(pk(t), p̄k)

]
, (25)

where B denotes the size of mini-batch and Reg(pk(t), p̄k)
denotes the regularizer for the average power constraints.
As the average power constraint is unidirectional, the ideal
regularizer function ψ(x, x̄) should be 0 if x ≤ x̄, and
h(x) otherwise, where h(x) > 0 is a monotonic increasing
function with respect to x. Hence, to reduce the computational
complexity of back-propagation, we define h(x) = x and
ψ(x, x̄) = ReLU(x− x̄) = max(0, x− x̄). Thus, the variables
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to be optimized are coupled in the loss function, and the
average power constraints are considered.

The parameters of the neural network are optimized by
adopting stochastic gradient descent according to the loss func-
tion. To avoid overfitting, we set an early stopping criterion
to stop the training process. Specifically, the neural network
is considered to converge when the variance of the sequence
consisting of the last 100 logarithmic training losses is smaller
than εstop.

D. Computation Complexity

We start by analyzing the computational complexity of the
forward inference process. As the encoders/decoders across
different layers share the same structure, the computational
complexity of each encoder/decoder operation is considered
to be the same and denoted as O (C). For the initialization
layer, as there are K+2 encoding operations and one average
operation based on K representation vectors, the computa-
tional complexity is O (C(K + 2) +K). For the graphical
mapping layers, each module performs the aggregation and
combining operations. According to (23), the computational
complexity of aggregation operations of the edge device node
is O (C(K + 1) +K − 1). For the RIS and edge server nodes,
according to (24), the computation complexity of aggregation
operations is O (C(K + 1) +K). The combining operations
at all nodes are the same and the computational complexity is
O (C). Thus, the computational complexity of D graphical
mapping layers is O

(
D(K2(C + 1) + (4C + 1)K + 4C)

)
.

The computational complexity of the generation layer is
O((K+ 2)C) due to the decoding operations. As a result, the
overall computational complexity of the forward inference is
O
(
DK2(C + 1) + (6C + 2)K + 8C

)
≈ O

(
RDK2 + SK

)
,

where R = C + 1, S = 6C + 2, and the constant item
is omitted. As the training process involves B samples,
the computational complexity of the backward-propagation is
O
(
BRDK2 +BSK

)
, where the operation time for loss cal-

culation is ignored. The computation complexity of the GNN-
based learning framework is proportional to the edge device
number. Parameters R and S are determined by the number
of parameters of each encoder/decoder. Hence, adopting the
encoders/decoders with a small number of neurons reduces
the computational complexity. Moreover, the computational
complexity increases linearly with D for a given number of
edge devices.

VI. SIMULATION RESULTS

A. Simulation Setup

We consider an RIS-assisted over-the-air FL in a three-
dimensional coordinate system. An edge server and the RIS are
deployed at (−200, 10, 30) and (0, 0, 10) meters, respectively,
and the edge devices are uniformly distributed in the circular
area centered at (50, 0, 0) with a radius of 25 meters. The RIS
reflection elements are arranged in a 10 × 10 pattern on the
(y, z)-plane.

The channel response of the edge server-device k link is
hd
k(t) = γd

k h̃
d
k(t), where γd

k =
√
D0d

−α1

DF,k, h̃d
k(t) ∼ CN (0, 1),

dDF,k is the distance between device k and the edge server,
α1 = 4 is the direct link’s path loss exponent, and D0 = −25
dB denotes the path loss at the reference distance. The channel
coefficients g(t) and hr

i(t) follow the Rician distribution, i.e.,
g(t) = γr,1

(√
δ
δ+1 g̃

LOS(t) +
√

1
1+δ g̃

NLOS(t)
)

and hr
k(t) =

γr,2
k

(√
δ
δ+1 h̃

r,LOS
k (t) +

√
1

1+δ h̃
r,NLOS
k (t)

)
, where LOS and

NLOS represent the line-of-sight and non-line-of-sight paths,
respectively, and δ = 10 denotes the Rician factor. Similarly,
γr,1 =

√
D0d

−α2

IF and γr,2
k =

√
D0d

−α3

DR,k denote the large-
scale fading between the edge server and the RIS, and the
RIS and device k, respectively, where α2 = 1.8 and α3 =
2.1. dIF and dDR,k are the distances between RIS and edge
server, and RIS and device k, respectively. The non-line-of-
sight paths, i.e., g̃NLOS(t) and h̃r,NLOS

k (t), obey the complex
Gaussian distribution. For line-of-sight paths, by denoting the
azimuth and elevation angles of departure (AOD) from the
RIS to the edge server as θA

1 and θE
1 , respectively, we have

g̃LOS(t) = aRIS(θA
1 , θ

E
1 )aES, where aRIS(θA

1 , θ
E
1 ) denotes the

steering vector of RIS, and aES denotes the steering scalar of
edge server. In particular, aES = 1 as one antenna is considered
at the edge server. The n-th element of aRIS(θA

1 , θ
E
1 ) is[

aRIS(θA
1 , θ

E
1 )
]
n

= ejβ
2πde
ξ ω(θA1 ,θ

E
1 ,n), where ω(θA

1 , θ
E
1 , n) =⌊

n−1
10

⌋
sin(θE

1 ) + mod(n− 1, 10) sin(θA
1 ) cos(θE

1 ), de denotes
the interval between two adjacent passive elements of the
RIS, and ξ denotes the carrier wavelength. Without loss
of generality, we set 2πde

ξ = 1. With given locations of
edge server (xES, yES, zES) and RIS (xRIS, yRIS, zRIS), we have
sin(θA

1 ) cos(θE
1 ) = yES−yRIS

dIF
and sin(θE

1 ) = zES−zRIS
dIF

. By denot-
ing the angles of arrival (AOA) in the azimuth and elevation
directions from device k to the RIS by θA

2,k and θE
2,k, we have

h̃r,LOS
k (t) = aRIS(θA

2,k, θ
E
2,k). With given location of device k

(i.e., (xd,k, yd,k, zd,k)), we have sin(θA
2,k) cos(θE

2,k) =
yd,k−yRIS

dDR

and sin(θE
2,k) =

zd,k−zRIS

dDR
. The noise power is −75 dBm.

The proposed GNN-based learning algorithm is imple-
mented using PyTorch with Adam optimizer2. We set the
sizes of the training and testing datasets as 20000 and 5000,
respectively. To validate the robustness of the proposed algo-
rithm, we generate different sets of device locations for the
training and testing data sets. The learning rate and the size
of the mini-batch (i.e., B) are 0.001 and 1024, respectively.
The proposed alternating optimization algorithm terminates
when the decrease of the average MSE between two successive
iterations is below 5× 10−4.

Benchmark Algorithms: We compare the proposed algo-
rithms with two benchmarks, i.e., Error free and No RIS. For
the Error free scheme, we assume that the uplink transmission
of the local gradients is error-free. This benchmark represents
the upper bound of the FL learning performance. For the No-
RIS scheme, we alternately optimize the transmit power at
the edge devices and the denoising factor at the edge server
by adopting the method proposed in [38]. Specifically, by
formulating the joint optimization problem as an unconstrained
Lagrangian optimization problem, the transmit power, denois-

2The code for this paper can be found at
https://github.com/XiaoWangya/GNNforOTAFL.git.
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Fig. 4. Training loss and test accuracy versus number of communication
rounds.

ing factor, and Lagrangian variables are optimized by applying
the KKT condition, bisection search, and sub-gradient method,
respectively.

FL Dataset: We evaluate the above algorithms with the
handwritten digit recognition task based on the MNIST
dataset. Each edge device is assigned the same amount of
data labeled with 0− 9. The neural network that performs the
classification task is an FCNN with three linear layers, where
the activation function between adjacent linear layers is the
Sigmoid function. We adopt the cross-entropy loss as the loss
function.

B. Performance Comparison

Fig. 4 compares the training loss and test accuracy for
the different amount of communication rounds. In Fig. 4(a),
the training losses of all schemes decrease with the number
of communication rounds. In particular, after 40 rounds of
training, the proposed GNN-based learning algorithm achieves
a much lower training loss than the optimization-based al-
gorithm due to the following reasons. On one hand, the
proposed GNN-based learning algorithm jointly optimizes the
design of the AirComp transceiver and RIS phase-shifts and is
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Fig. 5. Training loss and test accuracy versus number of communication
rounds with non-i.i.d. data.

trained with abundant samples in an unsupervised manner. On
the other hand, the optimization-based algorithm achieves a
sub-optimal solution because of the alternating operation and
convex relaxation. Besides, the optimization-based algorithm
achieves a better performance than the scheme without RIS,
which shows the effectiveness of RIS in enhancing learning
performance.

We illustrate the test accuracy of all the considered algo-
rithms in Fig. 4(b). As the parameters of neural networks
are yet to be trained, the aggregation error may enhance
the robustness of the global model and result in a good
performance in the earlier training. Hence, in the initial rounds,
the optimization-based algorithm achieves the highest test
accuracy. When the global model converges, the aggregation
error is detrimental to improving the test accuracy. As the
test accuracy is obtained by averaging over different sets of
device locations and the same edge server and RIS locations,
the permutation equivalence for both the edge server node and
RIS node is guaranteed. The proposed GNN-based learning
algorithm achieves a close test accuracy to the Error Free
scheme and outperforms the optimization-based and the No
RIS schemes.
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Fig. 5 illustrates the impact of non-i.i.d. data on both the
convergence rate and test accuracy of the proposed GNN-
based learning algorithm. Each edge device is assigned the
same amount of feature-label pairs that include two random
categories. Compared with the i.i.d. case, the proposed GNN-
based learning algorithm in the non-i.i.d. case only suffers
from a slight performance reduction due to the following
reason. With non-i.i.d. data, the deviation of the direction
of the global gradient increases with the number of local
updates. As we consider one local update, such a deviation
due to non-i.i.d. data is not significant. By balancing the
tradeoff between signal-misalignment error and noise-induced
error, our proposed GNN-based learning algorithm achieves a
high aggregation accuracy, which is close to that of the Error
Free scheme. Due to the insufficient exploitation of RIS, the
optimization-based algorithm and the No RIS scheme achieve
a high time-average error and suffer from high performance
reduction.

We show the test accuracy of all algorithms under considera-
tion for different number of edge devices in Fig. 6. According
to (7), a greater number of edge devices tightens the upper
bound in Theorem 1, thereby a higher aggregation accuracy
and better FL performance can be achieved. The proposed
GNN-based learning algorithm achieves a much higher test
accuracy than other benchmarks, which demonstrates that
the proposed GNN-based learning algorithm can effectively
coordinate the AirComp transceiver and RIS. When K = 5,
the test accuracy of both the optimization-based method and
the No RIS scheme are low. This is because, when K is
small, the optimal η shall be larger than 1 × 106, and the
optimized transmit power is close to zero. As a result, the
achieved aggregation error is high, leading to poor learning
performance.

Fig. 7 shows the training loss and test accuracy under
different number of RIS reflection elements. A greater number
of RIS reflection elements leads to better channel qualities,
which improves aggregation accuracy and achieves a better
learning performance. By increasing the number of reflection
elements from 5 to 120, the learning performance of the
proposed GNN-based learning algorithm gradually gets closer
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Fig. 7. Training loss and test accuracy versus number of reflection elements.

to the Error Free scheme, which shows the effectiveness of
RIS. The residual gap is due to the initial optimality gap
and gradient variance induced gap defined in Theorem 1. In
addition, the proposed GNN-based learning algorithm outper-
forms the optimization-based algorithm, which demonstrates
that the proposed GNN-based learning algorithm can make
more efficient use of RIS to support the model aggregation.
As the number of reflection elements increases, the increasing
rate of the learning performance of the proposed GNN-based
learning algorithm slows down.

We compare the running time of the proposed GNN-based
learning algorithm and the optimization-based algorithm on an
AMD EPYC 7742 platform with a GeForce RTX 3090. Since
the existing python packages do not support full functional
CVX programming, we conduct the optimization-based algo-
rithm and No RIS scheme with MatLab. As shown in Table
II, the proposed GNN can be trained offline using a high-
performance computer and the training time for 5000 rounds
is acceptable. Once the training is done, the proposed GNN
can be directly applied to design AirComp transceiver and RIS
phase-shifts. We observe that the average computation time of
the proposed GNN-based learning algorithm is significantly
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TABLE II
COMPUTATION TIME (SEC.) AND SOLUTION FEASIBILITY VERSUS NUMBER OF DEVICES

K GNN-based No RIS Optimization-based Feasibility ratio
training (5000 rounds) testing (per round) testing (per round) testing (per round)

10 46.90 6.58× 10−4 0.018 15.06 100%
15 172.52 1.22× 10−3 0.019 20.34 100%
20 140.34 1.80× 10−3 0.019 25.88 100%
25 245.25 2.33× 10−3 0.020 28.25 100%
30 350.21 2.97× 10−3 0.03 31.84 100%

shorter than that of both the optimization-based algorithm and
the No RIS scheme. When the number of devices is 10, the
proposed GNN-based learning algorithm is about 2.29 × 104

and 27.35 times faster than the optimization-based algorithm
and No RIS scheme, respectively. When the number of devices
is 30, the advantage of the proposed GNN-based learning
algorithm in terms of the computational complexity becomes
more obvious, i.e., achieving 9.16 × 103 times speedup. The
optimization-based algorithm suffers from higher computation
complexity than the No RIS scheme, which shows that the
iterative optimization of RIS phase-shifts is computationally
expensive.

Table II also shows the feasibility ratio, which is defined
as the percentage of the solutions generated by the proposed
GNN satisfying the average power constraint over the test
datasets. To eliminate potential randomness, we average the
simulation results over 100 independent simulations, each
of which includes 1000 communication rounds. As can be
observed, the feasibility of the proposed GNN-based learn-
ing algorithm is always guaranteed for different number of
devices. This is because incorporating the average transmit
power constraints into the design of the loss function forces
the proposed learning algorithm to meet those constraints.

VII. CONCLUSIONS

In this paper, we studied the joint design of an RIS-
assisted over-the-air FL system. We theoretically derived the
convergence upper bound of the proposed RIS-assisted over-
the-air FL and formulated a joint optimization problem with
respect to the transmit power, denoising factor, as well as
RIS phase-shifts. To reduce the computation complexity and
enhance the learning performance, we developed a GNN-based
learning algorithm to solve the time-average error minimiza-
tion problem. Extensive simulations showed the superiority of
the proposed GNN-based learning algorithm in optimizing Air-
Comp transceiver and phase-shifts in terms of low-complexity,
high training efficiency, and scalability.

APPENDIX

A. Proof of Lemma 1

As in (4), we have E[‖ē(t)‖22] = E
[∥∥∥∥ 1

Kπ(t)

(
ŝ(t) −

s(t)

)∥∥∥∥2

2

]
. As there exists a constant Γ ≥ 0 that upper bounds

the variance of Ω elements of Υk according to Assumption

4, we have E[‖ē(t)‖22] ≤ Γ
K2E

[∥∥∥∥(ŝ(t)− s(t)

)∥∥∥∥2

2

]
. With the

definition in (5), we have

E[‖ē(t)‖22]

≤ Γ

K2
E
[∥∥∥∥ K∑

k=1

(√
pk(t)|hc

k(t)|√
η(t)

I − I

)
sk(t) +

n(t)√
η(t)

∥∥∥∥2

2

]
,

which can be further decomposed according to Cauchy-
Schwarz inequality into

E[‖ē(t)‖22] ≤Γ(K + 1)

K2

{
E
[∥∥∥∥ n(t)√

η(t)

∥∥∥∥2

2

]
+

K∑
k=1

E
[∥∥∥∥
(√

pk(t)|hc
k(t)|√

η(t)
I − I

)
sk(t)

∥∥∥∥2

2

]}
.

As the mean and variance of sk(t) are zero and one, respec-
tively, we have

E[‖ē(t)‖22]

=Ω
Γ(K + 1)

K2

{ K∑
k=1

(√
pk(t)|hc

k(t)|√
η(t)

− 1

)2

+
σ2

η(t)

}
=Ω

Γ(K + 1)

K2
Er(t),

where Er(t) =
∑K
k=1

(√
pk(t)|hc

k(t)|√
η(t)

− 1

)2

+ σ2

η(t) .

B. Proof of Theorem 1

As Fk(w) is S-smooth, F (w) is also S-smooth, and we have

F (w(t+ 1))− F (w(t))

≤− γ 〈∇F (w(t)),Υ(t) + ē(t)〉+
γ2S

2
‖Υ(t) + ē(t)‖22

=− γ 〈∇F (w(t)),Υ(t)〉 − γ 〈∇F (w(t)), ē(t)〉

+
γ2S

2
‖Υ(t)‖22 +

γ2S

2
‖ē(t)‖22 + γ2S 〈Υ(t), ē(t)〉

(a)

≤ − γ 〈∇F (w(t)),Υ(t)〉+
γ

2
‖∇F (w(t))‖22 +

γ

2
‖ē(t)‖22

+
γ2S

2
‖Υ(t)‖22 +

γ2S

2
‖ē(t)‖22 + γ2S 〈Υ(t), ē(t)〉

(b)

≤ − γ 〈∇F (w(t)),Υ(t)〉+
γ

2
‖∇F (w(t))‖22

+

(
γ

2
+ γ2S

)
‖ē(t)‖22 + γ2S‖Υ(t)‖22,
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where (a) is due to −aT b ≤ ‖a‖22
2 +

‖b‖22
2 and (b) is due to

aT b ≤ ‖a‖
2
2

2 +
‖b‖22

2 . By taking an expectation at both sides,
we have

E [F (w(t+ 1))− F (w(t))]

≤− γE[〈∇F (w(t)),Υ(t)〉] +
γ

2
‖∇F (w(t))‖22

+

(
γ

2
+ γ2S

)
E[‖ē(t)‖22] + γ2SE[‖Υ(t)‖22].

(26)

Note that Υ(t) = 1
K

∑K
k=1 Υk(t), we have

E
[〈
∇F (w(t)),Υ(t)

〉]
= E

[〈
∇F (w(t)),

1

K

K∑
k=1

Υk(t)

〉]

=

[〈
∇F (w(t)),

1

K

K∑
k=1

∇Fk(w(t))

〉]
= ‖∇F (w(t))‖22,

(27)

and

E
[
‖Υ(t)‖22

]
= E

[∥∥∥∥ 1

K

K∑
k=1

Υk(t)

∥∥∥∥2

2

]
(a)
= Var

(
1

K

K∑
k=1

Υk(t)

)
+

∥∥∥∥∥E
[

1

K

K∑
k=1

Υk(t)

]∥∥∥∥∥
2

2

(b)
=

1

K2

K∑
k=1

Var (Υk(t)) +

∥∥∥∥∥ 1

K

K∑
k=1

∇Fk(w(t))

∥∥∥∥∥
2

2

≤ 1

K
ξ2 + ‖∇F (w(t))‖22,

(28)

where (a) holds because E[‖x‖2] = Var[x] + ‖E[x]‖2, (b)
follows from Var(

∑n
j=1 xj) =

∑n
j=1 Var(xj) if {xj} is

independent. Hence, we have

E[F (w(t+ 1))− F (w(t))

≤− γ‖∇F (w(t))‖22 +
γ

2
‖∇F (w(t))‖22

+ γ2S

(
1

K
ξ2 + ‖∇F (w(t))‖22

)
+

(
γ

2
+ γ2S

)
E[‖ē(t)‖22].

(29)

By summing up above inequality for all T communication
rounds, we have

E[F (w(t))− F (w(0))]

≤
(

2γ2S − γ
2

) T−1∑
t=0

‖∇F (w(t))‖22

+
Sγ2ξ2T

K
+

(
γ

2
+ γ2S

) T−1∑
t=0

E[‖ē(t)‖22].

With Assumption 1 and γ < 1
2S , we have

1

T

T−1∑
t=0

‖∇F (w(t))‖22 ≤
2(F (w(0)− F (w∗)))

γ(1− 2γS)T

+
2Sγξ2

K(1− 2γS)
+

1 + 2γS

1− 2γS

1

T

T−1∑
t=0

E[‖ē(t)‖22].
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