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ABSTRACT

Nowadays, when the different software systems keep getting larger and more
complex, integration testing is necessary to make sure that the different
components of the system work together correctly. With the large and
complicated systems the analysis of the test faults can be difficult, as there are
so many components that can cause the failure. Also with the increased usage
of automated tests, the faults can often be caused by test environment or test
automation issues.
Testing data and logs collected during the test executions are usually the main

source of information that are used for test fault analysis. With the usage of text
mining, natural language processing and machine learning methods, the fault
analysis process is possible to be automated using the data and logs collected from
the tests, as multiple studies have shown in the recent years.
In this thesis, an exploratory data study is done on data collected from radio

product integration tests done at Nokia. Cluster analysis is used to find the
different fault types that can be found from each of the collected file types.
Different feature extraction methods are used and evaluated in terms of how well
they separate the data for fault analysis.
The study done on this thesis paves the way for automated fault analysis in the

future. The introduced methods can be applied for classifying the faults and the
results and findings can be used to determine what are the next steps that can be
taken to enable future implementations for automated fault analysis applications.

Keywords: machine learning, text mining, natural language processing, log
analysis
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TIIVISTELMÄ

Nykypäivänä, kun erilaiset ohjelmistojärjestelmät jatkavat kasvamista ja
muuttuvat monimutkaisimmaksi, integraatiotestaus on välttämätöntä, jotta
voidaan varmistua siitä, että järjestelmän eri komponentit toimivat yhdessä
oikein. Suurien ja monimutkaisten järjestelmien testivikojen analysointi voi olla
vaikeaa, koska järjestelmissä on mukana niin monta komponenttia, jotka voivat
aiheuttaa testien epäonnistumisen. Testien automatisoinnin lisääntymisen myötä
testit voivat usein epäonnistua myös johtuen testiympäristön tai testiautomaation
ongelmista.
Testien aikana kerätty testidata ja testilogit ovat yleensä tärkein tiedonlähde

testivikojen analyysissä. Hyödyntämällä tekstinlouhinnan, luonnollisen kielen
käsittelyn sekä koneoppimisen menetelmiä, testivikojen analyysiprosessi on
mahdollista automatisoida käyttämällä testien aikana kerättyä testidataa ja
testilogeja, kuten monet tutkimukset ovat viime vuosina osoittaneet.
Tässä tutkielmassa tehdään eksploratiivinen tutkimus Nokian radiotuotteiden

integraatiotesteistä kerätyllä datalla. Erilaiset vikatyypit, jotka voidaan löytää
kustakin kerätystä tiedostotyypistä, löydetään käyttämällä klusterianalyysiä.
Ominaisuusvektorien laskentaan käytetään eri menetelmiä ja näiden
menetelmien kykyä erotella dataa vika-analyysin näkökulmasta arvioidaan.
Tutkielmassa tehty tutkimus avaa tietä vika-analyysien automatisoinnille

tulevaisuudessa. Esitettyjä menetelmiä voidaan käyttää vikojen luokittelussa ja
tuloksien perusteella voidaan määritellä, mitkä ovat seuraavia askelia, jotta vika-
analyysiprosessia voidaan automatisoida tulevaisuudessa.

Avainsanat: koneoppiminen, tekstinlouhinta, luonnollisen kielen käsittely,
logianalyysi
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1. INTRODUCTION

One of the most important steps in software (SW) quality assurance is testing.
Nowadays, when systems keep growing larger and larger in the number of different
SW and hardware (HW) components or modules, integration testing is necessary to
ensure that the interfaces between each module works correctly and also that the full
system consisting of these smaller modules is working as it should. This is different
from unit testing, as unit testing is performed at statement level on one module, while
integration testing focuses on the module interfaces and interactions [1].
When the systems keep getting more complex, the analysis of the test faults, when

a failure happens in the integration tests, is getting harder. There are multiple different
module interfaces tested at the same time, so it can be hard to find which of the modules
is causing the test to fail. It does not make it any easier that often the SW and HW
components that make up the system are developed by different teams or even different
companies, so the analysis of the test faults is often difficult and requires experience.
In the recent years, multiple studies have shown that the fault analysis process can

be automatized using the data and logs collected from the tests by applying different
text mining and natural language processing (NLP) methods with machine learning
(ML) models. Automating the fault analysis process can save a lot of time and help
finding the reasons for faults even if the person doing the analysis does not have lots
of experience.
At Nokia, SW integration testing is done for radio product related SW. The SW

being tested is complex and consists of multiple different components developed by
different teams. In the integration tests, the SW is tested by installing it in a base
transceiver station (BTS) and/or a radio, so also complex HW is included in the tests.
The complexity of the testing setup does not end at the tested product, as the test
environment consists of many different parts, such as user equipment (UE), that is
usually a mobile phone, radio rotator, cabling, attenuators and control PCs. Most of
the integration tests are automated, so that also brings more complexity to the tests
with different reservation systems, connection requirements and configurations. All in
all, the test setup is complex with lots of different components that could cause a test
to fail, which can make it difficult and time consuming for the test engineers to find the
reason for test failures.
Some of the testing related data and logs are being collected automatically as a part

of the test automation process, but there are also some data that the test engineers are
collecting manually for the fault analysis. The automatically collected data can be
used to try and automate the fault analysis process, but as some of the relevant data
is not yet collected automatically, the automated fault analysis might not be complete
in terms of finding and characterizing all the possible faults. Even though the data
has been collected automatically for some time now and there is a good amount of
historical data available, the fault analysis results for the historical data have not been
documented in a way that they could be connected to the data, so this will make it
harder to automate the fault analysis process.
In this thesis, an exploratory study is performed on the automatically collected data

from the radio product related SW integration tests. The study focuses on the faults
found from the collected data. As the work is done on unlabeled data, exploratory
study is made using cluster analysis to find and group the different faults. The results
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from this study can be used to help in automating the fault analysis process in the
future. Research questions for the study are:

1. Q1: What kind of faults can be identified from the data collected from radio
product related SW integration tests, and what kind of faults cannot be found?
What data is required to be collected to fill the gaps, if there are any?

2. Q2: Which feature extraction method can separate the data collected from
radio product related SW integration tests best in terms of fault types from the
following used feature extraction methods: TF-IDF, Word2Vec weighted by TF-
IDF, and line-IDF?

3. Q3: How can the fault analysis process be automatized in the future and what
are the next steps to get there?

The structure of the rest of paper is defined in the following way. Chapter 2
introduces the basic concept of ML and the different categories of howML models can
be trained, giving a more detailed introduction of clustering. Chapter 3 introduces the
basic concepts of text mining and NLP and dives into text clustering and classification
in more detail. Chapter 4 introduces how log file analysis can be automated using ML,
text mining, and NLP methods based on the methods found from literature and related
research work. In Chapter 5, the general pipeline for data preprocessing and clustering
done in this thesis work is presented with explanations of the used methods. Chapter
6 describes the data that is used in this work and the preprocessing steps that are used
for each of the used file types. Chapter 7 describes how the clustering and the cluster
analysis is done. In Chapter 8, the cluster analysis results and the findings from these
results are collected. In Chapter 9, the findings from the results are discussed, the
research questions are answered, and future improvement and implementation ideas
are presented. Finally, the work done in this thesis work is summarized in Chapter 10.
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2. MACHINE LEARNING

Machine learning (ML) studies the algorithms and models that try to mimic human-
like experience based learning on machines [2]. It is one of the fields of artificial
intelligence (AI). The ML models use collected data to "learn", i.e., the models are
trained with data, similarly as humans use their experiences and observations to learn.
The main objective of ML is to build algorithms or models that can find unidentified
relationships between variables from a dataset and generate meaningful outputs based
on what is found or learnt from the data [2]. Because the collected data is the source of
intelligence for ML models, it is clear that the amount and quality of data is essential
when training the models. ML approaches can be split into four different categories
based on how the model is trained: (1) supervised learning, (2) unsupervised learning,
(3) semi-supervised learning, and (4) reinforcement learning.

2.1. Supervised Learning

In supervised learning a typical goal is to create a ML model that can predict an output
given a set of inputs. The word supervised comes from the notion that a "supervisor"
has to instruct the model by labeling the training data [3], i.e., the training dataset must
include inputs and the correct outputs. The outputs that the model is trying to predict
can be either categorical (class labels) or continuous values. As an example of an
categorical output, the model could be trying to predict if an image has a cat or dog in it,
and as an example of a continuous output, the model could be trying to predict a stock
value. In the case of categorical outputs, the prediction task is called classification, and
in the case of continuous outputs the prediction task is called regression [4]. The major
benefit of supervised learning is that the labeled training data gives definite criteria for
optimizing the models [3], but often the process of collecting labeled data is laborious
and requires manual work to label the data.

2.2. Unsupervised Learning

In unsupervised learning, ML models are trained without knowing the correct outputs,
i.e., the dataset is not labeled. Typical goals for unsupervised learning methods are
describing, representing, and finding meaningful characteristics of the input data. Two
common examples of unsupervised learning methods are clustering and dimensionality
reduction [5]. Because there are no correct outputs available in the training data, it is
harder to evaluate the models, as the results cannot be compared with correct results.
Unlabeled data, however, is easy to collect and can often be collected automatically
without human intervention.

2.2.1. Clustering

Clustering methods try to group data samples into groups, so that the samples are
similar in each group and dissimilar compared to the samples of other groups, based
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on some distance measure [6]. In clustering context, these groups are usually called
clusters. With clustering and grouping, the difficult part is to find the correct features
that should be used to determine the similarity between objects. For example, grouping
a group of different animals could be done based on the color, size, number of legs or
sound of the animal. Depending on which feature or features are used, the grouping
results can be very different. Consequently, it can be hard to determine what are good
clusters when there are no ground truth labels for the clustered data, i.e., when the
correct clusters to which the objects should be assigned into are not known. Continuing
on the animal grouping example, someone could group the animals based on the size
and someone else could group them based on the number of legs. The resulting groups
would most likely be very different but still on both cases the groups would be well
defined based on the selected feature. There is no definite criteria of what is the
best clustering of a specific group or dataset, or what a cluster is, as the definition
of clustering or grouping can be different depending on the context [7]. The definition
of good clustering depends on the goals of the cluster analysis, and a good domain
knowledge is often required to evaluate the goodness of a clustering.
Because the definition of good clustering is highly dependent on the goals and

context, numerous different clustering methods have been developed over the years.
Each of the methods do clustering differently based on a different idea of how a cluster
is defined. Clustering methods are often split into two main categories: partitional
clustering and hierarchical clustering [6, 8].
Partitional clustering methods assign the data points into clusters by minimizing a

selected metric, such as Euclidean distance [8]. The algorithms iterate over the data
points and assign the points to clusters that minimize the metric, i.e., the points are
assigned to the cluster that they are closest to, until convergence. Partitional clustering
methods usually require that the number of clusters is defined beforehand. Density-
based clustering methods are also included in partitional methods. Density-based
methods create clusters based on the density of the data points. High density regions
are considered as clusters and low density regions as noise or outliers [6]. Some
examples of partitional clustering methods are k-means [9], fuzzy c-means [10], k-
medoids algorithms, such as PAM [11], and DBSCAN [12].
Hierarchical clustering techniques form the clusters iteratively by either dividing the

data into smaller clusters or merging smaller clusters into larger ones. Dividing bigger
clusters into smaller ones is known as top-down approach or divisive hierarchical
clustering and merging smaller clusters into larger ones is known as bottom-up
approach or agglomerative hierarchical clustering [13]. Divisive hierarchical clustering
techniques start with the whole dataset as one cluster and start dividing it into smaller
ones until each data point is divided into separate clusters or a specific condition for
termination is reached, whereas agglomerative hierarchical clustering techniques start
with each data point as their own cluster and start merging them until all data is merged
into one cluster or a specific condition for termination is reached [8]. Hierarchical
clustering can generally be visualized with a dendrogram as shown in Figure 1. The
sample labels are on the x-axis and the distance or dissimilarity between the clusters is
on the y-axis. Some examples of hierarchical clustering algorithms are BIRCH [14],
CURE [15], ROCK [16] and Chameleon [17].
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Figure 1. An example of a dendrogram.

2.3. Semi-Supervised Learning

Semi-supervised learning methods try to combine the advantages of supervised and
unsupervised learning methods by using partially labeled data that contains large
amount of unlabeled data with some labeled data. This way the laborious data labeling
process is minimized while being able to define some criteria for model optimization
[18]. With semi-supervised learning, most of the methods from both supervised and
unsupervised learning, such as classification and clustering, are possible. The main
challenge with semi-supervised learning is that the labeled dataset needs to be a good
representation of the whole data, including the unlabeled and unseen data. Sometimes
the labeled dataset has to be very big to have a good representation of the whole data,
for example if there are lots of different classes to classify. In these cases it might just
be better to use supervised learning, as the labeled dataset is already large enough to
train an accurate classifier.

2.4. Reinforcement Learning

In reinforcement learning, the models are set free in a suitable environment, and the
model performs different actions and collects feedback from the environment. This
feedback is then used to train the model, so that it knows which actions it should
do in each situation. Reinforcement learning approaches do not require labeled data
for training the models but the models need feedback from their environment and the
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model must have clear definition of what is the optimal feedback. Reinforcement
learning is used in AI planning, robot controlling and game playing, for example [19].
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3. TEXT MINING AND NATURAL LANGUAGE PROCESSING

Text mining and NLP are fields of study that study different ways of processing textual
data to transform it in such a form that a machine can understand and make use of it
and to find patterns and characteristics from text. As the amount of unstructured data,
for example in the world wide web, is huge and only keeps on growing, it is important
to be able to process it and extract information from it.

3.1. Text Mining

Text mining has similarities with data mining, as it tries find and interesting
information and useful knowledge from data. Data mining is usually used on structured
data but text mining can also be used on semi-structured (e.g., e-mails, XML and
HTML files) and unstructured files (e.g., PDF files) [20], i.e., text mining is used to
extract information from natural language. Some examples of text mining applications
are text clustering and classification, event, entity and relation extraction, and anomaly
or trend detection [21, 22].
NLP methods, which will be discussed more in detail in the next section, can be

used in text mining tasks, so the two are not mutually exclusive. Zhang et al. [23] use
part-of-speech tagging in their construction site accident analysis using text mining.
Abdullah et al. [24] use NLP and text mining for analyzing and forecasting investment
decisions using data from stock market and related textual web sources.

3.1.1. Text Clustering and Classification

Text clustering and classification are techniques to organize text documents into
collections that contain similar text documents in each collection [25]. Text clustering
is generally an unsupervised learning technique, i.e., it is done to text data where the
groups or collections are not known beforehand. Text clustering tries to separate the
text documents based on some similarity measure in a way that similar documents are
separated in their own groups separate from the dissimilar ones. Text classification is
generally a supervised technique, i.e., the groups to which the text documents are being
organized to must be known beforehand, and the algorithms must be trained with text
documents that have already been assigned to these groups. Text classification tries
to assign new text documents into the predefined groups based on similarity measures
between the document and the groups, so that the document is classified in the group
that it is most similar to. Because the similarity measures play a key part in text
clustering and classification and it directly impacts the performance of the methods,
it is essential to choose good similarity metric [25, 26]. Some common similarity
measures are Euclidean distance, Cosine similarity, Pearson correlation coefficient and
Jaccard coefficient [27].
Before the text documents can be compared together in terms of similarity, they

must be represented in a way that makes the similarity comparison possible. The
similarity metrics usually require that the text documents are first transformed into
numerical representations, meaning that one needs to convert the text documents into
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multidimensional vectors. To get meaningful vector representations, one often needs to
apply some preprocessing to the texts before doing the representations to normalize the
texts. Common preprocessing steps are tokenization, filtering, pruning and stemming
or lemmatization [28].
Tokenization is the task of dividing text into small pieces, tokens, which usually are

either words or n-grams of words, i.e., pairs, triplets, quadruplets, etc. of words. Word
tokenization is the simplest and it uses whitespaces to split each word into one token
[28].
In the filtering step, stopwords, punctuation marks and special characters are

removed from the text. Stopwords are words that do not help in comprehending the
documents semantically. Stopwords vary between each language but often they are
articles, pronouns, conjunctions or adverbs. The advantage of removing stopwords is
that it reduces the number of words or tokens that must be considered when creating the
document representation [28]. Depending on the use case and domain, the filtering can
be extended to other characters or words as well, such as domain specific stopwords or
digits for example.
Pruning removes the words that appear either very frequently or very infrequently in

the corpus. Very frequently occurring words can be seen as corpus specific stopwords
which do not help in the clustering or classification process since they appear in most
of the texts. Very infrequently occurring words, on the other hand, can be seen as
too rare words, which only appear in very few texts, and thus do not add any value to
the clustering or classification process [28]. Pruning, much like filtering, can reduce
the number of words or tokens needed for text representation, but the difficult part is
finding the right thresholds to prune only the words that are too frequent or infrequent
to add any value to the clustering or classification process.
Stemming and lemmatization steps try to normalize the words in the texts, so that

different forms of the same word can be recognized as the same word. Stemming does
this by removing suffixes and prefixes of words, so only the roots of the words are
used in the text representations. Porter stemming algorithm [29] is one of the most
commonly used stemming methods [28]. As an example of stemming, the words ’try’,
’trying’ and ’tried’ would all be stemmed to ’tri’. Lemmatization tries to find the
dictionary form of each word. Lemmatization requires finding the part-of-speech tags
for each word before it can determine the dictionary form of the words. The process
of finding the part-of-speech tag and dictionary form of each word generally require
an external dictionary [28]. As an example of lemmatization, the words ’try’, ’trying’
and ’tried’ would all be lemmatized to ’try’.
Representing the text documents is a crucial part of being able to compare

the documents in terms of similarity, as the similarity is calculated for these
representations. The three main methods used for representing text documents are
vector space model (VSM), probabilistic topic model and statistical language model
[25]. VSM represents each document with an n-dimensional vector, where n is the
number of terms or features in the vocabulary. The representation values can be
calculated for each term, with Boolean value, term frequency (TF) and term frequency-
inverse document frequency (TF-IDF), for example [25]. Most commonly used
method is the TF-IDF, which considers the frequency of a term inside one document
and also the frequency of a term across all the documents, so it tries to find the terms
that are specific for each document. Probabilistic topic model represents the documents
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as a collection of topics, where each topic is a probability distribution of words. Two
commonly used probabilistic topic modelling methods are Latent Dirichlet Allocation
(LDA) and Probabilistic Latent Semantic Indexing [25]. Statistical language model
represents text as a probability distribution calculated with word sequences [25].
Most commonly used language modeling approach, used in speech recognition and
information retrieval, for example, is to represent text with a product of n-gram
probabilities, where the probability of the consequent word is calculated using the
n previous words. In other words, the word probabilities are formed based on the
frequencies of certain words appearing together in n-grams in the training data [30].
Alsmadi and Alhami [31] present their findings using different approaches to cluster

email contents. They use TF with WordNet lexical database to group words into
synonyms with different text preprocessing techniques to represent the email contents,
and they have developed a distance based similarity measure where the maximum
distance between two emails is normalized to one and the distance between identical
emails is zero. Classification algorithms are used to evaluate the performance of the
clustering and the results show that the they are able to get good classification results
even with this unsupervised clustering based approach, but it is also noted that the
performance of the classifier could be improved with a supervised approach.
Jalal and Ali [32] use TF-IDF with cosine similarity to classify research papers into

five different categories based on the scope of the paper. They use the title, abstract
and keywords of each paper for the classifying process. The results show that their
approach can do really accurate classification into the five specified topics.

3.2. Natural Language Processing

NLP refers to a set of tools and techniques that attempt to extract a deeper
representation of textual data, such as who is doing what, when, where, why, and
to whom. It focuses more on linguistic and syntactic structures and components,
such as part-of-speech tags, semantic role labelling, sentiment, text categorization,
among others [21]. Therefore, NLP stands for techniques and algorithms that are used
for automatically analyzing and representing human languages. This also includes,
information retrieval, question-answering, automatic language translation, and text
generations and dialogues. NLP related analysis can be split into three main categories:
syntax analysis, semantic analysis, and discourse analysis [33]. Syntax analysis tries
to either determine structure (s) from text or regularize the syntax structure (s) with
semantic analysis. The goal of such an operation is to determine the meaning of
the sentence. Discourse analysis tries to determine the meaning of text consisting
of multiple sentences [33]. A common NLP based method used in feature extraction
in different text mining tasks is Word embeddings. The latter are numerical vectors
that are calculated for each word and they try to encode the meaning of the word in
a numerical vector. Word embeddings can be calculated using models like Word2Vec
[34, 35] or fastText [36, 37, 38].
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4. AUTOMATED FAULT ANALYSIS USING LOG FILES

Logs are semi-structured [39] or unstructured [40] files that are produced by SW during
run time which record information about the SW execution [39]. System logs are often
the only way for developers and operators to make sure that the system is running
as it should [40]. As the modern systems keep getting larger and more complex, the
amount of generated logs is increasing as well and the manual analysis of these logs
gets harder and more laborious. With increased research on data mining, automated
log analysis techniques have also started to emerge [40]. In addition to playing a key
role in ensuring system dependability, logs are also essential in system failure detection
and analysis, when something goes wrong in the system. Two common log analysis
applications related to system failures are anomaly detection [41, 42, 43] and fault or
root cause analysis (RCA) [44, 45, 46].
Fault analysis and RCA are closely tied together and they are the process of finding

out why a failure happens in a system. In some cases, RCA can be seen as a process
that takes the analysis a bit deeper in trying to find the root cause why a fault happens,
whereas fault analysis process might just try to identify different fault types. They
are different from anomaly detection, as anomaly detection only tries to find failures
or anomalies from logs. A common output of anomaly detection process is defining
if a system execution is normal or not, but in fault analysis or RCA the execution is
usually known to be anomalous. Depending on the system and the logs, the output of
fault analysis or RCA process could be the system component, software function or
line of code that caused an error in the execution, for example.
Basic workflow for automated log file analysis usually consists of log parsing,

feature extraction and log mining [39, 40], as visualized in Figure 2. Online
deployment can be considered as an optional fourth step in the workflow if the models
trained in the log mining step should be deployed online [40]. Log partition might
also be needed after the log parsing step if the log files contain logs from multiple
different systems, and the logs originated from separate systems should be partitioned
into separate logs [40].
The first phase of the automated log file analysis workflow, log parsing, has two

common goals it tries to achieve: parsing raw logs into structured format [39, 40]
and extracting relevant information from the logs, such as errors or failures [44]. The
aim of parsing raw logs into structured format is to parse the key components, such
as timestamp, IP address or severity level (e.g., "ERROR") from the logs. The log
messages can then be abstracted by identifying between the constant and variable part
of log message and using the constant parts to create event templates [39]. The process
of parsing a raw log into structured format and abstracting the log message is illustrated
with an arbitrary example in Figure 3. In this example, the raw log line is parsed
to get the timestamp, severity, logging component and log message in a structured
format. The log message is also abstracted by masking the variable parts: IP address
and timestamp, and creating an log event template from the constant part ’Connection
established’ and the masked variable parts. Extracting relevant information, such as
error messages, can reduce the amount of the data needed in the following steps and
help focus only on the interesting parts of the logs. However, the relevant information
is always dependent on the use case and the extraction must to be carefully considered,
as it could also lead to loss of important information from the logs.
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Similarly to other text mining tasks, during feature extraction step, interesting
characteristics of the log files are extracted and transformed into numerical features.
Depending on the feature extraction methods and the data that is used, some text
preprocessing methods can be considered before feature extraction to enhance the
feature representation. The ML algorithms that can be used in the log mining step
require structured, usually numeric input, which is why the logs must be transformed
into features before they can be used as input to the log mining step. Graphical features,
such as graph models, can also be used but numerical features are more common in log
analysis [39]. Examples of numerical feature extraction methods are log event based
methods, such as log event sequence and log event count vector [39], and NLP based
methods such as Word2Vec weighted by TF-IDF [41].

Moving to the log mining step, the first task is selecting appropriate ML model or
models, depending on the use case, and training the selected model or models with
the extracted features [39]. If there are multiple models that fit the use case, multiple
of them can be trained and compared to find the best one. The main limiting factor
when finding suitable ML models is the data that is being used, and more importantly
if the data is labeled or not, i.e., if one should use supervised, unsupervised or semi-
supervised models. The output of the log mining step can be a model that can detect
anomalies by finding uncharacteristic patterns from logs or a model that can detect the
root cause of a failure in a system by finding which system component seems to have
caused the failure in the logs, for example.

Figure 2. Basic workflow for automated log file analysis.

Figure 3. Parsing a raw log message into structured format.
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4.1. Related Work

There are lots of research done on automated log file based fault analysis but most of it
is done on labeled data with the goal of classifying the faults [47, 48, 44]. Unsupervised
approaches with unlabeled data are often used in log line abstraction and log line
clustering [49, 50, 51]. Log line abstraction is a common log parsing method also
used in automated fault analysis. Log line clustering can be used to create log file
profiles and finding patterns from log files [49].

4.1.1. Fault Classifying

Jiang et al. [47] introduce an automated cause analysis approach for test alarms
collected from system and integration testing named Cause Analysis Model (CAM).
CAM analyzes the test logs that are collected during testing. CAM uses TF-IDF with
cosine similarity to measure the similarity between new test logs and labeled historical
test logs. Before calculating the similarities, only relevant logs are chosen from the
historical log dataset to reduce the number of logs for which the similarity calculations
must be calculated. If the highest similarity between a new test log and a historical test
log is higher than a cause-specific threshold, the cause for the new log is predicted to be
the same as the most similar log’s cause. If the highest similarity is lower than a cause-
specific threshold, K Nearest Neighbors (KNN) classification is used by summing the
similarity values of the top-k most similar test logs for each cause, and predicting the
cause to be the one with the highest summed similarity in the top-k most similar test
logs. The cause-specific thresholds are calculated separately for each cause using the
historical logs. The method of calculating the cause-specific thresholds is explained
in detail in the paper. CAM is tested on two datasets with seven and six different
alarm causes and is able to achieve classification accuracy of 58.3% and 65.8% on the
datasets.
Amar and Rigby [48] present improvement approaches to CAM. The main

improvement idea over CAM is to predict the log lines that are likely to show the
cause of the failure. The aim is to flag as few log lines as possible while identifying
the largest number of faults. They use log abstraction to normalize the logs into log
events and find which of the log events have not been seen in the last passed log.
Only those log events that are not seen in the last passed log are used for the feature
extraction and similarity measures. Among the fault specific lines, the top N lines,
i.e., the features with highest values, are flagged for investigation. The classification
is improved by using Exclusive K Nearest Neighbors (EKNN) classification. Using
EKNN classification, if any of the logs among the k-neighbours, i.e., top-k similar
logs, has been labeled as a product fault, the new log will be classified as a product
fault. This is done to deal with the skewed dataset, where product faults are few and
far between, and to make it harder for the model to miss any product faults. The best
approach, LogFaultFlagger, uses the prior knowledge of how many times a log line has
been seen in past faults weighted by log line level inverse document frequency (IDF)
for log vectorization. This approach is able to find 89% of all faults in the test dataset
while flagging only 0.4% of the log lines.
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Another study done on continuous integration testing data is presented by Sköld
[44]. He is using NLP techniques to do automated root cause analysis on test logs.
The logs are parsed by creating event templates where variables, such as IP-addresses,
URLs and file paths are masked, and by searching only for the higher-order log events,
such as errors, with keyword search. For each of the extracted higher-order log
line, five previous log lines are also extracted to include context. These log groups,
containing six log lines each, are then vectorized using fastText word embeddings
weighted by TF-IDF. The classification is done for 16 different classes using few
different models and the best results are achieved with XGBoost with an F1-score
of 0.932.

4.1.2. Log Line Abstraction and Log Line Clustering

Simple Logfile Clustering Tool (SLCT) is presented by Vaarandi in his paper [49].
SLCT uses a three step clustering algorithm making two passes over the data. The
first step of the clustering algorithm is identifying the frequent words from the dataset,
i.e., the words that have more occurrences than a user-specified threshold. During the
second step the cluster candidates are built into a candidate table with another pass over
the dataset, using the frequent words information collected in the first step. The final
step goes through the candidate table and marks the candidates that have a support
value, i.e., density in terms of frequent words, equal or greater than a threshold as
clusters. The algorithm reports the found clusters with line patterns without reporting
each individual line belonging to the clusters.
Nagappan and Mladen modify the SLCT algorithm to make it more viable for log

abstraction [50]. Their approach also passes through the data twice. During the first
pass, the algorithm builds a frequency table that shows how many times each word
occurs in each possible position in the log lines, so that the rows of the table correspond
to words and columns correspond to positions inside a log line. In the second pass,
every log line is inspected again. For each log line, the frequency threshold for a
word to be considered constant or variable is retrieved using the frequency table. The
clusters are looked for within a log line without a need for user-specified threshold,
which enables the approach to find and abstract all event types in a log file, as long as
the events occur at least two times in the log.
He et al. introduce Drain, an online log parsing approach with the goal of creating

an efficient and accurate log abstraction method [51]. Online log parsing means that it
can process log messages in a streaming way without needing all the logs beforehand.
Drain uses a fixed depth parsing tree with carefully designed parsing rules as the tree
nodes to make the parsing process efficient. Parsing tree is used to abstract log lines
into log event templates and also clusters the log lines into clusters based on the event
templates. The accuracy and efficiency of Drain is compared against four existing
log parsing methods: LKE [52], IPLoM [53], SHISO [54] and Spell [55], using five
different datasets. On four of these datasets, Drain achieved the highest accuracy and
on the fifth one it had the second highest accuracy, and it was the fastest algorithm on
all five datasets.
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5. METHODOLOGY

As the study done on this thesis work is done on unlabeled data, unsupervised learning
methods can be used to find answers to the research questions. Clustering is a suitable
method for finding the different fault types in the radio product integration testing data
and answering the first research question, as it will help group the similar faults into
clusters, which can then be manually analyzed to find the fault types that form the
clusters. Clustering can also be used to evaluate which of the used feature extraction
methods can separate the data best in terms of fault types and answer the second
research question by calculating cluster quality metrics, such as silhouette score, for
the resulting clusters. Dimensionality reduction methods, such as principal component
analysis (PCA), can be used to reduce the dimensionality of the used features to two,
so the features and clustering results can be visualized in a two dimensional figure
to visually analyze how well each feature extraction method separates the data into
clusters to help answering the second research question. Based on the answers to the
first two research questions, the third research question can be answered by finding
out if the collection of more data is needed and if the used data processing and feature
extraction methods seem to be able to separate the data in terms of fault types or if
other methods should be experimented with to be able to do automated fault analysis
in the future. Other steps that should be taken to enable automated log fault analysis
applications in the future are most likely also found during the process of analyzing,
processing, and clustering the data and these can be discussed as well to further cover
the third research question.
To be able to do clustering on the data collected from the radio product integration

tests, the data must be parsed and preprocessed, and feature extraction must be done
on the preprocessed data. After these steps the actual clustering can be done and the
results can be analyzed to find out what kind of faults can be found from each file type,
can the different feature extraction methods separate the data in terms of fault types,
and compare how well the different feature extraction methods seem to separate the
data in terms of fault types.
The general pipeline for parsing, preprocessing, feature extraction and clustering

used in this study is illustrated in Figure 4. First, the data is parsed to extract
the relevant information for fault analysis and to transform the unstructured logs to
structured format. This is done using keyword searches and regular expressions.
After parsing the data, the log messages are abstracted using Drain algorithm [51]
to normalize the log messages by finding the constant parts and masking the variable
parts. Two different text preprocessing methods are used to normalize the data. The
first one being a basic text preprocessing pipeline that is commonly used in general
text mining tasks, and the second one being a reduced text preprocessing pipeline that
could help preserving some of the characteristics of lower level log messages. Feature
extraction is done on the parsed and preprocessed data using TF-IDF, Word2Vec
weighted by TF-IDF and line-IDF. The extracted features are clustered using K-means
clustering. Euclidean distance is used for K-means. The clustering results are analyzed
using manual analysis, silhouette scores and PCA to find answers to the research
questions. Implementation of the methodology is done using Python and Jupyter
notebooks.
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Figure 4. The general pipeline for data preprocessing and clustering used in this study.

5.1. Data Parsing

Keyword search is used to find the interesting rows from the log lines based on the
logging severities. In the fault analysis use case, the interesting lines are the higher
severity log lines: errors and criticals. Keyword search will extract all the log lines that
contain the specified keyword, such as ’ERROR’.
Regular expressions are used to transform the unstructured logs into structured

format by finding the different parts of the log messages, such as timestamps and
logging entities. Regular expressions can be used to find and extract specific sets of
characters from text, and with knowledge of the structure of the logs, they can be used
to find and extract the different parts of the log lines.

5.2. Log Message Abstraction

Drain3 [56] Python implementation of the Drain algorithm [51] is used for log message
abstraction. It uses a fixed-depth parsing tree to abstract log lines into log event
templates. Before a new log message is input in the parsing tree, it is preprocessed
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with user-defined regular expressions. With these regular expressions, the user can
mask some domain specific variables, such as IP addresses or block IDs.
The first step of traversing the parsing tree is to search a node that corresponds to

the number of tokens in the preprocessed log message, based on the assumption that
similar log messages will probably have same number of tokens. The next steps of
traversing the parsing tree is to look at the depth - 2 tokens at the beginning of the log
message. Depth is a parameter that is used to determine how deep the parsing tree
will be for each log message. There are two other steps of traversing the parsing tree
in addition to this one, which is why only the depth - 2 tokens from the beginning
are considered in this step. Considering the tokens in the beginning is originating
from the presumption that tokens at the start of a log message are more probable to be
constants. In this step only tokens that do not contain digits are considered to avoid
parameter tokens. After this step Drain will have reached a leaf node.
The final step of traversing the parsing tree happens in the leaf node by choosing the

most similar log group from all of the log groups inside the leaf node. Each of the log
group inside a leaf node must fulfill the rules in the nodes that were traversed before
the leaf node. The log groups contain the log event and a list of log IDs. The log event
is a template containing the constant parts and masked parameters of a log message
and presents the log messages in the group. The list of log IDs contains all the IDs of
log messages that are clustered into this group. Similarity is measured as a token level
sequence similarity between the new log message and the log events of all of the log
groups, defined as

simSeq(seq1, seq2) =

∑n
i=1 equ(seq1(i), seq2(i))

n
, (1)

where seq1 and seq2 are the new log message and a log event of one of the log groups,
seq(i) is the i-th token of the log message or log event and n is the number of tokens
in the log message and log event. The equality function equ is defined as

equ(t1, t2) =

{
1, if t1 = t2

0, otherwise
(2)

where t1 and t2 are tokens that are compared. After the most similar log event is found,
the similarity value simSeq is compared against a similarity threshold parameter. If
the similarity value is equal or greater than the threshold value, Drain will consider the
log group as a match. Otherwise Drain will consider that there are no suitable groups
for the log message.
Finally, the parsing tree will be updated depenging on if a matching log group was

found for the log message or not. If Drain found a match for the log message, the ID
of the log message will be added to the log group’s list of IDs and the event template
will be updated if needed. If the tokens in the same position are the same for the new
log message and the template, the token will not change in the template, but if they
are different, the token in that position will be replaced with a wild card mask (*) in
the event template. If Drain did not find a match for the log message, it will create a
new log group for that log message and update the parsing tree to include the new log
group it just created based on the new log event.
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5.3. Text Preprocessing

5.3.1. Basic Text Preprocessing

The basic text preprocessing pipeline steps are defined as:

1. stop word removal,
2. special character removal,
3. digit removal,
4. punctuation mark removal, except for underscores (_),
5. converting to lower case,
6. stemming the tokens using Porter stemmer, and
7. pruning infrequent tokens.

Underscores are not removed as they are very common in entity names, so not
removing them will help preserving the entity names. An example of a special
character is the newline character (\n). Natural Language Toolkit (NLTK) [57] Python
library implementation of Porter stemming algorithm is used for stemming.

5.3.2. Reduced Text Preprocessing

The second text preprocessing approach uses reduced preprocessing with the steps
being:

1. special character removal,
2. punctuation mark removal, except for underscores(_), forward slashes (/), colons

(:), dashes (-) and dots (.)
3. converting to lower case, and
4. pruning infrequent tokens.

Stop word removal or stemming is not used. The reduced preprocessing is based on
the idea that lower level logs, such as the BTS log collector logs, are not very similar
to usual written natural language, and they can have slightly different characteristics,
so using the same basic preprocessing pipeline that is commonly used for text mining
might not be the best approach for lower level logs.

5.4. Feature Extraction Methods

5.4.1. TF-IDF

TF-IDF is a feature extraction method that measures how characteristic each word is to
a document in a corpus. TF-IDF is a regularly used method for extracting text features
in information retrieval and text mining tasks [32, 41, 44, 47, 58]. In this work, scikit-
learn [59] Python library implementation of TF-IDF is used. TF-IDF is defined as a
sum of TF and IDF:

TF -IDF = TF ∗ IDF, (3)
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where TF is the count of how many times the word appears in the document. IDF
measures how common or rare a word is in the corpus and is defined as:

IDF = log
N

DF
, (4)

where DF is the document frequency, i.e., the count of documents that contain the
word and N is the total number of documents [60].

5.4.2. Word2Vec

Word2Vec is a model framework that is made to extract meaningful word embeddings
for NLP related tasks. Word embeddings are numerical vector representations of
words, so they can be used in feature extraction. The Word2Vec word embeddings
have been used a lot in feature extraction in different text mining or NLP related
tasks [41, 61, 62, 63, 64]. Word2Vec is based on the two papers by Mikolov et al.
[34, 35]. Gensim [65] Python library implementation ofWord2Vec is used in this work.
Word2Vec trains a two-layer neural network, with one hidden layer and an output
layer, using the words in a corpus. Two separate model architectures are available
for Word2Vec: continuous bag-of-words (CBOW) model and continuous skip-gram
model. The CBOW model predicts the current word using the context, i.e., a specific
number of words before and after the current word, while the skip-gram model tries to
predict the context using the current word. In this work, the CBOWmodel is used. The
architecture of the model is illustrated in Figure 5. The model uses the current word’s
context as the input, so a window size must be specified to determine how many words
will be used before and after the current word. The word embeddings are learned in
the projection or hidden layer and that is also where they are extracted from after the
model has been trained. These word embeddings are then used in feature extraction.
The output of the model is the predicted word based on the context.

Figure 5. The CBOW model architecture.
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5.4.3. Word2Vec Weighted by TF-IDF

Word2Vec model gives word embeddings for each word in a text. However for text
classification or clustering tasks, the whole text needs a single feature representation,
so the word embeddings must be somehow summed to get a feature representation for
the whole text. TF-IDF weights are often used in this process by using the TF-IDF
weights to weight the corresponding word embedding vectors and then summing the
weighted word embedding vectors together [41, 61].

5.4.4. Line-IDF

Line-IDF is similar to IDF but it is calculated on the log line level instead of word level.
Line-IDF is presented in the paper by Amar and Rigby [48], and they use it in two of
their log line flagging approaches: LogFaultFlagger and Logliner. LogFaultFlagger is
their best performing approach and it uses the prior knowledge of log lines’ relation
to product faults to weight the line-IDF values. Since the information about which log
lines are often related to product faults is not available in the study presented in this
paper, the raw line-IDF values are used. The same approach is used in the Logliner
approach, which also performs well in the use case it is made for. The line-IDF score
is calculated for each log line similarly to how IDF is calculated for words in Equation
4:

line-IDF = log
N

line-DF
, (5)

where N is the total number of log files and line-DF is the count of how many log
files contain the log line.

5.5. Clustering

5.5.1. K-Means Clustering

K-means clustering algorithm is used for clustering. It is one the most established
clustering algorithms [9]. K-means is a partitional clustering method and it is one of the
simplest clustering algorithms [8]. Euclidean distance is commonly as the minimized
distance metric with K-means [8]. K-means requires that the number of clusters k is
defined before doing the clustering. The K-means implementation from scikit-learn
[59] Python library is used in this work. The algorithm follows these four basic steps
[8, 9]:

1. initialize k cluster centroids at random or using some statistics or prior
knowledge of the used data, and for each data sample, calculate the distance
to each cluster centroid,

2. assign each data sample to the cluster that has the nearest centroid,
3. recalculate the cluster centroids based on the samples assigned to each cluster:
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ci =
1

Ni

∑
xj∈Ci

xj, (6)

where ci is the new cluster centroid for cluster i, Ni is the number of samples in
cluster i, Ci is the cluster i, i.e., the group of samples assigned to cluster i, and
xj is sample j in cluster i,

4. repeat steps 2-3 until there is no change in the centroids.

Some other termination rules can also be defined for step 4, such as maximum number
of iterations.

5.5.2. Euclidean Distance

Euclidean distance is used as the minimized metric with K-means clustering in this
work. Euclidean distance is the basic distance between two points and is calculated by
taking the square root of the squared difference between the two points:

dEuc(d1, d2) = [(d1 − d2)
2]

1
2 , (7)

where d1 and d2 are the points in n-dimensional space [66].

5.6. Metrics and Methods Used for Analysis

5.6.1. Manual Analysis

As a part of the exploratory analysis, the resulting clusters are manually analyzed to
find the different fault categories that can be found from each file type. Different
numbers of clusters are tried with K-means using TF-IDF feature extraction method
with basic preprocessing pipeline and the resulting clusters are analyzed to find all the
fault categories. TF-IDF with basic preprocessing method is used for manual analysis
since these methods can and will be used for all file types and it is a simpler and less
computationally costly approach than Word2Vec weighted by TF-IDF, which is also
used for all file types, so experimenting with TF-IDF and finding the different fault
types is easier. Line-IDF could also be used for log files but since it cannot be used for
test case meta data files, TF-IDF is used for all file types.

5.6.2. Silhouette Score

Silhouette coefficient is a commonly used clustering evaluation method used with
partitional clustering methods when the ground truth labels are not known or when
the cluster quality is wanted to be described [27, 67, 68]. It uses the partitioning of a
clustering algorithm to measure how well each individual cluster is defined based on
the similarities between samples belonging to same clusters, and how well the clusters
are separated from each other based on the dissimilarities between samples belonging
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to different clusters [69]. The silhoutte coefficient s can be calculated for a single
sample i with equation:

s(i) =
b(i)− a(i)

max(a(i), b(i))
, (8)

where a(i) is the mean dissimilarity between sample i and all the other samples
assigned to the same cluster with i, and b(i) is the mean dissimilarity between sample
i and all the other samples assigned to the neighboring cluster. As the clustering in this
work is done using Euclidean distance as the minimized metric, Euclidean distance is
also the similarity metric used to calculate the silhouette coefficient. This means that
the dissimilarities inside and between the clusters can be viewed as the distances inside
and between the clusters.
The overall silhouette coefficient for a clustering partition can be calculated as the

average of each sample’s silhouette coefficient [69]. In this paper the mean silhouette
coefficient value for a clustering partition is referred to as silhouette score. Silhouette
score can have values from -1 to 1. Silhouette score values close to -1 mean that
the samples have been clustered into wrong clusters, values close to 0 mean that the
clusters are overlapping, and values close to 1 mean that the clusters are well defined.
Scikit-learn library [59] implementation for computing the mean silhouette coefficient
is used to calculate the silhouette scores for the different preprocessing and feature
extraction methods in this study.
Silhouette score can also be used to optimize the number of clusters for partitional

clustering methods, where the number of clusters must be defined before doing the
clustering, such as K-means. The optimal number of clusters is found by varying the
number of clusters k over a range of suitable values and finding the value of k that
gives the highest silhouette score [70]. In this work, this method is used to find the
optimal numbers of clusters, so the resulting clusters can be visualized using PCA.

5.6.3. Principal Component Analysis

PCA is a dimensionality reduction method that tries to compress the size of data by
keeping only the important information. It can be used to reduce high dimensional
data into lower dimensions, so that the data can be visualized and analyzed easier.
The reduction in the size of data is achieved by calculating the principal components
of the original data, so that the first principal component will explain the largest
variance from the data and the second component is orthogonal to the first one [71].
Principal components are calculated using singular value decomposition (SVD) but the
mathematical derivation of computing the SVD and the principal components are not
included in this paper, so the reader can refer for example to the articles by Abdi and
Williams [71] or Bro and Smilde [72] to find more detailed mathematical explanations
of the method.
The basic idea of PCA is illustrated with two dimensional toy data in Figures 6 and

7. The first principal component finds the direction where the data has the largest
variance and the second component is set to be orthogonal to the first one. The two
principal components are visualized on top of the original data in Figure 6. In Figure
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7, the original data is projected onto the first and second principal component. The
same principles apply when visualizing higher dimensional data using PCA.

Figure 6. Principal components visualized on top of the original data.

Figure 7. Data projected onto principal components.
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6. DATA PREPROCESSING

The fault analysis study for radio product testing related data started by having some
discussions with the test engineers to get more familiar with the testing environments,
the data that is collected and used for fault analysis, and what are the possible causes
for failures. Based on these discussions the scope for the data study was defined to
include the automated integration tests for radio frequency software (RFSW), which
are ran automatically multiple times a day. This was chosen, as there are lots of data
available for these tests, and with the automated test executions, the possible causes
for failures are more limited than in some other tests, as the test environments do not
change much between the test runs. For the automated test executions, there are also
automated test verdicts available, so for every test run, the result of the test is known,
i.e., if the test failed or passed. This is important, so the study can actually focus on the
fault analysis instead of anomaly detection. Most of the test runs do not have any labels
for the fault types, though, so the fault analysis study is done mostly on unlabeled data.

6.1. Data Used for the Study

The data used for the study is unlabeled in terms of fault types. From the discussions
with the test engineers, three relevant file types were identified that are collected
automatically and can be used for the fault analysis study: test case meta data, test
automation logs and BTS log collector logs.
Test case meta data is already collected and transformed to Azure Data Lake Storage

as a Delta table, so the wanted data can be easily queried with SQL. Test automation
logs and BTS log collector logs are still only stored in a S3 storage as parquet files, so
these parquet files are downloaded manually using Python.
Some statistics and other information about the used file types are collected in Table

1 with the number of files collected, the distribution of number of files between failed
and passed test cases, statistics about the size of the files and the different logging
severities that can be found from the log files. Collection of test case meta data has
been started the earliest, so there are more test case meta data files available than the
other two file types. BTS log collector logs have been collected for the shortest time
period, so there are less of those files available. The BTS log collector logs are the
largest files containing over 40 000 rows on average.

Table 1. Statistics and information about the used file types.
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6.1.1. Test Case Meta Data

Test case meta data files collect general meta data about each test case. They are
files with only one row with hundreds of columns containing the different meta data
variables that are collected. For the study, there is a total of 13676 test case meta
data files collected, 6838 of those being failed test cases and 6838 being passed test
cases. There were even more files available for passed test cases but to keep the dataset
balanced in terms of failed and passed test cases, the same number of files for passed
test cases were collected as for failed test cases.
There are two interesting columns in the test case meta data files considering the

fault analysis study: ’verification.detailed_reason’ column and ’state.errorMessage’
column. The ’verification.detailed_reason’ column, which will be referred to as the
verification detailed reason column in this text, contains the results of the automated
verdicts. A test case can have multiple different verdict rules that need to be fulfilled
for the test to be considered passed. An example of a verdict rule is that the throughput
measurements, i.e., how much data is being sent from or received by the BTS, are
above a certain threshold. The verification detailed reason column contains all the
verdict rules that are set for the test case, the results for each verdict rule (failed
or passed) and the reason why each rule is failed or passed. If the test execution is
successful but the test still fails, the verdict rules will most likely give the reason why
the test case failed. If the test execution fails before the test automation can make
the verdicts, there are no verdict results available and some indication of test case
execution failure is provided in this column.
The ’state.errorMessage’ column, which will be referred to as the error message

column in this text, collects the error messages happening on the main states or steps
during the test execution. If some errors happen during these main steps that interrupt
the test execution, the error messages will be collected in the error message column
with the information of which of the execution steps failed, so this column usually
gives a good idea of what went wrong on high level and what part of the test failed if
the test execution fails.
The test case meta data files and especially the verification detailed reason and error

message columns usually give a good explanation on high level why a test case has
failed, and they are usually the first thing that the test engineers look at to get a general
idea of what went wrong in a failed test case. Not all the error messages from the test
execution are found from the error message column, though, and the actual cause for
failure cannot always be derived from the high level error messages, so often other files
need to be looked at to find the real root cause for failure.

6.1.2. Test Automation Logs

Test automation log files contain all the test execution steps that the test automation
does during the test. There are all the calls to and responses from different services
and APIs that are used during the test execution. The logging collected in the test
automation logs is still happening on a high level but there are more logs collected
compared to the error message column in test case meta data, as all of the test execution
steps are logged here, not just the status of the main states. Test automation logs are
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usually the first log file the test engineers look at when a test fails, and often the cause
for the failure can be derived from these logs, at least on high level, if the fault is caused
by the test automation or the test environment. A total of 10821 test automation logs is
collected for the study, fromwhich 5263 are failed test cases and 5558 are passed cases.
These are all the test automation logs that were available at the time of collection, and
the ratio between failed and passed test cases is still balanced, so all of the available
logs are used for the study.
There are two formats for the basic log lines in test automation logs, which are

illustrated in Figure 8. The first format includes logging timestamp, timestamp from
the logging entity, severity of the log, logging entity and log message. The second
format is otherwise the same as the first one but it does not have the logging entity.
The possible logging severities are INFO, WARNING, ERROR and CRITICAL. If a
logging entity is included in the log, the timestamp from the logging entity, the severity,
the logging entity and the log message are separated with pipe symbols (|). There are
also some multi line logging statements with indentation and unstructured format, but
after studying the files, most of the relevant information will be collected from these
multi line statements in the well structured log lines.

Figure 8. Log line formats for test automation logs.

6.1.3. BTS Log Collector Logs

BTS log collector logs contain logs from the BTS and radio that are used in the test.
The BTS log collector logs can give a deeper insight on what is happening in the BTS
and radio and if a failure is caused by either of them. These logs can be important
if an actual product fault happens in the test, as the they can show on the software
component level, which component is causing the fault, and for which software team
the fault report regarding the product fault needs to be directed to. 5558 BTS log
collector log files are collected for the study with 2779 failed test cases and 2779
passed test cases. Again, more passed test cases were available than failed test cases,
but to keep the dataset balanced, the same number of passed test cases were collected
as failed test cases.
The format for the BTS log collector logs log lines is shown in Figure 9. The log

lines contain the IP address from which the log is collected, a running hexadecimal
number, BTS component 1, timestamp, BTS component 2, logging severity flag, the
logging SW component and log message. The possible severity flags are DBG, INF,
WRN, ERR and VIP, corresponding to debug, info, warning, error and very important
severities. The BTS component 1 and BTS component 2 are some HW component
identifiers on different levels. The test engineers are more interested in the SW
component identifier, as this is usually needed for the fault report in case of a product
fault.
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Figure 9. Log line format for BTS log collector logs.

6.2. Parsing the Data

Further processing and studying of the files require that the relevant information
regarding the failure causes is parsed and extracted from the raw files. The log files
require more parsing than the meta data files, as the columns used from the meta data
are already parsed information.

6.2.1. Parsing Test Case Meta Data

The first step of extracting relevant information from the test case meta data files is
extracting the verification detailed reason and error message columns from the files.
The error message column only contains error messages happening in the main states
of the test execution, so it does not need any more parsing, as all the error messages can
be relevant in the fault analysis. The verification detailed reason column contains all
verdict rules that the test case needs to pass, so there can be some rules that are passed
and some rules that are failed. For fault analysis, the failed rules are the relevant ones,
so only the failed rules will be extracted by using keyword search for further processing
from the verification detailed reason column.

6.2.2. Parsing Test Automation Logs and BTS Log Collector Logs

Test automation logs and BTS log collector logs are actual log files, so there is more
parsing to be done compared to the meta data files. First, the relevant log lines are
extracted from the full logs, then the extracted log lines are parsed into structured
format and finally the parsed log messages are abstracted into log event templates.
Test automation log files usually have thousands of log lines in them and BTS log

collector logs can have hundreds of thousands or even millions of log lines, as shown in
Table 1, so the relevant log lines in terms of fault analysis need to be extracted from the
logs, as trying to analyze the faults using thousands or even millions of log lines would
be very difficult. According to the test engineers, the reason for faults can usually be
found from the error lines in the logs, so these are the lines that are extracted along
with the critical log lines in the test automation logs. Warning lines could be extracted
as well, but for the clustering they might only make the results worse by increasing the
dimensionality and possibly adding noise if they are not relevant for the fault analysis.
Keyword search is used to extract the log lines with wanted severities from the log
files. The keywords used for the test automation logs are ’ERROR’ and ’CRITICAL’.
For the BTS log collector logs, ’ERR’ keyword is used.
Parsing the extracted log lines into structured format is done by using regular

expressions that fit the log line formats. The log lines are parsed into tables where
each extracted part of the log line is in its own column, similarly to the illustration in
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Figure 3, with the exception that the log messages are not abstracted yet into event
templates. From test automation log lines, the timestamps, logging severities, logging
entities and log messages are parsed. From BTS log collector logs, the IP addresses,
timestamps, logging SW components, logging severities and log messages are parsed.
Abstraction of the log messages is done by using Drain3 open-source log template

miner [56] based on the Drain algorithm [51]. Log event templates are parsed with
Drain3 from the extracted and parsed log messages for both test automation log
messages and BTS log collector log messages. The default parameters from the project
repository configuration file example [56] are used for Drain3, with the exception that
no extra delimiters are used.
The log event templates are then used to find the fail specific log events by

considering only those log events that are seen in the failed cases and not in the passed
cases, similarly to what is done by Amar and Rigby in their failure causing log line
flagging implementations [48], except that all of the historical passed cases are used
in this work instead of just the last passed case. The log events that are not occurring
in the passed cases are more likely to be relevant to the actual cause of the failure.
With this approach, the number of log lines considered per test case is much lower
than if all of the extracted lines are considered, even if lower severity log lines, such
as warnings, are extracted. This approach could make it feasible to include also lower
severity log lines for clustering, and it is something that could be experimented with in
the future, but for this work, only the error and critical severity log lines are considered,
as these are be the most relevant log lines for fault analysis. Adding more log lines to
the feature extraction step will also increase the risk that the important log lines or
important information from specific log lines will be lost in the noise caused by non-
relevant log lines.

6.3. Feature Extraction

After parsing the important information from the raw meta data and log files, the
extracted and parsed data must be transformed into features, so they can be used for
log mining. In this case, the text data is transformed into numerical feature vectors, so
that each test case in each file type will have its own feature vector, which will then be
used for clustering. Before extracting the features, some text preprocessing is done.

6.3.1. Features from Test Case Meta Data

Before preprocessing the text from test case meta data files, the parsed verification
detailed reason column and error message column are concatenated as a one string for
each file. This is done because after looking at the collected files, some legacy files
had the error messages in the verification detailed reason column, so by concatenating
these two columns the error messages will be compared against other error messages
even if they occur in the other column.
Test case meta data is preprocessed with the basic text preprocessing pipeline. The

threshold for considering a token as infrequent for pruning is set at five for test case
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meta, i.e., tokens that appear less than five times in all of the test case meta data files
are pruned.
Two feature extraction methods are used for test case meta data: TF-IDF and

Word2Vec weighted by TF-IDF. The features are extracted from the preprocessed
string containing the verification detailed reason and error message.

6.3.2. Features from Test Automation Logs and BTS Log Collector Logs

Three different feature extraction methods with two different text preprocessing
approaches are experimented on test automation logs and BTS log collector logs.
The first approach is using the failure specific log event templates to form the feature
vectors by calculating the line-IDF value for each failure specific log event template.
The resulting feature vector’s elements will correspond to the failure specific log event
templates and the value of each element will be the line-IDF value of the corresponding
event template. This approach does not require any text preprocessing, since only the
occurrences of log event templates are calculated and the meaning or contents of the
log event templates are not considered.
For the other two feature extraction methods two different text preprocessing

approaches are used. The first one is the same basic preprocessing pipeline that is
also used for test case meta data and the second one is the reduced text preprocessing
pipeline. The thresholds for considering a token as infrequent for pruning are set at
five for test automation logs and three for BTS log collector logs. A smaller threshold
is used for BTS log collector logs, as there are fewer samples.
The two other feature extraction methods are TF-IDF and Word2Vec weighted by

TF-IDF. The features are calculated for the parsed and preprocessed failure specific
log messages, so only those log messages that correspond to one of the failure specific
log templates are used for the feature representation.
For feature extraction and clustering, only those test cases that contain at least one

failure specific log message are considered. If a log file does not contain any failure
specific log lines it is considered to not be relevant in the fault analysis. This reduces
the number of test automation logs used in the clustering step to 3311 failed test cases
and the number of BTS log collector logs to 252 failed test cases. The reduction in
BTS log collector logs is drastic but it makes sense, as product faults should be much
more rare than other faults, and the faults found from BTS log collector logs are most
likely related to product faults.
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7. CLUSTERING

The faults from radio product integration tests can be separated on high level to three
different categories: environment faults, automation faults and product faults. The
environment faults are caused by the test environment. For example, there could
be some disconnected cables or someone could open the test chamber door in the
middle of a test execution and stop the test prematurely. In the case of environment
errors, the test engineers must locate the cause for the error and fix it, if possible, so
that the next tests will not fail because of the same problem in the test environment.
Automation faults are failures happening in the test automation, such as errors in the
test configuration. Test automation issues cannot always be fixed by the test engineers,
so they might need to contact the team responsible for the test automation to fix these
issues. Product faults are faults happening in the actual product that is being tested.
In the RFSW integration tests, the product faults are usually caused by the RFSW
because the hardware does not change between the test runs, but also HW failures are
possible. In the case of product failures, and more specifically the RFSW failures, the
test engineers must try and find the software component that is causing the failure, so
they can direct the fault report about the product failure to the correct software team.
Clustering of the meta data and the log files is done using K-means clustering.

Clustering is done separately for each file type to find what kind of clusters and what
kind of causes for faults can be found from each file type. This will help determining
which files are needed to find specific faults and if there are any differences in what
kind of faults can be found from each file type. The found fault causes can also be
compared with the list of possible fault causes defined with the test engineers during
the discussions with them to see which of the possible faults cannot be found from
the used files and what kind of data is still required to be collected to find the missing
faults.
The first step of the cluster analysis is done in an exploratory manner. Different

numbers of clusters are tried using TF-IDF with basic text preprocessing pipeline and
the resulting clusters are manually analyzed to identify the different fault types from
each file type. The fault types are also cross-checked between the file types, i.e., if the
faults seem to be similar for files generated from the same test case and what kind of
differences the error messages have between the files.
The second step of cluster analysis is comparing the used feature extraction methods:

TF-IDF, Word2Vec weighted by TF-IDF and line-IDF with basic text preprocessing
and reduced text preprocessing pipelines. The clustering done with the different
preprocessing and feature extraction methods are compared using silhouette score.
The clustering results got with the highest silhouette scores for each feature extraction
method for each file type are also visualized using PCA, so the goodness of the clusters
and the feature extraction method’s ability to separate the data will also be visually
evaluated.
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8. RESULTS

The cluster analysis for the radio product testing faults is done in two parts. The first
part is the exploratory part where the different fault types are identified from each file
type with cross-checking done between the file types. The full lists of different fault
types are not listed in this paper, as they are confidential information. The second step
evaluates how the basic text preprocessing and reduced text preprocessing pipelines
with TF-IDF, Word2Vec weighted by TF-IDF, and line-IDF feature extraction methods
can separate the data in terms of failure causes using silhouette score and PCA.

8.1. Exploratory Analysis

As a part of the exploratory analysis, the average number of occurrences of different
logging severities in test automation and BTS log collector logs are also calculated
to verify that extracting only the selected severities makes sense. The results for test
automation logs are shown in Table 2 and for BTS log collector logs in Table 3. For
both file types, the number of occurrences per file starts to get really high when going
to the severities lower than the errors, and for BTS log collector logs, the number
of errors is already high for failed cases. Including the warnings or the other lower
severity logs would lead to a very big number of log lines that need to be considered
for each test case, so it seems that including these lower severities might only make it
harder to find the causes for faults, sticking to the assumption that the causes for faults
are most likely found in the error lines. The VIP, i.e., very important, log lines in BTS
log collector logs contain important information about SW startup, HW versions, etc.,
and there is also a big number of these log lines seen in both failed and passed cases.
These log lines are considered more important than the info and warning log lines, but,
as the large number of occurrences in passed cases suggests, usually these lines are
still part of the normal functionality, so they are not as relevant to the fault analysis as
the error lines are.
The full lists of clusters found in the exploratory analysis cannot be listed, as they

are confidential information but the findings from the exploratory cluster analysis will
be discussed in more detail in Chapter 9.

Table 2. Average number of occurrences of each logging severity in a test automation
log.



38

Table 3. Average number of occurrences of each logging severity in a BTS log collector
log.

8.2. Evaluating the Feature Extraction Methods

The used text preprocessing and feature extraction methods are evaluated using
silhouette score and visualizations done with the help of PCA. To calculate the
silhouette scores, the number of clusters k is varied from two to 50 to find which
value of k gives the most well defined clusters based on the silhouette score. 50 is
chosen as the upper limit based on the findings from the exploratory analysis, since the
number of distinct clusters seems to be well under 50 for each file type, so using 50
clusters as the upper limit should be a safe choice to find all the distinct clusters based
on the fault types. In the figures visualizing the resulting silhouette scores for each file
type, the points where the maximum scores are achieved for each feature extraction
method is marked with a black circle. Using the numbers of clusters that give the
highest silhouette score for each feature extraction method, the resulting clustering
will also be visualized using PCA for each file type to visually evaluate the results.
In the resulting figures, different clusters are plotted in different colors and the cluster
centers are marked with black crosses.

8.2.1. Test Case Meta Data

The silhouette scores got with the TF-IDF and Word2Vec weighted by TF-IDF on
test case meta data are shown in Figure 10. Based on the silhouette scores Word2Vec
weighted by TF-IDF seems to find better defined clusters. The clustering results are
visualized using PCA in Figure 11. Visually analyzing the resulting clusters, neither of
the methods seems to result in clearly better defined clusters, so based on the silhouette
scores, Word2Vec weighted by TF-IDF seems to be able to separate the test case meta
data better.

8.2.2. Test Automation Logs

The silhouette scores got with line-IDF, TF-IDF, and Word2Vec weighted by TF-
IDF with basic and reduced text preprocessing pipelines on test automation logs
are visualized in Figure 12. The basic preprocessing pipeline is referred to as the
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Figure 10. Silhouette scores got with the used feature extraction methods on test case
meta data.

preprocessing method 1 in the legend and the reduced text preprocessing pipeline as
the preprocessing method 2. With lower numbers of clusters, Word2Vec weighted by
TF-IDF with both text preprocessing methods achieves better silhouette scores than the
other methods but at higher numbers of clusters TF-IDF with basic text preprocessing
pipeline and line-IDF achieve the highest scores. The resulting clusters are visualized
using PCA in Figure 13. The scales of the axes on the Word2Vec weighted by TF-
IDF visualizations are on a larger scale compared to the other visualizations, so this
method is able to separate the data well also based on the visualizations. As Word2Vec
weighted by TF-IDF with basic preprocessing pipeline is able to achieve the best
silhouette scores at lower numbers of clusters and very comparable scores even at
higher numbers of clusters compared to line-IDF and TF-IDF, overall, it seems to be
able to separate test automation logs best.

8.2.3. BTS Log Collector Logs

The silhouette scores got with line-IDF, TF-IDF, and Word2Vec weighted by TF-IDF
with basic and reduced text preprocessing pipelines on BTS log collector logs are
visualized in Figure 14. Again, the basic preprocessing pipeline is referred to as the
preprocessing method 1 in the legend and the reduced text preprocessing pipeline as
the preprocessing method 2. Word2Vec weighted by TF-IDF achieves higher silhouette
scores with both text preprocessing methods than the other feature extraction methods
until high numbers of clusters. When the number of clusters is getting higher than
40, TF-IDF with basic text preprocessing pipeline starts to overtake with the highest
silhouette scores. The resulting clusters are visualized using PCA in Figure 15. As
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Figure 11. Visualizations of clustering done on test case meta data. Figure (a) shows
the results got with TF-IDF and figure (b) shows the results got with Word2Vec
weighted by TF-IDF.

the scales of axes on the Word2Vec weighted by TF-IDF visualizations are very
large compared to the other visualizations, additional visualizations zoomed in on the
clusters where most of the samples are assigned to are provided in Figure 16. This
figure shows that there is separation between the samples even in this cluster, which
is why even more than three clusters can be found with good silhouette scores with
Word2Vec weighted by TF-IDF. Based on the silhouette scores and visualizations,
Word2Vec weighted by TF-IDF seems to separate the BTS log collector logs best.
There is no big difference between the preprocessing methods but overall the basic
text preprocessing pipeline seems to be better also on BTS log collector logs with both
TF-IDF and Word2Vec weighted by TF-IDF.
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Figure 12. Silhouette scores got with the used feature extraction methods on test
automation logs.
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Figure 13. Visualizations of clustering done on test automation logs. Figure (a) shows
the results got with line-IDF, figure (b) with TF-IDF and basic text preprocessing
pipeline, figure (c) with TF-IDF and reduced text preprocessing pipeline, figure (d)
with Word2Vec weighted by TF-IDF and basic text preprocessing pipeline, and figure
(e) with Word2Vec weighted by TF-IDF and reduced text preprocessing pipeline.
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Figure 14. Silhouette scores got with the used feature extraction methods on BTS log
collector logs.
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Figure 15. Visualizations of clustering done on BTS log collector logs. Figure (a)
shows the results got with line-IDF, figure (b) with TF-IDF and basic text preprocessing
pipeline, figure (c) with TF-IDF and reduced text preprocessing pipeline, figure (d)
with Word2Vec weighted by TF-IDF and basic text preprocessing pipeline, and figure
(e) with Word2Vec weighted by TF-IDF and reduced text preprocessing pipeline.
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Figure 16. Zoomed visualizations of clustering done on BTS log collector logs with
Word2Vec weighted by TF-IDF. Figure (a) shows the results got with basic text
preprocessing pipeline and figure (b) the results got with reduced text preprocessing
pipeline.
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9. DISCUSSION

9.1. Fault Types Found in the Used File Types

Four main groups of fault causes are found from test case meta data: environment
faults, automation faults, product faults and verdict failures. The verdict failures
can be viewed as test automation faults but they could be caused by environment or
product faults. To highlight their appearance in test case meta data, they are listed as
a separate fault group. Because the verification detailed reason column is included in
the clustering, the different types of verdict failures, i.e., which automated verdict rule
has failed, can be found from the clusters. This is specific for test case meta data and
cannot be found from the other files as easily. Lots of different fault types can be found
under each of the four main groups, and 26 different fault types are identified in total.
The faults found from the test case meta data files are quite generic, so they can lead
the testers in the right direction but most likely they cannot point to the actual root
cause of the failure directly.
The failures found from the test automation logs are similar to those found from

the test case meta but there are not as many different fault types. The first notable
difference is that the different verdict failures cannot be found from the test automation
logs clusters, so there are only failures related to environment faults, automation faults
and product faults. A total of 15 different fault types are found from the test automation
logs clusters. The main advantage of test automation logs compared to the test case
meta data is found from cross-checking the logs. It is common that even if the test
case meta data does not have any meaningful error message for a failed test case, the
corresponding test automation logs usually contain some errors that can explain the
fault that has happened. So even though the fault types found from test automation
logs and test case meta data are very similar, the test automation logs seem to more
reliable in collecting the relevant error messages.
The BTS log collector logs are not as easy to interpret as test case meta data or test

automation logs, as the logging is done on a lower level. When analyzing the clusters, it
is hard to know what are the root causes behind different sets of error messages without
domain expertise, but the similarity of the error message sets can still be looked at.
Cross-checking the error messages from BTS log collector logs to the errors seen in
test case meta data and test automation logs in the respective test cases, there are some
sets of error messages that always correspond to similar errors in test case meta and
test automation logs. For example, some of the error message sets always correspond
to RFSW update failures. There are definitely some trends that can be found when
comparing the BTS log collector logs to the other files and these trends could help
explaining the errors in more detail and possibly reveal the real root cause of some of
the failures, if they are product related. However, drawing any strict conclusions from
these comparisons, a domain expert would need to verify these results or there would
need to be more data to back up the found trends. Currently there are only 252 test
cases considered, so the found clusters, or the similar sets of error messages, have only
less than 30 samples each, so it is possible that some of the trends are just coincidence.
In this study, the only available lower level logs were the BTS log collector logs. As

the test environment is complex and contains multiple entities, finding the root cause
for the faults will often need analysis of other lower level logs. There are no lower level
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logs collected related to the environment related faults currently, so this is something
that could be implemented in the future. For example, UE related issues might need
logs from the UE, to be able to find the actual root cause of the failure, as the higher
level error messages can only point that there is something possibly wrong in the UE.

9.2. Separating the Data in Terms of Fault Types with Different Feature
Extraction Methods

Evaluating the different feature extraction methods is done using silhouette score
and visual analysis using PCA. Based on these evaluation methods, the basic text
preprocessing pipeline seems to be more reliable than the reduced text preprocessing
pipeline even with lower level logs, such as the BTS log collector logs, as better
data separation and clustering is achieved across all the used file types using this
preprocessing method. Word2Vec weighted by TF-IDF seems to be the best feature
extraction method across all three file types to separate the data. Manually analyzing
the resulting clusters got with Word2Vec weighted by TF-IDF, the clusters do actually
include different fault types, so the method seems to be able to separate the data in
terms of fault types well. For possible further implementations, such as automating
the fault analysis process with classifiers, the reduced preprocessing pipeline and
Word2Vec weighted by TF-IDF are the suggested preprocessing and feature extraction
methods based on the results got from this cluster analysis.
Even though, the best silhouette scores are achieved with only two and three clusters

on test automation and BTS log collector logs with Word2Vec weighted by TF-IDF,
higher numbers of clusters will be needed to find all the different fault types. For
example, in the exploratory analysis 15 different fault types were identified in the test
automation logs, so two clusters are not enough to separate each of these fault types
in a separate cluster. If the resulting clusters are wanted to be used in extended use
cases, such as labeling the data in a semi-supervised approach, the used number of
clusters must be defined based on the use case and how general or detailed the fault
types should be inside each cluster.

9.3. Future Improvement Ideas and Steps to Automate the Fault Analysis
Process in the Future

There are still more approaches that could be tried for the cluster analysis of the test
case faults that could not be fit in the scope of this study, such as:

• using different clustering algorithms, e.g., hierarchical methods,
• doing the clustering by combining all the three file types together,
• trying different feature extraction methods, e.g., using the abstracted event
templates instead of the log messages to create the feature vectors, and

• studying the effects of including lower severity logs, such as warnings, to the
clustering results.

To improve the clustering and the log based fault analysis for test environment
related faults, more data is needed to be collected from the test environment. More
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specifically, lower level logs from different entities from the test environment, e.g.,
UE, are needed to make more specific fault analysis.
An important finding during the exploratory analysis is that the parsed failure

specific log lines can be parsed and provided to the testers using the same approach
that is used in the clustering process. Flagging the failure specific log lines, similarly to
what is done in the approaches by Amar and Rigby [48], is seen as a potential approach
to ease the fault analysis, as the process is similar to how the testers are manually
searching for the error messages in the files currently, but this way the error messages
can be parsed automatically and the historical data can also be used to filter the errors
that are more likely to be the cause for failure. This approach can be implemented as
a part of the data collection and transformation pipelines to partly automate the fault
analysis process.
Based on the current results and findings, the next steps that could be done to enable

automating the fault analysis process are:

• adding the log parsing and log abstraction steps in data collection pipelines to
provide the failure specific log messages to test engineers,

• analyzing the trends from BTS log collector logs in more detail when more data
is available or with domain experts,

• using the resulting clusters to determine how the data should be labeled and start
labeling the data, and

• predicting fault types for new failed test cases by using the resulting clusters
with KNN classifier, for example.

If more labeled data is gathered in the future, the results from this study could be
evaluated in a more robust manner. With labeled data, the goodness of the clustering
and the different feature extraction methods could be evaluated by using some
performance metrics, such as accuracy, and also the different parameters for different
steps of the clustering process, e.g., Drain, TF-IDF, and Word2Vec parameters, could
be optimized.
Labeled data would also enable some extended implementations, such as using the

clustering results with the labeled data in semi-supervised approaches to create more
robust classifiers to classify new failed test cases in terms of failure causes. The same
log parsing and log abstraction methods introduced in the clustering work can also be
used in creating classifiers using supervised ML methods but labeled data is needed. If
some classifier models are created using the resulting clusters, reinforcement learning
approaches can be used to enhance the model by allowing the test engineers to correct
the model’s predictions and using that input to tune the model.
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10. SUMMARY

In this thesis work, an exploratory study is done on testing data collected from
automated RFSW integration tests using clustering. Three different automatically
collected file types are considered in the study: test case meta data, test automation
logs and BTS log collector logs. Cluster analysis is used to find the different fault
types and the benefits and deficiencies in terms of fault analysis for each file type.
Using the cluster analysis results, the areas from which more data must to be collected
for more precise fault analysis are identified.
For more precise log based fault analysis, more lower level logs are needed to be

collected from the test environment. Currently there are no lower level logs collected
from the test environment, so the ability to do log based fault analysis for environment
faults is very limited.
The logs are parsed using common log parsing methods used in the literature to be

able to use them in log mining use cases. The log parsing and log abstraction steps
introduced in the clustering process can be used to ease and automate the fault analysis
that the test engineers are doing for the failed test cases.
Three different feature extraction methods (TF-IDF, Word2Vec weighted by TF-

IDF, and line-IDF) with two different text preprocessing methods (basic and reduced
text preprocessing pipeline) are evaluated in terms of how well they can separate the
data into different fault types. The basic text preprocessing pipeline and Word2Vec
weighted by TF-IDF are performing the best based on the cluster analysis results.
The resulting clusters can be used in fault type prediction for new failed test cases

in the future. Ideally, some labeled data would be used to validate the clusters and
create classifiers in a semi-supervised manner for more robust and reliable classifying.
To define the labels for the data, the resulting clusters can be analyzed with the test
engineers to come up with meaningful cluster labels for the clusters, and those cluster
labels can then also be used for labeling new test cases when manual fault analysis is
done.
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[65] Řehůřek R. & Sojka P. (2010) Software Framework for Topic Modelling with
Large Corpora. In: Proceedings of the LREC 2010Workshop on New Challenges
for NLP Frameworks, ELRA, Valletta, Malta, pp. 45–50. http://is.muni.
cz/publication/884893/en.

[66] Vijaymeena M. & Kavitha K. (2016) A survey on similarity measures in text
mining. Machine Learning and Applications: An International Journal 3, pp. 19–
28. URL: https://doi.org/10.5121/mlaij.2016.3103.

https://www.nltk.org/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b3bf6373ff41a115197cb5b30e57830c16130c2c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b3bf6373ff41a115197cb5b30e57830c16130c2c
https://doi.org/10.1109/ITAPP.2010.5566113
https://doi.org/10.1109/ITAPP.2010.5566113
https://doi.org/10.1109/ICCI-CC.2015.7259377
https://doi.org/10.1109/ICCI-CC.2015.7259377
https://doi.org/10.1109/ISCID.2018.00023
https://doi.org/10.1109/ISCID.2018.00023
https://doi.org/10.1007/978-3-030-17642-6_11
https://doi.org/10.1007/978-3-030-17642-6_11
https://www.clinjournal.org/clinj/article/view/153
https://www.clinjournal.org/clinj/article/view/153
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.5121/mlaij.2016.3103


56

[67] Shahapure K.R. & Nicholas C. (2020) Cluster quality analysis using silhouette
score. In: 2020 IEEE 7th International Conference on Data Science and
Advanced Analytics (DSAA), pp. 747–748. URL: https://doi.org/10.
1109/DSAA49011.2020.00096.

[68] Ogbuabor G. & Ugwoke F. (2018) Clustering algorithm for a healthcare dataset
using silhouette score value. Int. J. Comput. Sci. Inf. Technol 10, pp. 27–37.

[69] Rousseeuw P.J. (1987) Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and AppliedMathematics
20, pp. 53–65. URL: https://www.sciencedirect.com/science/
article/pii/0377042787901257.

[70] Kodinariya T.M., Makwana P.R. et al. (2013) Review on determining number of
cluster in k-means clustering. International Journal 1, pp. 90–95.

[71] Abdi H. & Williams L.J. (2010) Principal component analysis.(2010).
Computational Statistics, John Wiley and Sons , pp. 433–459.

[72] Bro R. & Smilde A.K. (2014) Principal component analysis. Analytical methods
6, pp. 2812–2831. URL: https://doi.org/10.1039/C3AY41907J.

https://doi.org/10.1109/DSAA49011.2020.00096
https://doi.org/10.1109/DSAA49011.2020.00096
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://doi.org/10.1039/C3AY41907J

	Introduction
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Clustering

	Semi-supervised Learning
	Reinforcement Learning

	Text Mining and Natural Language Processing
	Text mining
	Text Clustering and Classification

	Natural Language Processing

	Automated Fault Analysis Using Log Files
	Related work
	Fault classifying
	Log line abstraction and log line clustering


	Methodology
	Data parsing
	Log message abstraction
	Text preprocessing
	Basic text preprocessing
	Reduced text preprocessing

	Feature extraction methods
	TF-IDF
	Word2Vec
	Word2Vec weighted by TF-IDF
	Line-IDF

	Clustering
	K-means clustering
	Euclidean distance

	Metrics and methods used for analysis
	Manual analysis
	Silhouette score
	Principal component analysis


	Data preprocessing
	Data used for the study
	Test case meta data
	Test automation logs
	BTS log collector logs

	Parsing the data
	Parsing test case meta data
	Parsing test automation logs and BTS log collector logs

	Feature extraction
	Features from test case meta data
	Features from test automation logs and BTS log collector logs


	Clustering
	Results
	Exploratory analysis
	Evaluating the feature extraction methods
	Test case meta data
	Test automation logs
	BTS log collector logs


	Discussion
	Fault types found in the used file types
	Separating the data in terms of fault types with different feature extraction methods
	Future improvement ideas and steps to automate the fault analysis process in the future

	Summary
	REFERENCES

