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Abstract

This Masters thesis focuses on studying the kinematics of the outer accretion
disk in cataclysmic variables. Cataclysmic variables are a type of interacting
binary stars featuring a white dwarf and a main sequence star. Accretion
disks in cataclysmic variables are born, when a secondary star still in main
sequence overfills its Roche lobe and starts leaking gas towards the primary
star (the white dwarf). The extent of the accretion disk has been a cause for
discussion; methods measuring it from the hot spot, the place where accretion
stream hits the disk, characteristically lead to smaller radii than measuring
the radius from outer disk velocities. However, disk size estimates from the
outer disk velocities heavily depend on the velocity field. The aim here is to
check how close the outer accretion disk is to Keplerian velocities and simple
three-body orbits. To do this, they are compared to simulated accretion
disks using Smoothed Particle Hydrodynamics. Same comparisons are then
done against observational data using Doppler tomography. Our study finds
that the Keplerian velocity at the tidal truncation limit can safely be used
as a lower limit for orbit-averaged disk. Furthermore, last non-intersecting
three-body orbit seems to trace the disk edge quite well, and it can be used
as an estimate for accretion disk size.
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Introduction

Cataclysmic variables are a type of interacting binary stars, that have a white
dwarf as a binary and a low-mass main sequence star as a secondary. The
secondary star overfills its Roche lobe and leaks gas onto the primary. In this
mass transfer process an accretion disk is formed, unless a strong magnetic
field is present (Warner, 2003).

Accretion to a compact object is an efficient way to produce energy, and
thus the accretion disk itself is a significant source of radiation in CVs. It
outshines the secondary, and often is more prominent in spectra than the
primary. Because of the low contribution of the stars to the luminosity and
the spectra of cataclysmic variables, they are good subjects to the study of
accretion processes (Frank et al., 2002).

Sometimes, within intervals of weeks to decades, an increase in accretion
rate generates a sudden increase in luminosity, an outburst. Disks not in
outburst are said to be quiescent. The gas in quiescent disks follow Keplerian
orbits quite well in the inner parts, but some deviations are expected in outer
disks due to, for example, gravitational pull of the secondary and irradiation
pressure from the inner disk, primary and secondary. Indeed, the gas particles
in outer disk are thought to follow three-body orbits.

This thesis intends to find out how much the particle velocities of three-
body orbits actually deviate from circular Keplerian orbits, and from more
sophisticated smoothed particle hydrodynamical simulations. Additionally,
results from both of these simulations are compared to observations.
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Chapter 1

Cataclysmic variables

1.1 Classification

Cataclysmic variables are classified based on their outburst behaviour. Clas-
sical novae have shown a single outburst in observable history, brightening
from six magnitudes to up to almost 20 magnitudes before returning back
to pre-outburst level. If a system has had several observed outbursts, it’s
classified as a recurrent nova. The outburst is caused by hydrogen-rich ma-
terial that accretes on the surface of the primary. Once enough matter has
accreted, it ignites a fusion reaction, leading to a thermonuclear runaway.

Dwarf novae have recurrent outbursts with intervals of dozens of days to
some years. These outbursts are caused by changes in mass accretion rates,
increasing the luminosity by 2-9 magnitudes. Historically, the difference be-
tween novae and dwarf novae was made by studying the outburst light curves.
After the discovery of recurrent novae this method became problematic, as
the time-scales and magnitudes of the outbursts can overlap between recur-
rent novae and dwarf novae. Thus, spectroscopic studies have been made
to make further distinction between these groups. In classical and recurrent
novae the outburst is powerful enough to eject a shell of disk material that
is observable in their spectra. In dwarf novae no shell is lost.

Dwarf novae themselves have been further roughly classified into three
categories, named after their archetype systems. Z Cam type stars have
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10 CHAPTER 1. CATACLYSMIC VARIABLES

standstills before they reach their maximum brightness. The standstills can
last from days to years, after which they continue the outburst normally.
SU UMa type systems experience superoutbursts that are brighter and last
significantly longer than normal outbursts. Everything else is classified as U
Gem type systems.

Systems where a strong magnetic field disrupt the accretion flow are called
magnetic cataclysmic variables. They are classified into polars and interme-
diate polars based on the strength of the magnetic field. In these systems nor-
mal accretion disks are not formed, but different types of accretion columns
and other flows can be found.

1.2 Observational characteristics

CVs radiate most of their light in visual wavelengths. In quiescence, most
prominent spectral lines are Balmer series of hydrogen, neutral and singly
ionized helium lines. Cooler outer disk parts mostly radiate with longer
wavelengths, e.g. Hα, but the hot spot and hot inner disk emit higher Balmer
lines and helium lines. Lines of metals such as calcium, magnesium and iron
can be seen in some of the systems. The spectral lines originating from the
accretion disk are double-peaked due to the rotational motion of the disc. In
systems with low mass transfer rate the emission lines from accretion disk
can be found in absorption dips originating from the primary. The shape of
spectral line change with phase, as parts of the system eclipse another. In
outburst the increase in continuum level outpower the emission lines, and
absorption lines are observed instead.

Photometric observations often focus on forming light curves, or measur-
ing the brightness of the object during an extended period of time. Informa-
tion about system parameters, e.g. the separation of the stars, scale of an
accretion disk, mass ratio and orbital period of the system can be extracted
from light curves of eclipsing binaries. Additionally, the shape of light curve
during an outburst can offer great insight to outburst phenomena.

The inclination of the system affect the observed data greatly. Edge-
on systems show deep eclipses in light curves and spectra have well-defined
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12 CHAPTER 1. CATACLYSMIC VARIABLES

double peaks. Systems that are more face-on can show very shallow eclipses
and narrow peaks, and some systems show only single-peaked emission.



Chapter 2

Accretion disks

2.1 Roche surfaces

There are many applications in astronomy for situations where celestial bod-
ies orbit so close to each other that one causes disruptions to its companion.
The Roche problem, first studied by Edouard Roche, addresses a light test
particle moving in a gravitational potential caused by two massive bodies,
orbiting around their common center of mass. The model is based on three
assumptions:

1. The massive bodies orbit each other in a circular orbit.

2. Stars co-rotate with the binary system.

3. The massive bodies are so centrally condensed that they can be de-
scribed as point masses.

Luckily, this approach can justly be applied to cataclysmic variables, as all
these assumptions hold reasonably well. Here we use a rotating coordinate
system, where the primary star lies in the origin, x-axis connects the two
stars and y-axis is perpendicular to x-axis. The total potential is now the
combined effects of gravitational potential ΦG of the stars (Frank et al., 2002;

13



14 CHAPTER 2. ACCRETION DISKS

Warner, 2003)

ΦG = − GM1

(x2 + y2 + z2)1/2
− GM2

((x− a)2 + y2 + z2)1/2
(2.1)

and the effective potential of a centrifugal force Φc

Φc = −1

2

(
2π

Porb

)2
[(

x− M2

M1 +M2

a

)2

+ y2

]
. (2.2)

Here G is the gravitatonal constant,M1 andM2 are the masses of the primary
and secondary star respectively, x, y and z are the coordinates of the test
particle, a is the separation of the stars and Porb is the orbital period of the
system.

Using Newton’s generalization of Kepler’s third law

P 2
orb =

4π2a3

G(M1 +M2)
, (2.3)

total potential of the test particle ΦR is then

ΦR = − GM1

(x2 + y2 + z2)1/2
− GM2

((x− a)2 + y2 + z2)1/2

− 1

2

G(M1 +M2)

a3

[(
x− M2

M1 +M2

a

)2

+ y2

]
. (2.4)

The surface forming a constant potential is called an equipotential surface.
Close to a star, the equipotential surfaces (at z = 0) are circular, but moving
further away the shape becomes more elongated and encapsulates both stars.
The separation of the stars a dictates the size of these surfaces while not
changing the shape. The shape is determined by the mass ratio q = M2/M1

of the system. These equipotential surfaces are demonstrated in Fig. 2.1.

The equipotential surfaces that form lobes around the stars so that the
lobes connect at the inner Lagrangian point L1 are called the Roche lobes of
the stars. When the secondary star approaches its Roche lobe, it becomes
significantly distorted and elongates towards the primary. If the secondary
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Figure 2.1: Equipotential surfaces with slightly different parameters. Left:
q = 0.4, a = 0.8. Center: q = 0.4, a = 0.5. Right: q = 0.16, a = 0.8.

overfills its Roche lobe, the material is no longer bound to it but leaks gas to
the primary. The gas flows with thermal velocities through L1 (Lubow and
Shu, 1975).

There are several ways for an initially detached star to start losing mass.
For example, a main-sequence star could evolve into a giant, grow its radius
outside its Roche lobe and start leaking matter. On the other hand, as binary
system evolves the stars spiral slowly towards each other due to angular
momentum leaving the system with, e.g., stellar winds and gravitational
radiation. This process shrinks the Roche lobe of the secondary star and
grows the lobe of the primary star, as the distance a becomes shorter and
mass ratio q becomes larger. After enough time, the Roche lobe of one star
(or both) can shrink enough for it to start losing matter.

Because the geometry of a tidally-elongated lobe is difficult to work with,
it is common to define volume radius of the Roche lobe. The volume radius
is the radius of a sphere containing equal volume to the Roche lobe. Usual
approximation for the Roche lobe of the secondary R2 is (Eggleton, 1983):

R2

a
=

0.49q2/3

0.6q2/3 + ln (1 + q1/3)
. (2.5)

This equation is valid for any value q > 0, and is accurate to 1%.
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a) b) c) d) e)

Figure 2.2: Simulated formation of an accretion disk in position (top) and
velocity (bottom) coordinates. a) Three-body particle trajectories. b) Tra-
jectories interact and dissipate. c) Initial accretion ring starts to form. d)
Accretion ring dissipates and spreads to a disk. e) Accretion disk is born.

2.2 Formation of an accretion disk

The formation of an accretion disk is mostly governed by angular momentum
conservation. The gas leaving the secondary star has some leftover angular
momentum due to the rotation of the binary system. The gas travels through
L1 and continues forward following trajectories well approximated by re-
stricted three-body problem. The closest approach rmin of the gas stream to
the primary star can be evaluated from Lubow and Shu (1975):

rmin
a

= 0.0488q−0.464 0.05 < q < 1 (2.6)

If rmin is larger than the radius of the primary star, the gas does not hit the
surface of the star but passes it instead. This is indeed the case for most
cataclysmic variables.

As mentioned above, the gas particles are assumed to follow three-body
trajectories while conserving the sum of kinetic and potential energy:

1

2
ṙ2 + ΦR = const. (2.7)

A particle that has zero velocity at the Roche lobe of the primary cannot
escape it at any point. Thus, Roche lobes have an additional name of zero-
velocity surfaces. When a test particle reaches the zero-velocity surface,
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it’s kinetic energy is transferred into potential energy, thus it slows down
until all it’s energy is potential energy. There the gravitational pull of the
start starts accelerating it back towards the primary. This initial stream
will eventually turn into an accretion ring with Keplerian velocities due to
thermal dissipation from the collision area. The circularization radius of this
ring is (Lubow and Shu, 1975; Hessman and Hopp, 1990)

Rring

a
= 0.0859q−0.426 0.05 ≤ q < 1 (2.8)

The initial ring rotates differentially, so the gas particles interact with each
other, causing some of the particles to lose energy and sink deeper towards
the primary. Due to the angular momentum conservation, other particles
must move outwards, and the initial ring will spread into an accretion disk.
The process of accretion disk formation is visualized in Figure 2.2.

2.3 Steady thin disk

A geometrically thin accretion disk is often described in cylindrical coordi-
nates with following equations for mass and angular momentum conservation
(Frank et al., 2002):

∂Σ

∂t
= −1

r

∂

∂r
(rΣvr) (2.9)

r
∂

∂t
Σr2Ω +

∂

∂r
rΣvrr

2Ω =
1

2π

∂T

∂r
(2.10)

Here r is the radius, t is time, vr is the radial velocity of the disk, and Ω is
the angular velocity, often assumed to have Keplerian value

Ω = ΩK =

√
GM1

r3
, (2.11)
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Σ is the column surface density as a function of density ρ and height z

Σ = 2

∫ ∞
0

ρdz, (2.12)

and T is torque with ν notating kinematic viscosity of the gas.

T (r, t) = 2πrνΣr2dΩ

dr
. (2.13)

Now, using 2.9, 2.10 and 2.13, we get an equation for the time evolution of
surface density in a Keplerian accretion disk.

∂Σ

∂t
=

3

r

∂

∂r

(√
r
∂

∂r
νΣ
√
r

)
(2.14)

This equation is non-linear, as the function ν is not defined - it could be a
function of r.

How valid is the assumption of the disk being thin? If there’s no flow of
matter in z-direction, the equation of hydrostatic equilibrium, when z << r,
is

1

ρ

∂P

∂z
=

∂

∂z

(
GM1√
r2 + z2

)
≈ −GM1z

r3
. (2.15)

Here P means pressure. For a thin disk, the scale height H ∼ z should be
much smaller than the radius r. Approximating ∂P/∂z ∼ P/H and P ∼ ρc2

s,
where cs is the sound speed, this condition is then

H � cs

√
r

GM1

r (2.16)

⇒ cs �
√
GM1

r
(2.17)

So, for the thin disk approximation to be valid, the local Keplerian velocity
should be much more than local sound speed cs, which is indeed the case in
accretion disks. Typical rotation velocities for the gas is of the order of 1000

km/s, while sound speed is normally of the order of 10 km/s. This approx-
imation simplifies solving the disk structure remarkably: instead of solving
the structure both radially and vertically, the problem can be transformed
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into one dimension and known equations of stellar structure can be applied
(Frank et al., 2002).

1. ρ =
Σ

H
(2.18)

2. H =
csr

3/2

(GM)1/2
(2.19)

3. c2
s =

P

ρ
(2.20)

4. P =
ρkTc
µmp

+
4σ

3c
T 4
c (2.21)

5.
4σT 4

c

3τ
=

3GMṀ

8πr3

(
1−

(r1

r

)1/2
)

(2.22)

6. τ = ΣκR(ρ, Tc) (2.23)

7. νΣ =
Ṁ

3π

(
1−

(r1

r

)1/2
)

(2.24)

8. ν = ν(ρ, Tc,Σ, α, ...) (2.25)

Here Tc is the central temperature, k is the Boltzmann constant, µ is the
average mass of particles, mp is the proton mass, σ is the Stefan-Boltzmann
constant, c is the speed of light and τ is the optical depth and κR is the
Rosseland mean opacity. α stands for a viscosity parameter, further to be
discussed in the next chapter. The standard model for accretion disks is
based on this prescription. Assuming that the radiation pressure is negligible,
Kramer’s law holds and Rosseland mean opacity is

κR = 5 · 1024ρT−7/2
c cm2g−1. (2.26)

The disc solution in cgs units, where R10 is the radius in units 1010 and Ṁ16
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is the mass loss rate in units 1016, becomes

Σ = 5.2α4/5Ṁ
7/10
16 m

1/4
1 R

−3/4
10 f 14/5g cm−2 (2.27)

H = 1.7 · 108α−1/10Ṁ
3/20
16 m

−3/8
1 R

9/8
10 f

3/5cm (2.28)

ρ = 3.1 · 10−8α−7/10Ṁ
11/20
16 m

5/8
1 R

−15/8
10 f 11/5g cm−3 (2.29)

Tc = 1.4 · 104α−1/5Ṁ
3/10
16 m

1/4
1 R

−3/4
10 f 6/5K (2.30)

τ = 190α−4/5Ṁ
1/5
16 f 4/5 (2.31)

ν = 1.8 · 1014α4/5Ṁ
3/10
16 m

−1/4
1 R

3/4
10 f

6/5cm2s−1 (2.32)

vr = 2.7 · 104α4/5Ṁ
3/10
16 m

−1/4
1 R

−1/4
10 f−14/5cm s−1 (2.33)

f =

[
1−

(
R∗
R

)1/2
]1/4

(2.34)

The main problem with this model is the unknown nature of α: it could
be a function of radius, mass transfer rate or mass itself; luckily the quantities
do not depend too much on α.

2.4 Viscosity

An angular momentum transfer mechanism must exist to allow aforemen-
tioned disk formation and accretion. As the exact mechanism in accretion
disks is still a matter of discussion, it is masked behind viscosity.

For over 50 years the theory of accretion disks has been built on the α-
disk model by Shakura and Sunyaev (1973), where the unknown nature of
the viscosity is hidden inside a parameter α. Here, the viscosity ν is

ν = αcsH. (2.35)

Here we mainly assume that the turbulent eddies are of the size or smaller
than the disk scale height and that the turnover velocity is smaller than
sound speed. The unknown in viscosity is now transferred from ν to α, and
an estimate that α is likely smaller than 1 is gained.
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Some estimates of the values of α have been obtained from observations;
expected values are roughly α ∼ 0.01 in quiescence and α ∼ 0.1− 0.3 in out-
burst (Cannizzo, 1993; Kotko and Lasota, 2012). The strongest candidates
behind viscosity nowadays include magnetorotational instability theory (Bal-
bus and Hawley, 1991) and spiral shocks excited by a non-axisymmetrical
gravitational potential (Sawada et al., 1986). They both could explain a
mechanism for angular momentum transfer, which is essential to allow gas
to accrete towards the primary in the first place.

Magnetorotational instability (MRI) is now widely recognized as the driver
behind angular momentum transfer. A study by Balbus and Hawley (1991)
found that a weak magnetic field causes instability in disks where the angu-
lar velocity decreases radially outwards. Here two particles originally on the
same magnetic field line will be a subject to two forces: magnetic tension
between the particles, trying to slow down the inner particle and speed up
the outer particle, and gravity trying to speed up the inner particle falling
towards the primary. This process introduces a rapidly growing instability
leading in turbulence, allowing angular momentum to be transferred out-
wards.

Numerical simulations have been made both locally and globally. Local
simulations (e.g. Papaloizou and Lin, 1995) typically use some shearing-box
models with Keplerian flows, trying to solve how a small magnetic field affects
a flow in a single part of the disk. Global simulations (e.g. Sorathia et al.,
2012) try to simulate how the disks behave in larger scales, acknowledging
the cylindrical or circular coordinates. Global simulations are more exten-
sive computationally, so more work has been done concerning local models of
MRI. One major concern of this model is that the amount of angular momen-
tum transferred decreases with increasing resolution in numerical simulations
(Fromang and Papaloizou, 2007).

The perturbations of the secondary star in the orbits of gas particles are
seen as inward-propagating waves (Goldreich and Tremaine, 1978; Lubow,
1991). Numerical simulations have shown that these waves take the form
of spiral arms (e.g., Yukawa et al., 1997; Makita et al., 2000). The spiral
arms rotate slower than the general gas bulk in the accretion disk, and when
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the velocity difference gets larger than the local sound speed, causes non-
linear shocks. The shock fronts result in locally negative angular momentum,
allowing the disk to transfer angular momentum outwards (Papaloizou and
Lin, 1995). Spiral arms have already been observed in many system during
last couple of decades, including IP Peg, UX UMa and SS Cyg (Baptista
et al., 2005; Neustroev et al., 2011).

In recent years 3D global magnetohydrodynamical studies have been
made about the combined effects of spiral arms and magnetorotational in-
stability. Ju et al. (2017) found that with relatively low Mach numbers (of
the order of 10) and gas to magnetic pressure ratio of 400 spiral shocks can
transfer about the same amount of angular momentum as MRI. This explana-
tion might provide additional transportation mechanism needed by quiescent
disks, as MRI is not as efficient in unionized gas. However, the simulations
were done using simplistic temperature profiles (adiabatic and isothermal),
and the Mach number used is lower than typical values in accretion disks
(M ∼ 100, for an order of magnitude estimate). The efficiency of spiral
shocks lowered with increasing Mach number in the simulations.

2.5 Disk instability model

The modern understanding of outburst behaviour in dwarf novae concern a
thermal instability arising at the ionization temperature of hydrogen (Lasota,
2001). As the disk is in low-viscosity quiescent state, hydrogen is mostly
neutral. As the matter accumulates in the disk, its temperature rises until
it is high enough to partially ionize hydrogen. The freed electrons cause the
opacity of the disk to rise, causing rising viscosity and heating the disk even
more. The material in the disk starts to flow faster and faster towards the
primary, leading to an outburst. At some point, the mass transfer rate in
the disk exceeds the mass transfer rate from the secondary, the disk starts to
cool down, temperature lowers under the ionization temperature of hydrogen
and the disk declines back in to quiescent state.

The essence of disk instability model can be visualized with the S-curve
(Fig. 2.3). A disk in the lower line is cold and in quiescence. The upper line
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Figure 2.3: Temperature of an accretion disk as a function of surface density.
S-curve is formed, with the disk in cold state at the bottom and hot state at
the top. Between them stays a unstable region Lasota (2001).

represents hot disk in outburst. Between these two stable states is a region
where the disk is unstable. A thermal limit cycle is formed: once enough mat-
ter has accumulated in the cold disk that the surface density passes Σmax, the
disk temperature rises rapidly above the ionization temperature of hydrogen
and the disk switches to hot state. There its viscosity rises, material accretes
faster and luminosity increases; this is observed as an outburst. After some
time the disk starts to cool down. Once the surface density has thinned out
to Σmin, the disk switches rapidly to cold state and the cycle starts over.

2.6 Size of an accretion disk

At large enough distance from the primary, the tidal forces caused by the
secondary start to distort the orbits of the particles. The orbits start to
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deviate from circular and elongate towards the secondary, making the orbits
egg-shaped. Paczynski (1977) calculated last non-intersecting orbits using
single-particle three-body simulations. The results can be approximated by
Neustroev and Zharikov (2020):

Rd

a
= 0.353 + 0.271e−3.045q, 0.03 < q < 0.73. (2.36)

After this orbit the tidal shear will produce enough dissipation to prevent
the disk from growing any larger. However, in real systems phenomena in-
cluding e.g. pressure terms and viscosity could allow the disk to grow slightly
over this radius (Neustroev and Zharikov, 2020).

Several utilized radius measurement methods rely on measuring light
curves. For example in eclipse contact timing (Sulkanen et al., 1981), disk
eclipse widths are measured from light curves and disk radius is simply cal-
culated from the eclipse width. Eclipse mapping, developed by Horne (1985),
takes this method a bit further by producing model light curves and adjust-
ing parameters until they match observed ones. Both of these methods rely
on the assumption that the hot spot, a part of the disk producing most ra-
diation, is at the edge of the disk. However, as it became evident that the
outer disk can extend beyond the observable hot spot (e.g. Skidmore et al.
2000), other methods should be used.

A given point in an accretion disk can be defined by its spatial position, or
more usefully by its velocity, as the velocity of a particle is reflected in spectra
of the system. As the accretion disk rotates, the particles moving away from
the line-of-sight of the observer are slightly red-shifted, and the particles
moving towards the observer are slightly blue-shifted. This results in the
characteristic double-peaked line profile of accretion disk emission lines. As
the binary itself rotates, different parts of the system have slightly different
velocities: for example, the emission from the hot spot travels from the blue
wing of the spectrum to the red wing and then back. For an observer the
velocity shift can be calculated from
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Figure 2.4: a) Fields of constant radial velocity in an accretion disk according
to an observer b) Corresponding areas in an emission line (Marsh and Horne,
1988).

vD = vK sin i sinφ, (2.37)

where i is the disk inclination (face-on corresponds to 0◦ and edge-on to 90◦)
and phi is the azimuthal angle between a point on the disk and the projection
of the line of sight onto the disk. Figure 2.4 illustrates the areas of constant
radial velocities and the emission originating from those areas in a spectral
line. If velocity of outer disk gas can be measured and the assumption of
Keplerian velocities is valid, the radius can be calculated from

Rd =
GM1 sin2 i

v2
out

(2.38)

Possibly the simplest method to estimate the velocities is measuring the
peak-to-peak separation of the spectral lines. As the double-peaked structure
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of the spectral lines originate from the rotation of the accretion disk, with
the center of the peak corresponding to the edge of the disk, the velocity of
the gas can be calculated from

vK =
λr − λl

2λc
c sin i (2.39)

where λr, λl and λc are the wavelengths of the right peak, left peak and
line center, respectively. The measured radius depends on the measured
spectral line, as the emitted line depends on the local disk temperature. Hα

is emitted in the cooler outer disk region, so it can be used to trace the disk
edge. Similarly to eclipse mapping, the spectral lines can also be modelled
and radius measured that way.

The peak-to-peak distance of the spectral line is expected to differ with
the phase, as the the azimuthal variation of the outer disk is significant due
to the gravitation of the secondary. However the variation should diminish
when averaging over the period, so measurements can be made from averaged
spectra. It should be noted again, that measuring the radius from gas veloc-
ities using Eq. 2.38 assumes that the velocities are circular and Keplerian. If
that is not the case and the velocities deviate significantly, this assumption
breaks down.

The aim of this thesis is to study the velocities of the outer accretion disk
by comparing simulated disks with observational data. A good understanding
of the outer disk kinematics is crucial in order to find reliable methods to
measure the accretion disk size.



Chapter 3

Methods to study accretion disk
kinematics

3.1 Doppler Tomography

Using time-resolved spectroscopy of CVs throughout their period, the velocity
information can be extracted from the spectra into a two-dimensional velocity
map, or a Doppler tomogram, developed by Marsh and Horne (1988). The
Doppler map forms an inside-out image of an accretion disk. The faster-
moving parts of inner disk are reflected on the outer edge of the velocity
map, and vice-versa, the outer disk is reflected closer to the origin in the
map. Figure 3.1 shows how different structures correlate in velocity and
position coordinates; Figure 3.2 shows how the Doppler map is related to
phase-resolved spectral lines.

The astronomical spectral data is often noisy and incomplete. Spectral
data of CVs is often taken with about 5-10 minute exposures, and sometimes
the observations have gaps in between. Thus, perfect inversion of spectral
data to velocity maps is not possible. Maximum entropy method (MEM) was
developed to cope with these kinds of problems. It compares a predicted data
with observed one, and measures the goodness of the fit using χ2 statistic.
Several possible images are produced, and the one which is most uniform
azimuthally while still fitting the data is picked.

27
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Figure 3.1: A schematic showing corresponding structures in velocity (left)
and position (right) coordinates. The center of mass lies in origin, and lo-
cations of the primary and secondary stars are marked with a cross. Roche
lobes of the primary and secondary are shown, as well as the 3:1 resonance
radius (marked as outer edge of the disk) and inner radius at velocity 1800
km/s. The accretion stream leads from the secondary towards the disk (Kotze
et al., 2015).

Figure 3.2: Spectral lines formed at phases 0.25 and 0.5, displaying their
relation to a Doppler map (Marsh and Horne, 1988).
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Figure 3.3: Streamlines of accretion disk are shown by solid lines. Dashed
line represent the Roche lobe around primary, L1 is the inner lagrangian
point, r1 is the maximum distance of the disk away from secondary and r2

is the maximum distance of the disk towards secondary. µ is reduced mass,
defined in Eq. 3.5 (Paczynski, 1977).

In this thesis, Fortran implementation by Spruit (1998) has been used to
produce the Doppler maps, and slightly modified Python wrap by Hernandez
Santisteban (2021) to plot the results.

3.2 Restricted three-body problem

Restricted three-body problem describes a situation where two massive ob-
jects orbit around a common center of mass and a third, light body moves
in their gravitational field. This model is useful for simulating gas orbits in
cataclysmic variables, as the mass of a gas atom is negligible compared to
masses of the stars. The system is set up in co-rotating Cartesian coordi-
nates, where the center of mass is at the origin and the x-axis is on the line
connecting stars. The movement of the system is restricted to (x, y) plane,
as the thickness of the disk is negligible compared to its extend on x and y
directions. Thus, the primary and secondary stars lie at



30CHAPTER 3. METHODS TO STUDY ACCRETION DISK KINEMATICS

x1 =
a

1 + M1

M2

(3.1)

x2 =
a

1 + M2

M1

, (3.2)

where a is the separation of the stars.
Trajectory of the particle is then governed by three forces: gravitational

forces created by the stars, and Coriolis and centrifugal forces introduced by
the co-rotating frame of reference. At this point, let’s transfer to cylindri-
cal coordinates for convenience. The derivatives are calculated with respect
to angle instead of time, as it is more convenient to use in computational
calculations. The equations of motions in r and φ directions are then

d2r

dφ2
=
r

vφ

(
−GM1

r2
−G M2(r + a cosφ)

(r2 + 2ar cosφ+ a2)3/2
(3.3)

+ rΩ2 + 2Ωvφ +
v2
φ

r
+
GM2

a2
cosφ

)
d2φ

dφ2
=
r

vφ

(
G

M2(a sinφ)

(r2 + 2ar cosφ+ a2)3/2
− 2Ωvr −

vrvφ
r
− GM2

a2
sinφ

)
(3.4)

where Ω = 2π
P

notates angular velocity of the binary and a is the binary
separation.

We are interested in tracking particles in outer disk. Thus, we assume
the particle to lie in the largest stable streamline. The streamlines have been
calculated by Paczynski (1977) for a range of mass ratios. A linear regression
model is fitted to numerical values of Paczynski, and the starting value of
the distance from the primary (r2, see Figure 3.3) is then calculated from the
model for each system. Here

µ =
1

M1
M2

+ 1
(3.5)
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Figure 3.4: Largest stable streamline rmax as a function of µ. A linear re-
gression model is fit to numerical values of Paczynski (1977)

.
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is used for simplicity instead of mass ratio q.
After the initial position is found, the velocity of the particle is determined

so that the orbit of the particle stays stable. The particle in the initial
position should only have azimuthal velocity, as it lies at φ = 0 between
the primary and the secondary. After the particle has been initialized, the
equations of motion 3.3 are integrated over angle φ using RK(4) integration.

3.3 Numerical integration using 4th order Runge-

Kutta method

Runge-Kutta methods are a family of numerical solvers for first-order ordi-
nary differential equations. In astronomy, probably the most used of these
methods is the fourth order Runge-Kutta method, or RK(4). Let’s describe
the initial value problem as

dg

dt
= f(g, t) (3.6)

with an initial condition

g0 = g(t0). (3.7)

In this thesis, both velocity and position of the particle in polar coordinates
are integrated using RK(4). Thus, we have four initial value problems, as each
of the aforementioned vectors have two dimensions. The initial conditions
are

r(φ = 0) = r2 (3.8)

vr(φ = 0) = 0 (3.9)

vφ(φ = 0) = vφ (3.10)

Here r2 is the maximum distance of the outermost stable orbit in the direction
of the secondary (see Figure 3.3), and vφ is some arbitrary initial velocity.
The next step taken during an angle change dφ is then always calculated
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from

gn+1 = gn +
1

6
(k1 + 2k2 + 2k3 + k4) (3.11)

where

k1 = dtf(φn, gn) (3.12)

k2 = dtf

(
φn +

1

2
dφ, gn +

k1

2
)

)
(3.13)

k3 = dtf

(
φn +

1

2
dφ, gn +

k2

2
)

)
(3.14)

k4 = dtf(φn + dφ, gn + k3) (3.15)

(3.16)

In our case, we know that

drn
dφ

= vrn
r

vφ
(3.17)

dvrn
dφ

= arn
r

vφ
(3.18)

dvφn
dφ

= aφn
r

vφ
(3.19)

(3.20)

Thus, some formulating of equations of motion to find the acceleration of a
particle in position (r, φ) is needed.

3.4 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a numerical method for solving
hydrodynamical situations. The system is modelled with a set of particles,
which have properties of the material (such as density, temperature, veloc-
ities), and which move according to conservation laws. Originally it was
developed to simulate non-axisymmetrical problems in astrophysics (Gin-
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gold and Monaghan, 1977), but later it has been used for a wide variety of
situations in both astronomy and other sciences. The detailed description of
the method is beyond the scope of this thesis, and only the most important
things are discussed here. For a comprehensive review, please see Liu and
Liu (2003).

3.4.1 Smoothing function

Interpolation of any function f(r′) will be calculated with the help of a
smoothing function:

〈f(r)〉 =

∫
dr′f(r′)W (r, r′, h) (3.21)

Here r′ is the position of a particle, r is the position where f(r′) will be
interpolated to, h is smoothing length and W is the interpolating kernel.
A smoothing function is the key property of SPH. It defines the so-called
support domain for a particle, or in other words, the area the particle has
effect on. The smoothing function (also spoken of as kernel) used in mod-
elling accretion disks is a spherically symmetrical W4 spline normalized to
two dimensions (Monaghan and Lattanzio, 1985):

W4(r, h) =


40

7h2π
(1− 6q2 + 6q3), q <

1

2
80

7h2π
(1− q)2,

1

2
≤ q < 1

0, q ≥ 1

(3.22)

where q = r/h and h is smoothing lenght. The smoothing length is a number
describing the extent of the support domain. It need not necessarily be a
constant, as it can vary from place to place. However, in the SPH simulations
of accretion disks within the range of this thesis, it is a constant number.
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3.4.2 Viscosity in SPH

Artificial viscosity is implemented in hydrodynamical simulations to deny
two particle streams to pass through each other. This is done by making
approaching particles repel each other with forces depending on the particle
velocities. This artificial viscosity is not to be mistaken with the fluid viscos-
ity discussed earlier, but is used simply to forbid nonphysical situations. In
accretion disk simulations implementing artificial viscosity causes problems,
as the different disk annuli in a differentially rotating disk repel each other
and cause slowing down with too high magnitudes. Thus, accretion disk
simulations are done with very low or no artificial viscosity, except in shock
situations (in hot spot area, for example). The version of SPH accretion disk
simulations in this thesis uses artificial viscosity described by Monaghan and
Gingold (1983). It was developed to produce required dissipation - conver-
sion of kinetic energy to thermal energy - at shock fronts. The formulation
for this is

Πij =


−αΠc̄ijφij + βΠφ

2
ij

ρ̄ij
, vij · xij < 0

0 , vij · xij ≥ 0

(3.23)

where

φij =
hijvij · xij
|xij|2 + ϕ2

(3.24)

cij =
1

2
(ci + cj) (3.25)

ρ̄ij =
1

2
(ρi + ρj) (3.26)

hij =
1

2
(hi + hj) (3.27)

vij = vi − vj, xij = xi + xj (3.28)

xij here is the vector from the shock front to the particle and vij is its velocity
vector. The parameter αΠ describes shear viscosity and βΠ bulk viscosity.
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ϕ = 0.1hij is added to prevent numerical divergence when two particles come
close to each other. cij and ρij have their typical meanings of sound speed
and density, respectively. The artificial viscosity Π constructed this way is
added then into pressure terms of the SPH simulations.

β is generally set to zero in accretion disk simulations, but α often has
a value. Setting it properly can be a bit tricky though, as correct shock
treatment would require α ∼ 1, but that large a value causes too large shear
viscosity (Monaghan, 1992). Thus, α needs to be adjusted to the situation;
if one is interested in the shock areas, a larger value should be used, but if
one is more interested in areas without remarkable shock fronts, such as the
outer realms of the disk discussed in this thesis, it can be mostly ignored or
set to a small value.

3.4.3 Simulating accretion disks with SPH

The hydrodynamical processes in the disk can be described with Navier-
Stokes equation. In the case of accretion disks, the equation can be formulated
as e.g. Flebbe et al. (1994), Landau and Lifshitz (1987)

dv

dt
=− ∇P

ρ
+

1

ρ
σab −G

(
M1(r − r1)

(r − r1)3
+
M2(r − r2)

(r − r2)3

)
(3.29)

− 2(Ω× v) + Ω2(r − rCM)

Here σab denotes a viscous stress tensor and rCM refers to the location of the
center of mass.

σab = η

(
∂va
∂rb

+
∂vb
∂ra
− 2

3
δab
∂vc
∂rc

)
+ ζδik

(
∂vc
∂rc

)2

(3.30)

The viscous stress tensor describes the changes from both dynamic viscosity
η and so-called second viscosity, or bulk viscosity ζ. Both must be positive
coefficients independent of velocity. In the case of outer parts of accretion
disks, the bulk viscosity is not relevant and set to zero. The dynamic viscosity
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is related to the kinetic viscosity η , only scaled with density:

ν = ρη (3.31)

Thus, the Navier-Stokes equation used in SPH simulations in this thesis is
reduced to form

dv

dt
=− ∇P

ρ
+ ν

(
∂va
∂rb

+
∂vb
∂ra
− 2

3
δab
∂vc
∂rc

)
− (3.32)

G

(
M1(r − r1)

(r − r1)3
+
M2(r − r2)

(r − r2)3

)
− 2(Ω× v) + Ω2(r − rCM)

The gas in accretion disks is close to ideal gas. Thus, the gas pressure can
be calculated from

P = kBρT, (3.33)

where kB is the Boltzmann constant. As the gas interacts in a viscous man-
ner, it is only natural that some of the kinetic energy is transferred into heat,
thus increasing the entropy in the system. This energy dissipation per unit
mass can be calculated from Landau and Lifshitz (1987):

T
dS

dt
=

η

2ρ
σabσab, (3.34)

SPH Simulation code for accretion disks was kindly provided by the su-
pervisor of this thesis, and it is based on Liu and Liu (2003). The disk
simulations were done in two dimensions. The simulations were started with
an empty disk, when the secondary just starts to lose mass. Because we were
not interested in the disk formation process, the initial mass transfer rate
was set unrealistically high until the disk spread out and stabilized. Then
the mass transfer rate was set to more realistic numbers, about 10−18M�/s,
and the simulation was ran again until some sort of equilibrium state.

The time integration is done using Cash-Karp method. Cash-Karp method
is a numerical method for solving ordinary differential equations that belongs
to a family of Runge-Kutta solvers (Cash and Karp, 1990). It calculates
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fourth and fifth order solutions to the ordinary differential equation, and
then compares them. The difference between these solutions is taken as the
error in the fourth order estimate. Thus, it’s possible to make the solver
adaptable; as long as the error stays reasonable, a larger time step can be
used, but if the error becomes too large the time step can be adjusted to
smaller value.

The simulated disks are not stationary, but precess around the white
dwarf. In order to make it possible to compare the simulations to observed
Doppler tomograms, simulation results were binned to (300pix x 300pix) 2D
histograms and a median over 10 orbits was taken. The result is thus a
compiled image over several orbits, and should not be mistaken to an image
of a disk at some arbitrary time step.

3.5 A note on trailed spectra

Trailed spectra presented in next chapter have been reconstructed from the
velocity map produced by SPH simulations and Doppler map constructed
from time series of spectra. Reconstruction in both cases was done by flat-
tening binned 2d histograms with respect to x- axis to form 1d histogram.
The original 2d histogram was then rotated 2π/100 radians and flattened
again. Process was repeated until a single rotation was done, essentially cre-
ating 100 time-resolved reconstructed spectra. Individual spectra were then
presented as heat map slices along x-axis, piled according to phase along
y-axis.

While this is the only realistic way of seeing what spectral lines from simu-
lated situation could look like, the method comes with some fall-backs when
used instead of raw observational spectra. Some spectral features are lost
when reconstructing spectra from Doppler map. When building a Doppler
map from individual spectra, it is assumed that all points are visible all the
time. Thus, when anisotropies occur in the system, they might be lost in the
spectra to Doppler map to spectra transition. Reconstructed spectrum will
be more blurred than the original one due to the binning processes in the
map construction and possible interpolation used in displays. Finally, some
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artefacts may be added to the reconstructed spectra. It is not uncommon
for the Doppler maps to have artificial lines passing through the image that
do not represent any real feature in the system. These are naturally added
to the reconstructed spectra.

Thus, analysing reconstructed trails should not be done without compar-
ing them to raw spectra, as is usually done. In this thesis this step is however
skipped, as we’re only interested in the bright disk area, and especially the
outer disk edge, that does not suffer too much from the aforementioned fall-
backs.
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Chapter 4

A selection of CVs

Table 4.1: Used system parameters for the selected Cataclysmic variables

System M1/M� q Porb/d i/deg K1/km/s γ/km/s cite
HT Cas 0.61 0.15 0.074 81 58 -9 a

U Gem 1.2 0.35 0.177 69.7 107 42 b

WZ Sge 0.85 0.09 0.057 77 47.1 -72 c

BW Scl 0.92 0.059 0.054 63.4 27.7 -17.5 d

aHorne et al. (1991)
bEchevarría et al. (2007)
cSteeghs et al. (2007)
dNeustroev and Mäntynen (2022)

Four systems were selected for analysis of gas velocities in the outer disk.
BW Sculptoris and WZ Saggitae represent low mass ratio (q = 0.059 and
q = 0.09, respectively) systems with short orbital period. Due to close
proximity of the secondary star, they have non-axisymmetric disks extend-
ing beyond last non-intersecting orbit. For comparison, HT Cassiopeia and
U Geminorum were selected to represent systems with higher mass ratios
(q = 0.15 and q = 0.35) and longer periods. System parameters are gathered
in Table 4.1.

All systems are presented with observational Doppler map of the Hα line,
and velocity and position maps received from SPH simulations. Additionally,
trailed spectrum was reconstructed from both observational Doppler map and
the simulated velocity map. The Hα line was chosen for this study for two

41



42 CHAPTER 4. A SELECTION OF CVS

reasons: it is usually the most prominent feature in CV spectra, and it is
thought to trace well the outer disk areas due to relatively lower emission
temperatures compared to other Balmer lines or helium lines.

4.1 U Gem

U Gem is the first discovered cataclysmic variable and the archetype of U
Gem type dwarf novae (Hind, 1856). It has a long orbital period of over 4
hours and recurrent outbursts with average interval of 118 days, brightening
by about 5 magnitudes and lasting roughly 12 days (Szkody and Mattei,
1984). Its light curve shows eclipses of the disk, but the white dwarf is
visible at all times. Superhumps have been observed in U Gem during a
superoutburst (Smak and Waagen, 2004), which is highly unexpected as the
superhumps are though to be caused by the accretion disk expanding beyond
3:1 resonance radius, causing the disk to become elliptic and start precess-
ing. Disks this large are expected to be found in systems with shorter orbital
periods, mainly in WZ Sge-type dwarf novae (see Chapter 4.3). Spectroscop-
ically U Gem is a very typical dwarf nova with bright, double-peaked Balmer
and helium lines.

U Gem was observed in quiescence on 2007 September 9 using UVES the
Ultraviolet and Visual Échelle Spectrograph (Dekker et al., 2000) mounted
on the ESO Very Large Telescope (VLT) at the Paranal Observatory in Chile.
The incoming light is split into two arms, blue and red, with accessible wave-
lengths 3000Å-5000Å and 4200Å-11 000Å, respectively. The data set used
here, taken with the red arm, consists of 97 individual spectra with 80 second
exposure time covering only 0.7 orbital periods. Wavelength calibration was
done using ThAr lamps. The data was reduced using EsoReflex pipelines
provided by ESO.

The Hα Doppler map (Fig. 4.1) shows a symmetric, featureless and egg-
shaped accretion disk. The outer disk velocities seem to agree well with
last non-intersecting orbit overplotted in the Doppler map. A bright spot
slightly ahead of the secondary star can be seen, not to be mistaken with
the secondary star. It has been noted that it could originate either from
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Figure 4.1: Hα Doppler map of U Gem in quiescence. Star locations are
marked with grey ’+’ and center of mass is marked with white ’x’. Selected
resonance orbits and last non-intersecting orbit are overplotted together with
the Roche lobe of the secondary star
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Figure 4.3: Reconstructed trailed spectrum of U Gem, SPH simulated veloc-
ity map on the left image and observed data on the right.

the surface of the secondary or at a shock front with the accretion disk
(Echevarría et al., 2007).

Likewise, the simulated velocity map (Fig. 4.2, left) shows quite a blank
and featureless accretion disk with very even particle distribution. The only
denser areas are located on the top and bottom sides of the disk in velocity
map. No spiral arms are found. The position map (Fig. 4.2, right) shows
an even disk extending up to, and slightly beyond, the last non-intersecting
orbit. This aligns with the observations of superhumps in U Gem. The inner
disk inside 3:2 resonance radius is more populated than the disk outside. Two
elongated, dense areas are however found between 3:1 resonance radius and
last non-intersecting orbit: one on the side next to the secondary side, and
one opposite to it.

The reconstructed trail of observed spectra can be found on right-hand
side in Figure 4.3. It shows a clear trail from the bright spot ahead of
secondary star, together with spectral line peaks. The peak trails themselves
show waves curving in opposite directions from the bright spot trail, and are
caused by the elongated shape of the accretion disk. Exactly the same waves
are seen in the reconstructed trail from simulated velocity map, on left-hand
side of Figure 4.3. The more populated areas of the velocity map can be seen
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here as enhanced brightness on the trails around phases 0.2 and 0.8.

4.2 HT Cassiopeia

HT Cas is a SU Uma type star discovered by Hoffmeister (1943). It has or-
bital period of 1.77h (Patterson, 1981) and a mass ratio of 0.15 (Horne et al.,
1991). Its brightness varies between 13.0-16.5 magnitudes, with quiescent
light variations between about 16 to 18 magnitudes. The light curve studies
(e.g., Patterson, 1981; Wood et al., 1995) show deep eclipses of the primary,
but accretion disk component is very dim. HT Cas exhibits visible super-
humps in outburst (Zhang et al., 1986). Spectroscopically HT Cas shows
typical high-inclination CV behaviour, with clearly double-peaked Balmer
lines as the most prominent feature.

The observations were done on 2005 October 29 and 31, using 2.1 m tele-
scope at Observatorio Astronomico Nacional in Mexico. The telescope was
equipped with Boller & Chivens spectrograph, covering wavelengths 4600-
6700 Å (first night) and 6150-7225 Å (second night) with a dispersion of 1.05
Å / pixel. 40 spectra of 293 seconds in exposure time were taken each night.

Doppler map presented in Figure 4.4 was provided by Dr. Vitaly Neustroev.
Its most prominent features are a bright, extended emission feature on the
second quadrant of the disk and the hot spot on the fourth quadrant. An
emissive structure, possibly from spiral arm origin, can be found around the
hot spot, extending symmetrically to both trailing and leading side. Plenty
of disk material is found outside the last non-intersecting orbit, suggesting a
large accretion disk.

In simulated velocity map (Fig. 4.5) two particle dense areas due to spiral
arms can be seen: one in third quadrant extending towards negative vy axis
from hot spot area, and another extending all throughout the opposite side.

The position map shows a large disk extending up to the last non-intersecting
orbit. Slight overflow is observed on the first quadrant and on the side oppo-
site to the secondary star. Two spiral arms can be seen on top and bottom of
the disk, extending outwards from the dense inner disk inside 3:2 resonance
radius.
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Figure 4.4: Hα Doppler map of HT Cas in quiescence. Star locations are
marked with grey ’+’ and center of mass is marked with white ’x’. Selected
resonance orbits and last non-intersecting orbit are overplotted together with
the Roche lobe of the secondary star.
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Figure 4.6: Reconstructed trailed spectrum of HT Cas, with SPH simulated
velocity map on the left image and observed data on the right.

The reconstructed trailed spectrum from observations (Fig. 4.6, right)
shows the S-wave of hot spot. On the opposite phases, on left peak between
phases 0.0-0.2 and 0.4-0.8 one can see strong emission from the extended area
of enhanced emission clearly seen also in Doppler map in Figure 4.4.

Trail reconstructed from simulated velocity map shows two clear peaks
with no features in the middle of them. The peak trails shift with phase.
Here the elongated shape of the outer disk in velocity space can be clearly
seen: The bottom of the disk leaves a broad hump between phases 0.0-0.5 on
left side and 0.4-1.0 on right side, while the top of the disk trails a narrower
mark between phases 0.5-0.9 on left side and 0.1-0.4 on right side.

4.3 WZ Sagittae

WZ Sge is one of the oldest known and most popular cataclysmic variable:
it was already listed in the Catalogue of Variable Stars found from Harvard
plates (Cannon, 1907). It is the archetype of WZ Sge-type dwarf novae,
characterised with bright outbursts with slow declines and long intervals
between outbursts. In this type of systems, orbital period deviations known
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Figure 4.7: Hα Doppler map of WZ Sge in quiescence. The Doppler map
shows a symmetrical gas disk with a hot spot in the fourth quadrant. Low-
emission areas are found trailing and leading the hot spot. Positions of stars
are marked with grey ’+’ and center of mass is marked with white ’x’.
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as superhumps are observed. WZ Sge is fairly evolved system, with orbital
period of 82 minutes and small mass ratio of 0.09 (Steeghs et al., 2007).

WZ Sge was observed with 2.5m Isaac Newton telescope equipped with a
medium to low resolution, long-slit spectrograph, the Intermediate Dispersion
Spectrograph (IDS), on 1995 July 21-23. The data set, covering wavelengths
5800-7100Å, consists of 55 individual spectra with 200 sec exposure time and
a spectral resolution of 2Å. The observations covered in total over 9 orbital
periods. Comparison spectra, taken with CuAr lamp, were taken throughout
the observations and used for wavelength calibration. Data reduction was
performed using iraf environment.

The Doppler map in Hα (Fig. 4.7) shows an azimuthally semi-symmetric
disk with a clearly visible hot spot. A lack of emission is spotted tracking the
hot spot, and the leading side shows a slight bulge extending towards −vx.
The quality of the spectra is poorer with INT IDS than with X-SHOOTER -
thus, the resulting map is blurrier and shows quite a lot of emissive material
beyond the last non-intersecting orbit. However, it is clear that the accretion
disk extends up to the last non-intersecting orbit and possibly even beyond.

Median velocity and position maps resulting from SPH simulations for
WZ Sge can be found from Figure 4.8, with velocity map on the left and
position map on the right. WZ Sge shows a bulge extending towards negative
x-velocities leading the area where hot spot would be. Particles beyond the
last non-intersecting orbit are found trailing and leading the bulge. Spiral
arms can be seen on the upper area of the projected disk, as well as on the
left- and right-hand sides.

The position map shows upside-down triangular shape of the outer accre-
tion disk with a dense ring around the center of the disk at circularization
radius. Three spiral arms extend from the ring towards outer disk. The disk
extends close up to and beyond the last non-intersecting orbit at the tips of
the triangle, but stay well inside 2:1 resonance orbit elsewhere.

Trailed spectrum reconstructed from observational data is shown on right
side of Fig. 4.9. It shows a clear S-wave from the hot spot transferring from
left to right peak of the spectral line. Additional trail travelling between
peaks can also be found, corresponding to area of enhanced emission roughly
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Figure 4.9: Reconstructed trailed spectrum of WZ Sge from SPH simulated
velocity map (left) and observed data (right).

0.3 phases ahead of the hot spot, or bottom area of the disk in Doppler
tomogram.

Reconstructed trailed spectra from SPH simulation is shown on left-hand
side of Fig. 4.9. It shows clear trails of the spectral line peaks, wobbling due
to non-round projected shape of outer disk. A shadow caused by the bulge
can be seen travelling from right to left between phases 0.1 and 0.4, and back
to right between phases 0.6 and 0.9. On opposite phase, the slight trail from
particles laying between the first and second quadrants of the velocity map
can be found.

4.4 BW Sculptoris

BW Scl is a WZ Sge-type dwarf nova, found in 1997 as a bright source in UV
by Hamburg/ESO quasar survey and a bright X-ray source in ROSAT survey
(Augusteijn and Wisotzki, 1997). Its orbital period of only 78 minutes is one
of the shortest known yet.

Doppler map of Hα line (Figure 4.10) was kindly provided by Iikka Män-
tynen. Its most prominent features are a gas ring with a gap in upper part
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Figure 4.10: Hα Doppler map of BW Sculptoris. A gas disk with clearly
visible hot spot in fourth quadrant can be seen. Selected resonance orbits
and last non-intersecting orbit are overplotted.
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Figure 4.12: Reconstructed trailed spectrum of SPH simulated velocity map
(left) and observed data (right).

and a visible hot spot in 4th quadrant. Secondary star is barely visible
here. Gas extends well past 3:1 and even 2:1 resonance orbits, up to the last
non-intersecting streamline.

SPH simulation results for BW Scl can be found in Figure 4.11. The
velocity map shows a disk with a noticeable bulge towards inner disk, or
−vx, right after where the accretion stream hits the accretion disk. Overflow
of particles beyond last non-intersecting orbit is found in third and fourth
quadrants, on both sides of the bulge. Three spiral arms are seen, one on
top side and two on left and right side of the disk.

The position map shows asymmetrical disk with a clear, dense ring close
to 3:2 resonance orbit. The outer disk has an upside-down triangular shape
due to the close proximity of the secondary star and its gravitational effects
on the disk. The absence of the particles on top part of the disk can be seen
as the bulge on the velocity map, with the slight particle overflow visible
close to the accretion stream.

Reconstructed trailed spectrum from observed data is shown in Fig 4.12
right side, and reconstructed trailed spectrum from the velocity map based
on SPH simulations is shown in left side. Trailed spectrum from observed
data shows S-wave originating from the hot spot moving between left and
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right peaks of the spectral line. A gap can be seen on right peak between
phases 0.2 and 0.4, and at left peak at phases 0.7-0.9.

Compared, the trailed spectrum from simulated velocity map shows quite
different features. Outer disk edge shows clearly on both left and right peaks,
similarly to the trail of observed spectra. However, here velocity deviations
originating from the egg-shaped outer disk become more evident: the left
peak wobbles slightly between phases 0.2 and 0.8. The same happens on
right peak on phases 0.0-0.4 and 0.6-1.0. At phases 0.5 and 1.0 the bulge
towards −vx can be seen as a warp in the trail, not to be mistaken for the
aforementioned wobbling. A weakening in line intensity seen as a shadow
can be found leading the bulge. The spiral arm on the opposite side from
the bulge can be seen as a faint wave trailing from left to right, and to left
again.

4.5 Summary of selected systems

The simulated disks of U Gem and HT Cas are calm and almost featureless.
The position maps show a populated inner disk inside 3:2 resonance radius
and more variable outer disk. The disk edge stays close to the last non-
intersecting resonance orbit and does not have a rotating tail similar to BW
Scl and WZ Sge.

The simulated disks of BW Scl and WZ Sge have more features than those
of U Gem and HT Cas. Both of the disks have a tail rotating at different
pace from the orbital rotation of the binary. The median disk extends beyond
the 3:1 and even beyond 2:1 resonance orbit. Spiral arms are visible in the
disk. Both disks have a clearly visible dense gas ring just inside 3:2 resonance
orbit, with clearly sparser outer disk. However, this is an artefact caused by
taking a median over the orbital period - single snapshots of disk at the same
phase do not show a remarkably denser area of the disk, but simply the disk
inside 3:2 resonance orbit is always populated, while the area outside 3:2 has
a rotating tail.

The disk in velocity coordinates is asymmetric. The location where the
mass stream hits the disk is clearly visible in the velocity map as a bulge
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extending towards negative x- velocity. The spiral arms of position map are
visible in velocity map as well. Outer disk velocities follow the last non-
intersecting orbit closely, with only little gas falling outside it.

Overall the quiescent disks of all systems presented here are large and
close to the last non-intersecting streamline, further confirming that quiescent
disks are indeed large and close to truncation limit (Neustroev and Zharikov,
2020), extending even over it.



Chapter 5

Gas velocities of outer disk

Any spatial knowledge on accretion disks are based on either eclipse timing
measurements or velocity measurements from spectra. Thus, the knowledge
of the velocity fields in accretion disks is crucial to gaining insight of accretion
disk structures.

The prevailing accretion disk model, the α-disk model (Shakura and Sun-
yaev, 1973), assumes a Keplerian velocity field throughout the disk. While
widely accepted, it is still unclear if this assumption is actually valid. For
example, accretion disk of IP Peg has been studied to be consistent with
Keplerian flows (Ishioka et al., 2004) but also have sub-Keplerian velocities
along spiral structures (Baptista et al., 2005). Especially the outer disk is
expected to have deviations from Keplerian velocities due to its distorted
shape.

5.1 Expected Keplerian velocities at tidal trun-

cation radius

Tidal truncation radius (Eq. 2.36) estimates the radius, after which an ac-
cretion is truncated due to the tidal dissipation caused by the secondary star.
A first estimate of outer disk velocity can be calculated from tidal truncation
radius using Eq. 2.38, assuming that the outer disks follows approximately
Keplerian flow.

59
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Table 5.1: Characterized radii and velocities of last non-intersecting orbits in
units of a and km/s. Additionally, tidal truncation radius and the Keplerian
velocity at truncation radius are listed.

System Rmin Rmax R Rtru Vmin Vmax V VRtru

BW Scl 0.49 0.58 0.53 0.58 602 737 670 636
WZ Sge 0.46 0.56 0.51 0.56 634 792 714 674
HT Cas 0.43 0.52 0.47 0.53 537 679 610 573
U Gem 0.36 0.44 0.40 0.45 534 622 581 524

The calculated tidal truncation radii and corresponding Keplerian veloc-
ities can be seen in Table 5.1. All systems exhibit lower minimum velocities
in their last non-intersecting orbits.

5.2 Outer disk velocities approximated by last

non-intersecting orbit

The last non-intersecting orbit gives a reasonably good estimate about the
outer disk velocities, as it is thought to give the truncation limit for an accre-
tion disk. Indeed, the velocity maps produced by SPH simulations (Figures
4.11, 4.8, 4.5 and 4.2) show that the last non-intersecting orbit is a good
tracer of the outer disk velocities.

For BW Scl (marked with number 1 in equations), the velocity range
of last non-intersecting orbit was Vout1 = 600 − 740 km s−1, with an orbit-
averaged value of V out1 = 670 km s−1. The last non-intersecting orbit of WZ
Sge (marked with number 2) had velocity range Vout2 = 635−795 km s−1 with
an average velocity of V out2 = 715 km s−1. HT Cas (marked with number
3) had a velocity range of Vout3 = 540− 680 km s−1 with an average velocity
of V out3 = 610 km s−1, and U Gem (marked with 4) had a velocity range of
Vout4 = 534− 622 km s−1 with an average velocity of V out4 = 581 km s−1.

The characterised velocities are gathered in Table 5.1. All calculated
velocities here have been calculated taking inclination into consideration,
causing the un-intuitive ’smaller’ velocities of BW Scl compared to WZ Sge.
As BW Scl has shorter period and thus smaller accretion disk, its outer disk
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velocities without taking inclination into account should be larger than WZ
Sge. However, its inclination is 63 degrees, compared to 77 degrees of WZ
Sge, causing this contradiction.

5.3 Velocity estimates from reconstructed spec-

tral lines

As shown in Figure 2.4, the radial velocities of an accretion disk edge cor-
respond to the locations of the peaks of double-peaked spectral line. Thus,
by measuring the peak positions, one can find the outer disk velocity. In
order to do this, the simulated velocity maps and Doppler maps presented
in previous chapter were flattened from 2D histograms into 1D histograms
with regards to the x-axis.

In theory, as the disk rotates, the lines should move relative to each other
due to the oval shape of the outer disk in velocity space. To check if this
could be seen in any of our simulated or observed spectra, two different 1D
histograms were constructed: one at phase 0.0, where the narrowest side of
the disk is facing the x-axis, and another at phase 0.25 where the outer disk
is at its widest with respect to the x-axis.

Figure 5.1 shows reconstructed spectral lines of all four systems. For SPH
simulated data, 3 line profiles are shown: orbit-averaged, and line profiles at
phases 0 and 0.25. Additionally, orbit-averaged spectral line from observa-
tional data is shown for WZ Sge and U Gem. Since the Doppler maps for
HT Cas and BW Scl were ready-made, no spectral line data was available.
All the measured velocities are found in Table 5.2.

BW Scl and WZ Sge show a wider line profile compared to HT Cas and U
Gem. This is most likely due to the obvious bulge seen in simulated velocity
maps in Figures 4.11 and 4.8. U Gem has a noticeably different line shape
compared to the others: peaks are sharp and the line then widens concavely
towards the wings. This corresponds to the particles consentrating heavily
on the outer disk, as can be seen in Figure 4.2.

Measuring from peak-to-peak separation of the line profile, the outer disk
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Figure 5.1: Flattened 1D histograms, depicting spectral lines. Black, solid
line portrays orbit-averaged line; red dashed line is at phase P=0; and blue
dashed line is at P=0.25. For WZ Sge and U Gem orbit-averaged Hα line
from observational data is presented with black dotted line.
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velocity of simulated disk of BW Scl is between 620-702 km/s, with orbital
average at 650 km/s ± 35 km/s. A conservative 5% accuracy is assumed
here, due to the subjective measurement by hand. The velocity range fits
well inside the range given by last non-intersecting orbit, with smaller av-
erage velocity. The observed minimum velocity of the system is 635 km/s
(Neustroev and Mäntynen, 2022), corresponding well to the calculated Kep-
lerian velocity at the truncation radius.

For WZ Sge, the corresponding outer disk velocity range is 701-740 km/s,
with an orbit-averaged outer disk velocity of 727 ± 35 km/s. The outer disk
velocity measured from the observed Hα line is 680 km/s ± 35 km/s. Con-
trary to BW Scl, the orbit-averaged outer disk velocity is actually higher than
than the average velocity of last non-intersecting streamline. This difference
could be caused by BW Scl having slightly denser areas around the outer
disk, particularly on the area trailing the bulge, while also having outer disk
extend more past the last non-intersecting orbit.

The bulges of the accretion disk in both BW Scl and WZ Sge make the
outer disk velocity measurements using line profiles at least somewhat un-
reliable. By looking at the velocity map of Figures 4.11 and 4.8, the lower
maximum velocities resulting from peak-to-peak distance measurements com-
pared to last non-intersecting orbit velocities can be understood. The accre-
tion disk extends over last non-intersecting orbit. However, the minimum
velocity measured from the line profile should be around the minimum ve-
locity of the last non-intersecting orbit, or even a little bit slower, which is
not the case. Clearly the bulge widens the peak-to-peak separation.

Velocity range of the simulated outer accretion disk of HT Cas is 580-
652 km/s, with orbital average of 586±30 km/s. Compared, Neustroev and
Zharikov (2020) measured the outer disk velocity from Hα line to be 575 ±
4 km/s. All the velocities fit inside the range given by last non-intersecting
orbit; however, the velocity range given by the simulated line profile is smaller
than expected, as the disk in Figure 4.5 overflows only slightly past the non-
intersecting orbit and there are no significant distortions in the velocity map.
Most likely the bulk of the line profile peaks come from the more dense areas
corresponding roughly to 3:1 resonance orbit, making the minimum end of the
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Table 5.2: Outer disk velocities measured from line profiles in km/s. Pre-
sented are the minimum velocity Vmin at P=0.25, maximum velocity Vmax
at P=0.0, orbital average of simulated line profile V and orbital average of
outer disk velocity measured from Hα emission line.

System Vmin Vmax V V obs

BW Scl 620 702 650 635
WZ Sge 701 740 727 680
HT Cas 580 652 586 575
U Gem 533 615 533 531

velocity range larger than that predicted by last non-intersecting streamline;
while the overflow in the first quadrant makes the maximum end of the range
depict smaller than expected velocities.

For U Gem, the velocity range is 533-615 km/s, coinciding quite well with
the last non-intersecting streamline velocity range. Orbit-averaged velocity
is 533 ± 25 km/s. The velocity measured from observational data is 531 ±
30 km/s. The error margin here is quite large, since the bright spot visible
in Figure 4.1 causes the left peak to be quite broad, making it difficult to
differentiate the disk emission from the bright spot emission and recognise
the peak position.

5.4 Is Keplerian disk a valid assumption?

It seems that for all presented systems, the Keplerian velocity at tidal trun-
cation radius gives a solid lower limit for orbit-averaged disk velocity, as
orbit-averaged velocities given by both last non-intersecting streamline cal-
culations and simulated line profiles are larger than the velocities at tidal
truncation limit. The velocity deviations found in both last non-intersecting
orbits and line profile measurements are large, even over 100 km/s, but mostly
cancel each other during the orbital period.

For BW Scl and WZ Sge, the line profiles constructed from SPH sim-
ulations are not trustworthy for estimating outer edge velocity due to the
deviations in outer disk structure. Truss (2007) already noted that disks in
small mass ratio systems (q ≤ 0.1) have disks that fill most of their Roche
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lobe, while turning so that their elongation is almost perpendicular to that
of the last non-intersecting orbit. This is also observed in simulations done
for WZ Sge and BW Scl; however, it is not visible in the velocity maps of
this thesis as low-density regions have been ignored by taking median over
the orbital period and not mean. Truss (2007) also noted, that the assumed
temperature profile given as a parameter to the SPH code changes the disk
structure in these small mass ratio environments. Thus, altering the tem-
perature profile of the simulation might provide slightly different disks, from
which better estimates could be made. Aside from this, it should be noted
that the outer disk velocities do follow the last non-intersecting orbit quite
closely outside the bulge area.

Another shortcoming is the used method for measuring the line peak posi-
tions. The positions were measured by hand, estimating the location visually.
A more precise method would be fitting a double-Gaussian to the line profile
and measuring the peaks that way; however, the measurements here were
done only for estimates of the velocities, and thus, using more complicated
method would have been out of scope for this thesis. Emissivity distribution
over the accretion disk should also change the emission line shape, but in
this thesis it was not taken into account.

Comparing the velocity measurements from Hα line to the truncation limit
velocities give a clear indication that all four systems do have a large accretion
disk, extending up to the truncation limit. Orbital averages of simulated line
profiles of HT Cas and especially U Gem give the same conclusion.

The measurements, simulations, and observational data presented here
conclude, that:

1. The last non-intersecting orbit seems to trace the truncation limit quite
well. Although deviations exist, they are small and thus this easily
calculated orbit can be used as an estimate for the disk edge even in
small mass-ratio systems.

2. Deviations in velocity caused by the secondary star do cancel out when
averaging over orbital period, and circular Keplerian velocities in outer
disk can be assumed when considering orbit-averaged data.
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3. Keplerian velocity at tidal truncation radius gives a solid lower limit to
outer edge velocity.

However, with systems of low mass ratio, more study needs to be done,
especially taking the low density regions in the outer disk and the rotating
’tail’ of the disk into account. In that case, the gas flows beyond the last
non-intersecting orbit, and based on this study its behaviour and velocity
profile is left unclear.
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