

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Pekka Ruottinen

DATABASE ARCHITECTURE DESIGN AND

PERFORMANCE EVALUATION FOR QUALITY

OF SERVICE MEASUREMENTS

Master’s Thesis

Degree Programme in Computer Science and Engineering

January 2015

Ruottinen P. (2015) Database architecture design and performance evaluation for

Quality of Service measurements. University of Oulu, Department of Computer

Science and Engineering. Master’s Thesis, 54 p.

ABSTRACT

Measuring and analysing the quality of experience and the quality of service are

important assisting methods when optimizing network capacity, and providing

the best possible user experience. They also present methods for finding and

dealing with problems caused by the ever-growing internet data traffic and its

number of users. Qosmet, developed at VTT Technical Research Centre of

Finland Ltd, is a powerful solution for this type of network analysis. Considering

that long term storage of quality of service measurement data is all numerical,

this enables an efficient and well optimised database solution, one that performs

well in either writing data or reading it for analysis.

The purpose of this thesis is to ascertain the optimal database architecture for

quality of service measurements. An important outcome of this project is the

interface between Qosmet and the implemented database. Part of the work

consists also in identifying the characteristics for database optimization. In order

to achieve these goals, three database architecture schemas were designed and

analysed with the help of exhaustive writing and reading performance tests.

Schema 1 has one, schema 2 two and schema 3 have respectively three database

tables, in which the data is distributed according to its assumed frequency of use.

Following the analysis and comparison of these three database architecture

schemas, the one with two tables appeared to be the best one. It achieved writing

throughput of around 7,500 lines per second, and the reading performance was

the second best, actually very close to the best performance. Schemas 1 and 2 were

about 33 percent faster than schema 3 in writing performance. Schemas 2 and 3

performed about 20 percent better than schema 1 in reading tests. Performance

analysis gave a good understanding of database optimization and features

affecting its efficiency, as well as hardware requirements, bottlenecks and limits

on high utilization situations. This work resulted in an efficient and verified

database, which can be used in the future as part of the Qosmet solution.

Key words: database, DBMS, MySQL, optimization, Qosmet, quality of service.

Ruottinen P. (2015) Tietokanta-arkkitehtuurin suunnittelu ja suorituskyky-

arviointi palvelunlaadun mittaustuloksille. Oulun yliopisto, tietotekniikan osasto.

Diplomityö, 54 s.

TIIVISTELMÄ

Tietoliikenneverkkojen palvelunlaadun ja käyttäjien kokeman palvelunlaadun

mittaaminen ja analysointi tarjoavat apukeinoja verkon kapasiteetin optimoin-

tiin ja parhaan mahdollisen käyttökokemuksen turvaamiseen. Verkon ominai-

suuksien mittaaminen ja analysointi auttavat myös löytämään ja ratkaisemaan

kasvavien käyttäjämäärien sekä tiedonsiirtomäärien tuomia ongelmia. Teknolo-

gian tutkimuskeskus VTT Oy:ssä kehitetty mittausjärjestelmä Qosmet tarjoaa

monipuolisen ratkaisun ja tehokkaan ympäristön tämän kaltaiseen verkkoanaly-

sointiin. Palvelunlaatumittauksista saatava tieto on kokonaan numeerista tietoa,

jonka tietokantakäsittely on tehokasta ja hyvin optimoitavissa niin luku- kuin

kirjoitustapauksissakin.

Tämän diplomityön tavoitteena on löytää suorituskykyinen tietokanta-arkki-

tehtuuri palvelunlaatumittauksista saatavalle tiedolle ja toteuttaa rajapinta

Qosmetin ja tutkittavan tietokannan välille. Osatavoitteena on myös tunnistaa

tietokantaoptimoinnin mahdollistavat erityispiirteet. Näiden tavoitteiden saavut-

tamiseksi suunniteltiin kolme tietokantamallia, joille suoritettiin kattavat suori-

tuskykyä mittaavat kirjoitus- ja lukutestit. Malli 1 sisältää yhden, malli 2 kaksi

ja malli 3 vastaavasti kolme tietokantataulua. Tieto on jaettu tauluihin oletettu-

jen esiintymistiheyksien perusteella.

Tietokantamallien suorituskykymittausten analysoinnin ja vertailun perus-

teella parhaaksi malliksi osoittautui kahden taulun malli (malli 2). Se saavutti

kirjoitusnopeudeksi parhaimmillaan noin 7500 riviä sekunnissa ja ylsi lähelle pa-

rasta saavutettua lukunopeutta. Mallit 1 ja 2 olivat kirjoitusnopeudessa noin 33

prosenttia mallia 3 nopeampia. Mallit 2 ja 3 puolestaan suoriutuivat lukutesteissä

noin 20 prosenttia mallia 1 paremmin. Suorituskykyanalysoinnin avulla saatiin

hyvä ymmärrys tietokannan optimoinnista, tehokkuuteen vaikuttavista ominai-

suuksista, laitteistovaatimuksista, järjestelmän pullonkauloista sekä korkealla

käyttöasteella vastaan tulevista rajoituksista. Tämän työn tuloksena syntyi suo-

rituskykyinen tietokanta, jota voidaan jatkossa käyttää Qosmet-järjestelmän

osana.

Avainsanat: DBMS, MySQL, optimointi, palvelunlaatu, Qosmet, tietokanta.

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

PREFACE

ABBREVIATIONS

1. INTRODUCTION .. 7
2. DATABASE DESIGN WORK .. 9

2.1. MySQL ... 9
2.2. MariaDB ... 10

2.3. NoSQL.. 10
2.3.1. Hadoop/HBase .. 10
2.3.2. MongoDB .. 11

2.4. Other Databases .. 12
3. SOFTWARE DEVELOPMENT WORK ... 13

3.1. Qosmet Solution ... 13

3.2. Database Writing Module .. 14
3.3. Database Requirements .. 16
3.4. Database Selection ... 17

3.5. Database Design ... 17
4. BENCHMARKING ... 21

4.1. Test Plan and Performance Metrics .. 21
4.2. Reading Queries ... 22
4.3. Creating Test Data .. 23

4.4. Analysis Methods ... 24
5. DATABASE PERFORMANCE VERIFICATION ... 25

5.1. Writing Performance .. 25

5.1.1. Write Throughput .. 25

5.1.2. CPU, I/O and Memory Performance ... 27
5.2. Reading Performance ... 31

5.2.1. Query 1 .. 31
5.2.2. Query 2 .. 35
5.2.3. Query 3 .. 37

5.2.4. Query 4 .. 42
5.2.5. Query 5 .. 45

5.3. Choosing the Best Database Model.. 46
5.4. Performance with the Writing Module ... 48

6. SUMMARY & CONCLUSIONS .. 51

7. REFERENCES ... 53

PREFACE

This thesis was done for the University of Oulu, Finland at VTT Technical Research

Centre of Finland Ltd in Network Performance team. The main part of the work was

carried out in the Quality of Experience Estimators in Networks (QuEEN) project. In

addition the following projects supported the work: EIT ICT Labs activity Networks

for Future Media Distribution (NFMD) and Next generation over-the-top multimedia

services (NOTTS).

The goals of this thesis have been to ascertain the optimal database architecture for

quality of service measurements, implementation of the interface between Qosmet

solution and designed database and learning about the characteristics for database

optimization.

I want to thank my technical supervisor Dr. Jarmo Prokkola for his patient support

and guidance throughout the entire thesis process. I am grateful for the thesis

supervisor Professor Marcos Katz and second examiner Professor Juha Röning for

their support in the project. I would also like thank my colleague Toni Mäki for

guidance with software development and technical help with the thesis. I also thank

my colleague Jukka-Pekka Laulajainen for reading and commenting the thesis. I

express my gratitude to every co-worker at K-wing of VTT Oulu and beyond. Without

the smiles and laughter, the days at the office would have certainly felt much longer.

I thank my parents Leena and Pentti, for being always there for me and being

interested in my studies and activities. All my friends, thank you for sticking around.

My biggest thanks go to my dear wife Maria, who has patiently supported me during

all these years. You have bared with me all the ups and downs. My older son Samu

has shown unbelievable understanding and empathy for his young age. Younger son

Heikki has lit up the room with his big smile and given me the energy for the final

sprint.

Oulu, January 12th, 2015

Pekka Ruottinen

ABBREVIATIONS

CPU Central Processing Unit

D-ITG Distributed Internet Traffic Generator

db4o Database for objects

DBMS Database Management System

GPL GNU General Public License

HDD Hard Disk Drive

HDFS Hadoop Distributed File System

I/O Input/Output

NFMD Networks for Future Media Distribution

NIC Network Interface Controller

NoSQL Not only SQL

NOTTS Next Generation Over-The-Top Multimedia Services

ODBMS Object Oriented Database Management Systems

ORDBMS Object-Relational Database Management System

OS Operating System

QMCP QoS Measurement Control Protocol

QoE Quality of Experience

QoS Quality of Service

QuEEN Quality of Experience Estimators in Networks

RAID Redundant Array of Independent Disks

RAM Random-access Memory

RDBMS Relational Database Management System

SAS Serial Attached SCSI

SQL Structured Query Language

TPS Transactions Per Second

UDP User Datagram Protocol

VTT VTT Technical Research Centre of Finland Ltd.

YARN Yet Another Resource Negotiator

1. INTRODUCTION

The internet has become a part of everyday life for the majority of people living in

modern first world society. In fact, more than 40% of the world population has an

internet connectivity in year 2014 [1], and the number of devices connected to the

internet is estimated to be double the global population in 2018 [2]. Annual global

traffic is predicted to reach the zettabyte (10
21

B) mark in 2016 and nearly triple the

amount of the year 2013 when it was around 600 exabytes [2]. Video-focused services

grow along with total traffic and they are estimated to take almost 80% share of all

consumer internet traffic in 2018 [2]. Whether it is a video, voice over IP or some other

real time-demanding service, consumers expect seamless and interference free user

experience. Internet service providers and operators are expected to ensure this

experience and the quality of service (QoS) for users.

In order to fulfil these expectations within the present day network architectures,

certain QoS mechanisms and practices to monitor it have being introduced. There are

several approaches to monitoring the QoS. One viewpoint is to divide the monitoring

techniques into active and passive measurements. In active measurements, test packets

are created in the network in order to discover the performance metrics. This approach

does not give an entirely clear view since it adds extra traffic to the network, but on

the other hand, it gives control over what is measured. Passive measurements offer an

approach where network traffic is left untouched and only monitored as it passes by.

The good thing about making passive measurements is that the traffic within the

network is not increased and the actual traffic within the network is measured. The

passive approach is especially good when trouble-shooting real user cases.

This work is affiliated with passive QoS measurements. The research team within

VTT Technical Research Centre of Finland (VTT) has developed a tool called Qosmet,

a passive QoS measurement tool [3]. Qosmet can measure a plethora of performance

parameters such as delay, jitter, packet loss, connection break statistics, load, the

volume of data and packet sizes. All these parameters are numerical information

monitored in real time. The motivation for this work was to extend the versatile QoS

measurement solution by adding a data storage and visualization implementation for

non-real-time usage. Visualization is beyond the scope for this work, but data storage

as well as the interface between the existing Qosmet solution and the database were

designed and implemented.

The work was conducted as part of the Quality of Experience Estimators in

Networks (QuEEN) project. The project is part of a European research initiative called

Celtic-Plus. Also, financing the work were EIT ICT Labs activity Networks for Future

Media Distribution (NFMD) and Celtic-Plus project Next generation over-the-top

multimedia services (NOTTS). The QuEEN project aims at producing Quality of

Experience (QoE) estimator agents. The estimator agents use models based on human

perception and network QoS metrics, and communicate through the network with each

other in order to adapt to changing network situations. Qosmet offers a versatile

solution for QoS monitoring, and the developed database addition gives an option to

store easily large amounts of measured QoS and QoE data from numerous

measurements.

The data from Qosmet is all numerical and therefore makes the structure of the

database quite unique. Processing numerical data is faster than, for example, handling

string-based data. The major part of this work is to ascertain the optimal database

architecture for this unique data set and to detect the characteristics for database

8

optimization. In order to achieve these goals, three different database architecture

schemas were designed according to the base requirements set for the database.

Exhaustive writing and reading performance tests were performed for all three

schemas and these are presented in detail in this thesis work. A working database

implementation and an interface between the Qosmet solution and the database were

carried out as part of the work. The process helped us to understand the demands and

possible points of improvement of a database solution for the QoS measurement data.

The chapters following aim to provide a detailed overview of what was done during

the work and what kind of results and findings were discovered. Chapter 2 examines

different database management systems (DBMS) and gives the necessary background

information to support the decision for the choice of DBMS to be used. Chapter 3 is

full of details about designing the interface between the Qosmet solution and the

database as well as database requirements, selection and schema design. Chapter 4

introduces the performance test environment and explains the plan for writing and

reading tests. It also contains the information about analysis methods and details about

test data creation principles. Chapter 5 is about test results for writing and reading

performance. A detailed analysis of writing and reading performance is examined

before choosing the best database schema out of the three that were designed. Lastly,

performance with the developed database interface is studied. Chapter 6 concludes the

work by summarizing the research and taking a look at possible future development.

9

2. DATABASE DESIGN WORK

For a database system there are two distinctive metrics for performance; throughput

and response time [4 p.249]. Throughput is measured as transactions per second, and

response time expresses how long a single transaction takes from beginning to end.

Many widely used services that interact with people, such as Web-based applications,

rely on a good database response time. However, systems with a large number of

transactions need to focus on high throughput. Knowing what type of queries are the

most common can be helpful in designing a high performance database solution. For

example, queries that have to join information from several tables require more

resources than queries without joins. Indices that include information about the mostly

frequently used queries are an option to speed up the reading transactions, but they

have a downside of slowing down the database updates, because extra work is required

to keep them up during the writing process.

In this section, a comparison between a selection of database solutions is made. First,

MySQL, a widely used relational database management system (RDBMS) and its

features are introduced. The relational model is one approach to data modelling. Other

approaches include object-oriented, entity-relationship, hierarchical and network

models. The relational model uses a single way to represent the data. Everything is

viewed as a two-dimensional table in which data is stored [5 p.61, 131]. A new open

source alternative to MySQL, MariaDB, is also surveyed as another relational database

choice. Next, two NoSQL (Not only SQL) solutions, the Apache Hadoop, a software

framework for building large, distributed database applications, and MongoDB, are

examined.

2.1. MySQL

MySQL [6] is one of the most widely used database management systems. It was fully

open source until 2008, when Sun Microsystems acquired it. Later, in 2010, Sun

Microsystems was acquired by Oracle Corporation. It is still available under GNU

General Public License (GPL), but also under commercial options. MySQL is a widely

used RDBMS that has been around for almost 20 years and has become very popular

with many web applications. It is also extensively tested and researched. There are

plenty of tools available for developing, testing and administration, and both

commercial and pier support from forums and guide books are easily obtainable. One

of the big advantages of MySQL is that it is available for many different platforms,

and numerous tools have support for the system.

MySQL has a rich feature set, including support for e.g. indexing, foreign keys,

replication, partitioning and query caching. MySQL is also designed to take advantage

of multiple CPUs and is a fully multi-threaded software. The database can serve

thousands of tables and billions of records of data. MySQL also supports several

storage engines. A database engine or storage engine is a component that MySQL uses

in order to handle the reading, writing and organizing of the data in the database. The

transactional database has a failsafe mechanism to come back from, for example, a

power failure. If the write transaction is not completed properly, there is a way to get

the data back. MySQL supports many different transactional and non-transactional

databases, such as InnoDB and MyISAM. MyISAM was the default storage engine for

MySQL until version 5.5.5 and the most frequently used in common applications, but

10

lacks transaction safety. InnoDB is the default engine from the MySQL version 5.5.5

and, being transactional, provides more safety for the data. InnoDB also supports

foreign keys which uniquely connect two tables together within a database.

2.2. MariaDB

MariaDB [7] is a new open source alternative to the popular MySQL RDBMS. It was

designed by the founder of MySQL, Michael Widenius, after selling MySQL to Sun

Microsystems and having doubts about MySQL’s future openness [8]. Even though

MySQL still continues to be available with a free software license, MariaDB has

gained a lot of interest among developers. For the most part, MariaDB is compatible

with MySQL. Until the recent versions, the new features from MySQL are also ported

to MariaDB.

MariaDB is still a fairly new solution, but as it is forked from MySQL, it includes

all the same functionalities. The open source community has already developed new

features and improved some of the old ones. Even though it is not as widely used or

supported as MySQL, it is a strong competitor as a fully open source alternative to

MySQL.

2.3. NoSQL

Even though RDBMS’s are the dominant solutions for data storage, they have many

shortcomings for present-day applications. Using an RDBMS for storing graphs into

tables is an example of the misuse of a data model [9]. Many web applications contain

features that can benefit from simpler and more flexible database systems. Data

storages containing huge amount of data have to be available for reading and writing

with low latency. They have to provide high performance, high availability, be easily

replicable and provide a mechanism for load balancing over multiple servers [9]. These

aspects have motivated research and development for new kinds of solutions, often

called NoSQL. NoSQL is not a total opposite to RDBMS, and can be characterized a

distributed solution which may not require fixed table schemas, which usually avoids

join operations, typically scales horizontally, does not expose a SQL interface and may

be open source [10]. In general, the term NoSQL is used to describe solutions that try

to find an alternative way to solve the problems that a traditional relational database

does not resolve well [11]. Basically, all the NoSQL solutions are designed to meet

some special need and are hence difficult to be categorised for solving some general

challenge or choosing only one that is suitable for a certain use case.

2.3.1. Hadoop/HBase

The Apache Hadoop [12] is a full framework designed to overcome many of the

challenges described above. Hadoop is developed as a top-level Apache open-source

project, Yahoo! being the largest contributor. Some of the users together with Yahoo!

are eBay, Amazon, IBM, New York Times, Google and Facebook, having deployed

clusters with more than 1,000 machines and several petabytes of data [13]. Common

uses for Hadoop clusters are high-speed data mining applications, log analysis and

machine learning.

11

Hadoop is designed to be a highly scalable system which can work from one server

setup to thousands of servers. It is designed to deliver high-availability and reliability

at the application layer instead of relying on hardware. Hadoop itself is not a database

solution and one can run basically any DBMS on it. Apache has two popular NoSQL

projects; Cassandra [14] and HBase [15], but a traditional MySQL is also an option.

These three solutions were compared in [10], and it was shown that the features

between the three are very similar, but the capabilities and performance favours the

NoSQL solutions in case of big data sets.

Hadoop cosists of four main parts; the Hadoop Common, Hadoop Distributed File

System (HDFS), Hadoop YARN and MapReduce engine. Hadoop Common is the

main part of the Hadoop system, providing the access to HDFS or other file systems

supported. It contains the files and scripts needed to start the system. HDFS is a file

system designed to store very large data sets with high availability and reliability. It is

also able to distribute this information at high bandwidth to user applications. Hadoop

YARN is a framework inside the Hadoop framework itself. YARN’s role in the

Hadoop environment is job scheduling and resource management. MapReduce is a

Java-based programming model for parallel processing of the data. The main idea in

MapReduce is to split a problem into smaller independent sub-problems and then solve

them in parallel by using several servers.

Apache HBase is a NoSQL database for Hadoop built on top of HDFS. It is an open

source project for very large data sets; designed to hold billions of rows and millions

of columns of data. HBase is a distributed, fault-tolerant and scalable solution.

It is good to keep in mind that HDFS and, therefore, the whole Hadoop system is

designed and built for a write once, read many times pattern and, therefore, the writing

operations in Hadoop are expensive. A performance evaluation study [16] between

HBase and MySQL on top of Hadoop/HDFS was conducted, and it was noticed that,

with a small number of concurrent users, there are no differences between the two.

However, with more users and more load on the system, the HBase solution gained

some advantage over the MySQL.

2.3.2. MongoDB

There are many ways to characterize NoSQL database solutions. One way to

categorize Hadoop/HBase is to define it among column-oriented stores [9]. MongoDB

[17], a choice from another group, documents stores and represents a solution where

key value pairs are stored within so-called documents. The choice of MangoDB for

this comparison was strongly influenced by its characterization in a different NoSQL

group than HBase. This gives more variation in compared features.

MongoDB is an open-source schema-less solution with full index support. It

supports map-reduce and provides high performance, high availability and easy

scalability. MongoDB database contains one or multiple collections, which consist of

one or many documents. The documents can be created on the fly and the records

within them can have different numbers of attributes. The attributes can be any data

types; numbers, strings, dates, arrays or sub-documents. As presented in [18], both,

writing and reading speed with large data sets is much faster for MongoDB compared

to MySQL. This is largely thanks to the fact that MongoDB is schema-less and the

reading queries do not involve any joins from different tables. It is also noticeable that

MongoDB might not be the right choice when dealing with a small amount of data, as

inserting can take a long time with small data sets [19].

12

2.4. Other Databases

Object-oriented database management systems (ODBMS) such as databases for

objects (db4o) [20] offer an alternative to more traditional RDBMS’s. ODBMS use

object-oriented approach whereas RDBMS’s are table-oriented. db4o is an open

source object database built for Java and .NET developers. In a comparison [21]

between db4o and MySQL, it was noticed that inserting large amounts of new data

was significantly faster with db4o. On the other hand, MySQL was much faster when

selecting or deleting data from the database.

PostgreSQL is an example of an object-relational database management system

(ORDBMS). The ORDBMS contains a relational database and hence is easy to

understand for someone used to using relational databases. In addition to plain

RDBMS, it has an object-oriented database model, and it supports objects, classes and

inheritance in database schemas and queries. In other words, the data is fetched and

manipulated from the database with object-oriented query language. Although

PostgreSQL has some advantages over MySQL on the query usage, a large amount of

research comparing the two [22] shows, that MySQL is better in performance.

13

3. SOFTWARE DEVELOPMENT WORK

Qosmet is a solution for passive QoS measurements developed at the VTT [3]. The

goal of this work is to develop a database implementation for Qosmet and an interface

between the database and Qosmet. Qosmet is an established solution, but it lacks data

storage functionality. QosmetService, introduced in detail below, is capable of forming

a connection to 3rd party software and relaying the measurement data there. Within this

work a database writing module has been developed which receives the measurement

data from Qosmet and stores it in a database.

3.1. Qosmet Solution

The Qosmet solution is capable of performing versatile QoS measurements and also

evaluating the Quality of Experience (QoE) for some applications. The results can be

viewed in real time and/or stored for analysing later. This thesis is focused on the latter

of the two use cases. As the measurements are passive, the overheads are minimized

and therefore the effects on the network performance from measurements themselves

are minimal. The software solution is implemented in a way that light-weight software

agents, called Qosmet Service, can be deployed in a large number of network nodes

for stand by and taken into use when needed. One Qosmet Service can be used for

several independent measurements.

Basic Qosmet architecture is presented in Figure 3.1. Qosmet Services are located

in one or more network nodes, one serving as the primary measurement point. Qosmet

Service instances communicate using the QoS Measurement Control Protocol

(QMCP), which allows full remote control over the measurements. The application

data traffic is not influenced by the QMCP control stream, and the application itself is

completely unaware of the Qosmet measurement. The primary Qosmet Service can be

set up to send the measurement data to a 3rd party software.

Figure 3.1. Qosmet Architecture.

The measurement data includes a plethora of performance parameters such as delay,

jitter, packet loss, connection break statistics, load, the volume of data and packet sizes.

A single point measurement provides some of the basic performance parameters,

14

whereas a two point measurement can form a full set of QoS results. The results can

be produced as average values over a certain time or accurate per packet values.

3.2. Database Writing Module

The database writing module called QosmetDbWriter is independent software

developed within the scope of this thesis. This command line tool works as a 3rd party

listener presented in Figure 3.1 above. QosmetService forms a connection with

QosmetDbWriter, which then listens for incoming measurement results. The

measurement data is then processed and written to a database by means of appropriate

SQL statements. The software keeps track of different measurements and is able to be

connected with several QosmetServices simultaneously. A component diagram for the

system is shown in Figure 3.2 below. At the top we can see the Qosmet package

containing the QosmetService component taking care of the actual measurements. One

or many QosmetServices can be connected to a link called QmcpServer on a

QosmetDbWriter. QosmetService is a part of Qosmet core services and was developed

outside this work. The database writer, QosmetDbWriter is connected to a DBMS via

link called MySQL Connector/C++. The C++ connector is a C++ interface for

communicating with MySQL servers and is provided by MySQL/Oracle.

Figure 3.2. Component diagram for the database writing module QosmetDbWriter

developed within the project.

15

The class diagram for the database writing module is presented in Figure 3.3.

QosmetDbWriter is the main class of the software, and it uses the QmServer class

functions from the main Qosmet package for communication with QosmetService. The

internal structure of the QosmetDbWriter is straightforward. In addition to QmServer

class, the QosmetDbWriter class is associated with the QosmetDbManager class. The

QosmetDbWriter class is responsible for the basic user interface and keeping up the

processing thread for incoming measurement results from QosmetService.

The QosmetDbManager class takes care of different kind of measurement results;

starting, ending or normal results. It is associated with two additional classes,

QmcpToSqlMapper and QosmetDb. QmcpToSqlMapper contains utility functions to

create SQL queries from QMCP messages. These functions could also reside in the

QomsetDbManager class, but for clarity reasons they are in a separate class.

QosmetDb is an interface for actual database interaction. QosmetDbWriter is designed

with a modular principle, and it is not tied to any particular database solution. Any

database (providing a suitable API) can be integrated into QosmetDbWriter, by

creating a database-specific adapter implementing the QosmetDb interface. As

MySQL is used in this work, a class for MySQL database interaction is a part of the

implemented solution. For demonstration purposes, another class for database

communication is also presented. QosmetODBCDb class would serve the purpose of

an ODBC interface, but is not implemented within this work. Both, QosmetMySQLDb

and QosmetODBCDb classes inherit the QosmetDb class.

16

Figure 3.3. Class diagram for the database writing module QosmetDbWriter developed

within the project.

3.3. Database Requirements

There are some requirements that need to be fulfilled in the database solution to be

chosen. The database is designed to meet the possible situation where there are

17

hundreds or even thousands of clients sending network measurement data at one

second intervals, on average. The speed of reading and writing of data to the database

are both important, but the real time writing is the main requirement. To be able to

provide extensive analysis of the data in a reasonable time frame, it is also important

to have a good reading performance, but there are more ways to overcome the

shortcomings of that feature than with writing.

The Qosmet measurement data and the Qosmet measurement ID have a certain

number of attributes to be stored in a database. It is defined that 64 attributes is enough

for the present-day situation and possible later additions. In case of relational

databases, we are talking about 64 columns in a table which is not a restriction on

examined solutions. It is also important to have a solution that is adaptable to a future

situation. For example, it has to be possible to add more attributes later without having

to implement a new database solution. In theory, the number of records can grow

indefinitely as time goes by, but the database should be able to handle at least tens of

millions of records. Adding more and more records will slow down the writing, as

indices need to be updated, but the reading performance will suffer more.

In addition to the functional requirements, the solution chosen needs to be easily

available for commercial production use. The installation process needs to be

straightforward and possibly to have an option to be automated, as the database might

have to be installed in different locations, for example on the client’s premises.

3.4. Database Selection

There are differences between different systems in how fast they are on different kind

of data sets and how well they fulfil the above described requirements. However,

looking at the features of the different database management systems examined, it is

clear that all the critical requirements are met by each of them. Writing and reading

performance, number of attributes, number of stored records and scalability of the

database are all fairly well covered and satisfied by the MySQL, MariaDB, MongoDB

and Hadoop. Some of the solutions greatly exceed the requirements and have more

features than actually needed in this case. For example Hadoop is intended for very

large data sets and deploying it for a small solution can be seen as a waste of resources.

The most important decision criterion in this case is the last mentioned ease of

installation and support. In the research group where the work was performed, the

experience of new kinds of DBMSs is very limited or non-existent, whereas MySQL

is a familiar solution. The experience and the knowhow of MySQL within the research

group enabled sufficient support for the thesis work and for future development and

maintenance of the database solution. Therefore, MySQL was selected as the database

solution to be used in this project.

3.5. Database Design

The measurement ID consists of 13 parameters and the actual measurement results of

48 parameters. The measurement ID part is the same for all individual results within

one measurement. Having all 13 ID parameters present makes it possible to ensure

globally the differentiation of one measurement from another. Not all result parameters

have non-zero values in every measurement as single point measurements do not

provide thorough data. Also, there are a number of parameters that have been noticed

18

to be more useful in network analysis than others, such as delay, jitter, packet loss,

load and throughput.

Three different approaches were chosen for the database design. In the first schema

represented in Figure 3.4, all measurement result parameters are stored in one table.

Using only one table results in good writing performance, because there is no need for

structure or extra parameters to link the tables. On the other hand, the reading

performance can degrade significantly as the table size grows.

Figure 3.4. Database schema 1. The name of the table is at the top and the first few

parameters are listed with their data types. Database index (primary key marked with

yellow) is listed at the bottom.

The second schema, represented in Figure 3.5, introduces an approach where the

measurement ID is in one table and the results in another. This approach saves

unnecessary repetition of data as the measurement ID is the same within one

measurement. In the second approach, the measurement ID is stored once to the

database and updated once when the measurement ends. With long measurements, this

approach could save thousands of database accesses. The downsides of this approach

are the need of extra parameters when using the MySQL key structure and degraded

writing performance when using several tables. The need for extra parameters is much

smaller, however, than the benefit gained from the amount of data saved from

measurement IDs.

19

Figure 3.5. Database schema 2. The name of the table is at the top and all parameters

from measurementsId and the first few from averageStats are listed with their data

types. Database indexes (primary index marked with yellow) are listed at the bottom.

The information between the tables is linked with MySQL’s foreign key relationship.

The third schema, seen in Figure 3.6, takes the approach from the second schema a

little further. The measurement ID is in one table as it was in previous case, but the

result parameters are now separated into two different tables. What are thought to be

the most used parameters in the analysis process are in one table called the mainStats.

The less used ones are in another table, called secondaryStats. This approach has the

same advantages and disadvantages as the schema 2, when compared to the first one.

Separating the measurement ID from the measurement data parameters reduces the

amount of data stored. Dividing the data parameters on the other hand increases the

amount of stored data, as additional parameters for table ID number and foreign key

need to be added. This might cause decreased writing performance for the database as

more data is written. The overall reading performance depends on the use case, as it is

probably fairly quick to fetch information on the most common measurement

parameters, but reading from both measurement data tables could be slower than in

schema 2.

20

Figure 3.6. Database schema 3. The name of the table is at the top and all parameters

from measurementsId and mainStats as well as first few from secondaryStats are listed

with their data types. Database indexes (primary key marked with yellow) are listed at

the bottom. The information between the tables is linked with MySQL’s foreign key

relationship.

21

4. BENCHMARKING

The database performance tests were performed on a server located at VTT’s premises.

The details about the hardware are listed in Table 4.1 below. The configuration

included two quad core processors with hyper-threading enabled and 16 Gigabytes of

RAM. Storage media consisted of three SAS (Serial Attached SCSI) connected hard

drives combined together with RAID 5 (Redundant Array of Independent Disks)

technology. 92 Gigabytes of disk space was allocated solely for the test environment.

Network and network interface for the configuration were with Gigabit speed. The

operating system was run on top of VMware virtualization software. The operating

system installed was a Linux distribution Ubuntu with version 12.04 and MySQL

Database with version 5.5. Even though the operating system was run on top of

virtualization software, the hardware resources were dedicated solely to the database

system during testing. Only the storage space was restricted to the above-mentioned

92 Gigabytes.

Table 4.1. Hardware specifications for the database server used in performance tests

Parameter Specification Comments

CPU Intel E5520 @ 2.27 GHz, 8 cores,

2 sockets
Hyper-Threading supported.

RAM 16 GB

HDD 3 x Seagate 300GB, SAS,

15000rpm, 3Gb/s
RAID5 (total capacity 553GB).

92GB for test environment.

NIC Broadcom NetXtreme II 5709,

Gigabit, Quad port

OS VMware ESXi, 4.0.0.0, 219382

Ubuntu 12.04

MySQL 5.5

4.1. Test Plan and Performance Metrics

The database performance was tested when writing QoS measurement data to the

database and reading the data from the database. The reading tests are explained in

detail in the two sections following, but the writing tests are fairly straightforward.

Different numbers of writing threads, from one to 128, write the data to a database.

The number of consecutive rows written is also increased from one to 10,000.

Increasing the number of threads, we can see how the database and the database writing

module developed handle large numbers of data sources and what the writing limits of

the DBMS are. With different numbers of consecutive rows written, we emulate the

different measurement sampling update intervals and also create enough traffic to seek

the writing limits of the DBMS.

For writing, throughput is the analysed metric and for reading the metric is total

execution time. Throughput measures how many lines per second the database has

written. This is then viewed against the number of threads writing to a database. Total

execution time indicates how many seconds it took for the entire query to perform per

one client. Total execution time is viewed against the number of clients reading from

the database.

22

4.2. Reading Queries

Two qualities were to be taken into account when queries for database reading

performance tests were designed. First, the test queries needed to represent the real life

use cases of a database for QoS measurement data. Secondly, all three designed

database schemas needed to be tested thoroughly. Five different queries were designed

and these are represented in Table 4.2. They are explained in more detail and

represented with different values of x in Chapter 5. Queries are named and numbered

from Query 1 to Query 5. The second column in the table shows which measurement

parameters are used in each query to constrain the result set. The three database

schemas compared in this work are presented in Section 3.5. All three schemas contain

all the measurement parameters but these are distributed in one, two or three tables. In

order to see the differences in performance when querying with different constraints,

we need to focus the constraints to each table and to different combinations of tables.

With queries and constraints covering all three tables in schema 3, we also cover the

two tables in schema 2 and the one table in schema 1. The third column in Table 4.2

shows the different tables from schema three covered with appropriate queries. For

instance, customer_id is found in table measurementsId, ul_delay in mainStats, etc.

Detailed queries with different values of x are represented in Chapter 5.

Table 4.2. Reading performance test queries. Columns represent the query names, the

result constraining measurement parameters and the appropriate tables for schema 3

Name Query constraint Db tables (in schema 3)

Query 1 customer_id = x measurementsId

Query 2 ul_delay < x mainStats

Query 3 ul_dupl < x secondaryStats

Query 4 customer_id <=> x AND ul_delay <

x

measurementsId and

mainStats

Query 5 ul_delay < x AND ul_dupl <> x mainStats and secondaryStats

Some possible variations of constraining parameters were omitted in order to keep

the number of test cases reasonable. However, the five selected queries cover the main

points of interest. Firstly, three queries fetch the data from each of the different tables

in schema 3. Query 4 focuses on measurementsId table, whose parameters construct a

MySQL primary key, and one of the other tables. The parameters within the primary

key are indexed and hence prepared for fast query performance. Query 5 examines the

situation when data constraining parameters are from two non-indexed tables;

mainStats and secondaryStats. The query from measurementsId and secondaryStats

was considered to be very similar to Query 4 and was omitted.

In a real life situation, one might search the database and retrieve all the data from

one customer using the customer_Id. In another case, the data could be filtered

according to delay and/or throughput e.g. using ul_delay and throughput. To get as

close to real cases as possible, one should also take into account that some queries

should return only few results and some queries fairly large amounts of data. The

constraint parameters chosen are considered to be one of the most common parameters

used in QoS analysis, and therefore the queries represent real life search queries fairly

well.

23

During the reading tests, we came up against several MySQL features that resulted

in new complementary queries. With Query 1, it was noticed that a straight join query

used with schema 2 resulted in significantly faster query times than a regular join

query. With schema 2, as well as with schema 3, the data is fetched from several tables

and needs to be joined together before being delivered to the ordering process. In some

cases, the optimizer within the MySQL can put the tables in wrong order. In these

cases, it is possible to use straight join to force the desired handling order of the tables.

It was also noticed that MySQL has an option to enable or disable a parameter called

query cache. With query cache enabled, some queries run very quickly. Differences

with and without this option were compared with Query 3. The query cache size

determines which queries it affects. With Query 3, a comparison was also made of how

the results vary when the query returned data only from one measurement results table

or from all the tables within the schema.

4.3. Creating Test Data

For reading performance tests, uniform data for all three database schemas needed to

be created. The goal was that the data represents all the different real life use cases as

well as possible. Here it is considered to have one very long test run, five fairly long

ones, 50 short ones and 500 very short ones. These test runs are represented in Table

4.3. If the sampling time is one second, these test runs represent time scales from

approximately 15 minutes to one week. The number of test runs also represents the

value for customerId in the database. This means that, for customer ID 1 there are

600,000 rows in the database, for IDs 2-6 there are 86,400 rows for each and so on.

Table 4.3. Uniform data for reading performance tests

Number of test runs Rows per run Time scale represented

(one sec update interval

assumed)

1 600,000 1 week

5 86,400 24 hours

50 10,000 3 hours

500 1,000 15 minutes

556 2,032,000 -

All three database schemas are filled with the same amount of data where most of

the data is random, but some variables are incremented to have uniform distribution

within a test run. The uniform distribution is important when performing the reading

tests. With this principle, it is possible to design such queries that return the desired

number of rows. If all data were to be random, it would be impossible to emulate real

life reading cases. This does raise one issue to consider though. Now that the data for

some variables is not random, there is a change that it has effected on query speed

when reading the data. It is possible that the reading operations are easier and thus

faster than with all random data.

To be able to perform meaningful query cases, all database tables need to include at

least one incremented variable. Schema 3 sets the requirements, since its three tables

include all the same information as schemas 1 and 2 include in their instances. The

24

following variables are incremented in the reading test cases: from measurementsId

table, customer_Id. From mainStats table, ul_delay and dl_delay. From secondaryStats

table, ul_dupl and dl_dupl.

4.4. Analysis Methods

All test cases for database writing performance were performed for all three database

schemas. 11 different cases with an increasing number of threads or writing clients,

from one to 128, were performed. Threads were set to write the same number of lines

per case, but each case were repeated to have nine cases with different numbers of

lines written. Hence 99 test cases per schema were performed so as to determine the

writing performance.

Writing to the database was performed using the developed database writing module

with slight modifications. The software was modified to create a determined amount

of random data for the database. The script starting the writing module gave the

number of consecutive rows as a parameter. This means that writing one line per client

started the module for each line, but when writing, for example, 100 lines per client,

the client started once and wrote 100 lines and so on.

In order to have enough statistical accuracy, a minimum of five rounds of test runs

were run for each test case. For some cases, more rounds were run to meet the set

requirement. The sample mean average [23 p.1053] is

 x=
∑xi

n
, (1)

where xi is a value for single sample and n is the total number of samples was

determined first. Now the standard deviation [23 p.1053]

 𝑠=√
∑(x-x)

2

n
 (2)

was used to determine the standard error [24 p.46]

 sx=
s

√n
. (3)

The standard error is then divided by the average and this percentage needs to be less

than 5%. In other words, each test was repeated at least five times, but as many times

as necessary in order to meet the decision criteria of standard error falling below the

set limit of 5%.

For the results, number of threads is multiplied by the number of rows written for

each thread. This total number of written rows is divided by the average time taken to

execute the entire test cycle. In the chapter following we use the measure lines/s to

analyse the differences between database schemas. We will see how a different number

of clients and different number of written lines per client affects performance.

25

5. DATABASE PERFORMANCE VERIFICATION

5.1. Writing Performance

5.1.1. Write Throughput

The following three figures represents the database write throughput against the

number of threads. Different lines in the graphs, from one to 10,000, represent different

numbers of consecutive rows written. The measured unit for throughput in these cases

is lines/s.

The results for all test cases in database schema 1 are shown in Figure 5.1. Threads

here represent clients that write data to the server. Examining the results for different

numbers of threads, it can be seen that one or even two clients do not reach the

maximum write throughput, and hence are not able to take full advantage of the server.

According to these results, it takes eight clients writing simultaneously to the server to

reach the maximum potential. We will also notice that, in order to take the full potential

into use, it is not optimal to write only one line at a time per client. In order to reach

the full potential for each client, they should write at least around 50 rows

consecutively. In these tests, the writing software is started for each round separately

and hence affects the measured write throughput. Naturally, it is more optimal to write

many lines within one round or as it is in a real use case, during the continuous

execution of the software. This means that in real life you would not restart the writing

software between measurement cases.

For the cases writing 50 or more lines consecutively, the maximum performance is

around 7,000 lines per second and is reached with eight clients. For cases where only

one, five or ten rows are written, it looked as if the maximum performance was reached

with eight or 16 clients, but test runs with 128 clients proved that assumption wrong.

Unfortunately, it was not possible to run more tests with more clients. However, it is

probable that the maximum performance is around seven to eight thousand lines per

second, since this was clearly the limit reached with more consecutive lines written.

Figure 5.1. Write throughput against number of threads for database schema 1. Lines

one to 10,000 represent different number of consecutive rows written.

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100

T
h
ro

u
g
h
p

u
t

[l
in

es
/s

]

No. threads

1 5 10 50 100 500 1000 5000 10000

26

Database schema 2 has two tables where results should be written. Figure 5.2 shows

that results for schema 2 are very similar to the schema 1 results shown earlier. Despite

writing to two different tables, the maximum performance for schema 2 is even slightly

better. With three or more clients and more than 50 lines written, the performance is

about 500 lines per second better, but this has to be considered being a statistical

fluctuation and hence insignificant. For one line written, the results are almost same.

For five and ten lines written, schema 2 is slower for the most part. Where schema 1

had the best result with 128 clients and ten lines written, now schema 2 is also slower

in that case.

It seems that, in general, schema 2 is worse than schema 1 with a small number of

lines written, but better with a large number of consecutive lines written. One

explanation for the better results for large numbers of rows written is that now the key

structure is in a separate table from the rest of the measurement results. It always takes

some effort from the database to update the key, and with schema 1 it was more

resource-demanding as all the data is within one table. For schema 2, the key is in a

separate table, and it is necessary to write it only once per measurement, whereas for

schema 1 all the data, key included, is written for every measurement result. Therefore

the overall amount of data written is larger for schema 1 than for schema 2.

Figure 5.2. Write throughput against number of threads for database schema 2. Lines

one to 10,000 represent different number of consecutive rows written.

Figure 5.3 shows the throughput against the number of threads results for database

schema 3. For the third database schema, the results are significantly slower than for

the first two. If only one line is written, the result is fairly close to the other two

database schemas, but all the others are slightly or very much slower. The maximum

performance is achieved with cases where 50 to 10,000 lines were written and is

around 5,000 lines per second. Comparing the results in Figure 5.3 with the previous

two figures, we can see that this is about one third less than the maximum performance

of schema 2. Much less variation between cases also occurs. The drastically increased

performance with 128 clients seen in schema 1 and schema 2 is now much smaller.

In schema 3, the second table from schema 2 where measurement results are stored

is now split into two separate tables including more frequently and less frequently used

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100

T
h
ro

u
g
h
p

u
t

[l
in

es
/s

]

No. threads

1 5 10 50 100 500 1000 5000 10000

27

results. Writing the data to three tables seems to have a major effect on performance,

now and the benefits of having the key structure in its own table has diminished.

Figure 5.3. Write throughput against number of threads for database schema 3. Lines

one to 10,000 represent different number of consecutive rows written.

5.1.2. CPU, I/O and Memory Performance

The server performance metrics for 10,000 rows written cases were recorded with

Linux’ sar tool [25]. The sar (System Activity Report) command is a system activity

monitor used to store various metrics from the operating system. The recording

interval for sar was set to minimum, which is one second. In order to obtain reliable

measurement results, the running time for the test needed to be long enough. Test runs

for one thread and database schema 2 were the fastest, and they ran from 0.004 seconds

to around five seconds for one to 10,000 consecutive written rows respectively. For

5,000 consecutive written rows the time for one test run was less than three seconds

and therefore it was decided to run server performance measurements only for 10,000

rows case. This way each test run lasted more than five seconds and a minimum of

four samples was obtained after omitting the preceding and trailing samples from the

peak load times. There are various features that can be monitored with sar, but in our

case CPU load and I/O metrics are the most important things. MySQL server utilizes

memory also in the background after the actual query execution is completed, and

therefore it is not possible to accurately see how much memory is actually used for

query execution.

System level (kernel) execution of the CPU utilization for database schema 1 and

schema 3 are shown in Figure 5.4 together with the information when CPUs were idle

waiting the system to perform an outstanding disk I/O request. System time includes

time spent servicing hardware and software interrupts. Figure 5.5 presents the

percentage of time that the CPUs were completely idle without any outstanding disk

I/O requests and the time that CPUs were processing user lever application requests.

Results for schema 2 are left out from the figures below because they are almost

identical with schema 1 results.

MySQL and InnoDB were run with the default values which can be also seen with

the hardware performance results below in Figure 5.4 and Figure 5.5. Even though the

0

1000

2000

3000

4000

5000

6000

7000

8000

1 10 100

T
h
ro

u
g
h
p

u
t

[l
in

es
/s

]

No. threads

1 5 10 50 100 500 1000 5000 10000

28

server has two quad-core processors, the InnoDB parameter called

innodb_write_io_threads is set to four by default. With this parameter, it is possible to

restrict the number of background threads that service write operations. Looking at I/O

waiting and CPU’s idle percentage, it is clear that the progress until four clients is

noticeable. After five or more clients, the change becomes slower. This does not

necessary mean that all eight CPU cores were not used during the writing process. It

is only that there are a maximum of four simultaneous I/O threads for writing

operations. The other cores can be used by other processes.

The system usage time increases quickly to around 15–20% and stays more or less

constant when introducing more than four clients. System time in general is considered

a bad thing and can be a sign of, for example, too much context switching. Optimizing

the software code might also help the situation. However, it is also possible that in this

case the high system usage is caused more by the MySQL than the database writing

module. To support this supposition, we should look at the database 3 curve in Figure

5.4. In database 3 there are many more writing operations than in databases 1 and 2.

As seen in the previous section, the writing throughput is also similar with these system

CPU usage results. Databases 1 and 2 are close to each other, but database 3 differs

from the other two. It is possible that having more writing operations and greater need

to keep up the table indices results in more system usage time.

Together with the CPU’s I/O waiting proportion, it is good to examine the I/O

transaction information in Figure 5.6. One method to measure the MySQL

performance is to measure the Transactions per Second (TPS) [26]. Write requests per

second (wtps) and the total amount of data written to hard drive in blocks per second

(bwrtn/s) are represented for all databases. One block equals 512 bytes of data. Only

write transactions are presented, since these tests were concentrated on the write

performance of the database, and the number of read transactions was close to zero.

There are similar characteristics between I/O wait in Figure 5.4 and write requests per

second in Figure 5.6, as the results increase until about three or four clients and start

decrease with more clients. It looks as if the maximum here is connected to the number

of I/O write threads discussed above. It is also evident that there is a correlation

between the number of transactions and length of I/O wait. However, it is interesting

to see that number of block writes per second decreases only a little after the maximum

values achieved with three and four clients. This is most likely a result of using the

InnoDB insert buffer, which uses memory to cache the inserted data. Buffered data is

then written to disk when the appropriate part of the database is handled. In the test

situation, the database seems to have taken advantage of the insert buffer as the total

amount of inserted data remains rather constant, but the number of write requests

decreases drastically. With 128 clients, the number of write transactions is less than a

fifth of the measured maximum value. It seems that bigger chunks of data per write

transaction were performed with more clients.

29

Figure 5.4. CPU usage at system level (%system) and I/O waiting percentage

(%iowait).

As analysed earlier, the CPU’s idle time decreases quickly until the four clients’

case and then continues to decrease at a much slower rate. A similar process can be

seen with application level usage in Figure 5.5 (%user), but now the change in

application level growth speed is much less than the change in idle use decrease speed.

The system level and user level processes are using most of the CPU time, and hence

it seems that changing the MySQL settings to exploit more writing threads would be

a good choice so as to increase the overall writing performance of the database. On the

other hand, the I/O waiting time increases together with more clients up to a maximum

of four writing threads. It is possible that taking more CPU cores into use would not

help the situation, but would just make it worse. In fact, the number of write

transactions starts to drop already after three clients. This is something that would

require more research and testing on MySQL buffers and settings. Also, optimizing

the code for the database writing module can have an effect on CPU usage and

performance.

0,00

5,00

10,00

15,00

20,00

25,00

1 10 100

C
P

U
 u

sa
g
e

[%
]

No. clients

%system Database 1 %system Database 2 %system Database 3

%iowait Database 1 %iowait Database 3

30

Figure 5.5. CPU usage at application level (%user) and percentage that is totally idle

(%idle).

One piece of research [26] indicates that the optimal number of threads is more than

four, as speculated above. However, the table size in the referred research is much

smaller than in these tests, and there are no results for write-only testing. Nonetheless,

more testing and experimenting with MySQL settings is recommended. After all, the

maximum writing data rate achieved with database 2 and about 71,000 blocks written

per second results in about a 36 MBps writing speed for the hard disk. There is still

room for improvement, considering the average write throughput values for similar

disks are well over 100 MBps [27].

Figure 5.6. I/O information for all databases. Write requests per second (wtps) on the

primary axis on the left and block writes per second (bwrtn/s) on the secondary axis

on the right.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

1 10 100

C
P

U
 u

sa
g
e

[%
]

No. clients

%user Database 1 %user Database 3

%idle Database 1 %idle Database 3

0,00

10000,00

20000,00

30000,00

40000,00

50000,00

60000,00

70000,00

80000,00

700,00

1700,00

2700,00

3700,00

4700,00

5700,00

6700,00

1 10 100

I/
O

 u
sa

g
e

[b
w

rt
n
/s

]

I/
O

 u
sa

g
e

[t
p

s]

No. clients

wtps Database 1 wtps Database 2 wtps Database 3

bwrtn/s Database 1 bwrtn/s Database 2 bwrtn/s Database 3

31

Figure 5.7 represents the total memory usage for all three database schemas. There

are only small differences between the schemas. Until six or eight clients, the memory

usage increases at the same rate for all the schemas. When introducing more clients,

we start to see a difference between the schemas. Schema 1 has only one table to write

to, whereas schemas 2 and 3 have two and three tables respectively. With more tables,

there are more write transactions and the InnoDB write buffer is taken advantage of.

Schema 1 has some advantage over the other two with 16 and 32 clients, but already

at 64 clients, the system runs out of free memory in that schema too. The writing

performance results in the previous section suggest that the maximum throughput was

achieved already with eight clients, but considering the memory usage it would be

interesting to see whether adding more memory resources would increase the write

throughput. There is also research [26] to back up this supposition.

On the other hand, these results hint at the fact that the database writing module

might be the bottleneck for writing performance. The maximum writing performance

is achieved with eight clients, as shown in previous chapter. However, examining the

CPU, I/O and memory metrics, we see that none of those are fully utilized with eight

clients.

Figure 5.7. Total memory usage for all three database cases.

5.2. Reading Performance

Results for all five reading queries presented in Table 4.2 in section 4.2 are analysed

in the following pages. In the analysis work, all results are considered and examined

but only a selection of them is presented in graphs here, because many of the test cases

produce similar results. The results are represented in graphs where total execution

time of a query in seconds per client is displayed on the y-axis against the number of

clients on the x-axis.

5.2.1. Query 1

Query 1 uses customer_id field to select certain numbers of results from all the data.

This reflects the situation where one might want to search all the results for a certain

customer. This field is part of the measurement id and the key structure for all database

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

1 10 100

M
em

o
ry

 u
se

d
 [

%
]

No. clients

Database 1 Database 2 Database 3

32

schemas and therefore relatively fast to access. The measurements for Query 1 include

four different cases returning 1,000, 10,000, 86,400 and 600,000 rows depending on

the customer. In practice, this query denotes a case where all measurement data for a

certain customer is fetched from the database. While analysing the query and the

results, it was noticed that query optimization was needed to see the best results for all

situations. Therefore, the second case in Query 1 includes an additional part presented

in Figure 5.10. All test cases performed for Query 1 are shown in Table 5.1.

Table 5.1. Query 1 test cases

Name MySQL query Rows fetched

Case 1 customer_id=60 1,000

Case 2 customer_id=10 10,000

Case 3 customer_id=6 86,400

Case 4 customer_id=1 600,000

In Case 1 only 1,000 rows are fetched from the database and the test run is fast. The

results between the database schemas are almost identical, as seen in Figure 5.8. This

can be seen with all queries with about 1,000 rows, and is not characteristic only of

Query 1. The general magnitude for performance times with small result sets are

between 0.0005 and 0.002 seconds/client. Analysing all the results, it is seen that the

maximum performance is achieved with three or in most cases four or more clients.

The explanation for this phenomenon can be found from the server hardware

specifications. The server has a quad-core processor and hence can serve query

requests simultaneously from up to four clients.

Figure 5.8 Total execution time against number of clients for Case 1 in Query 1.

In case 2, database schema 3 deviated significantly from the other two as seen in

Figure 5.9. The slowest one was schema 1, as it was required to go through each row

during the search. Schemas 2 and 3 have separate tables for the id and were also

assumed to be faster than schema 1. When finding the results for a certain customer,

there are significant differences between schema 1 and schemas 2 and 3. For schema

1, it is necessary to go through all the rows, whereas for schemas 2 and 3, a certain

0

0,0005

0,001

0,0015

0,002

0,0025

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

33

customer can be found from the id table which includes only one line of data for each

measurement. Then, knowing the desired full ID, it is rather quick to search the

measurement results from the other tables. However, it was noticed that the query was

not working as anticipated for schema 2. The results were close to the ones for schema

1 but they should have been fairly closely related to schema 3. When analysing the

query execution in MySQL, it was noticed that the query was actually going through

the data in non-optimal order. It was actually going through each row in the

averageStats table and comparing the data to the id table. This behaviour was corrected

by adding a straight join option to the query. In this way, the execution was forced to

go through the data in the desired order.

When fetching data from several tables, join expression was used in the queries.

This expression is used to join rows based on a common field between them. In

MySQL, there is a built-in query optimizer which tries to perform the given queries in

the most optimal way possible. In some cases, the optimizer can fail and the tables are

joined in a non-optimal order and the number of rows searched through can become

much bigger than anticipated. In such cases, it is possible to use the straight join

expression to force the optimizer to join the tables in the listed order.

Figure 5.10 shows Case 2 with straight join for schema 2 in more detail, and it is

seen that now schema 2 is actually slightly faster than schema 3 performance.

Figure 5.9. Total execution time against number of clients for Case 2 in Query 1 with

all Database model results.

0

1

2

3

4

5

6

7

8

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2

Database 3 Database 2 with straight join

34

Figure 5.10. Total execution time against number of clients for Case 2 in Query 1

where straight join syntax is used with database 2 and viewed with database schema 3

results.

Case 3 results are shown in Figure 5.11, where we see that database schema 2 and

schema 3 are equally fast, but significantly better in performance than schema 1. The

big difference in execution times can still be explained with the differences in query

execution. Schema 1 goes through the entire database, whereas schema 2 and schema

3 manage with a few hundred inspected rows.

Figure 5.11. Total execution time against number of clients for Case 3 in Query 1.

In Case 4, shown in Figure 5.12, the amount of fetched data is already quite large,

and thus, the data transfer time becomes the dominating factor instead of the query

execution time, and differences between database schemas diminish. Schemas 2 and 3

are still somewhat faster than 1, but the difference is very small compared to earlier

cases with smaller result sets, where the query execution time was dominating the total

execution time. This change is shown in Figure 5.12 together with the drastic change

when enough clients are brought to test the scenario. For this case, it was not possible

to run the test with 50 clients, but 20 were used instead. Even with this number of

0

0,05

0,1

0,15

0,2

0,25

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 3 Database 2 with straight join

0

1

2

3

4

5

6

7

8

9

10

1 10 100

T
o

ta
l

ex
ec

u
ti

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

35

clients, the data transfer load becomes clear as it slows down the performance

significantly. The time to perform the actual query is now only a minor factor, as the

data transferred from the server to the client machine becomes the major factor.

Figure 5.12. Total execution time against the number of clients for Case 4 in Query 1.

5.2.2. Query 2

For Query 2 ul_delay field, one of the primary measurement results was chosen for

result search criteria. Where Query 1 used a field included in the key structure, it is not

the case now. It is assumed that the performance will be worse for this query which

includes four basic test cases returning 556, 2,780, 27,800 and 278,000 rows. All the

cases are represented in Table 5.2 below. In practice the Case 1 would fetch all the

rows from the database where uplink delay is less than one millisecond.

Table 5.2. Query 2 test cases

Name MySQL query Rows fetched

Case 1 ul_delay < 1 556

Case 2 ul_delay < 5 2,780

Case 3 ul_delay < 50 27,800

Case 4 ul_delay < 500 278,000

Case 1 results are shown in Figure 5.13 and do not differ significantly from the

Query 1 results. Total execution times are so small, even though the time difference is

large, even 50%, they can be considered to be in the same magnitude range.

0

5

10

15

20

25

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

36

Figure 5.13. Total execution time against number of clients for Case 1 in Query 2.

Case 2 and 3 end up with an almost identical performance. The results for Case 3

are shown in Figure 5.14 and the database in schema 2 clearly is the slowest of the

three database schemas for this query. For these cases, the data transfer from server to

client is not a major factor, because the number of rows fetched is small. Hence the

query execution is a more dominant factor for performance. For schema 1, query is

searching the values from only one table, which seems to be rather efficient in this

case. Looking at the results, it seems that it is nearly as efficient is to search from

relatively small table and to combine data from two other tables as is done in schema

3. However, the search from a large table and then combining the data from another

table as done with schema 2 seems to be less efficient. This phenomenon could be

explained with the assumption that searching from a bigger table (schema 2) is a slower

process than executing a search from a smaller table (schema 3). This might be a

consequence of the DBMS’s memory settings. If the searched data does not fit into a

memory buffer, the query execution slows down, which is probably the case here with

schema 2.

Figure 5.14. Total execution time against number of clients for Case 3 in Query 2.

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

0

2

4

6

8

10

12

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

37

Case 4 for Query 2 is similar to what we saw in Query 1, but has some significant

differences as seen when examining Figure 5.15. First, there are fewer rows fetched,

and second, the normal 50 clients was the maximum measured. Database schema 1

was the slowest for Query 1 Case 4, but now it is the fastest one, whereas schema 2

now has the worst performance of all three. The data transfer time becomes more

significant with a large number of clients, but it seems that there is still room for a

query execution speed to make a difference, as schema 1 is still faster than the other

two database schemas. It seems that now schema 1 has benefitted from the fact that it

does not need to combine data from several tables.

Figure 5.15. Total execution time against number of clients for Case 4 in Query 2.

5.2.3. Query 3

Query 3 consists of four different situations. The measurements were performed with

MySQL query cache in use and without it, and within both of these situations there

were two individual situations with different amounts of data fetched from the

database. For database 1, there is no difference between these two approaches, but

databases 2 and 3 have several tables in them and first results were fetched only from

one table and then from all the tables. This has a minor effect on query speed, but

mostly on the data transfer times. All 16 test cases for Query 3 are shown and explained

in Table 5.3. All four different situations in Query 3 were performed with four setups

returning result sets with 556, 2,780, 27,800 and 278,000 rows. This query reflects a

situation where one wishes to fetch all results where there is a certain number of

duplicates in the uplink connection. In some cases, it might be enough just to see how

many results fit the limit without fetching all the information from all the tables and,

therefore, one table cases are tested. In many cases, it is useful to see the complete

result set and fetch data from all the tables.

0

2

4

6

8

10

12

14

16

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

38

Table 5.3. Query 3 test cases

Name Query cache Tables MySQL query Rows fetched

Case 1 YES 1 ul_dupl < 1 556

Case 2 YES 1 ul_dupl < 5 2,780

Case 3 YES 1 ul_dupl < 50 27,800

Case 4 YES 1 ul_dupl < 500 278,000

Case 5 YES ALL ul_dupl < 1 556

Case 6 YES ALL ul_dupl < 5 2,780

Case 7 YES ALL ul_dupl < 50 27,800

Case 8 YES ALL ul_dupl < 500 278,000

Case 9 NO 1 ul_dupl < 1 556

Case 10 NO 1 ul_dupl < 5 2,780

Case 11 NO 1 ul_dupl < 50 27,800

Case 12 NO 1 ul_dupl < 500 278,000

Case 13 NO ALL ul_dupl < 1 556

Case 14 NO ALL ul_dupl < 5 2,780

Case 15 NO ALL ul_dupl < 50 27,800

Case 16 NO ALL ul_dupl < 500 278,000

There are no major differences between Case 2 and 3 returning 2,780 and 27,800

rows in this setup. Figure 5.16 clearly brings out the differences between the three

databases in these two cases. As the data is fetched only from one table with schema

2 and schema 3, it can be assumed that the different amounts of data transferred are

now shown in the results. Database schema 3 is the fastest as schema 2 and schema 1

follows accordingly. The difference between each database is slightly smaller as more

reading clients are introduced to the setup.

Figure 5.16. Total execution time against number of clients for Case 3 in Query 3.

In Case 4, 278,000 rows are fetched from the database and the resulting time is now

noticeably slower for all databases. This is the case especially with a small number of

clients. Figure 5.17 points out an interesting situation with database 1 and 50

simultaneous clients running the query. The speed collapses with too many clients

0

2

4

6

8

10

12

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

39

loading the server. Database schema 1 is returning all the data, but in schema 2 and

schema 3 only appropriate data from one table in this case. This is why the dip in

performance is not yet seen with all database cases. This can be seen later on Figure

5.20 and is analysed more below.

Figure 5.17. Total execution time against number of clients for Case 4 in Query 3.

Figure 5.18 represents the Case 5 in Query 3. In this situation, the MySQL query

cache is still in use, but now the data is fetched from all tables also with schema 2 and

schema 3. Fetching 556 rows of data and using the query cache is very fast, and the

results vary very little, as seen in Figure 5.18. The results for Case 1 are almost

identical. Results like this are not very reliable, but certainly show the general

magnitude of performance times with small result sets. The results with 556 returned

rows are very similar to the previous cases and queries with same number of returned

rows. However some significant differences can be found in the performance with

2,780 and 27,800 rows.

Figure 5.18. Total execution time against number of clients for Case 5 in Query 3.

0

2

4

6

8

10

12

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

40

Case 7 is shown in Figure 5.19, and we can see that the magnitude of the

performance remains the same as with Case 3. However, the order of the database

schemas is now different. Now schema 3 is the slowest followed by schema 1 and

schema 2 as seen in Figure 5.19. The change in the order is seen most clearly with a

small number of clients and the difference from earlier cases with more clients is not

a big one. The change is mostly explained with more data transferred now that the data

from all tables is fetched. It seems, though, that the effect of more data is still not a big

one, as schema 2 still remains faster than schema 1. The faster query speed is still a

major factor. The reason why query for schema 2 is the fastest in Case 7 remains

uncertain. There are several things that have an effect. The size of the queried table

has an effect together with the memory buffer as discussed in previous section. InnoDB

page structure offers explanations as examined at the end of this section. Joining data

from several tables and the use of the query cache also play a role in query

performance.

Figure 5.19. Total execution time against number of clients for Case 7 in Query 3.

Now that the transferred data is significantly bigger when 278,000 rows are fetched

from the database, the decreased speed especially with large number of clients is

clearly seen in Figure 5.20. The figure points out now that the amount of data required

to transfer from the database server to a client machine can be a factor if there are a

large number of readers. Comparing Figure 5.20 with Figure 5.19, we can also see that

now the data transfer has become the dominating factor as schema 2 and schema 3

seem to have almost equal performance with 278,000 rows whereas the difference

between the two was clear with 27,800 rows. The reason why schema 1 is faster than

the two other database schemas can be found from the fact that it does not have to join

the data from several tables as in schemas 2 and 3, which have the data divided into

two and three separate tables. These results also give support to the assumption made

above that with 27,800 rows the amount of data was less significant than the query

speed.

0

1

2

3

4

5

6

7

8

9

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

41

Figure 5.20. Total execution time against number of clients for Case 8 in Query 3.

Figure 5.21 below shows the difference between enabling and disabling the MySQL

query cache, as it is now disabled in Query 3 from Case 9 forward. Now the result for

fetching 556 rows is more like the results got with the query cache and 2,780 or 27,800

rows rather than the ones seen in Figure 5.18. The query cache has a size limit option,

and this is why faster performance in these tests can only be seen on 556 row cases.

By changing the size of the query cache, it is possible to optimize the database

performance for reading purposes. The results for Cases 10, 11 and 12 do not differ

too much from the ones discussed earlier when the query cache was used and data was

fetched from only one table.

Figure 5.21. Total execution time against number of clients for Case 9 in Query 3.

The last situation for Query 3 is MySQL query cache disabled and data fetched from

all tables. Results for Case 16 are similar to those shown in Figure 5.20. Cases 13, 14

and 15 on other hand result in a different order between the database schemas. As seen

in Figure 5.22, now schema 1 is the fastest followed then by schema 3 and schema 2.

Schema 2 is now the slowest, compared to the situation shown in Figure 5.19 where it

was the fastest. Now the amount of transferred data is the same for all three database

0

2

4

6

8

10

12

14

16

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

0

1

2

3

4

5

6

7

8

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

42

schemas, and hence the reason for this change is most likely to be found in the query

speed. Without the query cache, schema 2 performance drops more than the others.

To understand more about the query speed, we need to analyse theInnoDB page

structure of the MySQL storage engine. InnoDB stores the records into a structure

called a page. The page has a fixed size, 16 KB as a default, and it contains the actual

data (i.e. rows) and some header information. The more columns a table has, the fewer

rows fit into a single table, as there is more data in a single row. As a table has a fixed

size, this also leads to more disk access to read a certain number of rows. In our case,

schema 3 has smaller tables with fewer columns than schema 2, which can lead to

faster queries.

Figure 5.22. Total execution time against number of clients for Case 15 in Query 3.

5.2.4. Query 4

Query 4 combines information from two different fields. These fields, customer_id

and ul_delay, are in different tables in schema 3. customer_id is in id table and also

part of the key structure, where ul_delay is in the main table. These test cases should

show whether there is any difference in performance when searching information from

several fields and tables comparing to previous queries where only one field was used

as search criteria. In practice, one might wish to search, for example, for all results

with an uplink delay smaller than 500 and belonging to a customer with ID number

60. There are five different test cases all presented in Table 5.4 below. Cases 3 and 4

are similar, and the queries fetch the same number of rows, but use different field

criteria for search query.

Table 5.4. Query 4 test cases

Name MySQL query Rows fetched

Case 1 customer_id=60 AND ul_delay < 500 500

Case 2 customer_id=10 AND ul_delay < 5,000 5,000

Case 3 customer_id=6 AND ul_delay < 50,000 50,000

Case 4 customer_id > 56 AND ul_delay < 100 50,000

Case 5 customer_id < 6 AND ul_delay < 50,000 250,000

0

2

4

6

8

10

12

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

43

Case 1 results are similar to the ones for Query 3 Case 5 presented in Figure 5.18.

Case 2 is similar to Query 1 Case 2, where Databases 2 and 3 have a total execution

time of approximately tenths of a second and schema 1 of several seconds.

Performance for schema 1 is practically the same for both queries, and schema 2 and

schema 3 are presented below in Figure 5.23. Comparing these similar cases we see

that, even though the number of rows fetched are halved from 10,000 to 5,000, the

total execution time is not a half. Comparing Figure 5.10 and Figure 5.23, we see a

roughly 40% decrease in execution time. From this, we can conclude that making a

query from two fields in different tables is in fact a slower process than a query from

only one table.

Figure 5.23 Total execution time against number of clients for Case 2 in Query 4

without database schema 1.

Cases 3 and 4 are presented in Figure 5.24 and Figure 5.25, respectively. Even

though they both fetch the same number of rows, the results differ greatly. The queries

are very different from each other, and it seems that this has an effect on schema 2 and

schema 3, but has no effect on schema 1. Schema 1 has all the information in one table,

and it seems that for this query the difference between having everything in one table

or several tables, as for schema 2 and 3, is the dominating factor. For schema 3, the

execution time in Case 4 is little more than double compared to Case 3. For schema 2,

the same applies for five or more clients, but with fewer clients the increase in

execution time is more. Case 3 has similar results to Query 1 Case 3 which is also a

very similar query, but Case 4 results are quite unique within these tests. In schema 3,

results are searched from id and main tables which are both rather small, whereas in

schema 2 there are only two tables and the query is searching from both. For both,

schema 2 and 3, the query first limits the results for certain clients and then searches

for a more restricted set of results limiting them with an uplink delay. Schema 3

benefits this more than schema 2 as the query is faster for a smaller table. It seems that,

if a query has to look up information from several tables, the table size has some effect

on the execution performance.

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 2 Database 3

44

Figure 5.24. Total execution time against number of clients for Case 3 in Query 4.

Figure 5.25. Total execution time against number of clients for Case 4 in Query 4.

Case 5 for Query 4, shown in Figure 5.26, has some similarities with previous cases

with a large number of rows fetched. Execution time per one client with a large number

of clients is around the same as with one client. This is common for all queries as long

as the resulting data set size is big enough for the transfer time to become the major

factor in execution time. Results are in line with other cases for Query 4 as well as for

Query 1 where customer_id field is also the search criteria. Database schema 1 is the

slowest, but schema 2 and schema 3 do not differ very much. Now that the data transfer

time is the major factor, differences seen in Case 4 between schema 2 and schema 3

disappear.

0

1

2

3

4

5

6

7

8

9

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

0

1

2

3

4

5

6

7

8

9

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

45

Figure 5.26 Total execution time against number of clients for Case 5 in Query 4.

5.2.5. Query 5

Where Query 4 combined the id and main tables, now Query 5 is combining main and

secondary tables. This situation now brings all the database schemas closer together,

as the id table for database schema 3 is small and includes the index structure. When

running queries for ul_delay and ul_dupl, the search in schema 3 has to go through

both large tables. Cases 3, 4 and 5 all return the same number of rows, but now the

performance effect of different restriction criteria is examined. This denotes a practical

case where the user wants to see all the measurement results restricted by uplink delay

and duplicate values. All seven test cases are shown in Table 5.5 below.

Table 5.5. Query 5 test cases

Name MySQL query Rows fetched

Case 1 ul_delay < 1 AND ul_dupl < 1 556

Case 2 ul_delay < 10 AND ul_dupl < 10 5,560

Case 3 ul_delay < 50 AND ul_dupl < 50 27,800

Case 4 ul_delay < 100 AND ul_dupl > 50 27,800

Case 5 ul_delay < 500 AND ul_dupl > 449 27,800

Case 6 ul_delay < 100 AND ul_dupl < 100 55,600

Case 7 ul_delay < 500 AND ul_dupl < 500 278,000

All cases for Query 5 relate closely to some cases in Query 2. Case 1 has results that

are similar to Query 2, Case 1 shown in Figure 5.13. Case 2 is almost identical with

Cases 3, 4, 5 and 6, but just slightly faster. Case 5 is shown in Figure 5.27 and differs

from cases 3 and 4 only in schema 3 and small number of clients. In Case 3 and 4

schema 3 closely follow the performance of schema 1, but as we see in the figure

below, there can be some query cases found with a slightly different performance. Case

6 is in correlation with the previous three cases as well as with Query 2 Case 3 shown

in Figure 5.14. Case 7 correlates to Query 2 Case 4 shown in Figure 5.15 and supports

the behaviour seen in all queries with large quantity of results.

0

2

4

6

8

10

12

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

46

Figure 5.27. Total execution time against number of clients for Case 5 in Query 5.

5.3. Choosing the Best Database Model

The best database model of the three compared was chosen by giving points to each

of them, based on their writing and reading performance tests. For writing, throughput

(lines/s), and for reading, total execution time (s/client), are used for point calculations.

For writing performance, the method of determining the points was rather simple. The

following was performed for each database schema. First, throughput average [23

p.1053]

 𝑠̅i=
∑ 𝑠i

n
i=1

n
, (4)

where 𝑠i is a single throughput value and n is the total number of values, was calculated

over all the results from a single database schema. Points for each database schema

were determined using the principle that the best schema is given ten points and the

other two less than ten with correct proportion based on their throughput average. The

point value

 xdbi=
𝑠̅i

max(𝑠̅1;𝑠̅2;…;𝑠̅n)
 10, (5)

where max is the maximum value of all throughput averages, and si, is calculated for

each database schema.

A similar method was used to determine the points for reading performance. In

reading tests, there are five queries for each of the three database schemas. Each query

contains a different number of test cases. First we determine the execution time

average [23 p.1053]

 𝑡c̅i=
∑ ti

n
i=1

n
 (6)

0

2

4

6

8

10

12

1 10 100

T
o

ta
l

ex
ec

u
it

o
n
 t

im
e

[s
/c

li
en

t]

No. clients

Database 1 Database 2 Database 3

47

for each test case. ti is a single execution time and n is the total number of values.

Because reading performance is measured by execution time, the best value is the

smallest one. This is the opposite from throughput in writing performance. To

determine the points for each case, we use

 xci=max[M1;M2;…;Mn]+min[M1;M2;…;Mn]-Mi, (7)

where max is the maximum value of all 𝑀i and min the minimum value of all 𝑀i.

 Mi=
𝑡̅ci

max(𝑡̅c1;tc̅2;…;𝑡̅cn)
10 (8)

defines the 𝑀i used in the previous equation. max is the maximum value of all 𝑡c̅i. For

each five queries, we calculate the point average

 x̅qi=
∑ xci

n
i=1

n
, (9)

where n is the total number of cases in the query. Table 5.6 shows all points for each

database schema and query. We can see that schema 1 has a large variation between

the different queries, whereas schemas 2 and 3 have much more regular results.

Table 5.6. Average points for each database schema and query in reading performance.

Maximum point for an individual test case is 10

 Db schema 1 Db schema 2 Db schema 3

Query 1 5.10 9.99 9.53

Query 2 9.81 8.29 9.59

Query 3 9.28 9.65 8.49

Query 4 4.39 9.65 9.93

Query 5 9.75 8.00 9.64

Finally, one point value for each database schema in reading performance is

calculated with

 xdbi=
∑ x̅qi

n
i=1

n
, (10)

where n is the total number of queries. Points for both writing and reading tests are

shown in Table 5.7. The writing performance was weighted as a factor of two and

hence those points were doubled and added to the points for reading performance.

Schema 2 received the most points, being the best in writing performance and coming

a close second in reading performance. Schema 1 was a close second in writing

performance, but did not do very well in overall reading performance. It’s also

noticeable that schema 3 was the best in reading performance, but trailed significantly

in writing. When comparing the designed schemas with the above-mentioned criteria

and considering the importance of writing performance, it was clear that the schema 2

48

was chosen as the best one and used in future development. With a different kind of

emphasis, the results might be different, though schema 2 is very constant in both

reading and writing performance. Schemas 1 and 3 clearly have weaknesses in either

writing or reading performance.

Table 5.7. Average points for each database schema and for both writing and reading

performance. Maximum point for an individual test case in reading performance was

10. Maximum point for writing performance is also 10. For total points from reading

performance and doubled points from writing performance are counted

 Db schema 1 Db schema 2 Db schema 3

Points for writing 9.70 10.00 6.81

Weighted points for writing 19.41 20.00 13.61

Points for reading 7.66 9.12 9.43

Total points 27.07 29.12 23.04

5.4. Performance with the Writing Module

After the choice of the best database model from the three tested, tests with the

developed database writing module were performed. These tests were performed only

with the chosen schema 2. Test setups included four and five laptops, depending on

the cases. In order to create as realistic a traffic as possible to be stored on a database,

some artificial data traffic was created to test the network. The D-ITG (Distributed

Internet Traffic Generator) tool was used so as to create five UDP packets per second,

with 512 Bytes each. The traffic rate was not the optimal to give a value for each stored

row in the database, but more data would have congested the connection and hence

reduced the overall performance. The averaging interval for Qosmet was set to 50ms,

resulting in 20 measurement results for each second and each client. The number of

clients running the two point measurements were 10, 20 50, 100, 120, 150, 200, 250,

300 and 350.

The measurement was carried out as illustrated in Figure 5.28. The network

analytics was performed between the primary measurement nodes and the secondary

measurement nodes. Primary measurement nodes sent the data to the database server.

All the computers were connected with a wired link of 10Gbps and were equipped

with 1Gbps network interfaces. The database server was also equipped with a 1Gbps

network interface. First, the tests were made with one writing module running on a

database server and two pairs of measurement computers (primary measurement

nodes) sending the measurement results to the module. Both pairs had an equal number

of clients running on them and sending the results. The same principles apply to the

two writing module setup, where the measurement setup was identical, but the results

were sent to two independently running writing modules. They were run on the same

database server and writing the results to one database. During the experiment it was

noticed that the computers running the secondary services were limiting the number

of clients. No more than 150 clients per secondary service could be run without a

significant loss of measurement data. In order to ascertain the performance with three

writing modules, a third computer running a secondary service (secondary

measurement node 2) was introduced to the setup.

49

Figure 5.28. Test setup for performance tests with writing module. All the computers,

including the database server, were equipped with 1Gbps network interfaces.

At the beginning of the measurements, it was noticed that the writing module had a

bug in the thread loop. The module had a sleep interval of 100ms after each new

measurement information was written to the database. A quick fix to avoid the problem

was to fix the code to wait only if there are no measurements in the buffer. Not long

into the measurements it also became clear that the writing module was one of the

bottle necks in the system and was buffering the incoming results with many clients

sending the data. The timestamp found from the measurement data represents the

actual time when the measurement took place and hence is insufficient to express the

time taken for all the measurement data to be stored in the database. To overcome this

shortcoming, a new timestamp value was added to measurementId table in database.

Column edited_time represent the time when any of the values from the appropriate

row is updated. With the help of this last edited timestamp and the timestamp for end

of measurement, it was possible to determine how long it actually took to write all the

data to the database, and whether the buffer for the writing module was in use.

Figure 5.29 illustrates the principle of how to determine the time when all n

measurements are sending the results to database. This is important in order to

ascertain exactly how many lines are written in the time the entire measurement is

running. All individual measurements or clients are running simultaneously in a time

slot when the last client starts and the first client stops. In principle, the lines are stored

to the database in the order in which they arrive. According to this principle, the total

number of lines written is measurement 1 – measurement n. For example 280 – 80

resulting to 200 lines. Accordingly, the time taken to write those lines is n start time –

1 end time.

The writing module could process only a certain number of results in a given time

and hence in cases where there were many clients, some results were buffered for

future processing. The length of this buffer was determined from the last inserted row

in the database and from the time all measurements had ended. Basically, the buffer

tells us how long it took to write all the results to the database after the measurement

was over.

50

Figure 5.29. Starting and ending times and points for n measurements.

Figure 5.30 below show the results for all measurements performed for one, two and

three writing modules. The length of the buffer in seconds is also illustrated in the

same figure. With one and two writing modules, it became clear that the module

implemented has a threshold of around 2,000 lines/second. This indicates that, in some

cases, it is beneficial and efficient to run several writing modules even on a single

database server. With this approach, it is possible to take all the power into use.

Introducing a third writing module, we were able to reach the maximum capacity of

the database server. Comparing the results to Figure 5.2, it is seen that the maximum

write performance for the database with three threads or clients is around 5,000 lines/s.

Results from these writing module tests give the maximum performance which is very

close to the numbers in the database-only writing tests.

The buffer length shows that the writing module cannot process the results as fast

as desired, and as more and more results arrive the time to process them increases.

Figure 5.30. Results for writing tests with the writing module.

0

20

40

60

80

100

120

100

1100

2100

3100

4100

5100

6100

0 50 100 150 200 250 300 350 400

b
u
ff

er
 [

s]

li
n
es

/s

Clients

1 writing module 2 writing modules 3 writing modules

1 wm buffer 2 wm buffer 3 wm buffer

51

6. SUMMARY & CONCLUSIONS

The ever-growing internet data traffic and number of users are causing problems which

are difficult to find and verify in a network which becomes more and more complex.

QoE and QoS measurements, analysis and continuous monitoring are good methods

to find and deal with these problems. Qosmet, developed at VTT for measuring QoS,

is a powerful solution for network analysis. The main goal of this thesis was to create

an optimal database architecture for QoS measurement data and to implement an

interface between the database and the Qosmet solution.

Three different database schemas were designed and thoroughly analysed with

writing and reading performance tests. Schema 1 has a simple structure with only one

table containing all the data fields. Schemas 2 and 3 add more tables, having two and

three tables respectively. Both schemas have one table dedicated to data fields that

identify each individual measurement. The second table for schema 2 contains all the

measured statistics. For schema 3, these measurement statistics data fields are divided

into two separate tables according to their assumed importance.

To determine the writing throughput, 99 test cases with different numbers of writing

threads and number of rows written, were performed for each of the three database

schemas. The results for schemas 1 and 2 were very close to each other, whereas

schema 3’s throughput fell about 33% compared to the other two. The maximum write

throughput of around 7,500 lines per second was achieved with 16 writing clients in

schema 2. For writing tests, hardware performance of the database server was also

measured and analysed. These results gave a good understanding of hardware

requirements, bottlenecks and limits on high utilization situations.

Reading performance was measured with five different database queries, which all

included four or more test cases. The queries represent some real-life use cases and

test the schemas while keeping in mind the different roles of tables. The results for

reading performance in schema 1 vary a great deal, and although the schema is best

out of the three in some queries, it performs significantly worse in some. Therefore, it

is found to be the worst in overall reading performance. Schemas 2 and 3 are much

more consistent with regards to their results than schema 1, and both end up with about

a 20% better total performance. Schema 3 has the best overall reading performance

ahead of schema 2. To find the best database schema from the three tested, the results

from both writing and reading tests were scored and the schemas were put in point

order. Schema 2 ended up being the best, with constant results from both writing and

reading. Schema 1 performed well in writing, but not as well in reading performance

and was hence second best behind schema 1. Despite being the best in reading

performance, schema 3 was the last of all compared schemas in overall results, because

it had poor writing results.

A major part of the work was to design and implement an interface between the

database and Qosmet solution. This writing module interface works as a third party

listener for the Qosmet solution, receiving the measurement data from Qosmet

measurement nodes. The writing module processes the received data and writes it to

the database. Database writing performance was also tested together with the module.

These tests were performed only with schema 2, as it was chosen to be the best one of

the compared schemas. The results were in line with the previous writing test results

and also indicated that the writing module implemented has a threshold of around

2,000 lines per second. This threshold can be exceeded by running several modules

52

simultaneously. These tests also gave valuable information about the limits of Qosmet

when running a large number of measuring instances on one computer.

First and foremost, this work provided a working database solution for Qosmet and

an interface between the database and Qosmet. With the help of the database solution,

it is now possible to store QoS measurement data easily from dozens or even hundreds

of simultaneous measurements. Also, results from long measurement campaigns can

be stored reliably. The database storage makes it possible to develop adaptive or even

automatized result analysing features to existing diverse QoS measurement solution.

For big data storages, it is essential to have a well optimized and designed

implementation and DBMS installation. Comprehensive performance testing has

provided a great deal of valuable knowledge and experience about database

optimization and features affecting the efficiency. All this can be taken into use on

future development of the solution.

There are many ways to improve the performance of the database or optimize it for

certain use case scenarios. We have speculated on the effect of various MySQL system

variables when talking about the CPU, I/O and memory performance on writing tests.

For example, it might be useful to experiment with the effect of number of write I/O

threads or size of InnoDB buffer pool and other MySQL buffer allocations. Whereas

there are possibilities of improving writing performance, there are also options to

influence the reading performance. It became evident, that by changing the size of the

query cache size, it is possible to optimize the database performance for reading

purposes. Several choices to optimize either writing or reading performance were

discovered, but we should not ignore seeking the best settings for combined

performance where both writing and reading are performed simultaneously. Apart

from working on finding the best database variable settings, optimizing the writing

module code should not be put aside. There are signals about writing module being a

bottleneck when analysing the CPU and I/O results for writing tests as well as

performance tests with the module. In addition to optimizing the completed

implementations, the most important step in the future is to add data analysing features

to the Qosmet solution.

53

7. REFERENCES

[1] Internet live stats: Internet Users (2014) URL:http://www.internetlivestats.

com/internet-users/. Accessed 15.12.2014.

[2] Cisco Visual Networking Index: Forecast and Methodology, 2013-2018 (2014)

URL:http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual

-networking-index-vni/white_paper_c11-520862.html. Accessed 15.12.2014.

[3] Qosmet – A solution for measuring Quality of Service (2014) URL:http://www.

cnl.fi/qosmet.html. Accessed 13.11.2014.

[4] A. Silberschatz, H. F. Korth and S. Sudarshan (2006) Database System Con-

cepts. New York, McGraw-Hill.

[5] J. D. Ullman and J. Widom (2002) A First Course in Database Systems. Upper

Saddle River (NJ), Prentice Hall.

[6] MySQL (2014) URL:http://www.mysql.com/. Accessed 19.05.2014.

[7] MariaDB (2014) URL:https://mariadb.org/. Accessed 29.04.2014.

[8] L. M. Nyman (2013) Freedom and forking in open source software: The

MariaDB story. Nordic Academy of Management 2013 (ISSN 2298-3112)

Nordisk Företagsekonomisk Förening.

[9] R. Hecht and S. Jablonski (2011) NoSQL evaluation: A use case oriented survey.

Proc. International Conference on Cloud and Service Computing (CSC), 2011.

DOI: 10.1109/CSC.2011.6138544.

[10] B. G. Tudorica and C. Bucur (2011) A comparison between several NoSQL da-

tabases with comments and notes. Proc. 10th Roedunet International Conference

(RoEduNet), 2011. DOI: 10.1109/RoEduNet.2011.5993686.

[11] C. Strauch (2011) NoSQL databases. Stuttgart Media University.

URL:http://www.christof-strauch.de/nosqldbs.pdf. Accessed 28.04.2014

[12] Apache Hadoop (2014) URL:http://hadoop.apache.org/. Accessed 28.04.2014.

[13] Hadoop Wiki | PoweredBy (2014) URL: http://wiki.apache.org/hadoop/

PoweredBy. Accessed 12.08.2014.

[14] Apache Cassandra (2014) URL:http://cassandra.apache.org/. Accessed

28.04.2014.

[15] Apache Hbase (2014) URL:http://hbase.apache.org/. Accessed 28.04.2014.

http://www.mysql.com/
https://mariadb.org/
http://hadoop.apache.org/
http://cassandra.apache.org/
http://hbase.apache.org/

54

[16] M. N. Vora (2011) Hadoop-HBase for large-scale data. Proc International

Conference on Computer Science and Network Technology (ICCSNT), 2011.

DOI: 10.1109/ICCSNT.2011.6182030.

[17] MongoDB (2014) URL:https://www.mongodb.org/. Accessed 29.04.2014.

[18] Zhu Wei-ping, Li Ming-xin and Chen Huan (2011) Using MongoDB to imple-

ment textbook management system instead of MySQL. Proc. IEEE 3rd

International Conference on Communication Software and Networks (ICCSN),

2011. DOI: 10.1109/ICCSN.2011.6013720.

[19] A. Boicea, F. Radulescu and L. I. Agapin (2012) MongoDB vs oracle -- database

comparison. Proc. Third International Conference on Emerging Intelligent Data

and Web Technologies (EIDWT), 2012. DOI: 10.1109/EIDWT.2012.32.

[20] Database for objects (2014) URL:http://www.db4o.com/. Accessed 12.08.2014.

[21] K. E. Roopak, K. S. S. Rao, S. Ritesh and S. Chickerur (2013) Performance

comparison of relational database with object database (DB4o). Proc. 5th

International Conference on Computational Intelligence and Communication

Networks (CICN), 2013. DOI: 10.1109/CICN.2013.112.

[22] S. Ray, B. Simion and A. D. Brown (2011) Jackpine: A benchmark to evaluate

spatial database performance. Proc. IEEE 27th International Conference on Data

Engineering (ICDE), 2011. DOI: 10.1109/ICDE.2011.5767929.

[23] E. Kreyszig (1999) Advanced Engineering Mathematics. John Wiley & Sons.

[24] R. Seppänen, S. Tiihonen, M. Kervinen, R. Korpela, L. Mustonen, A. Haavisto,

M. Soininen and K. Varho (1996) MAOL-Taulukot. Helsinki, Otava.

[25] R. Andresen (2004) Monitoring linux with native tools. Proc. 30th Annual

International Conference of the Computer Measurement Group, Inc., 2004.

[26] M. Ahmed, M. M. Uddin, M. S. Azad and S. Haseeb (2010) MySQL perfor-

mance analysis on a limited resource server: Fedora vs. ubuntu linux. Proc. 2010

Spring Simulation Multiconference. Orlando, Florida, DOI:

10.1145/1878537.1878641.

[27] Tom's Hardware, Write Throughput Average: h2benchw 3.16 (2014) URL:

http://www.tomshardware.com/charts/enterprise-hdd-charts/-04-Write-

Throughput-Average-h2benchw-3.16,3376.html. Accessed 11.12.2014.

https://www.mongodb.org/
http://www.db4o.com/

