

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Petri Niemelä

DYNAMIC FUNCTIONAL END-TO-END

TESTING IN THE CASE OF SAP E-COMMERCE

Master’s Thesis

Degree Programme in Computer Science and Engineering

October 2014

Niemelä P. (2014) Dynamic functional end-to-end testing in the case of SAP e-

commerce. University of Oulu, Department of Computer Science and Engineering.

Master’s Thesis, 74 p.

ABSTRACT

Software testing is an important part of software development projects. As the

role of information technology (IT) becomes bigger and bigger in our everyday

activities, it is clear that business operations and human well-being are

dependent on information systems. To efficiently operate and run a business,

companies reflect their processes to IT systems. A business process can cover

many different organizational units, both in real life and in the IT system.

Organizational units can have their own separate IT system modules

implemented, and data flows from module to module via interfaces. To ensure

the correct functionality of the business process, end-to-end testing of the

complete process across the IT systems is required.

With the advancement of technology, it has been a trend to replace human

work with machines. Same applies to software testing, where repetitive testing

tasks and otherwise manually unfeasible test activities are automated to be run

by a machine. To achieve this, a test automation tool needs to be able to simulate

real usage in the system under test. As systems consist of multiple modules and

technologies, it is a challenge for the test tool to support such a technical variety.

In many companies, such a heterogeneous system landscape includes software

implemented by SAP AG, one of the world’s largest software manufacturers.

This work presents an end-to-end business process test automation library for

an SAP e-commerce environment. The test library enables to extend the normal

test automation of a web shop to cover the back-end processing of the SAP

system as well. This is achieved by building a test library on top of SAP’s

communication methods. The test library is driven from a common keyword-

driven test automation framework, Robot Framework. In this work, the related

research and technologies for the implementation are discussed and presented.

The design is demonstrated, and the implementation process is described in

detail. Other known approaches to SAP test automation are introduced, and

when compared, no other similar test tools were found available with such ease

of operational deployment. Test results and live project usage of the test library

show that the library works as expected. The performance is also promising, not

having a noticeable impact on the total test execution duration. There are a lot

of future development possibilities to further extend the usage of the test library

in SAP test automation.

Keywords: SAP, test automation, Robot Framework

Niemelä P. (2014) Dynaaminen toiminnallisuuden E2E-testaus SAP-

verkkokaupankäynnissä. Oulun yliopisto, Tietotekniikan osasto. Diplomityö, 74 s.

TIIVISTELMÄ

Ohjelmistotestaus on tärkeä osa ohjelmistokehitysprojekteja. Tietotekniikan

roolin kasvaessa päivittäisessä asioinnissa on selvää, että liiketoiminta sekä

ihmisten hyvinvointi ovat riippuvaisia informaatiojärjestelmistä. Yritykset

heijastavat liiketoimintaprosessinsa tietojärjestelmiin tehostaakseen

liiketoiminnan harjoittamista. Yksi liiketoimintaprosessi voi kulkea usean eri

organisaatioyksikön läpi, sekä tosielämässä että IT-järjestelmässä.

Organisaatioyksiköillä voi olla erilliset IT-järjestelmämoduulit toteutettuina, ja

tieto välittyy moduulien välillä rajapintojen kautta. Liiketoimintaprosessi on

testattava päästä päähän koko informaatiojärjestelmässä oikean

toiminnallisuuden varmistamiseksi.

Tekniikan kehittyessä suuntauksena on ollut ihmistyön korvaaminen koneilla.

Sama pätee myös ohjelmistotestaukseen, jossa toistuvat testaustehtävät sekä

muutoin manuaalisesti toteuttamiskelvottomat testausaktiviteetit

automatisoidaan koneella suoritettavaksi. Tämän saavuttamiseksi

testiautomaatiotyökalun on pystyttävä simuloimaan oikeaa käyttöä

testattavassa järjestelmässä. Järjestelmät koostuvat useista moduuleista sekä

teknologioista, joten on haaste saada testiautomaatiotyökalut tukemaan

järjestelmien teknistä vaihtelevuutta. Monissa yrityksissä teknisesti

heterogeeninen järjestelmäympäristö sisältää ohjelmistoa, jonka toimittaja on

SAP AG, yksi maailman suurimmista ohjelmistovalmistajista.

Tämä työ esittelee liiketoimintaprosessien päästä päähän testaukseen

suunnatun testiautomaatiokirjaston SAP:n verkkokauppaympäristöille.

Testiautomaatiokirjasto mahdollistaa normaalin verkkokaupan

testiautomaation kattavuuden ylettymään myös SAP:n taustajärjestelmään.

Tämä saavutetaan kehittämällä testikirjasto SAP:n kommunikaatiomenetelmiin

perustuen. Testiautomaatiokirjastoa suoritetaan avainsanaohjautuvalla Robot

Framework –testiautomaatiokehyksellä. Tässä työssä esitellään aiheeseen

liittyvää tutkimusta sekä teknologiaa. Testiautomaatiokirjaston suunnittelu

esitellään, sekä toteutus kuvataan yksityiskohtaisesti. Muita tunnettuja

lähestymistapoja SAP:n testiautomaatioon esitellään. Kirjallisuuskatsauksessa

ei löydetty vastaavaa ratkaisua, joka olisi yhtä vähäisellä vaivalla saatu

operatiiviseen käyttöön. Testitulokset ja tuotannollinen projektikäyttö

osoittavat, että testiautomaatiokirjasto toimii kuten odotettu. Suorituskyky on

myös lupaava, eikä automaatiotestien kokonaiskestoon nähty merkittävää

hidastusta. Testiautomaatiokirjastolle on paljon tulevaisuuden

kehitysmahdollisuuksia, joilla kirjaston käyttöä SAP:n testiautomaatiossa

voidaan laajentaa.

Avainsanat: SAP, testiautomaatio, Robot Framework

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

PREFACE
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION .. 7
2. SOFTWARE TESTING ... 9

2.1. Software testing in general ... 9
2.2. Software testing fundamentals ... 11

2.2.1. Test levels .. 11
2.2.2. Test types ... 13

2.3. Automated software testing .. 13
2.3.1. Capture-playback tools .. 14
2.3.2. Manual programming .. 14

2.3.3. Data-driven test automation .. 14
2.3.4. Keyword-driven test automation ... 16
2.3.5. Test automation framework and test libraries 17

3. BACKGROUND FOR THE TEST LIBRARY ... 19

3.1. Test library target environment .. 19
3.1.1. SAP .. 19
3.1.2. SAP e-commerce ... 19

3.2. SAP test automation ... 20
3.2.1. Known existing approaches .. 21

3.2.2. SAP e-commerce functional test automation 22
3.3. ERP sales document structure .. 24

3.4. Domain ... 25
3.5. Framework and selected libraries ... 26

3.5.1. Robot Framework .. 26
3.5.2. Libraries used in the implementation .. 27

4. DESIGN AND IMPLEMENTATION ... 29

4.1. Requirements .. 29
4.2. Design ... 30

4.2.1. Architecture ... 30
4.2.2. Class diagrams ... 32

4.3. Implementation ... 37

4.3.1. Development environment .. 37
4.3.2. Software development process .. 37

4.4. Developed application .. 43
5. TESTING ... 45

6. DISCUSSION .. 49
6.1. Analyzing the results .. 49
6.2. Revisiting the objectives .. 50
6.3. Personal experiences .. 51
6.4. Future development .. 51

7. CONCLUSION .. 53
8. REFERENCES ... 55
9. APPENDICES .. 59

PREFACE

This Master’s Thesis was implemented in Bilot Oy, which is an SAP partner

company. First and foremost, I would like to thank the whole staff of Bilot for their

excellent support and understanding throughout the project in the years of 2013 and

2014. It has been very rewarding to work with them.

A special thanks belong to my instructor Doctor Jakub Rudzki, who provided the

topic, gave me feedback, had patience and provided guidance when needed.

From the Department of Computer Science and Engineering, I want to express my

gratitude to Professor Jukka Riekki for the supervision he provided for this Master’s

Thesis. I would also like to thank the second supervisor Doctor Mika Rautiainen for

his efforts.

Finally, I would like to thank my family and my friends for the constant

encouragements. Thank you.

Helsinki, October, 2014

Petri Niemelä

LIST OF ABBREVIATIONS AND SYMBOLS

ABAP Advanced Business Application Programming

AG Aktiengesellschaft

API Application Programming Interface

B2B Business-to-Business

B2C Business-to-Consumer

BPCA Business Process Change Analyzer

CBTA Component Based Test Automation

CPU Central Processing Unit

CRM Customer Relationship Management

eCATT Extended Computer Aided Test Tool

ERP Enterprise Resource Planning

GUI Graphical User Interface

HTML HyperText Markup Language

IEC International Electrotechnical Commission

ISA Internet Sales

ISO International Organization for Standardization

IT Information Technology

I/O Input/Output

JAR Java Archive

MDM Master Data Management

RFC Remote Function Call

RPC Remote Procedure Call

SAP Systems, Applications, and Products in Data Processing

SAP JCo SAP Java Connector

SLOC Source Lines Of Code

SUT System Under Test

TAO Test Acceleration and Optimization

TREX Text Retrieval and information EXtraction

UI User Interface

WCEM Web Channel Experience Management

XML EXtensible Markup Language

7

1. INTRODUCTION

In today’s world, a majority of our normal everyday activities are controlled by

information systems. Cars, medical equipment, household appliances; an increasing

amount of products and commodities contain software. Business-to-consumer and

business-to-business services are more and more providing an electrical alternative

via internet for running errands, and some companies have completely moved their

customer interaction online. It is clear that information technology has an important

role in running businesses.

Information systems are not perfect. They contain errors. These systems are built

by humans, and humans are fallible. As software evolves into complex information

systems containing millions of lines of programming code, it is also natural that the

amount of errors increase. Errors manifest themselves as malfunctions or unexpected

behavior in the system. Sometimes these errors are minor cosmetic glitches, but

many bugs have costly effects, even endangering human lives.

Companies’ businesses are dependent on their information systems, and so is

human well-being. Thus, it is crucial that the software functions correctly and as

expected, and that critical errors in the system are found and corrected before the

software is moved from testing environment into productive usage. Quality assurance

and software testing are the main activities in trying to find those errors.

No matter what software development methodologies are used in developing a

software, they all share a common characteristic; at some point of the software life

cycle, be it development, maintenance or some other phase, programmatic changes

are introduced into the system. The number of functions, components and interfaces

will grow in the software, requirements are updated or existing errors need to be

fixed; modifications to the software cannot be avoided [1]. While introducing these

changes into a partially completed or ready-made system, there is a risk that the

change breaks a previously working functionality. This phenomenon is called

software regression. Identifying all the effects a change can have to a system can be

very difficult, and therefore the previously working functionalities have to be re-

tested. Regression testing is performed to ensure that the updated software still has

the functionality it had before it was updated [2, p.7].

From business perspective, it is crucial that the business processes work as

intended in the information system. To ensure this, the testing should focus in

validating the business processes of the company. In a multi-dimensional

organization, also the business processes cover multiple departments and

organizational units. This is reflected to the IT system with different modules, each

serving the department’s specific tasks. Data flows from module to module via

interfaces. To ensure the correct functionality of a business process across the

various modules, the business process is tested from one end to the other. This is

known as end-to-end testing [3].

With the advancement of technology, it has been a trend to replace human work

with machines. Same applies to software testing. Testing performed by another

software is called test automation. Implementing test automation takes time and

effort, thus it is not always feasible. Good tests to consider for automation are the

ones that are run multiple times, such as regression tests [4, p.248]. It has to be

analyzed if the benefits of developing the automated tests outweigh the situation

where the testing would be performed manually. Test automation is also utilized in

situations where it would not be practical to perform the tests manually. An example

8

of this would be testing the performance of a system with hundreds or even

thousands of simultaneous users.

When creating test automation, the machine has to be explicitly instructed via

scripts to perform actions. This becomes an issue with test data, as the test

automation engineer has to define what will be used as data to perform the tests.

Often the test data is part of the test scenario, hard coded into the test scripts. This

makes the test data inflexible and difficult to reuse. An example scenario would be

testing user registration to a web shop, which only accepts unique email addresses

for its users. Testing the scenario with an automated test script twice would result in

test data conflict, because the system would not accept the second registration with

the same email address. Thus, the test case would fail. One way to avoid such a

situation is to add a test tear down to the automated test script. The purpose of the

tear down is to restore the system to a similar state that it was before the test was

executed, and the automated test script could be run again without a conflict in the

test data.

Using pre-defined, hard coded test data is not an optimal way of testing

functionalities because of the invariability of the test data. This could result in not

caching some errors due to always performing the test with the same data sets.

Additionally, it is not easy to provide valid test data that would cover many scenarios

and environments. In SAP (Systems, Applications, and Products in Data Processing)

systems development, there are usually multiple environments used: one for

development, one for testing, optionally one for customer’s own quality assurance,

and lastly the production environment. To ensure the system works well in each

environment, the test data has to be updated. In these cases when testing the

functionalities, it would be much better to use the system’s own database as a data

source to fetch the data to be used in the automated test scripts.

The purpose of this Master’s Thesis is to implement a test automation library for

SAP software systems. From SAP systems, the scope of the test library is in SAP e-

commerce. The test library would fetch valid test data from the SAP back-end to be

used in automated test scripts. In this case, SAP back-end can mean SAP Enterprise

Resource Planning (ERP), Customer Relationship Management (CRM) or Master

Data Management (MDM) systems, but the scope of the thesis is SAP ERP. The data

would be fetched automatically, without human intervention, and dynamically during

test execution. Based on the test data, the test library would also make assertions

about the outputs of the SAP solution under test. Moreover, the test library would be

easy to deploy into use in a changing environment by not requiring any installations

to the SAP system landscape.

The structure of this thesis is the following: Chapter 2 gives an overview of

software testing and the key topics related to the implementation. In Chapter 3, the

target environment is presented in more detail, as well as tools and topics related

closely to the implemented test automation library. Moreover, an overview of known

existing approaches is given. Chapter 4 defines the specific requirements to be

fulfilled, and a design of the implementation is presented. The implementation

process is described in detail and the development results are presented. Chapter 5

summarizes the testing of the implementation, using the requirements as basis. The

results of the testing are analyzed in Chapter 6, with a comparison to the initial

objectives. Personal experiences and future development ideas are also discussed.

Finally, Chapter 7 presents the summary of the Master’s Thesis.

9

2. SOFTWARE TESTING

This chapter gives an introduction to software testing and the basic principles that

revolve around testing. The fundamentals are presented but the main focus is to

introduce the topics related to the thesis. After the basic topics, test automation is

covered with a description of different test automation approaches.

2.1. Software testing in general

Software testing is the primary method for evaluating a software under development

[2, p.3]. Testing is a part of software development life cycle, and its main focus is to

find defects in the test object. A defect is the result of an error in the software code or

documentation, and test object is the object which is being tested [5, p.553]. As

software grows more complex every day, it is a fact that everything regarding the

software’s correctness cannot be tested. This is simply because the possible testable

combinations grow so large that it is practically impossible to cover all of them in

testing, let alone having the resources to do that. Decisions regarding test coverage

have to be made based on business processes to identify the areas in need of testing,

as well as test thoroughness. [5] [6]

Testing is not just checking that the software functions correctly. Testing is more

than that, and it can be defined as follows [5, p.36]:

“Testing is a process that provides insight into, and advice on, quality and the

related risks.”

The test object undergoing testing can be an information system or a part of it, such

as software, hardware, documentation, procedure or organization. Risk can be

described as a harmful event, which has a probability of realization and causes

damage to business when realized. Risks can be determined via risk analysis, and a

“no risk, no test” principle can be applied. Product risk can be formulated as follows

[5, p.472]:

 Product risk = Chance of failure * Damage, where

Chance of failure = Chance of defects * Frequency of use.

Quality, on the other hand, is not as straightforward to define as test object or risk.

Even if an information system functions correctly and is capable of performing all

the actions that were expected, it does not mean unambiguously that the system is of

good quality. If the information system is sluggish, does not look pleasing to the eye

or is extremely complicated to learn, then it is hard to say the system is of high

quality. Also, quality can be subjective, as users value different things in a software.

Because of the diversity of quality, ISO (International Organization for

Standardization) and IEC (International Electrotechnical Commission) have defined

standards for software quality. In the ISO/IEC 9126 –standard, quality has been

described with different quality characteristics. Koomen et al. [5, p.495-501] have

refined quality characteristics to fit more into software testing perspective. These

quality characteristics are presented in Table 1.

10

Table 1. Quality characteristics [5, p.495-501]

Quality

characteristic

Description

Connectivity The ease with which an interface can be created with

another information system or within the information

system, and can be changed.

Continuity The certainty that the information system will continue

without disruption, i.e. that it can be resumed within a

reasonable time, even after a serious breakdown.

Data

controllability

The ease with which the accuracy and completeness of

the information can be verified (over time).

Effectivity The degree to which the information system is tailored

to the organization and the profile of the end users for

whom it is intended, as well as the degree to which the

information system contributes to the achievement of

the company goals.

Efficiency The relationship between the performance level of the

system (expressed in the transaction volume and the

total speed) and the volume of resources (CPU cycles,

I/O time, memory and network usage, etc.) used for

these.

Flexibility The degree to which the user is able to introduce

enhancements or variations on the information system

without amending the software.

Functionality The degree of certainty that the system processes the

information accurately and completely.

(Suitability of)

infrastructure

The appropriateness of the hardware, the network, the

system software, the database management system and

the (technical) architecture in a general sense to the

relevant application and the degree to which these

infrastructure elements interconnect.

Maintainability The ease with which the information system can be

adapted to new requirements of the user, to the changing

external environment, or in order to correct faults.

Manageability The ease with which the information system can be

placed and maintained in an operational condition.

Performance The speed with which the information system handles

interactive and batch transactions.

Portability The diversity of the hardware and software platform on

which the information system can run, and the ease with

which the system can be transferred from one

environment to another.

Reusability The degree to which parts of the information system, or

of the design, can be used again for the development of

other applications.

Security The certainty that consultation or mutation of the data

can only be performed by those persons who are

authorized to do so.

11

Quality

characteristic

Description

Suitability The degree to which the manual procedures and the

automated information system interconnect, and the

workability of these manual procedures for the

organization.

Testability The ease and speed with which the functionality and

performance level of the system (after each adjustment)

can be tested.

User-

friendliness

The ease of operation of the system by the end users.

Based on the quality characteristics, it is more convenient to measure quality and

to define what needs to be tested. The scope of the test library implemented in this

thesis is in testing the functionality characteristic of the system under test (SUT).

Furthermore, functionality can be described as the degree to which the system

processes the supplied input and mutations correctly, according to the specifications,

into consistent data collections and output [5, p.498].

2.2. Software testing fundamentals

In every software project, testing is involved. A common process is to structure

software testing into test levels, and different types of testing is carried out. Next, an

introduction to test levels is given, and a couple of important test types from the

aspect of business importance and test automation are introduced.

2.2.1. Test levels

When considering system development process from the perspective of testing, there

are two groups involved; the accepting party and the supplying party [5, p.46]. The

accepting party is the client who made the request for a software system. The

supplying party is the party developing the software system. This makes two general

aims for software testing [5, p.47]:

1. The supplying party demonstrates that the supplied implementation fulfills the

requested requirements.

2. The accepting party verifies whether what has been requested has actually been

received.

A much used concept in software development and testing is the V-model. There

are multiple different versions and interpretations of the V-model [5, p.47] [7, p.127]

[8, p.5] [2, p.30], but the common idea is to list development phases to the left side

of the V-model, and test levels to the right side. Test levels group together a group of

testing activities they are created for each software development phase, structuring

the test cycle to model the development cycle [5, p. 47] [7, p.127]. Testing is done at

the right side of the V-model, using the development phases as a basis for testing.

Test levels also divide the testing responsibilities between the supplying party and

the accepting party [5, p. 47].

12

Figure 1 shows Koomen et al. [5, p.48] interpretation of the V-model, which has

three test levels defined; development tests, system tests and acceptance tests.

Development tests and system tests are placed under the responsibility of the

supplying party and the acceptance tests are performed by the accepting party. Inputs

from the development phases functioning as the test basis for the test levels are also

shown in the figure.

Figure 1. V-model.

Development tests consist of unit testing (also known as component or module

testing). Typically in unit testing, the programmer who wrote the component’s code

is involved with access to the program code. Defects are usually fixed as soon as

they are found, without going through the formal defect management procedures.

The test basis for unit testing is derived from the technical design. [9, p.24]

The aim in system tests is for the supplying party to demonstrate that the product

meets the specifications made by the accepting party. System testing tests the

behavior of a whole system/product, and it should test the quality characteristics of

the system against the functional and non-functional requirements specified in the

product’s functional design. [5, p.48] [9, p.26]

In acceptance tests, the accepting party verifies that the product meets their

expectations [5, p.48]. The goal is to establish confidence in the product and assess

the system’s readiness for deployment and business usage [9, p.26]. Acceptance

testing must involve business users and subject matter experts who have strong

domain knowledge of the business processes [2, p.30]. Business users also

participate in evaluating the test results. This ensures that the system is assessed in

real-world situations and the test coverage is for the full range of business usage [8,

p.10].

13

2.2.2. Test types

Test types are a group of test activities which aim to check the system under test in

respect of one or multiple quality characteristics, which were presented in Table 1.

Test type can also aim to test a subset of a quality characteristic. For example, in

performance testing the tester could perform load testing, where the system is put

under heavy load and expected to still perform the tasks that were specified, or stress

testing to check how the system behaves under extreme conditions. [5, p.50] [7,

p.133-134]

The scope of the thesis is to implement a testing tool which specifically

concentrates on testing the functionality of the system under test with a combination

of end-to-end regression testing. There is plenty of literature in testing books

regarding test types. Therefore, only end-to-end testing and regression testing are

introduced in this section.

End-to-end testing

End-to-end testing is used to test the flow of an application by performing complete

processes from the start to finish. The purpose is to ensure that the overall process

flows as expected. This is achieved by checking that the system components

integrate correctly and verifying that the right information is passed between the

components. [3]

Companies’ functional units can grow big, covering complex business processes,

and disperse to a wide are geographically. To efficiently run such a business, the IT

systems needs to support the business processes. Performing end-to-end business

process testing is needed to verify a correct flow of information in complex IT

systems. Organizing and coordinating such a task in multiple different business units

can prove challenging.

Regression testing

Regression testing is retesting of software [10, p.176]. Regression tests are run

because when programmers make changes to the system, they may break parts of the

program that used to work [11]. The goal is to ensure that the new version of the

software still possesses the capabilities of the old version and that no new errors have

been introduced due to the changes [10, p.176].

With the increasingly popular agile software development methods, where

software deliveries are done rapidly in an iterative manner, the role of regression

testing is emphasized [12]. Because regression tests need to be run multiple times, it

is a good idea to automate them [11, p.143]. In many cases, the cost of automating

regression tests return the investment when compared to time consuming manual

testing.

2.3. Automated software testing

Kenneth White [13] defines automated software testing as follows: “Automated

Software Testing is using one program to ‘drive’ another. It does this either by

mimicking a human user through the User Interface (UI) or by interacting directly

with the source code via an Application Programming Interface (API).” Such a driver

14

program is called automation tool, or test library. Software test automation runs test

cases, performs actions with the system under test, validates the outputs of the

system and logs the results [14]. This is all done without human intervention. Before

a testing tool can do the testing, it needs to be specifically instructed what exactly

needs to be done. This is done manually with test scripts [13]. The implementation

techniques for automated test scripts can be roughly divided into two methods; using

capture-playback tools or manual programming [14].

This section aims to shortly introduce the different approaches for automated

software testing. Manual test script programming opens up more powerful options

than capture-playback tools, and a special introduction is given on data-driven test

automation and keyword-driven test automation approaches. The concept of test

automation framework is also introduced.

2.3.1. Capture-playback tools

Capture-playback tools do basically what the name implies. The user starts to record

a session with the tool, and the tool captures every keystroke, mouse movement and

click that the user performs during the session. Once finished, the tool stores all the

actions performed into a test script. The generated test script can be played back to

automatically test the application later when necessary. [4] [13]

Creating test scripts with capture-playback tools can be fast and requires only

little, if any, technical skills from the tester, but they often result in test script

maintenance issues. To perform a small change into the test script, or if the

application’s user interface changes even slightly, it is often required to fully re-

record the test script from the beginning. Test automation scripts in general always

require maintenance, but with capture-playback tools, the needed maintenance

usually overwhelms the gained benefits in the long run. Test data is also hard coded

into the test script, and provides no means for test data variability. [13] [15, p.50-57]

2.3.2. Manual programming

A more flexible technique for implementing test automation is manual programming

of the test scripts for the automation tool. At a low level, it is comparable to software

development where programming or scripting language is used [16, p.65]. With good

software development practices utilized, the maintainability of the automated tests

increase, reducing the work effort needed after initial implementation.

Maintainability of automated tests is one key factor for achieving a positive return on

investment for repetitive testing tasks when compared to traditional manual testing.

Utilizing manual test script programming and levels of abstraction, a more

sophisticated approach to test automation can be achieved.

2.3.3. Data-driven test automation

Data-driven test automation can be described as taking a step further from basic

manual test script programming. The principle in data-driven testing is to

differentiate the actual test data from the test scripts [13] [15] [17]. This is done by

creating the test script manually, then replacing the used inputs and expected outputs

15

with variables. The values for the variables are stored in external data files. The test

data is iterated for the test script until the test script has been run for each test data

provided. The test data can contain a large number of different data combinations,

increasing the test coverage in a way that would not be feasible with manual testing.

[15] [17]

Example of data-driven test automation can be seen in Figure 2. Figure illustrates

how, for example, a division operation of a calculator could be tested. The test data

can be provided in a tabular format using a spreadsheet program. The test script

contains a user function which reads the input data and expected output data for the

test execution. After executing the actions and performing validations, test data from

the next row is read and the same sequential test steps are repeated with the new test

data.

Figure 2. Principle of data-driven test automation.

Data-driven testing enables flexible test case creation. Because the test data is

differentiated from the test script and automation tool, creating test cases does not

necessarily need any technical knowledge from the tester if the scripts are already

created. Maintenance work for the automated tests decrease, because if the

functionality changes in the system under test, the maintenance is needed for the test

script and not the numerous test cases using the test script. [15]

While data-driven testing has testing scenarios where it thrives, for example

performing testing on the syntax of data fields, it does have its limitations. If the

testing scenarios provided by the test scripts prove insufficient, it always requires a

technical person with programming skills or automation tool specific scripting skills

to create new test scripts [15]. Additionally, as John Kent points out, most regression

and system tests are not about repetitively inputting data into the user interface, but

rather trying to fully execute business functionality in a realistic way [17]. Data-

driven test automation is not an optimal platform for such a purpose.

16

2.3.4. Keyword-driven test automation

Keyword-driven testing is taking a step further from data-driven testing, where the

test data was stored in an external file. In keyword-driven test automation, also the

test actions are stored in an external file in addition to the test data. These test actions

are called keywords. Test data becomes the actual test script describing the sequence

of actions to be followed [17]. Test data is passed as arguments with the keywords.

Figure 3 [18] illustrates a test data file containing keywords and test data. This

provides an additional level of abstraction between the test script and the actual

scripts that drive the system under test. Figure 4 [16] [18] illustrates the usage of this

test data file in a keyword-driven test automation. The driver script interprets the

keywords from the test script and executes the specified actions. These actions are

implemented outside of the driver script as supporting scripts, which call a specific

function in the system under test. [15] [16]

Figure 3. Keyword-driven test data file.

Figure 4. Principle of keyword-driven test automation.

One of the main benefits of the keyword-driven approach is that creating test cases

does not require technical skills from the tester because test cases are created using

common language or easy to understand keywords. This can increase the number of

17

people involved in software test automation and making better use of the automation

investment. People with business and testing knowledge could concentrate on

creating the test cases, while technical engineers create the driver scripts and

supporting scripts that interpret the keywords. [13] [16]

As stated earlier, writing automated tests can be comparable to writing computer

programs. Programming tests to work correctly can be as challenging as

programming software to work correctly [16]. This brings us to a situation, what

John Kent calls as “The software test automation paradox”, where the automated

tests need to be tested as well. Resolving this fundamental problem is one key factor

for a successful, large-scale test automation. Keyword-driven test automation aims to

tackle the test automation paradox. [17]

2.3.5. Test automation framework and test libraries

A test automation framework provides the basic set of software tools and services to

aid software testers in developing and executing automated test cases [19]. An

important aim has been to move the creation of automated tests away from the test

tools scripting or programming language to higher levels of abstraction, reducing the

need for technical skills from people using them [17]. By using a test automation

framework, the testers can focus on to the actual testing of the software instead of

developing the infrastructure needed to support their test environment [19]. The

system under test can consist of several different components. A good test

automation framework should be generic enough to provide helpful functions for

testers to create automated tests for all the different components [19]. Some of the

important requirements for a large scale test automation framework presented by

Laukkanen are listed below [18]:

- The framework must execute test cases automatically.

- The framework must be easy to use without programming skills.

- The framework must verify test results.

- Test execution must be logged.

- Test report must be created automatically.

- The framework must be modular.

Test automation framework’s capabilities can be extended with test libraries. A

test library is a software library with the purpose of aiding in software testing.

Software library can be defined as a controlled collection of software and related

documentation designed to aid in software development, use, or maintenance [20]. In

the keyword-driven automation example presented in the previous section, the

supporting scripts could be bundled into a test library and driven using the

automation framework. Figure 5 illustrates a setup of driving system under test using

a test automation framework and test libraries. The different components of the

software system can consist of different technologies, and a test library is specifically

targeted for a specific technology component. Test libraries provide the generic

functions to drive the system under test, and test cases are created in the test

automation framework.

18

Figure 5. Test automation framework driving different components using test

libraries.

19

3. BACKGROUND FOR THE TEST LIBRARY

The previous chapter introduced the basic principles of software testing as well as

test automation. Topics of test automation framework and test libraries were also

covered. This chapter aims to cover the theory regarding the test library

implementation, such as the target environment, key concepts and existing tools

utilized. Known existing test automation approaches for the target systems are also

introduced, and where the test library implementation stands in comparison.

3.1. Test library target environment

3.1.1. SAP

SAP AG1 (Aktiengesellschaft) is one of the world’s largest software manufacturers

and the leader in enterprise applications in terms of software and software-related

service revenue [21]. SAP provides software to manage business operations, and

their main product is SAP ERP. The main principles in SAP products are; flexible

integrated platforms that are designed to change and adapt for customer’s business

needs, real-time data extraction, scalable infrastructure and adopting of new

technology innovations [22].

SAP systems are highly modular. This enables customers to pick the modules they

need for acquiring the IT functionality for their business processes. High level of

integration amongst SAP applications enables data consistency across the company.

The modularity and integrations makes often the testing of full end-to-end processes

difficult, as the SAP modules can be in use in different functional departments of the

customer organization. Organizing a managed and controlled testing that spans

across multiple departments can prove challenging and time consuming. The

modularity and integrations also create gaps when considering test automation, as the

systems, technologies and data changes dynamically. Normally, in a full end-to-end

process, these gaps have to be filled manually when interacting with different

modules.

The test library implemented in this thesis aims to fill the manual gaps caused by

interfaces in SAP related test automation. The purpose of the library is to

dynamically fetch data from SAP back-end to be used as inputs in test automation

scripts, and also fetch data from the back-end with the purpose of checking that the

provided inputs were handled correctly in the system. The scope for the thesis was

set to cover selected scenarios for automated end-to-end test process of an SAP e-

commerce solution connected to SAP ERP back-end.

3.1.2. SAP e-commerce

In the thesis, SAP e-commerce can be stated to generally mean SAP applications for

e-commerce solutions. These e-commerce solutions are either business-to-business

(B2B) or business-to-consumer (B2C) web shops, where customers place orders.

SAP provides different implementation options and technologies for SAP e-

commerce applications. These different options will not be introduced in this thesis,

1 http://global.sap.com/corporate-en/index.epx. Accessed 24.8.2014

20

as it is not seen relevant regarding the test library development. The current SAP e-

commerce implementations all share three specific technology characteristics. These

characteristics are:

1. A front-end web shop, consisting of HyperText Markup Language (HTML)

elements for the interaction with the customer.

2. A back-end, to which the e-commerce application is connected to. All orders

placed in the front-end are replicated to the back-end.

3. Product data replication from the back-end to the e-commerce web shop.

The aforementioned characteristics are relevant regarding the test library

development. A back-end is an SAP system running on Advanced Business

Application Programming (ABAP) application server [23]. ABAP is the proprietary

programming language of SAP [24]. A back-end can be an SAP ERP, CRM or

MDM system, but in the scope of the thesis only ERP is included.

Figure 6 illustrates a generic SAP e-commerce scenario. Customer uses a web

browser to access, navigate and place orders in the web shop. The web shop is

connected to an SAP back-end, from which the web shop data is retrieved. This data

includes the product data, for which customers can place orders. When a sales order

is submitted, it is replicated to SAP back-end, where a sales document object is

created from the order. Sales document is a database document in SAP ERP,

representing a business transaction in the sales department [25]. The sales document

then goes to further processing to eventually fulfill the order and deliver the

products, but that process is excluded altogether from this thesis.

Figure 6. A generic SAP e-commerce scenario.

Regarding terminology, sales order is used in the thesis to describe the order placed

in the web shop. A sales document is created from the sales order in SAP back-end.

Sales document is inspected in more detail in Section 3.3 “ERP sales document

structure”. Next, the current approaches of SAP test automation are introduced and

where the test library aims to take place.

3.2. SAP test automation

This section gives a brief introduction to existing test automation approaches for

SAP systems. The thesis implementation scope is demonstrated in an SAP e-

commerce functional test automation scenario.

21

3.2.1. Known existing approaches

There are different options for implementing SAP test automation. Many of the

available test automation software revolve around capture-playback approach, which

also utilize data-driven and keyword-driven automation. Such tools communicate

with SAP GUI (Graphical User Interface) or SAP WebClient UI, which are the

presentation layer of the three layer architecture of SAP systems. The other two

layers are application layer and database layer [26]. Presentation layer is where the

users interact with SAP systems. SAP provides an API for SAP GUI scripting, which

can be utilized in creating custom test automation. The presentation layer

encapsulates the logic of the application layer, and therefore following business

processes in the presentation layer is the natural way of interacting with the system.

Another approach to SAP test automation is to utilize the testing tools and

infrastructure provided by SAP. The usage of SAP provided test automation

infrastructure requires SAP Solution Manager, a software which functions as the

central management hub for all SAP systems. It provides tools and methodologies for

efficient implementation, operation, monitoring and support of SAP products. SAP

provides Test Automation Framework, which allows the creation and execution of

automated test cases. Test Automation Framework is integrated in SAP Solution

Manager. SAP Solution Manager and Test Automation Framework enable the usage

of the following SAP test automation offerings:

- Component Based Test Automation (CBTA)

- Extended Computer Aided Test Tool (eCATT)

- SAP Test Acceleration and Optimization (TAO)

- SAP Quality Center by Hewlett-Packard

- Business Process Change Analyzer (BPCA)

Another key topic from test automation perspective is the Business Blueprint. [27]

[28]

In SAP Solution Manager, the Business Blueprint is used to document the business

processes of a company. Business processes are organized in a hierarchical structure,

the Business Process Hierarchy. When the business processes are configured to SAP

systems, the Business Blueprint is used as a reference. All test plans utilizing SAP

testing infrastructure are based on the Business Blueprint. Business Process Change

Analyzer keeps track of the parts of the system which are affected during new

development or patch installations. This is achieved by keeping track of the technical

objects in each described process in the Business Blueprint. When new installation

arrives, the technical objects of the installation are checked and compared to the

existing ones to determine which system areas are affected. This information is used

by the Business Process Change Analyzer to determine the regression test scope. [29]

[30] [31]

CBTA, eCATT and SAP TAO are all SAP’s proprietary tools for creating test

automation scripts for SAP systems. They all record the scripts from traditional SAP

user interfaces, which are SAP GUI and WebClient UI. CBTA differs from eCATT

in its modular approach, where test components can be reused and repaired fast.

CBTA and SAP TAO aim in enabling the business users to create test scripts,

without much technical knowledge, where eCATT requires more developers’

expertise. CBTA and eCATT are free of charge and delivered with SAP systems.

22

SAP TAO is a separately licensed product from SAP with tight integration to

Hewlett-Packard’s products, such as Quality Center and QuickTest Professional. If

customers use Quality Center and QuickTest Professional, then SAP TAO is a good

consideration for SAP systems test automation. [28]

A common issue with SAP test automation is the heterogeneous system landscape;

customers’ IT systems compose of SAP and non-SAP systems, where end-to-end

processes go through multiple different technologies in various different areas, such

as mobile and web platforms. Because of the variety in technology and modularity,

systems are integrated with multiple interfaces. Commercial test automation tools

have the challenge of keeping up with the heterogeneous system landscape, and

many fall short in their technology coverage. Utilizing SAP provided test automation

tools are limited to just interacting with SAP’s user interfaces [28]. Currently, only

one commercial testing platform claims to fully cover automated end-to-end testing

processes in the major technology areas in an SAP and non-SAP system landscape

[32]. For SAP system testing, the aforementioned test platform utilizes the SAP

eCATT interface. Prerequisites are also the maintenance of Business Blueprint in

SAP Solution Manager.

Business Blueprint is the key for using some of the advanced features of SAP

Solution Manager, such as the test infrastructure. Many customers do not utilize SAP

Solution Manager to its full potential. In a survey, conducted by Panaya Inc. in 2010,

a total of 347 SAP customers and partners were interviewed regarding the use of

SAP Solution Manager. The respondent profile consisted of 83% of SAP customers,

who run their own business on SAP systems, and 17% represented SAP partner

system integrators. The results of the survey indicated that 42% of the respondents

did not maintain any business processes in the SAP Solution Manager, therefore

lacking the Business Blueprint. Only 3% had fully documented their business

processes. In addition, 60% responded that they do not use SAP Solution Manager

for test management purposes. [33]

To implement test automation with any test tool that utilizes SAP test automation

infrastructure, the majority of the customers need to spend time and resources for

setting up the Business Blueprint and SAP Solution Manager before it’s even

possible to implement the test automation. Such testing tools do not serve the

purpose for SAP partners implementing SAP solutions for multiple customers. To

ensure quality deliveries, the implementations need to be thoroughly tested. The test

library implemented in the thesis aims to be a generic, customer independent testing

tool. The goal is to enhance the test automation coverage to reach SAP systems

without commercial testing tools and the need for complex installations and

maintenance in the customer landscape.

3.2.2. SAP e-commerce functional test automation

Figure 7 shows how automated functional testing for e-commerce implementations is

currently performed in Bilot, which is the SAP partner company the author is

implementing the thesis in. This is a common approach, which currently applies to

such implementations in general. First, the needed setup needs to be done, which

includes manually determining the product data to be used in different test scenarios.

Test scripts are developed and automated functional testing is done by driving a web

browser, which simulates customer interaction with the web shop. Outputs from the

web shop are validated against expected outcomes. If a sales order is sent to the

23

back-end, the back-end sends a response to the web shop with a sales document

number, indicating a successfully submitted sales order. If further validation for the

sales document is needed, the validation needs to be performed manually in the back-

end.

Figure 7. Current functional test automation process for SAP e-commerce solutions.

Figure 8 shows where the test library aims to fill the manual gaps performed in the

test process, reducing manual maintenance of product data and increasing validation

coverage to SAP back-end. By reducing the manual work, the chain of test

automation can be extended. This makes it possible to provide more automated test

processes, increasing the quality of the deliveries with fully automated end-to-end

test cases. In addition, SAP landscape includes multiple different environments for

development and quality assurance. By automating the product selection, the test

data maintenance in different environments for products is reduced, and ideally

removed alltogether. This reduces the maintenance needed for the test automation

scripts, thus increasing the return of investment of test automation.

24

Figure 8. Functional test automation process extended with the test library.

3.3. ERP sales document structure

The sales document structure is utilized in the development of the test library and

sales order validation. All sales-related business transactions, such as inquiries,

quotations, sales orders and deliveries, are recorded as sales documents in SAP ERP.

Sales documents consist of three levels; header, item and schedule line. Each sales

document consists of a document header and any number of items. Furthermore,

items can be divided into any number of schedule lines. Figure 9 [34] demonstrates

the structure of a sales document. [35]

Figure 9. Sales document structure.

Document header holds the data that is general for the entire sales document.

Examples of such a data would be sold-to party (to whom the sale was made), ship-to

party (to whom the delivery will be shipped), document currency and delivery date.

25

The data in document header applies to all items, but some data applies only to the

item itself. This data is stored at item level, such as product number, target quantity,

item specific ship-to party and pricing elements. Schedule lines hold all the data that

is needed for the delivery. Using Figure 9 as an example of a sales document that a

customer has placed, Item 1 could be an order of 10 units of a particular product. The

supplier can only deliver 5 pieces immediately and the remaining 5 pieces next

month, so two scheduled deliveries are needed. The deliveries are stored in two

separate schedule lines, including data about the delivery date and confirmed

quantity for the schedule line. [35]

In the test library, validations for the sales document details are done based on the

queried data in different levels. The scope of the thesis was set to check header level

data of a sales document. Automated product determination is done utilizing the

schedule line information for products by simulating sales order creation in the back-

end. Based on the simulation results, the usage of the product in the test script is

determined.

3.4. Domain

The test library receives the sales document header level data in a tabular format. The

tables contain data elements, and data elements have values. For each value, a

domain has been assigned in the SAP back-end. Domains define the value range that

a table element can have [36]. Domain also provides the description for the values.

This means that value “A” can mean a different thing in different fields of the table.

Figure 10 shows an example domain STATV from SAP ERP. The domain is used

with fields associated with document statuses, and its possible values and their

descriptions can be seen from the screenshot.

Figure 10. A screenshot from SAP ERP describing domain STATV.

Test execution logs need to be human readable. If the validated values do not mean

anything to the log inspector, then there is no benefit in the log itself. The

26

information regarding data elements’ domains are needed for this purpose, to make

the test execution log meaningful.

3.5. Framework and selected libraries

The test library is run by a test automation framework. The library implementation

itself requires a set of other libraries. The chosen framework is introduced in this

section, as well as the libraries needed in the implementation.

3.5.1. Robot Framework

Robot Framework23 was chosen to be used as a test automation framework. Robot

Framework is an open source, Python-based generic test automation framework. It

utilizes the keyword-driven testing approach, and its capabilities can be extended by

using test libraries. The selection of the tool was based on the following factors:

1. Robot Framework is widely in use in the company the author is implementing

the thesis in.

2. Consulting co-workers, who work in the profession of software testing and

test automation, on different test automation tools.

3. Previous author’s personal experience and basic knowledge on working with

Robot Framework.

4. Previous author’s Java programming knowledge, and the possibility to create

customized test libraries for Robot Framework in Java.

5. Good user guide and documentation for the framework.

6. Robot Framework has an active user base and on-going development.

Some of the useful features Robot Framework has are listed below:

- Easy-to-use tabular syntax for creating test cases in a uniform way.

- Users can create reusable higher-level keywords from the existing keywords.

- Easy-to-read reports and logs in HTML format.

- Platform and application independent.

- Simple library API for creating customized test libraries implemented with

Python or Java.

- Command line interface and EXtensible Markup Language (XML) formatted

output files enable integration into existing build infrastructure.

- Data-driven test case support.

- Built-in support for variables.

- Easy integration with source control.

- Provides test-case and test-suite –level setup and teardown.

2 http://eliga.fi/writings.html. Accessed 24.8.2014
3 http://robotframework.org. Accessed 24.8.2014

27

Robot Framework comes also bundled with a set of standard test libraries that are

automatically installed with the framework. These features makes the framework a

very useful tool in test automation. [37]

The architecture of Robot Framework is highly modular. A high level architecture

diagram can be seen in Figure 11 [37].

Figure 11. Robot Framework architecture.

The test data is presented in a tabular format. Robot Framework processes the test

data, executes the test cases and generates reports and logs of the execution. The core

framework itself does not know anything about the system under test. Instead, the

interaction with the system is handled by test libraries. Test libraries can use

application interfaces directly, or alternatively use lower level test tools as drivers to

drive the system. [37]

3.5.2. Libraries used in the implementation

Robot Framework’s capabilities were extended in this thesis with chosen libraries.

The following libraries were required in the implementation project of the test

library; Selenium2Library4, SAP Java Connector (SAP JCo) [38], Robot

Framework’s Remote library5 as well as AnnotationLibrary6.

Selenium2Library is a test library for Robot Framework that is made specifically

for web testing. It uses Selenium WebDriver libraries from the Selenium project.

Selenium is a suite of tools for automating web browsers across many platforms, and

the Selenium WebDriver is a collection of language specific bindings for driving a

browser [39]. Selenium2Library was used to interact with the e-commerce web shop,

4 https://github.com/rtomac/robotframework-selenium2library. Accessed 24.8.2014
5 https://code.google.com/p/robotframework/wiki/RemoteLibrary. Accessed 24.8.2014
6 http://code.google.com/p/robotframework-javatools/wiki/AnnotationLibrary. Accessed 24.8.2014

28

simulating a real usage by a customer placing an order. The library was not used in

the test library implementation directly, but it was required in creating a complete

automated regression test scenario, which begun in the web shop by placing a sales

order with a chosen product.

SAP JCo is an SAP proprietary toolkit for connecting external applications to SAP

systems. SAP JCo is licensed without additional fees as part of other SAP solution or

component licenses, therefore being practically free for SAP customers. It enables

the development of Java components and applications that can communicate with

SAP systems. SAP systems are written in ABAP, and SAP JCo supports

communication in both directions; Java calls to ABAP and ABAP calls to Java. SAP

provides different implementation versions of SAP JCo. The standalone version of

SAP JCo was used in the thesis, as it can be installed independently of an SAP

system. The standalone version enables communication between external non-SAP

Java application and ABAP application server. SAP JCo communicates with ABAP

function modules in ABAP application servers. Function module can be described as

a subroutine written in ABAP, which serves as a general-purpose function [40]. Only

standard function modules provided by SAP were used in the thesis. [38]

Remote library is one of the standard libraries of Robot Framework. It works as a

proxy between Robot Framework and an actual test library implementation. The test

library implementation is served to Robot Framework as a remote server. Remote

library and the remote library interface provide two very useful features for

implementing and using test libraries. First, the test library does not have to be

located on the same machine that Robot Framework is running on. Secondly, the test

library does not have to be implemented in the natively supported programming

language of Robot Framework. AnnotationLibrary is a part of Robot Framework’s

Java tools. It allows to use Java annotations to tag Java methods, which are then

registered to Robot Framework as keywords. [37]

The test library implemented was decided to be written in Java. One of the main

reasons for the selection of Java as an implementation language was the use of SAP

JCo to communicate with SAP systems. Robot Framework comes also as a Jython7

implementation running on Java Virtual Machine and would therefore offer a native

support for Java libraries. Nevertheless, Python version is the most mature and

fastest version of Robot Framework [37]. The Python version was used in the thesis,

and as the custom library was to be implemented in Java, Remote library offered the

perfect solution for using the Java-based library with the Python implementation of

Robot Framework.

7 http://www.jython.org/. Accessed 24.8.2014

29

4. DESIGN AND IMPLEMENTATION

Chapter 2 introduced the basic concepts of software testing and test automation. In

Chapter 3, the target environment was presented, as well as where the test library

aims to fill the manual gaps of test automation in the scope of the thesis

implementation. The key concepts and tools needed in the implementation were

described, and where the test library stands in comparison to existing approaches.

This chapter goes more into detail in defining the requirements for the test library.

The design of the library is illustrated and the implementation process is described in

detail.

4.1. Requirements

The requirements are distributed under functional requirements, as well as a subset of

quality characteristics presented in Table 1 in Chapter 2.

Functional requirements

The test library must fetch dynamically, at test execution run-time, data from SAP

back-end and use it in the end-to-end test scripts. The test library must enable

assertions for the fetched data. The following three scenarios are in the scope of the

thesis.

1. Sales document validation from SAP back-end.

a. Thesis scope: SAP back-end covers only ERP.

b. Thesis scope: Sales document header status data is fetched for

validation purposes. Assertions are made to the fetched data.

2. In stock product determination from SAP back-end.

a. Thesis scope: SAP back-end covers only ERP.

b. Product is in stock on the given date.

c. ID of the product is returned for test script usage.

3. Out of stock product determination from SAP back-end

a. Thesis scope: SAP back-end covers only ERP.

b. Product is out of stock on the given date.

c. ID of the product is returned for test script usage.

Connectivity

The test library must be usable from a test automation framework. Test cases

utilizing the test library must be able to be run from a continuous integration service.

Flexibility

Tester must be able to adapt the assertions to his/her needs by defining the pass/fail

criteria for a test case.

30

Maintainability

The test library must use a modular architecture in utilizing external libraries. The

test library must be able to further develop and extend to different SAP back-ends.

Manageability

The test library must be relatively easy to deploy into operational condition.

Performance

Using the test library should not hinder overall test performance by a significant

amount.

Reusability

The test library must be a generic solution which can be utilized in multiple SAP

environments with similar requirements.

User-friendliness

The test library must be easy to use and to learn for end-users. In this case, end-users

possess expert knowledge on test automation and SAP systems.

4.2. Design

In this section, the design of the software is presented. The design faced some

adjustments from the initial planning. This was due to a constant learning process

regarding the technical side of SAP and implementation of a custom Robot

Framework test library. The section presents the final design of the software.

4.2.1. Architecture

Figure 12 presents the full architecture of the implemented test library and the related

components in the overall scenario. Test library implementation consists of different

components; fi.bilot.robot Java package, AnnotationLibrary, RemoteServer and SAP

JCo. The Java package fi.bilot.robot is the developed component, which is dependent

on the other components. RemoteServer is a component of the Robot Framework’s

Remote library, which together with SAP JCo and AnnotationLibrary were

introduced in Chapter 3.

31

Figure 12. Architecture diagram.

The test library implementation is driven from Robot Framework, and the

communication is done with XML-RPC protocol via Remote library interface. XML-

RPC protocol is the EXtensible Markup Language (XML) implementation of the

Remote Procedure Call (RPC) protocol. The test library implementation

communicates with SAP systems via SAP JCo. The communication is done with

Remote Function Calls (RFC), which in turn is SAP proprietary implementation of

the RPC protocol [26, p.275]. RFC is the standard SAP interface for communication

between SAP systems [41]. SAP JCo performs the interface functions and maps the

ABAP data types to Java data types [42].

The e-commerce web shop resides in NetWeaver Java Application Server. A Text

Retrieval and information EXtraction (TREX) server can be used to enhance the

search functionality of the web shop, improving system performance for the

customers [43]. As the web shop resides in a Java server, the communication with

NetWeaver ABAP Application Server is handled by SAP JCo using RFC calls to

SAP ERP system.

In a full scenario, Robot Framework imports the test library implementation. Test

scripts are read from a test data file and executed. Product fetching is first initiated

from Robot Framework and implemented in fi.bilot.robot Java package. Using SAP

JCo, the products for the selected scenarios are fetched from SAP ERP and returned

to Robot Framework. Web browser is driven by Selenium2Library, and the actions

defined in the test data are performed in the e-commerce web shop. Using the fetched

32

products, order is placed in the web shop and the ID of the order is collected. The

order is replicated via RFC call to SAP ERP. The ID of the order is passed from

Robot Framework to the test library implementation, and the corresponding sales

document is fetched from SAP ERP. Validations defined in the test data file are

performed in fi.bilot.robot Java package, and the validation results are passed to

Robot Framework.

The RFC communication between SAP JCo and SAP ERP contains tables and

structures. The test library sends in the function module specific parameters which

are required for the execution of the function module. Function module has a specific

purpose, a set of actions it performs with the parameters. Once finished, the function

module returns the results as tables to SAP JCo. The returned tables are then used for

the test library’s purposes. This chain of events is described in Figure 13.

Figure 13. Example of a data exchange between the test library and SAP ERP.

4.2.2. Class diagrams

The class diagrams presented in this section are modeled using The ObjectAid UML

Explorer for Eclipse9. The purpose is to model the implemented custom library.

Classes from components not implemented in the thesis are only shown to the first

level of association. The custom library Java classes reside under fi.bilot.robot Java

package and these are implemented in the thesis. For the classes in other components

and packages, only the name of the class is presented in many cases for the sake of

simplicity.

The class diagrams are grouped using functional grouping as follows;

- server implementation,

- keyword implementations which fall under the following topics; back-end

connection, sales document validation and product determination.

9 http://www.objectaid.com. Accessed 10.7.2014

33

Server implementation

Figure 14 shows the class diagram of the server. Server class is the main starting

point of the program. It has a dependency on RemoteServer class, which implements

the Robot Framework’s remote server architecture. Server class inherits from

AnnotationLibrary class. AnnotationLibrary searches all class files in package

fi.bilot.robot.keywords for the custom Robot Framework keywords.

Figure 14. The class diagram of the server.

When the server is started, all the implemented keywords are registered to Robot

Framework. Next in this section, the implemented keyword class diagrams are

presented. The keywords are distributed under three classes; UtilKeywords,

OrderKeywords and ProductKeywords.

Back-end connection

UtilKeywords contain the keywords for utilities, which include SAP back-end

connection establishment and de-establishment. All the methods in the class

represent a Robot Framework keyword. The class diagram can be seen in Figure 15.

34

Figure 15. Class diagram showing UtilKeyword class associations with other classes.

For the connection handling, UtilKeywords class creates a data provider

myProvider for the back-end connection details. The back-end connection details are

provided from Robot Framework. The data provider is implemented in

MyDestinationDataProvider class, which in turn implements the SAP JCo

DestinationDataProvider interface. At runtime, JCo will use the provided

DestinationDataProvider interface implementation to get the destination

configuration for the connection. Environment class is the central anchor for

embedding JCo into the custom library. Registering and deregistering the provided

destination configuration are needed, and this is done using the static methods of the

Environment class. After registering the destination, it can then be accessed by JCo

to communicate with the back-end in later scenarios. [44]

When connection establishment has been requested from Robot Framework and

the connection has been successfully registered in JCo, UtilKeywords class calls the

method requestSystemDetails from OrderJCoFunctionCalls class to get a response

from the back-end system. The response from the back-end contains the system’s

details, and these are logged into Robot Framework’s execution log if manual

verification is needed for a correct back-end connection.

Sales document validation

OrderKeywords class contains the keywords for fetching the sales document from

the back-end and performing validations to the sales document. All the methods in

the class represent a Robot Framework keyword. The class diagram for

OrderKeywords can be seen in Figure 16.

35

Figure 16. Class diagram showing OrderKeyword class associations with other

classes.

When a sales document is fetched using getSalesDocumentFromErp, the static

method retrieveSalesDocumentFromErp in OrderJCoFunctionCalls class is invoked.

The destination for the back-end JCo function call is fetched from

JCoDestinationManager, a JCo class holding information about the registered

destination for the runtime environment. The fetched sales document is stored in an

object, which is implemented in SalesDocument class. The Domain class represents

the SAP ERP domains for data elements. The details for value – description pairs of

a domain are passed from Robot Framework. The actual data element – domain pairs

are hard coded in the custom library. The reasoning for this is that there is no data

returned from the back-end regarding which domain is assigned to a data field,

meaning that there is no information regarding what the data field’s character code

actually represents. To make the Robot Framework execution log readable and

meaningful for human reading, the data fields’ values are interpreted using the

defined domains. The purpose of HelperFunctions class is to hold generic functions

for modularity.

36

Product determination

ProductKeywords class contains the keywords for determining the products from the

back-end for the different e-commerce scenarios. All the methods in the class

represent a Robot Framework keyword. The class diagram for ProductKeywords can

be seen in Figure 17.

Figure 17. Class diagram showing ProductKeyword class associations with other

classes.

The sales order simulation settings for product determination are defined in Robot

Framework, and passed as keyword arguments to the library. This is done by calling

the dedicated methods, such as setSalesHeaderSettings and

setItemAndScheduleSettings. Product catalog is fetched from the back-end using

readProductsFromCatalog method. A product catalog is a structured hierarchy of

products which are presented in the web shop [45]. When all the required simulation

settings are defined, methods getValidProductInStock or getValidProductOutOfStock

are called, depending on the chosen scenario. This picks a randomly selected product

from the catalog, and calls method simulateSalesOrderCreationInERP from class

37

ProductJCoFunctionCalls. ProductJCoFunctionCalls then reads the registered

destination from JCoDestinationManager, and executes the JCo call to the back-end

with the passed parameters. SAP system responds with a return table, containing the

simulation results. The results are checked with method

determineIfProductIsInStock, and a boolean true or false is returned based on the

table’s values. The product is then collected and the ID is returned to Robot

Framework, if the simulation results fit the purpose of the chosen scenario.

4.3. Implementation

4.3.1. Development environment

The thesis was implemented in Bilot, which provides SAP solutions for client

companies. The test library was developed in real development environments of SAP

e-commerce implementation projects. The projects were either internal to Bilot, or

web shop implementations for client companies. The development environments

provided good, real e-commerce web shop architecture and were thus ideal for the

test library development. The development of the test library did not interfere in any

way with the development of the web shops. The existing infrastructure was used for

testing the library, as well as testing the web shop using the library. Using the pre-

existing environments allowed the effort to be concentrated on the test library

development instead of building a feasible development environment.

Development tool used was SAP NetWeaver Developer Studio, which is based on

an open-source development platform, Eclipse.

4.3.2. Software development process

This section is divided into subsections. Each subsection describes the progress

during each month when the test library development took place. The development

was a constant learning process for the author, and new findings during the

development are also described.

October 2013

The planning and design of the thesis started in September 2013, but it was October

2013 when the plan started to solidify. Feasibility study kicked off in the beginning

of October. People involved in the feasibility study were; the solution owner of e-

services business area of Bilot, team leader of e-services, quality manager of Bilot,

SAP consultant from e-services, and e-commerce software architect from a partner

company. The technology for communication between SAP systems and third-party

application was narrowed down to two options: JCo and SAP NetWeaver Gateway.

Performance tests performed by the SAP consultant resulted in superior performance

by JCo. Also, the work load for the generic usage of the technologies favored JCo;

JCo can be used as a stand-alone library from the third-party application, where SAP

NetWeaver Gateway needs to be installed to a customer’s SAP landscape. As the test

library was meant to be used in multiple different projects and SAP environments for

a variety of customers, the installation of SAP NetWeaver Gateway to their SAP

38

landscape could prove very difficult. Based on these observations, a decision was

made to proceed with JCo as chosen technology for technical communication.

It was also decided to start the development process from the automated sales

document validations, because it was seen as the more straightforward starting point

when compared to fetching product data from the back-end. In the sales document

validation phase, the following sequence of actions was to be automated:

1. Create sales order in the web shop.

2. Collect the order number from the web page.

3. Query the back-end with the order number to get the sales document details

as a response.

4. Perform validations for the sales document details.

For navigating and performing actions in the web shop, the existing automated test

cases that had been developed by the project team could be utilized.

The development environment was set up during October. The development was

done in an existing virtual machine that had been done for the purpose of developing

the e-commerce solution for a customer. The test library development was done as a

side project in the virtual machine, utilizing the e-commerce web shop and the ERP

back-end.

November 2013

As the author had no prior technical experience or knowledge regarding SAP before

starting the thesis, a lot of research and study on the topic of ABAP function modules

was in place during November. Connection with the test library and ABAP

application server was successfully established. This was tested by performing a

simple function call to function module STFC_CONNECTION, which returns the

SAP system details one is connected to. The connection creation and function call to

STFC_CONNECTION was wrapped as a Robot Framework keyword using the

Robot Framework’s remote library interface. Figure 18 shows Robot Framework log

for the executed keyword “Connect To SAP Backend”, which takes SAP connection

details and SAP authorization credentials as arguments.

Figure 18. Robot Framework log for establishing connection with SAP back-end.

The principle with calling function modules using JCo is that one first defines the

function module specific import parameters from the Java application. Next, the

function module is executed using JCo, and the function module returns data as

export tables to JCo. A fully usable Robot Framework keyword utilizing JCo was

created, as described in the previous paragraph, so the principle was clear for other

keywords as well. At this point, the effort was in identifying the correct function

modules that would be needed for the thesis, and how to use them, as some function

modules can require dozens of import parameters.

39

Function module BAPI_ISAORDER_GETDETAILEDLIST was used to retrieve

the sales document from ERP. The design was that all sales document details would

be passed on to Robot Framework for customizable validations, allowing the test

library to be as generic as possible. This design proved to be not the most feasible

solution. This was due to the limitations of Robot Framework, as well as the remote

library interface; there was no suitable way to handle the returned tables

conveniently. The design was altered so that the sales document details were stored

in the Java application. The validation criteria would be passed from Robot

Framework to the application. This design also fitted the purpose of customizing the

validation criteria. Figure 19 shows Robot Framework log for executed keyword

“Get Sales Document From Erp”. The keyword takes the sales document number as

an argument. In a complete automated test scenario, the sales document number

would be collected from the web page when the sales order is submitted.

Figure 19. Robot Framework log for retrieving sales document details from SAP

ERP.

The returned tables from function modules contain data elements. For each data

element, a domain has been assigned. Domains define the value range that the data

element uses. Information regarding the field’s domain is not carried over in the

returned tables to the test library, but this information is needed to make the

execution log and validation results human readable. As the number of different

domains in SAP systems is tens of thousands, it was not feasible to define and hard

code all of the domains into the test library. The scope of the thesis was to fetch the

sales document details, and validating the statuses of the sales document was

sufficient. For this purpose, only one of the returned tables was to be checked, and

not many different domains were needed.

The values for passed and failed test case for each data element needed to be

defined. Those values needed to be adjustable for the purpose of the library to serve

as a generic library for different testing needs. The design evolved so that the library

included a Robot Framework settings file. The needed domains and fields to be

validated, including their pass and fail values, were defined in the settings file and

passed to the test library. The test library contained the return table descriptions as

hard coded field name – domain –pairs for identifying the correct domains for each

field. Figure 20 shows Robot Framework log for keyword “Validate Sales Document

Header Statuses”. The keyword takes a list of fields as an argument, for which

validations are performed. This enables the tester to customize the fields that are to

be validated. Prior to calling the keyword, another keyword “Define Domains” was

called in the test setup, which set the domain descriptions.

40

Figure 20. Robot Framework log for sales document validation.

December 2013

The implementation for sales document validations started to come together, so the

goal in December 2013 was to create the first distribution of the test library to be

used in a live project. The existing automated test cases for the web shop were

utilized in creating a test case for placing a sales order. The test case was extended by

collecting the sales order number from the web page using Selenium2Library. Next,

the according sales document was retrieved from the back-end and validated using

the test library.

So far, the library had only been used from SAP NetWeaver Developer Studio.

The library was bundled to an executable Java Archive (JAR) file. JAR bundles

together the needed class files, including JCo. As the library was implemented using

Robot Framework’s remote library interface, a server is started when executing the

JAR file. The server is served locally using an arbitrary free port, and imported to

Robot Framework.

January 2014

In January 2014, the products part of the test library kicked off. Research and study

was made on the function modules that would serve the purpose of the thesis. The

scope was clarified and narrowed to fetching two kinds of products from the back-

end for different test scenarios:

1. Valid product, in stock.

2. Valid product, out of stock.

The term “valid product” can be defined as follows: A product, for which an

assumption can be made that placing a sales order with the product results in

successfully processed sales document. The term “in stock” also needs explanation;

product is in stock if the returned schedule line is within a specified time frame. The

time frame can vary from customer to customer, because the logic for calculating

schedule lines involves multiple factors, like working hours, working shifts, delivery

routes and weekends, just to name a few. If a product’s confirmed schedule line does

not match the time frame, it is determined as out of stock. As the time frame varies

for each customer, it needs to be taken in as a parameter from Robot Framework.

Consulting experienced SAP consultants on the topic of fetching such products

programmatically resulted in the following outcome; there was no feasible way to

create generic logic for fetching valid products from the back-end. This was due to

customers having different logic and criteria for determining the valid products.

While discussing of possible solutions, the following was suggested; simulate a sales

order creation in the back-end with the product. The simulation uses the customer-

41

specific logic for products. Based on the simulation outcome, observations can be

made to determine if the product is valid.

The starting point for the implementation was to get the products that are available

in the web shop. Consulting colleagues and researching on the matter brought up the

concept of product catalogs. By standard, one product catalog is assigned to a web

shop, and the catalog contains the products which are shown in the web shop. By

reading the catalog from the back-end, the web shop’s product ID’s could be

collected.

Continuing with the products part of the thesis was not as straightforward as the

sales document validations. First issue came up with the web shop environmental

setup; even though the web shop itself was connected to an SAP ERP back-end, the

product catalog of the web shop was in fact stored in an SAP MDM system. The role

of MDM in the web shop environment was not known in the design phase when the

development environment was selected. This, together with the fact that the web

shop development environment was soon to be torn down by the customer, left the

project in search of a new development environment. Finding a new environment

proved not to be a trivial task, as many of the ongoing web shop projects did not

match the thesis scope, or getting the proper authorizations for the customer’s SAP

ERP back-end was not possible.

February 2014

In February, a new development environment was acquired matching the thesis

scope and the development could continue. Function module

BAPI_ADV_MED_GET_ITEMS was used to read the products from a product

catalog stored in ERP. A screenshot of the execution log can be seen in Figure 21.

The function module takes the catalog name and variant as a parameter, which are

given in the Robot Framework setup file. Product catalogs can have different variants

for specific language and currency needs, for example. [45]

Figure 21. Robot Framework log for reading product catalog items.

So far, the setup file was a single file containing the needed setup for connection

details and sales document validations. The setup file was split for easier

maintenance and end-user experience. Each area of connection setup, sales document

validation setup and products setup was stored in its own Robot Framework setup

file.

Proceeding with the development to a point of testing a full end-to-end scenario,

more previously unknown details revealed. The product catalog in the ERP back-end

does not unambiguously match the available products in the web shop. Three

different scenarios for the mismatches were identified:

42

1. Product catalog is maintained manually in the back-end, and replicated to a

TREX indexing server from which the web shop reads the product

information. Between the replications, the updated catalog in ERP does not

match the web shop catalog in TREX server. This can result in a situation

where products in the back-end catalog do not yet exist in the web shop.

2. Catalog views are used in the web shop. Catalog views are used to create

customer-specific views of the product catalog, enabling different customers

to see different products in the web shop [45].

3. Customers use a custom replication program to determine products for the

web shop from a product catalog in a way that products are left out based on

custom programmatic logic.

The identified scenarios were scoped out of the thesis implementation, as handling

such scenarios were determined to introduce too much complexity for the thesis. The

handling of the scenarios were parked for future development. The discovery left the

final development and testing without a proper developing environment for the

duration of March 2014 to May 2014.

June and July 2014

Bilot had started an internal project implementing a web shop using the latest SAP e-

commerce technology, hybris.10 The web shop was integrated to the company’s own

demo ERP system. This provided the perfect development environment to finish the

thesis development.

The work with product determination continued. Mandatory settings for sales

order simulation, like sold-to party and ship-to party, were defined in Robot

Framework and passed to the library. Also, a parameter to determine the time frame

for in stock product determination was configured in Robot Framework. The time

frame was used to define the tolerance for how much in the future can the confirmed

schedule line date be to be still accepted as an in stock product.

The library calls function module BAPI_SALESORDER_SIMULATE with the

defined parameters, and receives the outcome of the simulation as return tables. The

return tables are checked in case error messages are received. If no error messages

exist, then the returned schedule line date is compared against the specified time

frame tolerance. If the confirmed schedule line date is within the time frame, product

is determined and collected as an in stock product. If no error messages exist, and the

confirmed date is not within the time frame, product is out of stock. Figure 22 shows

the Robot Framework execution log for keyword “Get Valid Product In Stock.”

10 http://www.hybris.com. Accessed 11.7.2014

43

Figure 22. Robot Framework log for fetching a valid product which is in stock.

In the early days of July, the thesis implementation was finished. The defined

requirements for the custom library were implemented.

4.4. Developed application

The development resulted in a total of 10 Java source code files. The same functional

grouping as in the class diagrams are used to demonstrate the source lines of code

(SLOC) in each functional group. Some overlapping between the functional areas

and the source code files exist, but the proportion is quite accurate. These are

presented in Table 2.

A total of 22 keywords for Robot Framework were created. High-level keywords

serve the purpose of creating a simplified level of abstraction to combine logic

available in Robot Framework’s standard libraries, and the custom library. The

keywords fall under the following categories:

- Library setup and back-end connection

o 5 keywords

 3 high-level keywords

 2 custom library keywords

- Sales document validation

o 7 keywords

 1 high-level keyword

 6 custom library keywords

- Product determination

o 10 keywords

 1 high-level keyword

 9 custom library keywords

The complete keyword documentation can be seen in Appendix 1.

44

Table 2. Development results demonstrated in source lines of code

Functional group Source file SLOC Proportion

Back-end

connection

 UtilKeywords.java 82

 Server.java 40

 CustomDestinationDataProvider.java 113

 Total 235 17%

Sales document

validation

 OrderKeywords.java 173

 OrderJCoFunctionCalls.java 116

 Domain.java 86

 SalesDocument.java 114

 HelperFunctions.java 162

 Total 651 47%

Product

determination

 ProductKeywords.java 206

 ProductJCoFunctionCalls.java 288

 Total 494 36%

Overall total 1380 100%

45

5. TESTING

This chapter presents the testing results of the implemented test library. The defined

requirements in Section 4.1 are used as a test basis. Unit tests have been conducted

throughout the development phase. It was agreed that the functional requirements are

tested with full end-to-end test scripts describing the real usage, with additional

manual verifications conducted in the SAP back-end. The non-functional

requirements presented in Section 4.1 are addressed and described how they were

overcome. The final test environment was the same as the final development

environment.

Functional requirements

The full end-to-end test scripts are documented in Appendix 2. It is web shop

specific if orders are allowed to be made for out of stock products. In this case,

orders are not allowed, and this is validated in test case 3. Table 3 presents the results

of the end-to-end test cases.

Table 3. Functional end-to-end test case results

Test case Functionality

under test

Test case description Test

result

Test case 1. Sales document

validation from

SAP back-end.

Test case 1: Submit a sales order and

validate order status from back-end.

Pass

Test case 2. In stock product

determination

from SAP back-

end.

Test case 2: Fetch an in stock product

from SAP back-end for sales order

creation and validate the outcome.

Pass

Test case 3. Out of stock

product

determination

from SAP back-

end.

Test case 3: Fetch an out of stock

product from SAP back-end for sales

order creation and validate the outcome.

Pass

Connectivity

Requirement: The test library must be usable from a test automation framework. Test

cases utilizing the test library must be able to be run from a continuous integration

service.

Throughout the development and functional testing, the test library was used from

Robot Framework. The functional end-to-end tests were taken into use in the internal

project and added to the continuous integration functional test cases. Each time

developers committed their working copies of the web shop via the continuous

integration service, the tests were run automatically. The continuous integration

service used was a setup of Jenkins.11

11 http://jenkins-ci.org. Accessed 15.7.2014

46

The requirement was stated to be fulfilled.

Flexibility

Requirement: Tester must be able to adapt the assertions to his/her needs by defining

the pass/fail criteria for a test case.

The scope of the thesis was to perform validations on sales document header

statuses. The assertions for the values are done on table’s field level. The testers are

able to define the pass and fail criteria for each field that they want to validate from

the fetched sales document header status tables.

The requirement was stated to be fulfilled.

Maintainability

Requirement: The test library must be relatively easy to deploy into operational

condition.

The test library, along with all the required third-party libraries and files, was

bundled into a distributable archive file. The archive file included the Robot

Framework setting files for the library, with default configurations and example end-

to-end test cases demonstrating the usage of the library. The keyword documentation,

installation instructions and step-by-step guide were created and uploaded to Bilot’s

internal wiki pages.

The requirement was stated to be fulfilled.

Performance

Requirement: Using the test library should not hinder the overall test performance by

a significant amount.

The test library is communicating with back-end function modules using JCo.

Therefore, a lot of the library’s performance is dependent on the back-end

processing. The product determination proved not to be a simple process. Due to the

complexity, the product determination is identified as a possible bottleneck in the

performance. The factors affecting the product determination performance are the

size of the product catalog, along with how many valid products it contains for the

chosen scenario. The more simulations are needed in the back-end, the more time it

takes to determine the product for the selected scenario. Test cases utilizing the test

library are also using other keywords, not just the test library specific. Performance

tests were collected by inspecting the continuous integration system’s build logs,

where the automated test cases were automatically executed.

The performance of the test library was inspected in 5 different test runs. Each run

consisted of a total of 21 test cases, of which 3 were test cases utilizing the test

library. The three test cases were the following:

1. Basic end-to-end test case with validation of order in ERP.

47

2. Product availability checking against the back-end and order placing with a

valid in stock product.

3. Product availability checking against the back-end and out of stock product

behavior validation in the web shop.

The product catalog in the web shop setup contained 182 products, from which the in

stock and out of stock products were determined.

The complete test duration listing per keyword can be seen in Appendix 3. Only

the test library implementation specific keywords are shown. In addition, the total

duration of the test case is shown, which includes keywords outside of the test library

implementation, like navigating the web shop. Table 4 summarizes the performance

test results.

Table 4. Test execution duration comparison between the test library and overall

execution

 Case 1 Case 2 Case 3 Case 4 Case 5

Total duration of test library

specific test cases

206 sec 203 sec 198 sec 179 sec 202 sec

Total duration of all test

cases

575 sec 569 sec 568 sec 544 sec 566 sec

Proportion of the duration of

test library specific test

cases to all test cases

35,8 % 35,7 % 34,9 % 32,9 % 35,7 %

Total duration of the test

library keywords

11,1 sec 10,3 sec 8,1 sec 5,7 sec 9,5 sec

Proportion of the duration of

test library keywords to total

execution

1,9 % 1,8 % 1,4 % 1,0 % 1,7 %

The performance test results are analyzed more in detail in Section 6.1.

Reusability

Requirement: The test library must be a generic solution which can be utilized in

multiple SAP environments with similar requirements.

Building an environment just for the development is quite a big task, because there

needs to be a complete setup of an SAP back-end, a fully configured web shop

connected to the back-end and all the product configurations in place. Due to the

difficult nature of setting up such a development environment, a total of two different

customers’ and one internal project’s development environment was utilized during

the implementation of the thesis. Conveniently, these three distinct web shops were

all implemented with different technologies, covering the web shop technology

choices of SAP. The different technologies were Internet Sales (ISA), Web Channel

Experience Management (WCEM) and hybris. Some design issues were faced when

switching the environment. This was due to the fact that there are multiple different

configuration possibilities to be made in the back-end and in the web shop, and these

48

can vary from customer to customer. Therefore, new design issues may be expected

when utilizing the test library in a new, different setup of a web shop. Customer

specific custom coding is difficult to overcome with a generic solution, and this was

a known fact, but the general design issues can be solved with further development.

Overall, the test library was proved to be reusable in changing environments and

technologies.

User-friendliness

Requirement: The test library must be easy to use and to learn for end-users. In this

case, end-users possess expert knowledge on test automation and SAP systems.

The test library is implemented for Robot Framework, so the usage is similar to test

case creation with Robot Framework in general. The settings for the library require,

to some extent, subject matter expertise of SAP ERP and knowledge on the web shop

configuration.

The requirement was stated to be fulfilled.

49

6. DISCUSSION

The goal was to implement a test library for SAP systems. The purpose was also for

the test solution to not require installations to the SAP system landscape. The

reasoning behind it was that the test library was to be used by an SAP partner

company in testing its deliveries, and installing extra content to clients’ landscape

can be a challenging task. Objectives were to remove the need for pre-defined, hard

coded test data in the test scripts for increased test coverage and reduced

maintenance in environment switches. SAP e-commerce was set to be the

environment scope with selected scenarios. The test library needed to fetch data for

the selected scenarios from the SAP back-end, to which the web shop was connected

to. The data fetching needed to be automatic, during test execution. The library

needed to enable adjustable validations for the fetched data. In this chapter, the test

results are analyzed. Also, the high level objectives are revisited to check if the

implementation fulfilled its expectations.

6.1. Analyzing the results

The requirements defined in Section 4.1 were fulfilled within the scope of the thesis.

Regarding the reusability of the library in other SAP environments, some limitations

were discovered in the implementation phase, and the findings were scoped out of

the implementation. The test library was implemented by the author himself, but the

idea and high level design came from Bilot. The lack of author’s domain knowledge

in the beginning played a role in not knowing to ask the right questions regarding the

design. If SAP e-commerce scenarios would have been familiar in the beginning, the

findings in the implementation could have been known already in the design phase.

The new findings came up when the development environment was switched from

one SAP landscape to another. This was because there can be multiple different

variations in an SAP e-commerce setup, depending on customers’ requirements and

configuration. For this reason, it is possible that more currently unidentified technical

issues come up with further landscape switches. The new findings, as well as the

identified existing ones, should be overcome with a patch upgrade for the library to

fulfill the evolving requirements.

The test library was in productive usage in two different projects as part of a

continuous integration testing routine, where the test execution was automatically

triggered when developers committed changes to the web shop. Performance tests

were collected by inspecting the test execution logs of those projects, and 5

execution logs were documented to demonstrate the performance. Each test

execution consisted of 21 test cases, in which 3 test cases utilized the test library.

That is 14% of the total test cases. Those 3 test cases were considered as part of the

critical tests of the test suite with the purpose of testing the key functionalities of the

web shop. The test execution duration for those 3 test library specific test cases took

on average 35% of the total execution duration. But that percentage does not

characterize the performance of the test library, as the test cases contained other

keywords as well. In the 5 documented cases, the test library specific keywords took

on average 2% of the total execution duration. The other keywords were about

navigating the web shop and placing sales orders, thus performing full end-to-end

scenarios in the web shop with login, multiple screen switches and replication of

50

sales order to a back-end. Figure 23 shows the test library specific keyword

execution duration compared to the total test execution duration.

Figure 23. Test execution duration comparison.

Based on the observations, it can be stated that the test library does not hinder the

overall test performance by a significant amount. Instead, the proportion is quite

minimal in comparison to the total test execution duration. This can, however,

change radically if the product catalog of the web shop is not proportionate regarding

the in stock and out of stock products; if 99% of the products are in stock, finding the

1% out of stock products can be time consuming.

6.2. Revisiting the objectives

The test library enabled the automatic fetching of product data from the back-end.

Initial settings needed to be defined in Robot Framework, reflecting the

configuration of the sales document in the back-end. Such configurations were, for

example, the mandatory business partners of sold-to party and ship-to party of the

transaction. After defining the initial settings, products could be fetched with the

calling of just one keyword in Robot Framework. The initial settings defined would

be valid from system to system within a customer’s landscape, therefore reducing the

manual maintenance needed for product determination for the test scripts. The

automatic fetching was randomized, thus providing more variety in the test data

when compared to hard coded test data.

The fetching of sales document from the back-end was also implemented. Normal

e-commerce test automation just covers the actions and validations in the web shop.

By fetching the sales document from the back-end, the test coverage could be

extended for a full end-to-end business process testing. The validation criteria was

51

defined in Robot Framework, enabling testers to adjust and define what data is the

criteria for a passed test case.

To take the test library into use in SAP test automation setup, there are no

requirements to install anything to the SAP system itself. This is an important

feature, as many test automation tools for SAP systems require the Business

Blueprint to be maintained in SAP Solution Manager. By being a lightweight, easy-

to-deploy testing tool, it can be easily utilized in a changing SAP landscape. This is

useful especially to an SAP partner company, implementing SAP solutions for client

companies.

The implemented test automation library was a contribution to Bilot’s quality

practices. The library was made available in Bilot’s intranet library for distribution.

The usage of the library and keyword documentation were documented in the

company’s knowledge sharing platform. The test library is recommended to be used

in e-commerce solutions by the company’s quality manager.

6.3. Personal experiences

The whole thesis implementation process from the selection of the topic to finalizing

the test library was a constant learning process. I had no prior technical knowledge

from SAP systems, and very limited functional experience. Robot Framework was a

rather new software to me as well, with only very basic usage experience. I knew this

was going to be a challenge during the implementation, and that was also the major

reason for choosing the topic. From learning perspective, the topic presented a great

opportunity to support my day-to-day work with SAP systems in Bilot.

The implementation took more time than expected. A lot of time were spent on

studying the related topics and tackling newly discovered issues and limitations

during the implementation. A major slowdown turned out to be acquiring a suitable

development environment, as building one for just the development of the test library

was too big a task. A development environment switch occurred a total of three times

during the project. Another difficulty was the full testing of the test library. This was

due to utilizing the existing automated test cases for the developed web shops, and

developers made constantly changes to the system. The automated test scripts broke

down from time to time, and occasionally I found myself fixing the web shop test

scripts so that I could proceed with the testing of the test library.

Eventually, the project was extremely rewarding. I gained excellent know-how on

Robot Framework and test automation, Java development, e-commerce scenarios and

SAP systems. SAP systems are complex, and even though I had just scratched the

surface of the technical side of SAP, the project made it possible to get views,

aspects and understanding I wouldn’t have had the possibility of through normal day-

to-day work assignments. And what is best, all the gained knowledge supports

closely my chosen career path.

6.4. Future development

Limitations for the selected e-commerce scenarios were discovered during the

development of the test library. Some of the limitations are hard to handle

programmatically. One of such limitations is the custom replication program for the

catalog. Another one is a TREX server scenario where the web shop catalog is in

52

TREX server and in the meantime the catalog is manually modified in ERP back-end

without replicating the updates to TREX. Limitation regarding the catalog view, on

the other hand, was decided to be further development for the library. Catalog view

is a customer specific view of available products in the web shop. The scenario is

relatively common, and the test library should be able to overcome the limitation

eventually.

Further area for development is the supported SAP back-ends. In addition to SAP

ERP, e-commerce web shop can be connected to SAP CRM and SAP MDM systems

as well. These systems have different function modules and tables than SAP ERP,

and therefore require Java implementation for supporting the JCo calls and test case

validations.

The selected automated e-commerce scenarios were only the first scenarios in need

of implementation. In theory, the library could be utilized in any test scenario where

the required interaction with an SAP system can be done with the system’s function

modules. The number of function modules in SAP systems is hundreds of thousands,

and programmers can also create new function modules. Therefore, the extension

possibilities for the test library are diverse and show promising potential.

53

7. CONCLUSION

In this Master’s Thesis, a test automation library for SAP systems was developed.

The test library is available for Robot Framework, an open source keyword-driven

test automation framework. The library was implemented in Java, utilizing open

source and free tools, such as Robot Framework’s standard libraries. The only

licensed product used in the implemented test library was SAP JCo. SAP JCo is used

for communication with SAP systems. Its usage is governed by the SAP system

license and doesn’t require additional license for SAP system license holders.

First, the key topics regarding software testing were presented. This included a big

picture of the related software testing topics, and went further on to describe different

test automation approaches. The concept of test automation framework and test

libraries were introduced.

To further cover the background and justifications for the thesis, the target

environment of SAP systems were introduced. SAP e-commerce scenario was

chosen to be the scope of the thesis. It was also demonstrated how the implemented

test library fills the current manual gaps in automated SAP e-commerce testing. The

chosen scenarios were automatic product fetching and sales order processing

validation. Products were determined and fetched from SAP ERP to be used in

different scenarios in the web shop. The sales document created from the web shop

order was fetched from the back-end for validation and verification of a correctly

processed sales document. The chosen framework and test libraries utilized in the

thesis were also described.

Then, the detailed requirements were defined. The presented design of the

implemented test library consisted of an architecture diagram, as well as class

diagrams representing the implemented Java classes. The development environment

was introduced, consisting of real development environments for SAP solution

deliveries for clients. The test library was implemented as a side project in the

development environments. Moreover, the whole development process was

described in detail. Eventually, the developed application results were demonstrated

with the amount of source lines of code produced, as well as the number of Robot

Framework keywords created.

Testing of the developed product was conducted, and the test basis used for testing

were the defined requirements. Overall, the tests passed and the requirements were

fulfilled. However, some findings were identified in the development phase, limiting

the usage of the implementation in some of the e-commerce scenarios. The identified

limitations should be overcome in future development of the library, as those were

scoped out of the thesis. The reason for scoping the findings out of the thesis was due

to the notable increase in complexity, if such scenarios were to be implemented

within the scope.

The automated product determination from the web shop back-end reduced the

amount of manual test data maintenance for the automated test scripts. The benefits

of such automation is emphasized in SAP solutions development, as there can be

multiple different environments for development and testing purposes, each

containing different product data. In addition, the test library allowed testers to

define customizable pass and fail criteria for the sales document validation. This was

done in Robot Framework by defining what data fields are checked, and what values

are expected. By fetching the sales document from the back-end for validation, the

test coverage could be extended for a full end-to-end business process testing.

54

When conducting research on the matter, no other similar test tools were found.

SAP provides tools for automating tests, but they are limited to SAP’s traditional

user interfaces. To fully cover business process test automation, the coverage has to

be for non-SAP systems as well. Commercial test tools provide options for utilizing

the SAP’s provided test tools, enabling the testing of business processes covering

SAP and non-SAP technologies. Utilizing SAP’s test tools require maintenance of

SAP Solution Manager and the Business Blueprint to customers’ landscape, which

many don’t have. None of these test automation solutions fit the purpose for a

lightweight deployment for a changing SAP landscape, and commercial tools also

require expensive licensing.

 The developed test library, along with Robot Framework, is free of charge to SAP

customers and partners. The test library is ideal for SAP partner companies,

implementing SAP solutions for multiple clients. As the test library does not require

any installations to the client’s SAP landscape, it is a lightweight, easy-to-deploy

testing tool which helps in end-to-end testing across interfaces for SAP systems.

As the scope was to cover selected SAP e-commerce scenarios, there is plenty of

development areas left for future work. The future work can include the handling of

other SAP back-ends, more business processes and enhancing the existing e-

commerce scenarios. During its development, the test library implementation was

used successfully in two live projects, performing automated end-to-end SAP e-

commerce testing in a continuous integration testing routine. As an overall outcome,

the implementation project was deemed successful.

55

8. REFERENCES

[1] Leung H K N & White L (1990) A Study of Integration Testing and Software

Regression at the Integration Level. Proc. 1990 IEEE Conference on

Software Maintenance. San Diego, California, USA, 290-301. DOI:

http://dx.doi.org/10.1109/ICSM.1990.131377.

[2] Ammann P & Offutt J (2008) Introduction to Software Testing. New York,

USA, Cambridge University Press.

[3] End to end testing. URL: http://acutest.co.uk/acutest/end-to-end-testing.

Accessed 18.8.2014

[4] Dustin E, Rashka J & Paul J (1999) Automated Software Testing:

Introduction, Management, and Performance. New York, USA, Addison-

Wesley Professional.

[5] Koomen T, Aalst L, Broekman B & Vroon M (2006) TMap Next for result-

driven testing. ’s-Hertogenbosch, Netherlands, UTN Publishers.

[6] Li E (1990) Software Testing In A System Development Process: A Life

Cycle Perspective. Journal of Systems Management, 41(8): 23-31

[7] Myers G, Badgett T, Thomas T & Sandler C (2004) The Art of Software

Testing, Second Edition. Hoboken, New Jersey, USA, John Wiley & Sons,

Inc.

[8] Bentley J (2004) Software Testing Fundamentals – Concepts, Roles, and

Terminology. Proceedings of 12th Annual SouthEast SAS User Group

(SESUG) Conference, Nashville, Tennessee, USA.

[9] Müller T & Friedenberg D (2011) Certified Tester Foundation Level

Syllabus. International Software Testing Qualifications Board.

[10] Burnstein I (2003) Practical software testing: a process-oriented approach.

New York, USA, Springer-Verlag.

[11] Kaner C, Falk J & Nquen H (1999) Testing Computer Software, Second

Edition. John Wiley & Sons, Inc.

[12] Moniruzzaman A & Hossain S (2013) Comparative Study on Agile software

development methodologies. E-print arXiv: 1307.3356.

[13] White K (2007) Software Test Automation 101. Proceedings of International

Conference on Software Quality, Lakewood, Colorado, USA.

[14] Patton R (2005) Software Testing, Second Edition. Indianapolis, Indiana,

USA, Sams Publishing.

56

[15] Hayes L (2004) The Automated Testing Handbook. Software Testing

Institute.

[16] Fewster M & Graham D (1999) Software Test Automation. Great Britain,

ACM Press.

[17] Kent J (2007) Test Automation: From Record/Playback to Frameworks.

Proceedings of EuroSTAR 2007, Stockholm, Sweden.

[18] Laukkanen P (2006) Data-Driven and Keyword-Driven Test Automation

Frameworks. Master’s Thesis. Helsinki University of Technology,

Department of Computer Science and Engineering.

[19] Cervantes A (2009) Exploring the Use of a Test Automation Framework.

Proceedings of 2009 IEEE Aerospace Conference, Big Sky, Montana, USA.

[20] IEEE Std 610.12-1990 (1990) IEEE Standard Glossary of Software

Engineering Terminology. The Institute of Electrical and Electronics

Engineers, New York, USA.

[21] Company information. URL: http://global.sap.com/corporate-en/our-

company/index.epx. Accessed 24.8.2014

[22] Why SAP for Technology. URL: http://www.sap.com/pc/tech/strategy.html.

Accessed 24.8.2014

[23] ABAP Application Server. URL: http://help.sap.com/saphelp_nw2004s/

helpdata/en/fc/eb2e8a358411d1829f0000e829fbfe/content.htm. Accessed

24.8.2014

[24] ABAP Programming. URL: http://help.sap.com/saphelp_nw73ehp1/

helpdata/en/43/41341147041806e10000000a1553f6/frameset.htm. Accessed

24.8.2014

[25] Sales Document. URL: http://help.sap.com/saphelp_erp60_sp/helpdata/en/

0b/013acf967011d2ac740000e829fbfe/content.htm. Accessed 24.8.2014

[26] Curran T & Ladd A (2000) SAP R/3 Business Blueprint: Understanding

Enterprise Supply Chain Management, Second Edition. Pennsylvania State

University, USA, Prentice Hall PTR.

[27] SAP Solution Manager. URL: https://support.sap.com/solutionmanager.

Accessed 24.8.2014

[28] SAP Business Suite powered by SAP HANA Cookbook (2014), pages 130-

135. SAP AG. Available from URL: https://proddps.hana.ondemand.com/

dps/d/preview/6932132d32b54f58a961a755e043e21e/1.0/en-US/index.

html#url=a335bd4fdd634e48aaa711abab223fa4.html. Accessed 24.8.2014

57

[29] Business Blueprint in Implementation Projects. URL: https://help.sap.com/

saphelp_smehp1/helpdata/en/f1/30e9e8252111d5b3760050dade3beb/conten

t.htm. Accessed 24.8.2014

[30] Business Blueprint. URL: http://help.sap.com/saphelp_smehp1/helpdata/en/

45/f6da633a292312e10000000a11466f/content.htm. Accessed 24.8.2014

[31] Business Process Change Analyzer. URL: http://help.sap.com/

saphelp_smehp1/helpdata/en/e7/ae57e0291149adaca93a9dcce33abb/

content.htm. Accessed 24.8.2014

[32] Worksoft Automated Business Process Validation. URL: http://www.

worksoft.com/files/resources/Worksoft-Automated-Business-Process-

Validation.pdf. Accessed 24.8.2014

[33] SAP Solution Manager Survey (2010). Panaya Inc. Available from URL:

http://go.panayainc.com/SAPSolutionManagerSurveyReport.html. Accessed

24.8.2014

[34] How Sales Documents are Structured. URL: http://help.sap.com/

saphelp_470/helpdata/en/dd/55faab545a11d1a7020000e829fd11/

content.htm. Accessed 24.8.2014

[35] About Sales Documents. URL: http://help.sap.com/saphelp_470/helpdata/

en/dd/55fa8c545a11d1a7020000e829fd11/content.htm. Accessed 24.8.2014

[36] Domains. URL: https://help.sap.com/saphelp_nw04s/helpdata/en/cf/

21ede5446011d189700000e8322d00/content.htm. Accessed 24.8.2014

[37] Robot Framework User Guide (2014). URL: http://robotframework.

googlecode.com/hg/doc/userguide/RobotFrameworkUserGuide.

html?r=2.8.5. Accessed on 24.8.2014

[38] SAP Java Connector. URL: http://help.sap.com/saphelp_nwpi711/helpdata/

en/48/70792c872c1b5ae10000000a42189c/content.htm. Accessed 24.8.2014

[39] SeleniumHQ Browser Automation. URL: http://docs.seleniumhq.org/.

Accessed 24.8.2014

[40] Function Modules. URL: http://help.sap.com/saphelp_nw70/helpdata/EN/9f/

db988735c111d1829f0000e829fbfe/content.htm. Accessed 24.8.2014

[41] RFC. URL: http://help.sap.com/saphelp_nw73ehp1/helpdata/en/48/

88068ad9134076e10000000a42189d/content.htm. Accessed 24.8.2014

[42] RFC Communication Scenarios. URL: http://help.sap.com/

saphelp_nw73ehp1/helpdata/en/48/6ec38a20623ff6e10000000a42189c/cont

ent.htm. Accessed 24.8.2014

58

[43] Indexing Catalogs from ERP to a TREX Server. URL: http://help.sap.com/

saphelp_crm700_ehp03/helpdata/en/46/2ddd9716d300c0e10000000a11466f

/content.htm. Accessed 24.8.2014

[44] SAP JCo API 3.0. Available from http://service.sap.com/connectors.

Accessed 30.10.2014

[45] Product Catalog. URL: http://help.sap.com/saphelp_crm700_ehp01/

helpdata/en/06/7908be561a46928cce52ce1fb95fe7/content.htm. Accessed

24.8.2014

59

9. APPENDICES

Appendix 1. Keyword documentation

Appendix 2. Functional end-to-end test cases

Appendix 3. Performance test measurements

60

Appendix 1. Keyword documentation

Library setup and back-end connection

Keyword Arguments Keyword location Description

Custom Library And

Suite Set Up

 setup_connection.robot A suite setup keyword. Starts a Java process for the

remote library. Imports the remote library using port

8270. Calls other test suite setup keywords.

Stop Remote Server And

Clean Up Suite

 setup_connection.robot A suite teardown keyword. Stops the remote server.

Calls other test suite teardown keywords.

Connect To SAP

Backend

@{SYSTEMPARAMS} Library / Util Establishes connection to SAP backend.

@{SYSTEMPARAMS} has the syntax below.

Parameters are separated by tabs and passed as a List to

the library.

@{SYSTEMPARAMS} | ASHOST | SYSNR

| CLIENT | USER | PASSWD | LANG

Deregister Destination

And Clean Up Test with

Logoff

 setup_connection.robot A test case teardown keyword. Deregisters the

destination and ends the connection to SAP back-end.

This needs to be called when ending the test case. Calls

keyword Deregister Destination and other teardown

keywords.

Deregister Destination Library / Util Deregisters the destination and ends the connection to

SAP back-end.

61

Sales document validation

Keyword Arguments Keyword location Description

Define Domains And

Fields For Validation

 setup_order.robot A high-level setup keyword. Each table field in SAP has a

domain assigned to it. Domains define the value range that the

table field uses. For the custom library, each domain and

its values and their descriptions need to be defined from Robot

Framework. Defines the fields to the library which are validated

as well as the test case pass values for each field. This keyword

calls the following keywords:

1. Define Domain

2. Define Field And Passes

Define Domain domain name,

${DOMAIN'S

VALUES AND

DESCRIPTIONS}

Library / Order Please see SAP Library definition of domains. Defines the

domain for the library. As of current design, mostly used for

convenience with the purpose of printing field value

descriptions into Robot Framework log. If multiple domains

need to be defined, call the keyword multiple times.

Example:

${STATV VALUES AND DESCRIPTIONS}= Create

Dictionary | ${EMPTY} | Not Relevant | A | Not yet processed |

B | Partially processed | C | Completely processed

Define Domain | STATV | ${STATV VALUES AND

DESCRIPTIONS}

62

Define Field And Passes field name, @{FIELD

PASSES}

Library / Order Defines a field for validation and sets values that pass RF tests

for the specific field. If multiple fields need to be defined, call

the keyword multiple times. Field's pass values are defined as a

list.

Example:

@{PRC_STAT_H PASSES} | A | B | C

Define Field And Passes | PRC_STAT_H | @{PRC_STAT_H

PASSES}

Get Sales Document From

ERP

${SALES ORDER

NUMBER}

Library / Order Fetches the sales document from ERP using function module

BAPI_ISAORDER_GETDETAILEDLIST. Fetches three

tables; Order header (HEADER), Header status (STATUS_H),

Item status (STATUS_I). The sales document is stored as an

object for further usage.

${SALES ORDER NUMBER} needs to be collected from the

web page.

Validate Sales Document

Header Statuses

@{FIELDS TO

CHECK}

Library / Order Validates the defined table fields against the defined pass/fail

criteria.

@{fields to check} is the list of fields which are validated.

Please note that the domains of the fields need to be defined

before validation (check keyword Define Domains).

Log Sales Document Library / Order Logs the fetched Sales Document to Robot Framework

execution log, mostly for debugging purposes.

63

Clear Order Settings Library / Order Needs to be called in test case teardown. Clears the order

settings.

Product determination

Keyword Arguments Keyword location Description

Set Product Settings ${REQ_DATE}=${EMPTY} setup_products.robot A high-level setup keyword. Can be given an optional

argument to define the ATP check date of format

yyyy-MM-dd. If argument is not defined, requested

date will be set to current date. Calls the following

keywords:

1. Set Consecutive Fail Limit

2. Set Sales Header Settings

3. Set Item And Schedule Settings

4. Create Sales Partner.

Set Consecutive Fail

Limit

${FAILED CONSECUTIVE

SIMULATION LIMIT}

Library / Product Products are determined via simulated sales document

creation. Defines a limit for consecutive failed

simulations, which is counted as a failed test case. The

limit is needed so that if something goes wrong, the

simulation is not done for all possible products that are

in the catalog, as the catalog can be very large.

Set Sales Header

Settings

${SALES_HEADER_IN

SETTINGS}

Library / Product Defines the mandatory sales header settings for the

sales document simulation.

64

Set Item And Schedule

Settings

${SALES_ITEMS_IN AND

SALES_SCHEDULES_IN

SETTINGS}

Library / Product Defines the item and schedule settings for sales

document simulation. Also, passes a variable

${SCHEDULE FUTURE TOLERANCE (DAYS)

FOR IN-STOCK PRODUCT DETERMINATION},

which determines how far in the future can the

returned schedule date be to be counted as an in-stock

product.

Create Sales Partner ${SALES PARTNER

SETTINGS}

Library / Product Defines the sales partner settings for the sales

document simulation. You need to maintain sold-to

party and ship-to party for the simulation.

Read Products From

Catalog

${CATALOG}, ${VARIANT} Library / Product Reads the product ID's from the defined catalog and

stores them for further usage.

${CATALOG} is the name of the catalog.

${VARIANT} is the variant of the catalog.

Get Valid Product In

Stock

 Library / Product Picks a product from the fetched product catalog items.

Simulates sales order creation (function module

BAPI_SALESORDER_SIMULATE) in ERP with the

product to determine if the product is valid. Checks

that the product is in stock (schedule line, confirmed

date) within the defined time frame (see keyword "Set

Item And Schedule Settings"). Simulation is done until

a product is found, consecutive fail limit is reached

(see keyword "Set Consecutive Fail Limit") or all

products in the catalog have been checked.

65

Get Valid Product Out

Of Stock

 Library / Product Keyword for selecting an out-of-stock product. If a

product does not pass keyword "Get Valid Product In

Stock" simulation, it is determined as an out-of-stock

product.

Recycle Checked

Catalog Items

 Library / Product Products are stored as a shuffled list and the library

keeps track on which products have been used in

simulation. If you need to get products for different

scenarios within a same test case, you can use this

keyword to make the already simulated products

available for further simulations.

Example: Your fetched catalog has 300 items. You use

keyword "Get Valid Product In Stock", which

simulates through randomly picked 100 items from the

catalog until it finds a product in stock. Next, in the

same test case, you need to get product which is out of

stock and you use keyword "Get Valid Product Out Of

Stock" for the purpose. Calling this keyword would

not use the already simulated 100 products in its

simulations, unless you call keyword "Recycle

Checked Catalog Items" in between the two different

product determination scenarios.

Clear Product Settings Library / Product Needs to be called in test case teardown. Clears the

product settings.

66

Appendix 2. Functional end-to-end test cases

Test case 1: Submit a sales order and validate order status from back-end.

Step

number.

Step description Expected result Actual result Pass / Fail

1 In test library’s settings file, define the SAP back-end

connection and logon details.

Settings are saved. As expected. Pass

2 In test library’s settings file, define the sales document

fields that are to be validated.

Settings are saved. As expected. Pass

3 In test library’s settings file, define the pass criteria for

each field.

Settings are saved. As expected. Pass

4 Using Robot Framework, create a test case performing the

following logical sequence:

1. Import test library into test case.

2. Establish connection to SAP back-end.

3. Login to web shop.

4. Create a sales order with a manually determined product

which is in stock.

5. Submit the sales order and collect the returned sales

order ID number.

6. Using the test library, fetch the corresponding sales

document from the back-end using the sales order ID.

7. Perform the validations which were defined in the test

library’s settings file.

8. End connection to back-end.

Test case is created. As expected. Pass

5 Run the test case defined in step 3. Once finished, open the

Robot Framework test execution log for inspection. Verify

that the test case is executed successfully.

Test case is executed

successfully, ending in either

passed or a failed test case.

As expected. Pass

6 From the log, verify that test case results match the The fields that were defined in As expected. Pass

67

settings defined in steps 1-3. step 1 are read from the return

tables. If the fields’ values

match the pass criteria defined

in step 3, the step is a pass. If

not, test case fails stating that

the field value was not defined

as a pass criteria.

7 Login to SAP back-end and manually search for the sales

document using the sales order ID.

The sales document is found

from SAP back-end.

As expected. Pass

8 Open the sales document. Verify that the sales document’s

field values match the ones in test case execution log.

The field values in the back-

end match the values that were

obtained using the test library.

As expected. Pass

Test case result: Pass

Tested on: 14.7.2014

Tested by: Petri Niemelä

Test case 2: Fetch an in stock product from SAP back-end for sales order creation and validate the outcome.

Step

number.

Step description Expected result Actual result Pass / Fail

1 In test library’s settings file, define the SAP back-end

connection and logon details.

Settings are saved. As expected. Pass.

2 In test library’s settings file, define the needed setup for

sales document simulation and product determination

settings.

Settings are saved. As expected. Pass.

3 Using Robot Framework, create a test case performing the

following logical sequence:

1. Import the test library into test case.

2. Establish connection to SAP back-end.

3. Read product catalog.

Test case is created. As expected. Pass.

68

4. Fetch an in stock product from the back-end.

5. Login to web shop.

6. Use the fetched product in sales order creation.

7. Submit the sales order and write the returned sales order

ID number into Robot Framework execution log.

8. End connection to back-end.

4 Run the test case defined in step 3. Once finished, open the

Robot Framework test execution log for inspection. Verify

that the test case is passed.

Test case is executed

successfully, ending in a

passed test case.

As expected. Pass.

5 Login to SAP back-end and manually search for the sales

document using the sales order ID.

The sales document is found

from SAP back-end.

As expected. Pass.

6 Open the sales document. Verify that the sales document

has the fetched product, and the schedule line is within the

defined tolerance for in stock product determination.

The field values in the back-

end match the values that were

obtained using the test library.

Confirmed schedule line date is

within the defined tolerance.

As expected. Pass.

Test case result: Pass.

Tested on: 14.7.2014

Tested by: Petri Niemelä

Test case 3: Fetch an out of stock product from SAP back-end for sales order creation and validate the outcome.

Step

number.

Step description Expected result Actual result Pass / Fail

1 In test library’s settings file, define the SAP back-end

connection and logon details.

Settings are saved. As expected. Pass.

2 In test library’s settings file, define the needed setup for

sales document simulation and product determination

settings.

Settings are saved. As expected. Pass.

69

3 Using Robot Framework, create a test case performing the

following logical sequence:

1. Import the test library into test case.

2. Establish connection to SAP back-end.

3. Read product catalog.

4. Fetch an out of stock product from the back-end.

5. Login to web shop.

6. Search for the fetched product and try to create a sales

order with the product.

7. Verify that the web shop does not allow sales order

creation for the product.

8. End connection to back-end.

Test case is created. As expected. Pass.

4 Run the test case defined in step 3. Once finished, open the

Robot Framework test execution log for inspection. Verify

that the test case is passed.

Test case is executed

successfully, ending in a

passed test case.

As expected. Pass.

5 Login to SAP back-end and manually perform sales

document simulation using function module

BAPI_SALESORDER_SIMULATE with the same

settings as defined in steps 1 and 2. Use the same product

that was determined in Robot Framework test case.

Simulation can be executed. As expected. Pass.

6 Verify that the sales document simulation does not return a

confirmed schedule line, or that the returned schedule line

date is out of the defined tolerance range for in stock

product determination.

The simulation does not return

a confirmed schedule line date

within the defined tolerance

range for in stock product

determination.

As expected. Pass.

Test case result: Pass.

Tested on: 14.7.2014

Tested by: Petri Niemelä

70

Appendix 3. Performance test measurements

Case 1: Internal project build #119 (04-Aug-2014 05:47:13)

Total test cases: 21

Passed test cases: 18

Failed test cases: 3

Test library specific test cases: 3

Passed test library specific test cases: 3

Failed test library specific test cases: 0

Total duration: 9 min 35 sec

Total test library specific test case duration: 3 min 26 sec

Test library specific keyword duration breakdown:
KEYWORD DURATION (seconds)

Test suite setup: OperatingSystem.Start Process 0.001

Test suite setup: BuiltIn.Import Library 0.796

TOTAL test suite setup duration of the test library keywords 0.797

TOTAL test suite setup, including all suite setup keywords 0.802

Test suite teardown: Stop Remote Server 0.003

TOTAL test suite teardown duration of the test library keywords 0.003

TOTAL test suite teardown, including all suite teardown keywords 0.252

TEST CASE: Basic end-to-end test case with validation of order in ERP

Define Domains And Fields For Validation 0.014

Connect To SAP Backend 0.381

Validate Sales Document Header Statuses 0.004

Test case teardown: Clear Order Settings 0.003

Test case teardown: Clear Product Settings 0.004

Test case teardown: Deregister Destination 0.025

TOTAL test case duration of the test library keywords 0.431

TOTAL test case duration, including all test case keywords 166.901

TEST CASE: Product availability is checked against the backend and order is placed for an available product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.033

Set Product Settings 0.021

Read Products From Catalog 1.442

Get Valid Product In Stock 7.953

Validate Sales Document Header Statuses 0.002

Test case teardown: Clear Order Settings 0.003

Test case teardown: Clear Product Settings 0.002

Test case teardown: Deregister Destination 0.023

TOTAL test case duration of the test library keywords 9.488

TOTAL test case duration, including all test case keywords 26.908

TEST CASE: Product availability is checked against the backend for an out of stock product

Define Domains And Fields For Validation 0.008

Connect To SAP Backend 0.016

Set Product Settings 0.019

Read Products From Catalog 0.032

Get Valid Product Out Of Stock 0.281

TOTAL test case duration of the test library keywords 0.356

TOTAL test case duration, including all test case keywords 11.629

71

Case 2: Internal project build #120 (05-Aug-2014 05:47:49)

Total test cases: 21

Passed test cases: 18

Failed test cases: 3

Test library specific test cases: 3

Passed test library specific test cases: 3

Failed test library specific test cases: 0

Total duration: 9 min 29 sec

Total test library specific test case duration: 3 min 23 sec

Test library specific keyword duration breakdown:
KEYWORD DURATION (seconds)

Test suite setup: OperatingSystem.Start Process 0.001

Test suite setup: BuiltIn.Import Library 0.809

TOTAL test suite setup duration of the test library keywords 0.81

TOTAL test suite setup, including all suite setup keywords 0.812

Test suite teardown: Stop Remote Server 0.004

TOTAL test suite teardown duration of the test library keywords 0.004

TOTAL test suite teardown, including all suite teardown keywords 0.251

TEST CASE: Basic end-to-end test case with validation of order in ERP

Define Domains And Fields For Validation 0.015

Connect To SAP Backend 0.656

Validate Sales Document Header Statuses 0.005

Test case teardown: Clear Order Settings 0.003

Test case teardown: Clear Product Settings 0.003

Test case teardown: Deregister Destination 0.025

TOTAL test case duration of the test library keywords 0.707

TOTAL test case duration, including all test case keywords 164.481

TEST CASE: Product availability is checked against the backend and order is placed for an available product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.015

Set Product Settings 0.022

Read Products From Catalog 2.424

Get Valid Product In Stock 5.642

Validate Sales Document Header Statuses 0.003

Test case teardown: Clear Order Settings 0.002

Test case teardown: Clear Product Settings 0.002

Test case teardown: Deregister Destination 0.023

TOTAL test case duration of the test library keywords 8.142

TOTAL test case duration, including all test case keywords 26.222

TEST CASE: Product availability is checked against the backend for an out of stock product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.017

Set Product Settings 0.02

Read Products From Catalog 0.035

Get Valid Product Out Of Stock 0.565

TOTAL test case duration of the test library keywords 0.646

TOTAL test case duration, including all test case keywords 11.892

72

Case 3: Internal project build #123 (06-Aug-2014 05:47:56)

Total test cases: 21

Passed test cases: 18

Failed test cases: 3

Test library specific test cases: 3

Passed test library specific test cases: 3

Failed test library specific test cases: 0

Total duration: 9 min 28 sec

Total test library specific test case duration: 3 min 18 sec

Test library specific keyword duration breakdown:
KEYWORD DURATION (seconds)

Test suite setup: OperatingSystem.Start Process 0.001

Test suite setup: BuiltIn.Import Library 0.8

TOTAL test suite setup duration of the test library keywords 0.801

TOTAL test suite setup, including all suite setup keywords 0.807

Test suite teardown: Stop Remote Server 0.003

TOTAL test suite teardown duration of the test library keywords 0.003

TOTAL test suite teardown, including all suite teardown keywords 0.247

TEST CASE: Basic end-to-end test case with validation of order in ERP

Define Domains And Fields For Validation 0.016

Connect To SAP Backend 0.86

Validate Sales Document Header Statuses 0.013

Test case teardown: Clear Order Settings 0.002

Test case teardown: Clear Product Settings 0.003

Test case teardown: Deregister Destination 0.026

TOTAL test case duration of the test library keywords 0.92

TOTAL test case duration, including all test case keywords 162.554

TEST CASE: Product availability is checked against the backend and order is placed for an available product

Define Domains And Fields For Validation 0.008

Connect To SAP Backend 0.017

Set Product Settings 0.023

Read Products From Catalog 1.478

Get Valid Product In Stock 4.102

Validate Sales Document Header Statuses 0.003

Test case teardown: Clear Order Settings 0.002

Test case teardown: Clear Product Settings 0.003

Test case teardown: Deregister Destination 0.024

TOTAL test case duration of the test library keywords 5.66

TOTAL test case duration, including all test case keywords 23.056

TEST CASE: Product availability is checked against the backend for an out of stock product

Define Domains And Fields For Validation 0.006

Connect To SAP Backend 0.018

Set Product Settings 0.022

Read Products From Catalog 0.029

Get Valid Product Out Of Stock 0.654

TOTAL test case duration of the test library keywords 0.729

TOTAL test case duration, including all test case keywords 11.767

73

Case 4: Internal project build #124 (07-Aug-2014 05:47:23)

Total test cases: 21

Passed test cases: 18

Failed test cases: 3

Test library specific test cases: 3

Passed test library specific test cases: 3

Failed test library specific test cases: 0

Total duration: 9 min 4 sec

Total test library specific test case duration: 2 min 59 sec

Test library specific keyword duration breakdown:
KEYWORD DURATION (seconds)

Test suite setup: OperatingSystem.Start Process 0.001

Test suite setup: BuiltIn.Import Library 0.803

TOTAL test suite setup duration of the test library keywords 0.804

TOTAL test suite setup, including all suite setup keywords 0.809

Test suite teardown: Stop Remote Server 0.003

TOTAL test suite teardown duration of the test library keywords 0.003

TOTAL test suite teardown, including all suite teardown keywords 0.254

TEST CASE: Basic end-to-end test case with validation of order in ERP

Define Domains And Fields For Validation 0.014

Connect To SAP Backend 0.612

Validate Sales Document Header Statuses 0.007

Test case teardown: Clear Order Settings 0.002

Test case teardown: Clear Product Settings 0.002

Test case teardown: Deregister Destination 0.025

TOTAL test case duration of the test library keywords 0.662

TOTAL test case duration, including all test case keywords 145.934

TEST CASE: Product availability is checked against the backend and order is placed for an available product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.016

Set Product Settings 0.022

Read Products From Catalog 0.629

Get Valid Product In Stock 2.996

Validate Sales Document Header Statuses 0.003

Test case teardown: Clear Order Settings 0.002

Test case teardown: Clear Product Settings 0.002

Test case teardown: Deregister Destination 0.023

TOTAL test case duration of the test library keywords 3.702

TOTAL test case duration, including all test case keywords 22.037

TEST CASE: Product availability is checked against the backend for an out of stock product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.016

Set Product Settings 0.02

Read Products From Catalog 0.028

Get Valid Product Out Of Stock 0.451

TOTAL test case duration of the test library keywords 0.524

TOTAL test case duration, including all test case keywords 10.286

74

Case 5: Internal project build #125 (08-Aug-2014 05:46:54)

Total test cases: 21

Passed test cases: 18

Failed test cases: 3

Test library specific test cases: 3

Passed test library specific test cases: 3

Failed test library specific test cases: 0

Total duration: 9 min 26 sec

Total test library specific test case duration: 3 min 22 sec

Test library specific keyword duration breakdown:
KEYWORD DURATION (seconds)

Test suite setup: OperatingSystem.Start Process 0.001

Test suite setup: BuiltIn.Import Library 0.8

TOTAL test suite setup duration of the test library keywords 0.801

TOTAL test suite setup, including all suite setup keywords 0.807

Test suite teardown: Stop Remote Server 0.004

TOTAL test suite teardown duration of the test library keywords 0.004

TOTAL test suite teardown, including all suite teardown keywords 0.251

TEST CASE: Basic end-to-end test case with validation of order in ERP

Define Domains And Fields For Validation 0.013

Connect To SAP Backend 1.343

Validate Sales Document Header Statuses 0.016

Test case teardown: Clear Order Settings 0.002

Test case teardown: Clear Product Settings 0.002

Test case teardown: Deregister Destination 0.025

TOTAL test case duration of the test library keywords 1.401

TOTAL test case duration, including all test case keywords 165.585

TEST CASE: Product availability is checked against the backend and order is placed for an available product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.021

Set Product Settings 0.023

Read Products From Catalog 2.172

Get Valid Product In Stock 4.783

Validate Sales Document Header Statuses 0.003

Test case teardown: Clear Order Settings 0.003

Test case teardown: Clear Product Settings 0.001

Test case teardown: Deregister Destination 0.024

TOTAL test case duration of the test library keywords 7.039

TOTAL test case duration, including all test case keywords 24.55

TEST CASE: Product availability is checked against the backend for an out of stock product

Define Domains And Fields For Validation 0.009

Connect To SAP Backend 0.02

Set Product Settings 0.018

Read Products From Catalog 0.031

Get Valid Product Out Of Stock 0.207

TOTAL test case duration of the test library keywords 0.285

TOTAL test case duration, including all test case keywords 11.3

