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Jayasinghe, Laddu Praneeth Roshan, Coordinated multiantenna interference
mitigation techniques for flexible TDD systems. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. C 833, 2022
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

This dissertation presents cooperative beamformer techniques and possible practical
implementations to mitigate the sophisticated interference scenarios in dynamic time-division-
duplexing (TDD) systems and integrated access and backhaul (IAB) networks. Greater emphasis
is placed on the distributed resource allocation to facilitate simultaneous uplink (UL) and
downlink (DL) data transmission by employing multiple-input multiple-output (MIMO)
beamformer techniques and bi-directional signalling schemes with different objectives to optimize
network utilities while acknowledging important practical considerations and future traffic
demand.

The first half of this thesis focuses on dynamic TDD systems, in which available resources per
cell can be freely allocated to either UL or DL depending on the instantaneous traffic demand.
Hence, complicated UL-DL and DL-UL interference scenarios arise due to simultaneous UL and
DL data transmission in adjacent cells. Primary attention is given to mitigation of catastrophic
interference exposure in dynamic TDD systems by employing MIMO based decentralized
iterative beamforming techniques with traffic-aware network optimization objectives, supported
with minimal information exchange among the coordinated base stations (BSs) and user-
equipments (UEs). Bi-directional forward-backward training via spatially precoded over-the-air
pilot signalling is used to facilitate coordinated beamforming. Novel bi-directional beamformer
training strategies and methods for direct estimation (DE) of the stream specific beamformers are
developed for each intermediate beamformer update, using overlapping and non-orthogonal
pilots.

The latter half of this thesis considers an IAB network consisting of a BS, IAB-relays, and UEs.
Both BS and IAB-relay provide access to UEs while BS and relays exchange UEs data via a
wireless in-band backhaul using the same frequency-time resources shared with access links. A
flexible TDD-based IAB network is considered where IAB-relays and BS are assigned to different
UL or DL transmission modes to circumvent conventional half-duplex loss at the IAB-relay. An
iterative beamformer design is proposed to jointly handle the resulting cross-channel interference
over two consecutive data delivery intervals required for transmission and reception between the
BS and UEs via half-duplex IAB-relays. Dynamic traffic behaviour is dealt with via weighted
queue minimization objective for which user-specific UL/DL queues are also introduced at IAB-
relays to guarantee reliable end-to-end data delivery. Bi-directional forward-backward training via
spatially precoded over-the-air pilot signalling allows decentralized beamformer design across all
the nodes. A novel user assignment method is proposed to allocate users into BS or IAB-relays
considering long-term channel statistics and practical IAB limitations.

Keywords: coordinated beamforming, direct estimation, dynamic or flexible TDD,
integrated access and backhaul, pilot decontamination, weighted queue minimization,
weighted sum rate maximization
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Tiivistelmä

Tämä väitöskirja esittelee yhteistoiminnallisia keilanmuodostustekniikoita ja mahdollisia käy-
tännön toteutuksia monimutkaisten häiriöskenaarioiden lieventämiseksi dynaamisissa aikajako-
dupleksointijärjestelmissä (TDD) ja integroiduissa pääsy- ja backhaul-verkoissa (IAB). Enem-
män painoarvoa on annettu hajautettuun resurssien allokoi, joka mahdollistaa samanaikaisen
uplink (UL) ja downlink (DL) tiedonsiirron käyttämällä moniantennijärjestelmän (MIMO) kei-
lanmuodostustekniikat ja kaksisuuntaiset signalointimenetelmät, joilla on eri tavoitteet verkon
apuohjelmien optimoimiseksi, samalla kun otetaan huomioon tärkeät käytännön näkökohdat ja
tuleva dataliikenteen kysyntä.

Tämän opinnäytetyön ensimmäinen puolisko keskittyy dynaamisiin TDD-järjestelmiin, jois-
sa käytettävissä olevat resurssit solua kohden voidaan allokoida vapaasti joko UL:lle tai DL:lle
riippuen hetkellisestä liikennetarpeesta. Tästä syystä syntyy monimutkaisia UL-DL- ja DL-UL-
häiriöskenaarioita, jotka johtuvat samanaikaisesta UL- ja DL-tiedonsiirrosta viereisissä soluissa.
Ensisijainen huomio kiinnitetään katastrofaalisen häiriöaltistuksen lieventämiseen dynaamisissa
TDD-järjestelmissä käyttämällä MIMO-pohjaista hajautettuja iteratiivisia keilanmuodostustek-
niikoita liikennetietoisilla verkon optimointitavoitteilla, joita tuetaan minimaalisella tiedonvaih-
dolla koordinoitujen tukiasemien (BSs) ja käyttäjälaitteiden välillä (UEs). Kaksisuuntaista eteen-
päin-taakse-koulutusta spatiaalisesti esikoodatun over-the-air-pilottisignaloinnin avulla käyte-
tään koordinoidun säteenmuodostuksen helpottamiseksi. Uusia kaksisuuntaisia keilanmuodosta-
jien koulutusstrategioita ja menetelmiä keilanmuodostajien suoraa estimointia (DE) varten kehi-
tetään jokaista välikeilanmuodostajan päivitystä varten käyttämällä päällekkäisiä ja ei-ortogo-
naalisia pilotteja.

Tämän väitöskirjan jälkimmäinen puolisko käsittelee IAB-verkkoa, joka koostuu BS:stä,
IAB-releistä ja UE:ista. Sekä BS että IAB-rele tarjoavat pääsyn UE:ihin, kun taas BS ja releet
vaihtavat UE:iden dataa langattoman kaistan sisäisen backhaul-yhteyden kautta käyttämällä
samoja taajuus-aikaresursseja, jotka jaetaan pääsylinkkien kanssa. Joustavaa TDD-pohjaista
IAB-verkkoa harkitaan, jossa IAB-välittimet ja BS on määritetty eri UL- tai DL-lähetystiloihin,
jotta voidaan kiertää IAB-releen tavanomaiset half-duplex-häviöt. Iteratiivista keilanmuodosta-
jan rakennetta ehdotetaan käsittelemään samanaikaisesti tuloksena olevaa kanavien välistä häiri-
ötä kahdella peräkkäisellä tiedonsiirtovälillä, jotka tarvitaan lähetykseen ja vastaanottoon BS:n
ja UE:iden välillä half-duplex IAB-releiden kautta. Dynaamista liikennekäyttäytymistä käsitel-
lään painotetulla jonojen minimointitavoitteella, jota varten IAB-releissä otetaan käyttöön myös
käyttäjäkohtaisia UL/DL-jonoja luotettavan päästä-päähän tiedonsiirron takaamiseksi. Kaksi-
suuntainen eteenpäin-taakse-koulutus spatiaalisesti esikoodatun over-the-air pilottisignaloinnin
avulla mahdollistaa hajautetun keilanmuodostajan suunnittelun kaikissa solmuissa. Uutta käyttä-
jämääritysmenetelmää ehdotetaan käyttäjien allokoimiseksi BS- tai IAB-välitteisiin ottaen huo-
mioon pitkän aikavälin kanavatilastot ja käytännön IAB-rajoitukset.

Asiasanat: dynaaminen tai joustava TDD, integroitu pääsy ja takaisinkytkentä,
koordinoitu säteenmuodostus, painotettu jonominimointi, painotettu summan
maksimointi, pilottien puhdistaminen, suora arviointi
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List of abbreviations

Symbols and functions

A(dl)
k Average number of packets arrival at DL UE k

A(ul)
k Average number of packets generated at UL UE k

Adl Data stream indexing set for the downlink transmissions
Aul Data stream indexing set for the uplink and downlink transmissions
a(dl)

k The multiplexed rate portion for DL UE k over the backhaul
a(a)k The multiplexed rate portion for each UE k over the backhaul
a(ul)

k The multiplexed rate portion for UL UE k over the backhaul
Ai The number of UEs exceeding the spatial multiplexing capabilities of

BS-RN link
B Set of BS in dynamic TDD system
BU Set of uplink base stations
BD Set of downlink base stations
bk,l The pilot training sequence for lth data stream of DL/UL user k

BR Set of RNs in the IAB network
b(a,s)

k,l The pilot training sequences for lth data stream corresponding to UE
(UL or DL) k at timeslot s

b(a)
i,l The pilot training sequences for lth data stream corresponding to RN i

for UL or DL data
b(dl,1)

j,n The pilot training sequences for nth data stream corresponding to DL UE
j at timeslot 1

b(dl)
i,n The pilot training sequences for nth data stream corresponding to RN i

for DL data
Cik A symmetric matrix with the size of S× S, which is given by Cik =

∑{ j,l}∈Adl
b j,lbH

j,l

C UE allocation matrix
ci,k Elements in UE allocation matrix
C(n) UE allocation matrix in the nth iteration
c(n)i,k Elements in UE allocation matrix in the nth iteration

d(dl)
j,l Transmitted data symbols to DL UE j in lth spatial stream
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d(ul)
j,l Transmitted data symbols from UL UE j in lth spatial stream

d̂(a)
k,l The estimated data at RX k for lth spatial stream corresponding to UL or

DL transmission
d̂(dl)

k,l The estimated data at DL UE k received via lth spatial stream

d̂(ul)
k,l The estimated data at UL BS corresponding to UE k and lth spatial

stream
d(dl,1)

j,n Transmitted data symbols to DL UE j in nth spatial stream during 1st
timeslot

d(ul,1)
j,n Transmitted data symbols from UL UE j in nth spatial stream during 1st

timeslot
d(dl)

i,n Transmitted data symbols to DL UEs by BS/RN i in nth spatial stream

d(dl,2)
j,n Transmitted data symbols to DL UE j in nth spatial stream during 2nd

timeslot
d(ul,2)

j,n Transmitted data symbols from UL UE j in nth spatial stream during
2nd timeslot

d(ul)
i,n Transmitted data symbols to UL UEs by BS/RN i in nth spatial stream

d(a,s)
k,l Transmitted data symbols to/from UE k in lth spatial stream during the

timeslot s

d̂(dl,1)
k,l The estimated data at DL UE k for lth spatial stream and 1st timeslot

d̂(ul,1)
k,l The estimated data at UL BS for UE k and lth spatial stream and 1st

timeslot
d̂(dl)

i,l The estimated data at RN i for DL backhaul data and lth spatial stream

d̂(ul,2)
k,l The estimated data at UL BS for UE k and lth spatial stream and 2nd

timeslot
d̂(dl,2)

k,l The estimated data at DL UE k for lth spatial stream and 2nd timeslot

d̂(ul)
i,l The estimated data at RN i for UL backhaul data and lth spatial stream

d̂(a,s)
k,l The estimated data corresponding to UL/DL UE k and lth spatial stream

during the timeslot s

Di The rank of the BS-RN channel for backhaul link i

fD The maximum Doppler shift
f(dl)
ik, j,l

Estimate of the UE (stream) specific pilots
Gp The set of users shared the pilot p

gi,k The individual utility value for assigning an UE k to a particular BS or
RN i

12



H(dl)
i j ,k

The channel matrix between the DL BS i j and the UE k

H(ul-dl)
j,k The interference channel matrix between the UL UE j and the DL UE k.

H(ul)
i, j The channel matrix between user j and UL BS i

H(dl-ul)
i j ,i The interference channel matrix between the DL BS i j serving user j

and the UL BS i

Hi,k The channel matrix between BS/RN i and UE k

H̃ j,k The UE-UE interference channel matrix between UE j and UE k

Ĥ1,i The channel matrix between the BS and RN i

ik The serving BS of the user k

I j The path gain between interfering user j and BS ik
J0 A Constant value equal to log2(β ) and β is a predefined constant
J1 Fisrt order part after Taylor series approximation of the auiliary constraint
J2 Zero order part after Taylor series approximation of the auiliary constraint
K Number of UEs in the dynamic TDD system
Ki The number of users served by each BS i

K1 Fisrt order part after Taylor series approximation of the auiliary constraint
K2 Zero order part after Taylor series approximation of the auiliary constraint
Kk Additional interference term DE estimation
K̄k Additional interference term SSE estimation
kmax Maximum number of users that are assigned to the same pilot.
Lk The maximum number of spatial data streams allocated to UE k

L̄i The maximum number of spatial data streams between the BS and RN i

is
M(a)

k The received signal covariance matrix for UE k

M(dl)
k The received signal covariance matrix at DL UE k

M(ul)
k The received signal covariance matrix at UL BS for UE k

Mi Number of antennas at the BS i

m(dl)
j,l The transmit precoder for lth spatial data stream of the DL UE j

m(ul)
j,l The transmit precoder for lth spatial data stream of the UL UE j

m(a)
k,l The transmit precoder for lth spatial data stream of the UE k

m̄(a)
k,l The transmit precoder estimated in the previous iteration

m(dl,1)
k,l Transmit precoder for DL UE k via lth spatial stream at 1st timeslot

m(ul,1)
k,l Transmit precoder for UL UE k via lth spatial stream at 1st timeslot

m(ul,2)
k,l Transmit precoder for UL UE k via lth spatial stream at 2nd timeslot
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m(dl,2)
k,l Transmit precoder for DL UE k via lth spatial stream at 2nd timeslot

m(a,s)
k,l Transmit precoder for UE k via lth spatial stream at the timeslot s

M Set of all transmit precoders
M(dl,1)

k the received signal covariance matrices for DL UE k at 1st timeslot
N Number of BSs in the dynamic TDD system
Nk Number of antennas at the UE k

N0 Gaussian noise variance
N(dl)

ik
The estimation noise matrix for all pilot symbols

N(ul)
k The estimation noise matrix at UL UE k.

N(dl)
k The estimation noise matrix for all pilot symbols at DL UE k

N(ul)
ik

The estimation noise matrix for all pilot symbols at UL BS ik
Nk The estimation noise matrix for all pilot symbols
P(dl)

i The maximum transmit powers available at the i-th DL BS
P(ul)

k The maximum transmit powers available the k-th UL UE
Q(a)

k The number of queued packets for/at UE k

Q(dl)
k The number of queued packets destined for DL user k

Q(ul)
k The number of queued packets at UL user k

Q̄(ul)
k The number of queued packets destined for UL user k at serving RN

Q̄(dl)
k The number of queued packets destined for DL user k at serving RN

R(a)
k Data transmission rate to user k

R(a)
k,l Data rate over the lth spatial stream to user k

R(a)
k The received training matrices

R(dl)
k The received precoded pilot training matrix of user k at DL BS ik

R(ul)
k The received precoded pilot training matrix at UL user k

R(dl)
k,1 The received pilot training matrix at DL BS ik in Strategy B

R(ul)
k,1 The received pilot training matrix at UL UE k in Strategy B

R(a)
k,1 The received training matrices for Strategy B

R(a)
k,2 The received training matrices for Strategy C

R(dl,1)
k,l The number of transmitted bits over the lth spatial stream from DL UE k

in the 1st timeslot
R(dl,2)

k,l The number of transmitted bits over the lth spatial stream from DL UE k

in the 2nd timeslot
R(dl)

i,l The number of transmitted bits over the lth spatial stream for RN i to
serve DL UEs
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R(a,s)
k,l The number of transmitted bits over the lth spatial stream to/from UE k

at the timeslot s

R(a)
i,l The number of transmitted bits over the lth spatial stream for RN i to

serve DL/UL UEs
R(ul,2)

k,l The number of transmitted bits over the lth spatial stream from UL UE k

in the 2nd timeslot
R(ul,1)

k,l The number of transmitted bits over the lth spatial stream from UL UE k

in the 1st timeslot
R(ul)

i,l The number of transmitted bits over the lth spatial stream for RN i from
UL UEs

RGp The cost function for the pilot assignment
R(a,s)

k The received precoded training matrices at UE k at timeslot s

R(a,s)
i The received precoded training matrices at BS/RN i at timeslot s

R(dl,1)
1 The received precoded training matrices at BS k in the 1st timeslot

Rac The actual achievable sum rate
Rsum The achieved sum rate
S Length of the pilot sequence
Sk The path gain between user k serving BS ik
Si,k The path gain between BS/RN i and UE k

t(a)k,l Auxiliary variable corresponding the lth spatial data stream of the UE k

t̄(a)k,l The point of approximation

t(a,s)k,l Auxiliary variable corresponding the lth spatial data stream of the UE k

for the timeslot s

t(a)i,l Auxiliary variable corresponding the lth spatial data stream of the BS/RN
i

T(dl)
k The received precoded pilot training matrix at DL user k

T(ul)
k The received precoded pilot training matrix for UL user k at BS

T(a)
k The received precoded pilot training matrix at/for user k

T(dl,1)
k The received precoded pilot training matrix at DL user k for 1st timeslot

T(a,s)
k The received precoded pilot training matrix at/for user k for the timeslot

s

t̄(a,s)k,l The point of approximation
T Set of auxiliary variables
T Duration of the TDD frame
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tS The signalling rate
Ui The set of UEs served by each BS i

u(dl)
k,l Linear receiver employs at DL UE k

u(ul)
k,l Linear receiver employs at UL BS ik

u(a)
k,l The linear receiver for lth spatial data stream of the UE k

ũ(a)
k,l The linear MMSE receiver employed for data detection

u(dl,1)
k,l Linear receiver employs at DL UE k in 1st timeslot

u(ul,1)
k,l Linear receiver employs at UL BS for UE k in 1st timeslot

u(dl,2)
k,l Linear receiver employs at DL UE k in 2nd timeslot

u(ul,2)
k,l Linear receiver employs at UL BS for UE k in 2nd timeslot

ũ(dl,1)
k,l The linear MMSE receiver employed for data detection at DL UE k in

1st timeslot
v(dl)

i,l Transmit precoder for RN i at BS, via lth spatial stream

v(ul)
i,l Transmit precoder of the RN i to BS, via lth spatial stream

v(a)i The scaled dual variable corresponding to equality constraint
v(a)i,l Transmit precoder for/at RN i at/for BS, via lth spatial stream

w(dl)
i,l Linear receiver employs at RN i to decode backhaul data from BS via lth

spatial stream.
w(ul)

i,l Linear receiver employs at BS to decode backhaul data from RN i via lth

spatial stream.
W The set of all receive beamformers
x(dl)

k The received signal at the DL user k

x(ul)
i The received signal at the UL BS i

x(ul,1)
i The received signal at RN i in 1st timeslot

x(ul,2)
1 The received signal at BS in 2nd timeslot

x(dl,1)
k The received signal at DL UE k in 1st timeslot

x(dl,2)
k The received signal at DL k in 2nd timeslot

Yk The set of users with shortest UE-UE distance to user k

z(dl)
k Complex white Gaussian noise vector at the DL user k

z(ul)
i Complex white Gaussian noise vector at the UL BS i

zk Complex white Gaussian noise vector at user k

αk User prioritize weights
β A predifined constant introduced with auxiliary MSE constraint
βi Complex path amplitude of the ith component
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δ ik, j,l The estimation noise and pilot contamination corresponding to pilot
sequence b j,l at BS ik.

∆ The number bisection iterations required to satisfy the power constraint
ε
(a,s)
k,l MSE for UL/DL data detection for UE k, data stream l in timeslot s

ε
(a)
i,l MSE for UL/DL data detection at BS/RN i for data stream

ε
(dl,1)
k,l MSE for DL data detection for UE k, data stream l in 1st timeslot

Ψ
(dl)
k The queue deviation metric for all DL UE queues at the BS

Ψ
(ul)
k The queue deviation metric for UL UE k

Ψ̄
(dl)
k The queue deviation metric for DL UE k at the RN ik

Ψ̄
(ul)
k The queue deviation metric for UL UE k at the RN ik

Ψ̃
(a)
k Vector with elements α

1/q
k Ψ

(a)
k

˜̄
Ψ

(a)
k Vector with elements α

1/q
k Ψ̄

(a)
k

ω
(a,s)
k,l Dual variable for UE k, data stream l and timeslot s

ω
(dl,1)
k,l Dual variable for DL UE k for data stream l in 1st timeslot

ω
(dl)
i,l Dual variable for DL RN i for data stream l in 1st timeslot

ω
(ul,1)
k,l Dual variable for UL UE k for data stream l in 1st timeslot

ω̄
(a,s)
k,l Dual variable value from previous iteration

Φ
(dl,1)
1 The weighted transmit co-variance matrix

γ
(a)
k,l SINR at RX node for DL/UL data transmission

γ
(dl)
k,l SINR at DL UE k

γ
(ul)
k,l SINR at UL BS for UL UE k

ε
(a)
k,l The MSE for lth stream of for UE k corresponding to UL/DL data

detection
ε̃
(a)
k,l The MSE when MMSE receiver is employed

εik Error bound associated with Eik in the ellipsoidal uncertainty model
η Weight of the LoS component H2

θr,i Angle of arrival for ith dominant path
λ
(a)
k Number of packets arrivals in bits per seconds for UE k

λ
(dl)
k Number of packets arrivals in bits per seconds for DL UE k

λ
(ul)
k Number of packets arrivals in bits per seconds for UL UE k

ν
(a)
k Dual variable corresponding to the power constraint for UE k

ν
(dl)
k Dual variable corresponding to the power constraint at DL BS ik

ν
(ul)
k Dual variable corresponding to the power constraint at UL UE k

ν
(dl,1)
1 Dual variable corresponding to the power constraint at BS
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Φ
(a)
k The weighted transmit covariance matrix for UE k

Φ
(dl)
k The weighted transmit covariance matrix for DL UE k

Φ
(ul)
k The weighted transmit covariance matrix for UL UE k

Φ̄
(dl)
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(ul)
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(dl)
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Ψ
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(a)
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ξ Variable introduced for aggressive convergence
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θ A constant > 1
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(a)
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Ωk The cross pilot interference
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XH Hermitian of matrix X
X∗ Conjugate of matrix X
XT Transpose of matrix X
X−1 Inverse of matrix X
X† Pseudo-inverse of matrix X
(X)i, j Element at the ith row and the jth column of matrix X
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Pois(·) Poisson arrival process
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GP Guard period
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IAB Integrated Access and Backhaul
i.i.d. Independent and identically distributed
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LTE Long Term Evolution
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MSE Mean square error
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OTA Over-the-air
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QoS Quality of service
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SCA Successive convex approximation
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SMSE Sum mean square error
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TDD Time division duplex
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1 Introduction

1.1 Background and introduction

During the last couple of decades, radical technological transformations have occurred
worldwide, primarily due to the progression of the semiconductor industry, computers,
smartphones, artificial intelligence, the internet and wireless communication [1, 2, 3, 4].
In particular, wireless communication has paved the way for the development of
numerous other technologies and applications. Furthermore, the demand for mobile
data traffic has increased exponentially over the past decade and is expected to increase
further in the upcoming years [5, 6]. Notably, 5th generation (5G) technology-based
wireless networks are expected to provide extremely high data rates, significant capacity
enhancements, high reliability, and ultra-low latency communication by aiming to meet
the demands of new application scenarios [7, 8, 9, 10].

At the commencement of 5G standardization activities, three main application
scenarios were defined to be accomplished from 5G. These were enhanced mobile
broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive
machine type communications (mMTC) [11, 12, 13, 14]. The aim of 5G eMBB is
to deliver high capacity, throughput, and data rates, whereas URLLC is expected to
provide highly reliable and low latency data communication for critical industrial
applications and autonomous vehicles. The 5G mMTC standard is designed to improve
the capabilities of long-term evolution for machines (LTE-M) and narrowband internet
of things (NB-IoT) such as battery life, coverage, and device density by connecting many
devices to 5G base stations (BSs). Researchers and 3rd generation partnership project
( 3GPP) delegates have examined different approaches to meet these requirements,
including applying larger bandwidths, multiple antenna techniques, new physical layer
designs, and flexible frame structures, etc [10, 15, 16, 17].

The first phase of the 5G launch began in mid-2019 based on 3GPP Release 15,
with the main objective of providing greater capacity and higher data rates for mobile
broadband [18]. In general, these targets can be fundamentally attained using broader
bandwidth and spectrally efficient methods, such as densification of the access network
and the use of multiple antenna beamformer techniques. Moreover, the 5G spectrum
consists of both licensed and unlicensed frequencies, with time-division-duplexing
(TDD) and frequency-division-duplexing (FDD) methods to increase the capacity and
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coverage of mobile networks. For capacity and data rate enhancements, TDD operates
at 2.5-5.0 GHz and millimetre-wave (mm-Wave) 24–39 GHz, while FDD operates
below 2.7 GHz to offer wide coverage, low latency, and high-reliability [7]. Moreover,
multiple-input-multiple-output (MIMO) beamforming is theoretically shown to deliver
higher spectral efficiency and greater coverage while improving the link performance
by mitigating catastrophic interference [19, 20]. The most notable difference between
5G and LTE is the emphasis on beamforming and the prevalence of TDD, due to
antennas being smaller at higher frequencies, making massive MIMO deployments more
convenient and TDD more suitable for eMBB deployment. [21, 22].

Traditionally, mobile networks have primarily been FDD, in part because FDD is
more suitable for networks of macrocells deployed with a wide coverage area and partly
because FDD was traditionally designed for symmetric traffic using paired spectrum
[23]. Nevertheless, it is crucial to consider the traffic asymmetry between downlinks
(DL) and uplinks (UL) in order to optimize networks in 5G and beyond. In this respect,
TDD systems have become increasingly important as they are inherently more spectrally
efficient than FDD systems. Consequently, TDD technology has been embraced for
TD-LTE and 5G networks operating at 2.5-5 GHz and mm-Wave frequencies. These
developments were driven mainly by the desire to avoid paying patent royalties for
competing with FDD-based standards and the ability to use an unpaired spectrum
[7, 24, 25].

In 5G, TDD becomes even more compelling for a number of reasons. First, a
large number of small cells with a short-range are required in order to achieve the
desired spectral efficiency. Promisingly, TDD-based small cell deployments offer better
performance where the transmit powers, mobile speeds, and channel propagation delays
are relatively low. The second key technical concept is the use of large (distributed)
antenna arrays in order to simultaneously serve multiple user-equipments (UEs) and
suppress many undesired interference sources [26, 27, 28, 29]. Again, such an approach
is better matched to TDD networks as TDD offers reciprocity-based channel acquisition
and facilitates efficient downlink beamforming without explicit feedback from users
to circumvent problems due to limited pilot resources [26, 30]. Finally, as networks
become more data-centric and thus less symmetric in their traffic, TDD allows for
resources to be dynamically adapted between the UL and DL by changing the number of
time slots allocated to each direction within the TDD frame.

5G with TDD has strict requirements for synchronization and timing alignment of
DL and UL among inter-operators and cells as there is a possibility of having BS-BS
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Fig. 1. Asymmetric traffic handling in Dynamic TDD systems by allocating UL-DL resources
asynchronously over the network.

and UE-UE interference due to timing misalignment [31, 32]. Interference such as
this is remarkably similar to interference observed in dynamic TDD systems, in which
resource allocation between UL and DL can be done asynchronously. In phase 2 of
5G, dynamic TDD is under consideration, which is well suited for small cell scenarios
because the amount of instantaneous UL and DL traffic can vary significantly with time
and between adjacent cells [33]. Nevertheless, dynamic TDD requires novel schemes for
training, channel feedback, dynamic resource allocation and interference management.
Until recently, how dynamic TDD interacts with such schemes has not been thoroughly
studied.

Fig.1 illustrates an example of UL/DL resource allocation within a dynamic TDD
network. Besides the normal UL-to-UL and DL-to-DL types of interference, dynamic
TDD in multi-cell operation may also cause UL-to-DL interference (UE-UE) and
DL-to-UL interference (BS-BS). [33, 34, 35, 36]. In order to mitigate or even avoid this
interference, resource allocation and beamforming can both be carried out collectively
by a coordinating group of cells that consist of both UEs and BSs. Such coordination, in
turn, requires acquiring channel state information (CSI) of the transmitter to receiver
links. The channel reciprocity can be utilized to acquire the CSI of the UE-BS links;
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however, the particular challenge of the dynamic TDD approach is the acquisition of the
CSI between the mutually interfering UE terminals [37, 38, 39]. In order to support such
functionality, the UEs should start performing similar functions as BSs have traditionally
done, i.e., being more aware of the neighbourhood and measuring the other nodes
in the near vicinity and exchanging control information among different nodes, etc.
In particular, UEs must provide UE-to-UE CSI via explicit feedback or over-the-air
(OTA) signalling mechanisms that rely on precoded uplink pilots [26, 40]. The frame
structure in 5G offers larger flexibility in symbol allocation between uplink and downlink,
which encourages traffic-aware dynamic TDD operation, and also mini-slots structures
can be utilized to facilitate the OTA signalling framework [16, 41, 36]. Hence, an
application-specific frame can be employed to support beamforming functionality on
dynamic TDD, by dividing the TDD frame into two portions: 1. Beamformer signalling
and 2. Data transmission. TDD frames should be long enough to facilitate multiple OTA
bidirectional signalling iterations to obtain sufficiently converged beamformers while
keeping the training overhead at modest levels. Implementing the above TDD frame
structure is possible with the approved 3GPP NR standard, as detailed in [36].

To meet ever-growing traffic demands, small cells ought to be densely deployed by
the next generation of cellular systems [42, 43]. A fibre-based backhaul is expensive to
connect these small cells to the core network, and a separate wireless radio backhaul
is not always practical if the site space is limited. Therefore, a high-speed wireless
backhaul makes more sense since it is more cost-effective, flexible, and easier to
deploy [44, 45, 46]. Furthermore, small cells will be able to benefit from the large
bandwidth of 5G, which makes it an attractive backhaul solution. Due to these factors,
the second phase of 5G studies focused on studying integrated access and backhaul (IAB)
systems under the new radio (NR) technologies mentioned in the 3GPP specification
[47, 48, 49, 50, 51].

In IAB or a self-backhauling system which is shown in Fig.2, the backhaul and
access use the same time and frequency resources [47, 52]. It is important to note
that IAB supports simultaneous UL and DL transmissions; the available resources per
TDD frame can be freely allocated between UL and DL transmission depending on
traffic demands and user distribution within the network. As a consequence of such
traffic-aware flexible TDD based IAB networks, managing dynamic traffic in small
cells and mitigating interference are the challenges that arise in them. To counteract the
additional UL-to-DL and DL-to-UL interference that can arise in a dynamic setting, BSs
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Fig. 2. An example of an IAB system sharing wireless resources for backhauling and access.

should use advanced coordinated resource allocation and beamforming methods where
the transmissions within a coordinated set of cells are designed jointly.

1.2 Literature review

The relevant state of the art which is associated with the scope of this thesis is presented
in this section. The Dynamic TDD system and prior works are described in Section
1.2.1. In Section 1.2.2, literature is presented on Integrated and Access. These provide
the background to the detailed analysis considered in Chapters 2-3.

1.2.1 Dynamic TDD

Mobile data traffic is expected to grow exponentially in the coming years due to ever-
increasing smartphone usage, and massive demand for online video and cloud services
[5, 18, 53]. During the COVID-19 pandemic, mobile data traffic spiked significantly
as a result of the development of the concept of remote working [54]. Thus, future
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wireless mobile networks should be able to handle the growing traffic demands that are
asymmetrical and bursty. Small-cell deployment has been identified as a key research
direction to fulfil these requirements [55, 56, 57, 58]. A large number of small cells with
a very small coverage area can be used in addition to the traditional macro/micro cells to
deliver mobile data in high mobile data traffic areas [34, 59, 60]. TDD based small-cell
deployments are very useful in such circumstances, where the transmit powers, mobile
speeds and channel propagation delays are relatively low. Furthermore, asymmetric
mobile data traffic can be efficiently handled with TDD by allocating resources in
UL and DL directions based on the instantaneous traffic demand. Hence, TDD based
small-cell networks provide several benefits, such as reduced complexity CSI estimation
using channel reciprocity, flexible handling of dynamic traffic and easy frequency re-use
planning [33, 61, 30].

In a small cell network, imposing the same fixed UL/DL configuration over the
network would greatly limit the overall resource utilization as the adjacent cells
potentially have different instantaneous UL/DL traffic demands. Dynamic TDD can be
used to overcome this problem by adjusting the UL/DL mode asynchronously based
on the traffic state of each individual cell [33, 62]. More importantly, the 3GPP NR
standard has given special consideration to fully dynamic or flexible TDD, which is an
essential aspect of 5G [16, 63]. It is therefore necessary for the new 5G air interfaces to
meet the physical layer latency requirements without imposing limitations on UL/DL
slot assignment [64].

Interference management in dynamic TDD systems becomes more challenging
as complicated interference scenarios arise due to simultaneous UL and DL data
transmission in adjacent cells [65]. Specifically, the DL BS transmission may interfere
with the UL reception (BS-BS interference) and the UL UE transmission may interfere
with DL reception (UE-UE interference). Previous studies on dynamic TDD have
focused on complicated time slot allocation algorithms that mitigate this cross-link
interference [27, 66, 67, 68, 69]. In addition to increased spectral efficiency and
improved reliability, spatial processing via MIMO systems provides additional degrees
of freedom to mitigate the detrimental interference both at the transmitter and receiver
[70, 71]. Hence, the interference management in dynamic TDD based small-cell
deployments is more efficient when both BSs and UEs are equipped with multiple
antennas.

While the channel reciprocity can be utilized to acquire the CSI of the UE-BS and
BS-BS links, a specific challenge of the dynamic TDD approach is to acquire the CSI
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between the mutually interfering UEs. Explicit feedback of the UE-UE channels in
addition to a full CSI exchange between BSs would be required to enable an optimal
beamformer design which renders the centralized design impractical. However, the
coordinated beamformer design for dynamic TDD systems can be carried out in a
decentralized manner with the help of bi-directional forward-backward (F-B) training
via spatially precoded OTA pilot signalling [37, 39, 36]. In this case, it is essential to
have fast beamformer convergence to implement these systems in practice with fading
channels and to minimize the training overhead [36].

Accurate CSI estimation is essential for any beamformer design. Hence, we need
to employ distinguishable pilot sequences to estimate corresponding channels at the
relevant nodes. However, the number of orthogonal pilot sequences that can be used
for CSI estimation is constrained due to the limited coherence time and coherence
bandwidth of the wireless channel [26, 72]. Consequently, in dense networks, the
number of orthogonal pilots is not sufficient to distinguish all possible channels. Hence,
we must reuse pilot sequences or employ non-orthogonal pilots to estimate the CSI.
This, on the other hand, causes the so-called pilot contamination effect, where the
desired channel is polluted by other channels [26, 73, 74]. Therefore, beamformer or
CSI estimation should be robust against any pilot contamination effect.

The vast majority of dynamic TDD studies are focused on the development of
distributed dynamic time slot allocation algorithms to alleviate cross-slot interference.
For example, in [27, 66, 67, 68, 69] different centralized and decentralized strategies for
allocating time slots are addressed and compared. Small cell dynamic TDD transmissions
have been investigated for heterogeneous networks by utilizing a cell clustering and
power control based interference cancellation scheme in [75]. An energy efficiency
(EE) beamformer design was proposed in [76], with the cloud radio access network
assumption, which requires centralized processing. Furthermore, the dynamic TDD
system was analysed using a game-theoretic model in [65], for UL/DL optimization.

In the context of synchronous UL/DL1 TDD networks, numerous centralized
and decentralized beamformer designs with different coordination assumptions have
been considered to optimize network utilities such as weighted sum rate (WSR)
maximization, EE, weighted queue minimization (WQM), and weighted sum mean
square error (WSMSE) minimization, e.g., in [37, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86].
Several cross-layer resource allocation problems are discussed in [77, 78], and various

1Synchronous UL/DL refers to the transmission of UL/DL over a multi-cell network synchronously
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decentralized solutions are presented with a variety of assumptions and configurations.
In [79], distributed transmit beamforming was studied for the cognitive radio network. In
[80, 81], the WSR maximization is carried out via WSMSE minimization and alternating
optimization of the transmit precoders and receive beamformers. Expected WSR is
maximized for the noisy MIMO K-cell interfering broadcast channel (IBC) in [82] by
exploiting the relationship between WSR and WMSE assuming partial CSI availability
at the transmitter and perfect CSI at the receiver. A systematic comparison of distributed
beamforming optimization algorithms in terms of performance, complexity, information
exchange, and convergence properties was carried out in [83]. A low-complexity
approximate beamforming technique with a fast converging iterative algorithm was
proposed in [84] for maximizing EE in multiuser downlink systems. Furthermore,
the authors in [37] proposed a distributed CSI acquisition framework and novel fast
converging strategies for the iterative WSMSE based approach in a realistic multi-cell
environment. Further convergence improvements for the WSR problem based on
successive convex approximation (SCA) methods were proposed in [85], along with the
additional per-user quality of service (QoS)/rate constraints. Recently, a traffic-aware
transceiver design for weighted queue minimization has been investigated in [86].
Similar to [37, 80, 81, 85], the decentralized solution in [86] was based on the iterative
evaluation of Karush-Kuhn-Tucker (KKT) conditions of the optimization problem. The
resulting beamformer structures were shown to be very similar to those corresponding to
other optimization objectives such as WSR maximization, WSMSE minimization, etc.
However, most of these studies assumed perfect channel estimation in their designs.

Practical implementation of coordinated precoding and CSI acquisition have been
investigated in, e.g., [37, 39, 87, 88, 89]. Therein, bidirectional F-B training using
spatially precoded pilots is employed to provide an implicit exchange of intermediate
beamformers between BSs and UEs, assuming that enough orthogonal pilots are
available for stream specific precoded pilots. Moreover, the pilot contamination
effect and possible ways to mitigate this impact have been studied by employing
precoded pilot estimation techniques and different pilot allocation/reuse methods,
e.g., in [90, 73, 91, 92, 93, 94, 95, 96, 97]. Blind pilot decontamination without
coordination between cells is considered in [90], where the authors proposed a channel
predicting approach by utilizing the properties of random matrix theory. Bjornson et al.

[73, 91] investigated pilot contamination in massive MIMO systems and performed a
mathematical analysis to find asymptotic limitations and develop an engineering solution
for pilot assignment. Further, in [73], it is discovered that pilot contamination generally
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does not cause a fundamental upper limit on the spectral efficiency in massive MIMO,
due to the fact that the users’ angular spread does not overlap. In [92], the achievable
rates in a contaminated multi-user MIMO system were analysed, and decontamination
based on MMSE estimation in [93] was discussed. In [94], pilot sequence hopping is
performed at each transmission slot to reduce pilot contamination, and Kalman filtering
is also applied to enhance the channel estimation. A recent study in [97] exploited
channel sparsity to tackle pilot contamination in a cell-free massive MIMO system, in
there consider semi-blind methods for joint channel estimation and data detection.

An interesting approach to mitigating pilot contamination was proposed in [39],
where a direct least squares (LS) beamformer estimation from the contaminated
UL/DL pilots was investigated. In [98], the authors show how pilot precoding and
combining can accommodate a large number of UEs in one cell and significantly
improve channel estimation quality. Moreover, there have been a few studies to mitigate
pilot contamination by using pilot reuse algorithms with the use of channel statistics.
For example, in [95], spatial correlation properties are utilized for reusing the pilot
resources among users with sufficient angular separation. An analysis of open-loop
power control and pilot sequence reuse schemes within a group of cells was investigated
in [99]. An algorithm for scheduling pilots in conjunction with beamforming based
on an optimization framework was proposed in [96]. However, none of these studies
considers dynamic TDD settings.

1.2.2 Integrated access and backhaul

Small cell deployment has been recognized as a key research direction to fulfil ever-
growing traffic demand in the next generation of cellular systems [5, 34, 100]. However,
connecting these small cell BSs to the core network using optical fibre links/backhaul
can be onerous and complex [101]. Current developments of mm-Wave communication
have enabled the possibility to use a high-speed wireless backhaul to densified small-cell
networks, which can be more cost-effective, flexible, and easier to deploy [102]. These
networks are referred to as IAB systems or self-backhaul systems.

A self-backhauling or IAB network consists of three components, which in 3GPP
standardization have been coined as IAB-donor (referred to as BS), IAB-nodes (i.e.,
relay nodes (RNs)), and UEs [47]. Relay nodes assist the BS to provide wireless access
to UEs while the BS offers both direct access for UEs to the core network and wireless
backhauling functionality to RNs. Moreover, IAB offers the flexibility to use the same
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wireless resources for access and backhaul data transmissions simultaneously in both UL
and DL directions based on the traffic requirements. Therefore, IAB plays a vital role in
wireless communication networks to expand coverage and improve the throughput with
lower transmit power requirements and with minimal planning and implementation
cost. Consequently, IAB systems have received significant attention in the 3GPP NR
specifications [47, 48, 49, 103].

IAB network is a cooperative relaying network with some advanced capabilities.
Cooperative relaying can be used to improve the reliability, throughput, and coverage of
communication with lower power requirements [104, 105, 106, 107, 108]. Higher layer
(layer 2 or layer 3) relaying protocol such as decode-and-forward (DF) protocol is more
suited for the IAB network as the relay node (RN) must be capable of simultaneously
handling multiple UL and DL UEs. Furthermore, it is essential to have user-specific
queues for both UL and DL UEs at RNs to guarantee end-to-end data delivery. Full-
duplex (FD) relaying with DF protocol at the RN has been considered in some recent
studies on IAB functionality [109, 110, 111]. Even though FD relaying facilitates both
backhaul and access data transmission simultaneously, the practical implementation is
still challenging due to excessive complexity and production costs [112, 113]. Moreover,
two-way half-duplexed (HD) relaying protocol has emerged as a potential alternative to
FD relaying protocol, which utilizes the spectrum more efficiently and considerably
reduces the conventional HD loss [114, 115, 116]. In the two-way HD relaying protocol,
both BS and UEs (served by RN) transmit backhaul and access data to the RN in the
first timeslot (multiple access stage) while in the next timeslot, the RN broadcasts
receive messages to BS and UEs (broadcasting stage), thus both UL and DL UE data are
served within two consecutive time intervals. As the current 3GPP NR study encourages
application-specific flexible frame structures, by employing flexible TDD based resource
scheduling, IAB networks can support two-way HD relaying [16]. Nevertheless, it
is challenging to handle complicated cross-link interference scenarios introduced in
the IAB system. MIMO systems provide more spatial degrees of freedom to mitigate
interference in complex interference-limited systems [117]. Hence, the interference in
IAB networks can be efficiently mitigated by employing multiple antennas at each node.

It is essential to collect required CSI, either centralized or decentralized, to design
beamformers for the IAB system. In a flexible TDD-based IAB, the channel reciprocity
can be used to acquire the CSI between each node via reverse link pilot measurements.
A specific challenge with the considered flexible-TDD (where both UL and DL transmis-
sions co-exist) arrangement is the CSI acquisition of the cross-link interference channels,
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e.g., among mutually interfering user terminals. Explicit feedback of the UE-to-UE and
RN-to-UE channels to the BS would be required to enable optimal beamformer design,
which would make the centralized implementation infeasible in practice. However,
the decentralized coordinated beamformer design can be made possible by employing
bi-directional F-B training via spatially precoded OTA pilot signalling [37, 39, 36].
In practice, the number of orthogonal pilot sequences is limited as their availability
for CSI estimation depends on the coherence time and coherence bandwidth of the
wireless channel [26, 72]. Smart pilot reuse schemes or robust estimation techniques
with non-orthogonal pilots can be employed to carry out the beamformer design by
adequately mitigating the pilot contamination effect [89].

The recent advances of self-interference (SI) cancellation techniques have motivated
to carry out research on FD in-band communication [118, 119], also applied to self-
backhauling networks [109, 110, 111, 74, 120, 121]. For example, in [109], downlink
spectrum allocation schemes were studied for FD small cell networks in both centralized
and decentralized manners by considering in-band FD, out-band FD, and hybrid
schemes. In [110, 111], robust beamformer designs were proposed for an FD MIMO
relaying system assuming imperfect CSI estimation. In addition, in [74], the resource
allocation/optimization with mm-Wave and massive MIMO techniques was investigated.
Authors in [120] have considered FD relaying for heterogeneous networks, and the
two-way FD relaying has been proposed and compared with the existing FD and HD
relaying schemes in [121]. The majority of these studies compared results with the
conventional HD system, which is 50 per cent inefficient. As an alternative to FD
systems, there are numerous studies on two-way HD relaying in [114, 115, 116, 117,
122, 123, 124, 125], which have shown that two-way HD relaying improves the spectral
efficiency significantly compared to the conventional HD system. Most of these studies
have considered physical-layer network coding (PNC) and beamforming techniques to
assist the two-way relaying. In addition, there have been two recent studies on IAB that
investigated the optimization of uplink power control, topology, and routing by using
genetic algorithm-based techniques [126, 127].

There have been numerous studies on multi-user MIMO based beamformer designs
for optimizing network utilities such as WSR, WMMSE, and WQM in both centralized
and decentralized manners with different coordination assumptions [37, 80, 81, 86].
Furthermore, the practical implementation of the coordinated precoding and CSI
acquisition by employing bi-directional OTA signalling has been studied in, e.g., [37, 39,
89]. Different techniques were investigated in [39, 90, 93, 95, 128] to mitigate the pilot
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contamination effect at the CSI estimation process. In particular, a practical approach
based on direct LS beamformer estimation from the contaminated UL/DL pilots was
investigated in [39].

1.3 Aims, contributions and outline of this thesis

The aim of this thesis is to investigate certain flexible TDD-based heterogeneous
networks, such as dynamic TDD systems and IAB systems, which are crucial when
designing future wireless systems. In particular, a greater emphasis is placed on
developing new algorithms for training, channel feedback, resource allocation, and
interference management in such networks.

In the first part of this thesis, the focus is on a multi-cell, multi-user network that
operates in a traffic-aware, dynamic TDD mode. There, the UL-DL timeslot allocation
is different from one cell to another. Later in this thesis, the focus is directed at a
flexible TDD-based IAB system, in which the BS and IAB-relays operate in different
UL-DL modes. The following is the outline of this thesis, which summarizes the major
contributions of each chapter.

Chapter 2 is based on the results which have been documented in [129, 130, 131,
132, 133], which presents a detailed analysis of dynamic TDD networks, in which the
available resources per cell can be freely allocated to either UL or DL depending on
the instantaneous traffic demand. Particular interest is given to complicated UL-DL
and DL-UL interference scenarios that arise due to simultaneous UL and DL data
transmission in adjacent cells. Then, decentralized iterative beamformer designs are
proposed for several traffic-aware network optimization objectives such that only
minimal information exchange is required among the coordinated BSs and UEs. Chapter
2 further focuses on bi-directional F-B training via spatially precoded over-the-air
pilot signalling to facilitate coordinated beamforming. The aforementioned allows
BSs and UEs to iteratively optimize their respective transmitters/receivers based on
only locally measured reverse link pilot measurements. Later in the chapter, novel
bi-directional beamformer training strategies and methods for direct estimation (DE)
of the stream specific beamformers are developed for each intermediate beamformer
update in a limited and noisy pilot environment. The proposed signalling and DE
schemes allow for non-orthogonal and overlapping pilots, which considerably reduces
the resource coordination effort. Later in the chapter, the decontamination ability of the
proposed strategies with limited pilot resources is analysed using numerical examples
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and the proposed training and estimation framework is compared to the traditional
stream-specific channel estimation method and an uncoordinated system.

Chapter 3 is based on the results of which have been detailed in [134, 135], and it
studies the IAB network, which consists of one BS, several RNs, and UEs, in which BS
and RNs exchange UE data via a wireless in-band backhaul while sharing the same
frequency-time resources with access links. Further in the study, a flexible TDD-based
IAB network is considered where RNs and BS are assigned to distinct UL or DL
transmission modes to mitigate conventional HD loss at RNs. An iterative beamformer
design is proposed to manage the resulting cross-channel interference and to allocate
a wireless backhaul and access resources jointly over two consecutive data delivery
intervals required for communications between the BS and UEs through HD RNs.
Dynamic traffic behaviour is handled via weighted queue minimization objective, and
user-specific UL/DL queues are also introduced at RNs to guarantee reliable end-to-end
data delivery. Bi-directional F-B training via spatially precoded over-the-air pilot
signalling is employed to allow decentralized beamformer design across all the nodes.
A novel user allocation method is proposed to assign UEs to BS or RNs based only
on long-term channel statistics and some practical IAB limitations. The numerical
examples are carried out to compare the proposed flexible IAB system and conventional
HD relaying system.

Chapter 4 concludes this thesis and discusses several potential future directions
based on this work.

1.4 The author’s contribution to the publications

This thesis is based, in part, on two journal articles [133, 134] and five conference
articles [129, 130, 131, 132, 135] that have been already published. The author of this
thesis had the primary responsibility of comprehending the original ideas, derivation of
the equations, developing the simulation software, producing the numerical results,
and writing the articles. Co-authors provided comments, criticism, support during the
process.

In addition to the papers above, the author has published three journal articles
[108, 136, 137] and six conference articles [138, 139, 140, 141, 142, 143] that are not
included in this thesis.
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2 Bi-directional beamformer training for
dynamic TDD networks

2.1 Introduction

Motivated by the concerns in Section 1.2.1, we study several decentralized beamformer
designs with different optimization objectives for multi-cell multi-user MIMO dynamic
TDD systems. We consider WQM, and its special cases, queue weighted sum rate
(QWSR) maximization and sum mean square error (SMSE) minimization objectives
with power constraints at DL BSs and UL UEs. First, we improve the convergence
properties of the WQM approach presented in [86] by reformulating it similar to [85],
and the problem is solved via iterative evaluation of KKT conditions leading to a
distributed algorithm. Then, to facilitate practical implementation, we employ OTA
signalling architecture as in [37, 39, 36]. More specifically, we employ precoded pilots
to exchange the intermediate beamformers in both backward and forward directions
iteratively. We consider a TDD frame to carry out both OTA bi-directional signalling and
data transmission. Moreover, several bi-directional training iterations can be embedded
into a TDD frame before the data transmission. A methodology was proposed in [36], to
implement this TDD frame structure by adapting standardization works on 3GPP NR
[16]. As the number of OTA signalling rounds is increased, the time remaining for the
actual data transmission becomes shorter. Hence, the impact of OTA training overhead
is investigated via numerical simulations.

Moreover, we propose three different direct beamformer estimation methods to
alleviate the pilot contamination effect. In these methods, we use the received pre-
coded pilot information to estimate intermediate beamformers directly using LS based
estimation without separately decorrelating individual pilot sequences. We refer to
these approaches as DE methods. The DE approaches are compared with conventional
stream-specific estimation (SSE) method, where the beamformers are constructed from
the estimated equivalent (precoded) channel vectors. In both techniques, precoded pilot
sequences are used to implicitly exchange information on beamformers and user-specific
weights. However, when non-orthogonal pilots are used for the beamformer signalling,
the DE approach provides a better estimation due to the LS based estimation gain.
Furthermore, the superiority of the DE method (versus SSE) is demonstrated analytically.
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Finally, to enhance the decontamination further, we consider a traditional pilot reuse
approach for alleviating pilot overlap. A simple (but centralized) pilot reuse approach is
proposed for a complicated dynamic TDD setup based on large-scale fading information
of the BS-UE and UE-UE channels.

The following are the major contributions of this chapter:

– A fast converging iterative decentralized beamformer design is proposed for a dynamic
TDD system with the WQM objective.

– The proposed design is adapted to QWSR maximization and SMSE minimization
objectives as special cases of a WQM design.

– OTA bi-directional signalling architecture is proposed to implement beamformer
designs in practice.

– Three DE-based beamformer estimation strategies are proposed to mitigate the pilot
contamination.

– The superiority of DE over SSE is proven analytically.
– A centralized pilot reuse algorithm is proposed to a dynamic TDD setting.
– The performance of the proposed methods is studied with numerical examples.

This chapter is based on of our previously published journal [133] and conference
papers [129, 130, 131, 132].

2.2 System model

We consider a multi-cell multi-user MIMO system operating in dynamic TDD mode.
The multi-cell network consists of N BSs and K UEs. We denote the set of BS indices
as B = {1, . . . ,N}, while the set of UEs served by each BS i is denoted by Ui. The
number of users served by each BS i is denoted by Ki = |Ui|. Additionally, the serving
BS of the user k is denoted as ik. Each UE k employs Nk antenna elements, whereas
each BS i employs Mi antenna elements. In a given time, a subset of base stations
BU ⊆ B serves the uplink traffic and the rest of the base stations BD = B\BU serve
the DL traffic. The maximum number of spatial data streams allocated to UE k ∈ Ui is
denoted by Lk ≤ min(Mi,Nk). For notational simplicity, we define two sets Adl = { j,

l| j ∈ Ui, l = 1, . . . ,L j, i ∈ BD} and Aul = { j, l| j ∈ Ui, l = 1, . . . ,L j, i ∈ BU}. Here, Aul

and Adl represent data stream indexing sets for the uplink and downlink transmissions,
respectively. Furthermore, we assume the channels to be reciprocal in the UL and DL.
The dynamic TDD model is illustrated in Fig. 3.
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Fig. 3. Dynamic TDD system (Reprinted, with permission, from [133] ©2018 IEEE).

The received signal x(dl)
k ∈ CNk at the DL user k can be expressed as

x(dl)
k = ∑

{ j,l}∈Adl

H(dl)
i j ,k

m(dl)
j,l d(dl)

j,l + ∑
{ j,l}∈Aul

H(ul-dl)
j,k m(ul)

j,l d(ul)
j,l + z(dl)

k , (1)

where H(dl)
i j ,k

∈ CNk×Mi j is the channel matrix between the DL BS i j and the UE k,

H(ul-dl)
j,k ∈ CNk×N j is the interference channel matrix between the UL UE j and the

DL UE k. The transmit precoder for lth spatial data stream of the DL UE j ∈ Ui is
denoted as m(dl)

j,l ∈ CMi and the transmit precoder for lth spatial data stream of the UL

UE j ∈ Ui is m(ul)
j,l ∈ CN j . Transmitted data symbols to DL UE j in lth spatial stream

and transmitted data symbols from UL UE j in lth spatial stream are denoted as d(dl)
j,l and

d(ul)
j,l , respectively. Here, the transmit data symbols are assumed to be independent and

identically distributed with E{|d(dl)
j,l |2}= 1 and E{|d(ul)

j,l |2}= 1. We assume complex

white Gaussian noise vector z(dl)
k ∈ CNk with variance N0 per element. Similarly, the
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received signal x(ul)
i ∈ CMi at the uplink BS i is given by

x(ul)
i = ∑

{ j,l}∈Aul

H(ul)
i, j m(ul)

j,l d(ul)
j,l + ∑

{ j,l}∈Adl

H(dl-ul)
i j ,i m(dl)

j,l d(dl)
j,l + z(ul)

i , (2)

where H(ul)
i, j ∈ CMi×N j is the channel matrix between user j and UL BS i, H(dl-ul)

i j ,i ∈
CMi×Mi j is the interference channel matrix between the DL BS i j serving user j and
the UL BS i. Additionally, we consider z(ul)

i ∈ CMi to be complex white Gaussian
noise vector with variance N0 per element. Note that, due to the channel reciprocity,
H(ul)

i, j = H(dl)T
i, j .

To estimate the received data through lth spatial stream, DL UE k employs a linear
receiver u(dl)

k,l ∈ CNk . Similarly, the UL BS ik employs a linear receiver u(ul)
k,l ∈ CMik

to decode the received data from UL user k through the spatial stream l. Then, the
estimated data at a RX2 node, corresponding to UL/DL data transmission can be
written in a common form as d̂(a)

k,l . Here, for DL UE k, the estimated data is given as

d̂(dl)
k,l = u(dl)H

k,l x(dl)
k whereas for UL BS ik, the estimated data transmitted by UE k is given

as d̂(ul)
k,l = u(ul)H

k,l x(ul)
ik

. From here on, for simplicity, a generic supercript ’a’ is introduced
to represent both ’DL’ and ’UL’ directions.

The mean squared error (MSE) for lth stream of for UE k corresponding to UL/DL
data detection is defined as3

ε
(a)
k,l = Ed [|d

(a)
k,l − d̂(a)

k,l |
2] = 1−2ℜ(u(a)H

k,l H(a)
ik,k

m(a)
k,l )+u(a)H

k,l M(a)
k u(a)

k,l , (3)

where M(a)
k is the received signal covariance matrix for UE k. This is given for DL UE k

as

M(dl)
k = Ed [x

(dl)
k x(dl)H

k ] = ∑
{ j,l}∈Adl

H(dl)
i j ,k

m(dl)
j,l (H

(dl)
i j ,k

m(dl)
j,l )

H

+ ∑
{ j,l}∈Aul

H(ul-dl)
j,k m(ul)

j,l (H
(ul-dl)
j,k m(ul)

j,l )
H +N0I (4)

and for UL UE k at BS ik (note that in UL, the M(ul)
k is the same for all k ∈ Uik ) as

M(ul)
k = Ed [x

(ul)
ik

x(ul)H
ik

] = ∑
{ j,l}∈Aul

H(ul)
ik, j

m(ul)
j,l (H

(ul)
ik, j

m(ul)
j,l )

H

+ ∑
{ j,l}∈Adl

H(dl-ul)
i j ,ik

m(dl)
j,l (H

(dl-ul)
i j ,ik

m(dl)
j,l )

H +N0I. (5)

2RX is used to refer DL UE for DL transmission or UL BS for UL transmission.
3Ed{.} is the expectation operation over transmit data symbols.
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γ
(dl)
k,l =

∣∣∣∣u(dl)H

k,l H(dl)
ik,k

m(dl)
k,l

∣∣∣∣2
N0∥u(dl)

k,l ∥
2 + ∑

{ j,n}∈Adl
{ j,n}̸={k,l}

|u(dl)H

k,l H(dl)
i j ,k

m(dl)
j,n |

2 + ∑
{ j,n}∈Aul

|u(dl)H

k,l H(ul-dl)
j,k m(ul)

j,n |
2

(8)

γ
(ul)
k,l =

∣∣∣∣u(ul)H

k,l H(ul)
ik,k

m(ul)
k,l

∣∣∣∣2
N0∥u(ul)

k,l ∥
2 + ∑

{ j,n}∈Aul
{ j,n}̸={k,l}

|u(ul)H

k,l H(ul)
ik, j

m(ul)
j,n |

2 + ∑
{ j,n}∈Adl

|u(ul)H

k,l H(dl-ul)
i j ,ik

m(dl)
j,n |

2
(9)

The linear minimum MSE (MMSE) receiver employed for data detection can be obtained
from (3) as

ũ(a)
k,l = (M(a)

k )−1H(a)
ik,k

m(a)
k,l . (6)

When the MMSE receiver is employed, the corresponding MSE can be obtain as

ε̃
(a)
k,l = 1− ũ(a)

k,l
HH(a)

ik,k
m(a)

k,l , (7)

which is called the MMSE value of the estimated received data corresponding to the
UL/DL data transmission of user k from spatial stream l. Finally, assuming independent
detection of data streams, we can write the signal-to-interference-plus-noise ratio (SINR)
γ
(a)
k,l at RX node for DL/UL data transmission as in (8) and (9).

2.3 Decentralized beamformer design

The main problem in centralized dynamic TDD beamformer design is to acquire the
CSI at the centralized node. That is, all the DL BS-UE channels, UL BS-UE channels,
cross-UE channels and cross-BS channels should be available at the centralized unit.
This is a tedious task as there are lots of cross-UE channels to be estimated and reported.
Hence, decentralized beamformer design is more suited for dynamic TDD networks,
where we can overcome the channel estimation problem by using a bi-directional
OTA signalling framework [36]. In this section, we study an iterative decentralized
beamformer design for dynamic TDD. First, we generalize the WQM solution from [86]
to cover the dynamic TDD setting. Furthermore, we reformulate the problem for
improved convergence using the ideas from [85] that were originally applied to WSR
maximization. Second, we consider some special cases of WQM to obtain a beamformer
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design for QWSR maximization and SMSE minimization. In this Section, we consider
only the algorithmic solution for the distributed framework. Practical implementation
and related imperfections are presented in latter sections.

2.3.1 Weighted queue minimization

Here, weighted ℓq-norm queue minimization of the UL and DL users is considered
with sum transmit power constraints at the transmitters. Let Q(dl)

k denote the number
of queued packets destined for DL user k and Q(ul)

k denote the number of queued
packets at UL user k at a given scheduling instant. Additionally, we model the traffic
generation in the network using Poisson arrival process, where λ

(dl)
k (τ)∼ Pois(A(dl)

k ) is
the generated traffic for DL user k in time instance τ . Similarly, λ

(ul)
k (τ)∼ Pois(A(ul)

k )

defines the generated traffic at UL user k at time instance τ . Here, A(dl)
k = Eτ{λ

(dl)
k } and

A(ul)
k = Eτ{λ

(ul)
k } are the average number of packet arrivals in bits for the corresponding

UL/DL users. Then, the total number of queued packets at (τ + 1)th time instant
destined/available to user k is given by

Q(a)
k (τ +1) =

[
Q(a)

k (τ)−R(a)
k (τ)

]+
+λ

(a)
k (τ), (10)

where [x]+ ≜ max{x,0} and R(a)
k is the transmission rate to user k with a = {UL,DL}.

Here, R(a)
k = ∑

Lk
l=1 R(a)

k,l , where R(a)
k,l denotes the number of transmitted bits over the

lth spatial stream to user k. For SINR γ
(a)
k,l , the maximum rate is bounded by R(a)

k,l ≤
log2(1+ γ

(a)
k,l ). Now, we can define the queue deviation metric for the DL and UL as

Ψ
(a)
k = Q(a)

k −R(a)
k = Q(a)

k −
Lk

∑
l=1

log2(1+ γ
(a)
k,l ). (11)

In order to simplify the notation, let Ψ̃(a) denote a vector with elements Ψ̃
(a)
k ≜ α

1/q
k Ψ

(a)
k .

Here, αk is the weighting factor, used to prioritize users based on their corresponding
QoS requirements. The WQM problem can be formulated as

min.
m(a)

k,l ,u
(a)
k,l

∥Ψ̃(dl)∥q +∥Ψ̃(ul)∥q (12a)

s. t. ∑
k∈Ui

Lk

∑
l=1

∥m(dl)
k,l ∥

2 ≤ P(dl)
i ∀i (12b)

Lk

∑
l=1

∥m(ul)
k,l ∥

2 ≤ P(ul)
k ∀k, (12c)
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where optimization variables are transmit precoders m(a)
k,l and receive combiners u(a)

k,l .

Additionally, P(dl)
i and P(ul)

k are the maximum transmit powers available at the i-th
DL BS and the k-th UL UE, respectively. Note that (12a) includes an implicit rate
constraint Q(a)

k −∑
Lk
l=1 R(a)

k,l ≥ 0 on the maximum number of transmitted bits for each
user as governed by the number of backlogged packets [86]. The ℓq norm is used to
provide a trade off between the fairness and sum queue minimization.

At RX, we employ MMSE receivers. Hence, we obtain the following relation
between the MSE and the SINR [37]

ε̃
(a)
k,l = (1+ γ

(a)
k,l )

−1. (13)

Therefore, we can write the user-specific rates using the user-specific MSE values as
R(a)

k = ∑
Lk
l=1− log2(ε̃

(a)
k,l ). Now, we introduce auxiliary MSE constraint as in [85] to (12)

and re-write the optimization problem as

min.
m(a)

k,l ,u
(a)
k,l ,t

(a)
k,l

∑
a∈{UL,DL}

∑
k

αk

(
Q(a)

k −
Lk

∑
l=1

t(a)k,l log2(β )
)q

(14a)

s. t. ε
(a)
k,l ≤ β

−t(a)k,l (14b)

(12b), (12c), (14c)

where β is a predefined constant to adjust the approximation function such that
β > 0 [85]. By introducing these MSE constraints, our objective becomes a convex
function of auxiliary variables t(a)k,l . However, the constraint (14b) is still in a non-convex
form. The non-convexity in (14b) can be handled iteratively by using the first-order
Taylor series approximation similar to [85]

β
−t(a)k,l =−K1t(a)k,l +K2, (15)

where K1 = β
−t̄(a)k,l log(β ) and K2 = β

−t̄(a)k,l + t̄(a)k,l K1. Here, t̄(a)k,l is the point of approxima-
tion. By employing the above approximation for the MSE constraints, we can re-write
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the equivalent optimaization problem as

min.
m(a)

k,l ,u
(a)
k,l ,t

(a)
k,l

∑
a∈{UL,DL}

∑
k

αk

(
Q(a)

k −
Lk

∑
l=1

t(a)k,l log2(β )
)q

(16a)

s. t. 1−2ℜ(u(a)H

k,l H(a)
ik,k

m(a)
k,l )

+u(a)H

k,l M(a)
k u(a)

k,l ≤−K1t(a)k,l +K2 (16b)

(12b), (12c). (16c)

Finally, the optimization problem (16) can be solved using alternating optimization
(AO) between the transmit and receive beamformers, where we adopt an approach
based on the KKT optimality conditions [85, 86]. Due to the independent nature of the
optimization variables, the solution can be decoupled to calculate at RX and TX4 nodes
iteratively. Therefore, we define tasks for each coordinated nodes to implement this
distributed iterative solution. For example, the RX node performs the task ’Receiver

update’ and the TX node performs the task ’Transmitter update’ as mentioned below.

Receiver update

Here, we present the beamformer design steps that should be performed at the RX node .
To do this, all the transmit precoders should be made available at the RX node. We
begin by fixing the transmit precoders and solving for the receive beamformers and the
other variables (auxiliary and dual). First, we calculate MMSE receivers u(a)

k,l using (6).

Next, the corresponding MSE ε
(a)
k,l is obtained from (7). Then, the MSE bounds can be

solved with respect to fixed MSE ε
(a)
k,l as

t(a)k,l = t̄(a)k,l +
1

log(β −ξ )

(
1− ε

(a)
k,l t̄(a)k,l

)
, (17)

where t̄(a)k,l denotes t(a)k,l from the previous iteration, ξ = β−θ

nζ
, ζ ∈ R is chosen to be an

approximately small constant and θ > 1. Here, the multiplier 1
log(β−ρ) can be considered

a step size and ξ is used for more aggressive convergence as detailed in [85]. Then, dual
variables ω

(a)
k,l corresponding to (15) are obtained as

ω
(a)
k,l = (1−ρ)ω̄

(a)
k,l +ρ

[
αk q log2(β )

K1

(
Q(a)

k −
Lk

∑
l=1

t(a)k,l log2(β )
)(q−1)]+

, (18)

4TX is used to refer to DL BS for the DL transmission or UL UE for the UL transmission.
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where ω̄
(a)
k,l denotes fixed ω

(a)
k,l from the previous iteration. Here, ρ ∈ (0,1) controls

the convergence and is used to prevent over-allocation. From here on, we refer to ω
(a)
k,l

as user specific weight. The calculated MMSE receivers and user-specific weights
information must be conveyed to /made available at coordinating TX nodes, in order to
perform ’Transmitter update’ task.

Transmitter update

In the next step, we fix the MMSE receivers and solve for the transmit precoders. At this
point, we assume all the MMSE receiver information and user-specific weights available
at the TX node (to be detailed in Section 3.4.1). The transmit beamformers m(a)

k,l can be
derived from the first-order optimality conditions of (14) as

m(a)
k,l =

(
Φ

(a)
k +ν

(a)
k I

)−1
ω

(a)
k,l H(a)H

ik,k
u(a)

k,l , (19)

where Φ
(a)
k and ν

(a)
k are the weighted transmit covariance matrix and the dual variable

corresponding to power constraint at the transmiter (UL UE k or DL BS ik). For DL BS
ik, Φ(dl)

k ∀ k ∈ Uik is given by

Φ
(dl)
k = ∑

{ j,l}∈Adl

ω
(dl)
j,l H(dl)H

ik, j
u(dl)

j,l (H
(dl)H
ik, j

u(dl)
j,l )

H

+ ∑
{ j,l}∈Aul

ω
(ul)
j,l H(dl-ul)H

i j ,ik
u(ul)

j,l (H
(dl-ul)H
i j ,ik

u(ul)
j,l )

H. (20)

Similarly, for UL user k, Φ(ul)
k is given by

Φ
(ul)
k = ∑

{ j,l}∈Aul

ω
(ul)
j,l H(ul)H

i j ,k
u(ul)

j,l (H
(ul)H

i j ,k
u(ul)

j,l )
H

+ ∑
{ j,l}∈Adl

ω
(dl)
j,l H(ul-dl)H

j,k u(dl)
j,l (H

(ul-dl)H

j,k u(dl)
j,l )

H. (21)

The transmit beamformers can be efficiently solved from (19) by a bisection search over
the dual variables ν

(dl)
k and ν

(ul)
k to satisfy the power constraints ∑k∈Ui ∑

Lk
l=1 ∥m(dl)

k,l ∥
2 ≤

P(dl)
i and ∑

Lk
l=1 ∥m(ul)

k,l ∥
2 ≤ P(ul)

k , respectively.
Here, we employed an alternating optimization approach to calculate the precoders

and decoders. Hence, the beamformers are not optimal as they are optimized for
their fixed counterparts. Thus, we need to repeat the precoder/decoder optimization
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until the estimated beamformers and/or the optimization objective have converged.
This procedure is summarized in Algorithm 1. Note that the centralized unit can
obtain the same solution by considering this distributed implementation as independent
subproblems, which can be solved in parallel. However, for dynamic TDD setting, we
are more interested in the decentralized solution. Moreover, the detailed signalling
structure to facilitate the iterative algorithm is explained in Section 2.4.

Algorithm 1 Iterative Beamformer Design

1: Initializing feasible transmit beamformers m(a)
k,l . ▷ TX

2: Distribute initial transmit beamformers and prioritizing weights αk to all RX. ▷ TX
3: repeat
4: Estimate MMSE receivers u(a)

k,l from (6). ▷ RX

5: Estimate auxiliary variables t(a)k,l , and user specific

weights ω
(a)
k,l using (17) and (18). ▷ RX

6: Distribute all MMSE receivers and user specific
weights to all TX. ▷ RX

7: Estimate transmit precoders m(a)
k,l from (19). ▷ TX

8: Distribute all transmit precoders to all RX. ▷ TX
9: until convergence.

2.3.2 Queue weighted sum rate maximization

In this section, we consider a special case of WQM assuming Q(a)
k is large and q = 2.

Consequently, (14) is reduced to the following equivalent QWSR maximization problem

max.
m(a)

k,l ,u
(a)
k,l

∑
a∈{UL,DL}

∑
k

Lk

∑
l=1

αkQ(a)
k R(a)

k,l (22)

s.t (12b), (12c).

We can follow the same procedure as in WQM to obtain an iterative beamformer design
for the QWSR maximization problem. Since we assume the queue size to be large, we
do not need to control the over-allocation of assigned rates as in (18). Therefore, the
user-specific weights ω

(a)
k,l are given simply as

ω
(a)
k,l =

αk log2(β )Q
(a)
k

K1
. (23)
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The other beamformer and auxiliary variable updates are the same as in WQM. Note
that when Q(a)

k = 1∀k, QWSR objective is equivalent to WSR. Note that when β = 2,
the beamformer estimation procedure is equivalent to the WSMSE based approach.

2.3.3 Sum MSE minimization

The WQM problem can be approximated by a simple SMSE minimizing beamformer
design provided that the system operates in a high SNR regime with equal user priorities,
the queue sizes are large with q = 1, and there are enough spatial degrees of freedom
available such that all users can be served concurrently. The SMSE minimization
problem can be formulated as

min.
m(a)

k,l u(a)k,l

∑
a∈{UL,DL}

∑
k

Lk

∑
l=1

ε
(a)
k,l (24)

s.t (12b), (12c).

In this special case, the weight updates are not required and the optimal TX and RX
beamformers (given fixed RX and TX beamformers) are solved directly from (19)
and (6), respectively.

2.4 Training and signalling

In the previous section, we considered iterative beamformer designs for WQM, QWSR,
and SMSE objectives. In this section, we introduced possible approaches to implement
these algorithms in practice. In all of the proposed iterative beamformer algorithms,
we need to iteratively exchange or make available the intermediate beamformers and
user-specific weights between the coordinated nodes. However, in a dynamic TDD
setup, we do not have the luxury to use a backhaul based approach as UEs also play a
role in beamformer estimation. Hence, we employ F-B OTA training for the implicit
information exchange [37, 36].

In the considered F-B OTA training scheme, we employ precoded (and weighted)
pilot sequences in the forward and backward directions. Here, the forward direction
refers to transmitters sending their training sequences, while the backward direction
refers to receivers sending their training sequences. The bi-directional training allows a
fully distributed coordinated computation of transmit/receive beamformers without full
CSI exchange over a backhaul. Furthermore, bi-directional signalling is embedded into
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Frame n - 1 Data Frame n + 1F B… …

Frame n

Beamformer Signaling

Forward (F) pilots Backward (B) pilotsB B

OTA Signaling

Processing

Forward link CSI estimation

RX beamformer computation

Backward link CSI estimation

TX beamformer computation

F B

Fig. 4. TDD frame structure (Reprinted, with permission, from [133] ©2018 IEEE)..

each TDD frame to facilitate fast iterative information exchange, as shown in Fig. 4 [36].
The nodes estimate their precoder/decoder based on the received forward/backward
training sequences. Then, the estimated precoder/decoder is used for precoding the next
iteration forward/backward training. Using this approach, we are able to practically
implement the proposed beamformer designs.

It is possible to implement TDD frame structure in Fig. 4 (Scheduling block),
with the approved 3GPP NR standard [16]. The beamformer signalling part can be
implemented by concatenating multiple minislots together with the required guard period
(GP) [36], then multiple slots can be aggregated for data transmission. Moreover, each
F-B iteration adds signalling overhead to the system. Hence, it is better to have a larger
scheduling block to minimize the signalling overhead. However, it is constrained by
coherence time and the traffic burstiness of the system. Note that the TDD frame should
be synchronous over the UL/DL cells during the beamformer signalling. However, if the
user scheduling remains the same for multiple TDD frames, and if the channel is slowly
fading, the B-F training phase can use the beamformers from the previous frame as the
starting point. Then, we can have less F-B iterations per TDD frame.

In a dense dynamic TDD network, a large number of orthogonal pilots would be
required for ideal pilot estimation. In general, this is not possible due to the limited
number of orthogonal resources. Therefore, we have to reuse the pilot sequences
or employ non-orthogonal pilots during the training. Thus, the desired channel can
be polluted by other user channels. This scenario is known as pilot contamination.
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Hence, it is essential to study the dynamic TDD system under imperfect OTA signalling
conditions. Pilot contamination can be demoted in several ways, such as allocating
pilots to minimize the pilot overlap and using clever channel estimation algorithms [90,
73, 92, 93, 95]. In the following subsections, we study various approaches to mitigate
the pilot contamination while supporting the original beamformer design objectives.
First, we consider three LS based strategies for direct beamformer estimation using only
the precoded pilot information. Then, to further enhance the pilot decontamination, we
propose the pilot reuse method based on the large-scale fading information. Additionally,
we analytically compare the proposed DE method with the SSE method to prove the
superior decontamination capability of the DE approach.

2.4.1 Pilot decontamination by direct beamformer estimation

Here, we investigate the OTA signalling architecture under imperfect pilot conditions by
assuming that the pilot training sequences used by each UE/BS are non-orthogonal,
and only the pilot training sequences of the associated in-cell users are known to each
UE/BS. As we employ non-orthogonal overlapping pilots, the effective channels are
contaminated by interfering pilot training sequences. Therefore, they cannot be perfectly
distinguished from each other. Without this information, we cannot directly construct
Φ

(dl)
k in (20) at the DL BS ik or Φ(ul)

k in (21) at the UL UE k in order to estimate their
transmit precoders. To overcome this problem, we introduce three different strategies to
facilitate the direct precoder/decoder estimation by using the received precoded training
information directly without separately estimating all individual pilots (channels). In
Table 1, the signalling requirements for the forward/backward training are summarized
for the proposed schemes: Strategy A, Strategy B and Strategy C. Strategy A is proposed
to implement exact beamformer design at both RX and TX with the minimum number
OTA signalling (one forward and one backward training iteration per one beamformer
signalling round). Hence, a separate (quantized) feedback link is required to transmit
additional scalar weight information. Alternatively, we propose two designs: Strategy
B and Strategy C. Both schemes use only the OTA signalling to exchange required
information. In Strategy B, similar to Strategy A, we try to construct the beamformer
design with the minimum number of OTA signalling. However, one backward training
is not enough to fully reconstruct the required weighted covariance matrix at the TX
node. Hence, Strategy B follows an approximated beamformer design. To overcome
the limitation of Strategy B and for the full construction of the beamformer design,
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Table 1. Precoded pilots/feedback used in each strategy (Reprinted, with permission, from
[133] ©2018 IEEE).

Strategy
Forward Backward training

Feedback
training 1st 2nd

Strategy A m(a)
k,l

√
ω

(a)
k,l u(a)

k,l NA
√

ω
(a)
k,l

Strategy B m(a)
k,l u(a)

k,l NA NA

Strategy C m(a)
k,l

√
ω

(a)
k,l u(a)

k,l ω
(a)
k,l u(a)

k,l NA

we propose Strategy C with two backward training resources. Further details on each
strategy are presented below.

2.4.2 Strategy A

In this strategy, we employ two training signals and one feedback message for each
precoder/decoder iteration. First, forward pilots are transmitted by precoding the training
sequence with the transmit beamformers m(a)

k,l . Then, the RXs estimate their MMSE

receivers u(a)
k,l and the corresponding user-specific weights ω

(a)
k,l by using the received

pilot training matrices. Next, the RX nodes use weighted MMSE receivers
√

ω
(a)
k,l u(a)

k,l

as the precoders for backward training pilots. At the same time, the RXs transmit the

square root of user-specific weights
√

ω
(a)
k,l through the feedback channel. Both, the

backward pilot information and feedback information are used to estimate the transmit
precoder m(a)

k,l at the TX node. In the following, the direct beamformer estimation
procedure for Strategy A is described in more detail.

Transmit precoder estimation

Let bk,l ∈ CS denote the pilot training sequence for lth data stream of DL/UL user
k, where S is the length of the pilot sequence. For backward training, the pilots are

precoded with
√

ω
(a)
k,l u(a)

k,l . Then, the received precoded pilot training matrix of user k at

DL BS ik (note that the R(dl)
k is the same for all k ∈ Uik ) is given by

R(dl)
k = ∑

{ j,l}∈Adl

√
ω

(dl)
j,l H(dl)H

ik, j
u(dl)

j,l bH
j,l + ∑

{ j,l}∈Aul

√
ω

(ul)
j,l H(dl-ul)H

i j ,ik
u(ul)

j,l bH
j,l +N(dl)

ik
, (25)
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where N(dl)
ik

∈ CMik×S is the estimation noise matrix for all pilot symbols. Similarly, the
received pilot training matrix at UL user k, during the first backward training, is given by

R(ul)
k = ∑

{ j,l}∈Aul

√
ω

(ul)
j,l H(ul)H

i j ,k
u(ul)

j,l bH
j,l + ∑

{ j,l}∈Adl

√
ω

(dl)
j,l H(ul-dl)H

j,k u(dl)
j,l bH

j,l +N(ul)
k , (26)

where N(ul)
k ∈ CNk×S is the estimation noise matrix.

At DL BS ik, we recover a noisy version of Φ(dl)
k ∀ k ∈ Uik in (20) directly using the

received composite channel information R(dl)
k as,

Φ̄
(dl)
k = R(dl)

k R(dl)H

k =Φ
(dl)
k +Ωik , (27)

where Ωik includes all the cross-terms in (25) due to non-orthogonal pilots as well as
noise. With orthogonal pilots, Ωik would contain only estimation noise. The structure
and significance of Ωik is examined in more detail in Section 2.4.5. Similarly, we can
approximately construct Φ(ul)

k in (21) at UL user k directly using the received composite
channel information R(ul)

k as

Φ̄
(ul)
k = R(ul)

k R(ul)H

k =Φ
(ul)
k +Ωk, (28)

where Ωk indicates the cross pilot interference.
With the knowledge of the received training matrices R(a)

k , user-specific weights√
ω

(a)
k,l (received via the feedback channel) and own training sequences bk,l , we can

locally estimate the transmit beamformers in a closed form expressions as

m(a)
k,l =

(
R(a)

k R(a)H

k + Iν
(a)
k

)−1√
ω

(a)
k,l R(a)

k bk,l , (29)

where the optimal ν
(dl)
k and ν

(ul)
k are found by a bisection search to satisfy the power

constraints ∑k∈Ui ∑
Lk
l=1 ∥m(dl)

k,l ∥
2 ≤ P(dl)

i and ∑
Lk
l=1 ∥m(ul)

k,l ∥
2 ≤ P(ul)

k , respectively. In ideal
conditions with orthogonal pilots and a very high pilot SNR (or very large S), (29)
would be equal to (19).

Receive beamformer and weights estimation

In the forward training, the pilots are precoded with the transmit precoders m(a)
k,l . Then,

the received precoded pilot training matrix at DL user k is given by,

T(dl)
k = ∑

{ j,l}∈Adl

H(dl)
i j ,k

m(dl)
j,l bH

j,l + ∑
{ j,l}∈Aul

H(ul-dl)
j,k m(ul)

j,l bH
j,l +N(dl)

k , (30)
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where N(dl)
k ∈ CNk×S is the estimation noise matrix for all pilot symbols. Similarly, the

received precoded pilot training matrix at UL BS ik is given by

T(ul)
k = ∑

{ j,l}∈Aul

H(ul)
ik, j

m(ul)
j,l bH

j,l + ∑
{ j,l}∈Adl

H(dl-ul)
i j ,ik

m(dl)
j,l bH

j,l +N(ul)
ik

, (31)

where N(ul)
ik

∈ CMik×S is the estimation noise matrix. Then, by using the received

composite channel information T(a)
k and own pilot training sequence bk,l we can directly

estimate the MMSE receivers as

u(a)
k,l =

(
T(a)

k T(a)H

k +N0I
)−1

T(a)
k bk,l . (32)

Additionally, the RX MSE can be estimated as

ε
(a)
k,l = 1−u(a)

k,l
HT(a)

k bk,l . (33)

Finally, we can estimate ω
(a)
k,l using (18) or (23) based on our optimization objective.

Note that here we assume that, for any particular user, the forward and backward
sequences are the same. However, the forward/backward pilots can also be designed
separately.

2.4.3 Strategy B

In contrast to Strategy A, Strategy B does not require feedback channel to exchange the
user-specific weights. Similar to Strategy A, the forward training pilots are precoded
with the transmit precoders m(a)

k,l . Then, the RX nodes estimate the MMSE receivers u(a)
k,l .

Next, the estimated MMSE receivers are used to precode the backward training pilots.
The information received from the backward training pilots is enough to reconstruct the
Φ

(a)
k at TX k/ik. However, by using locally evaluated user-specific weights, we can only

approximately estimate the transmit precoders.

Transmit precoder estimation

In the backward training, the pilots are precoded with the MMSE receivers u(a)
k,l without

weights ω
(a)
k,l . The received pilot training matrix at DL BS ik,∀ k ∈ Uik is, then, given by

R(dl)
k,1 = ∑

{ j,l}∈Adl

H(dl)H
ik, j

u(dl)
j,l bH

j,l + ∑
{ j,l}∈Aul

H(dl-ul)H
i j ,ik

u(ul)
j,l bH

j,l +N(dl)
ik

. (34)
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Similarly, the received pilot training matrix at UL user k, during the first backward
training, is given by

R(ul)
k,1 = ∑

{ j,l}∈Aul

H(ul)H

i j ,k
u(ul)

j,l bH
j,l + ∑

{ j,l}∈Adl

H(ul-dl)H

j,k u(dl)
j,l bH

j,l +N(ul)
k . (35)

Then, we can estimate the user weights ω
(a)
k,l locally by using the first set of received

composite channel R(a)
k,1 and training sequence bk,l at TX k/ik. To do this, first, we

estimate MSE ε
(a)
k,l locally as

ε
(a)
k,l = 1− (R(a)

k,1bk,l)
Hm̄(a)

k,l , (36)

where m̄(a)
k,l is the transmit precoder estimated in the previous iteration or the initial

condition. Then, we can estimate ω
(a)
k,l using (18) or (23). Finally, we construct Φ̄(dl)

k,1 , at
DL BS ik, as

Φ̄
(dl)
k,1 ≜ R(dl)

k,1 (I+ ∑
j∈Uik

L j

∑
l=1

(ω
(dl)
j,l −1)

S
b j,lbH

j,l)R
(dl)H

k,1

= ∑
j∈Uik

L j

∑
l=1

ω
(dl)
j,l H(dl)H

ik, j
u(dl)

j,l (H
(dl)H
ik, j

u(dl)
j,l )

H + ∑
{ j,l}∈Adl

j ̸∈Uik

H(dl)H
ik, j

u(dl)
j,l (H

(dl)H
ik, j

u(dl)
j,l )

H

+ ∑
{ j,l}∈Aul

H(dl-ul)H
i j ,ik

u(ul)
j,l (H

(dl-ul)H
i j ,ik

u(ul)
j,l )

H +Ωik . (37)

Similarly, at UL UE k, we construct Φ̄(ul)
k as

Φ̄
(ul)
k,1 ≜ R(ul)

k,1 (I+
Lk

∑
l=1

(ω
(dl)
k,l −1)

S
bk,lbH

k,l)R
(ul)H

k,1

=
Lk

∑
l=1

ω
(ul)
k,l H(ul)H

ik,k
u(ul)

k,l (H
(ul)H

ik,k
u(ul)

k,l )
H + ∑

{ j,l}∈Aul
j ̸=k

H(ul)H

i j ,k
u(ul)

j,l (H
(ul)H

i j ,k
u(ul)

j,l )
H

+ ∑
{ j,l}∈Adl

H(ul-dl)H

j,k u(dl)
j,l (H

(ul-dl)H

j,k u(dl)
j,l )

H +Ωk. (38)

It is clear that in this estimation scheme, Φ̄(ul)
k,1 does not contain the ideal Φ(a)

k from (20)-
(21) unlike in (37)-(38). This is mainly due to the unavailability of the user specific
weights from the interfered users. This is equivalent to assuming ω

(a)
k,l = 1 for all
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non-local data streams. As in Strategy A, with the knowledge of the received training
matrices R(a)

k,1 and own training sequences bk,l , we can estimate the transmit beamformers
directly in closed form as

m(a)
k,l =

(
Φ̄

(a)
k,1 + Iν

(a)
k

)−1
ω

(a)
k,l R(a)

k,1bk,l (39)

where the optimal ν
(a)
k is found by a bisection search similar to (29). The receive

beamformer estimation procedure for Strategy B is the same as in Strategy A.

2.4.4 Strategy C

In this strategy, we employ three training pilots per beamformer iteration, one in the
forward direction and two consecutive training pilots in the backward direction. The
forward training procedure is the same as strategies A and B, where we use transmit
precoders m(a)

k,l as the pilot precoders. The RXs estimate their MMSE receivers u(a)
k,l and

the corresponding user weights ω
(a)
k,l from the received pilots. In the backward phase, the

first training sequences are precoded with
√

ω
(a)
k,l u(a)

k,l and the second transmission pilot

sequences are precoded with ω
(a)
k,l u(a)

k,l . The estimated pilot training matrices for the first

pilot sequence are the same as in Strategy A (25)-(26), denoted by R(a)
k . The training

matrix corresponding to the second pilot sequence, denoted by R(a)
k,2 , is the same except

that the weight difference (
√

ω
(a)
k,l is replaced by ω

(a)
k,l ). The backward pilot information

is used to estimate the transmit precoder m(a)
k,l as

m(a)
k,l =

(
R(a)

k R(a)H

k + Iν
(a)
k

)−1

R(a)
k,2bk,l . (40)

Other expressions are derived similar to Strategies A and B and are omitted here to
avoid repetition.

2.4.5 DE vs SSE

The signalling and training strategies proposed in previous subsections directly estimate
the beamformers (DE approach) from the received pilot training matrices. As an
alternative implementation, we consider the SSE technique. In the SSE method, we
separately estimate each pilot, and the estimated information is used to calculate
beamformers and user weights. Therefore, all the coordinating nodes need to know the
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pilot sequences used at each node. The SSE approach can be highly vulnerable to pilot
contamination, if non-orthogonal pilot sequences are employed for OTA signalling.
However, the DE is better suited for noisy environments and more resilient to pilot
contamination. In this section, we analyse the DE and SSE estimation inaccuracies
by considering the estimation of Φ(dl)

k in Strategy A. Additionally, without loss of
generality, we examine DL only case (Aul = /0) in order to ease the notational complexity.

In stream specific estimation, we assume that all pilots are first individually estimated.
Then, the covariance matrices and beamformers are constructed from those individual
parts. The signalling model remains the same, that is, the received training matrix is
of form (25). Recalling that R(dl)

k is the same for all k ∈ Uik , from (25), each DL BS
ik = 1, . . . ,B,k ∈ Uik estimates the UE (stream) specific pilots as

f(dl)
ik, j,l

= R(dl)
k b j,l ,∀( j, l) =

√
ω

(dl)
j,l H(dl)H

ik, j
u(dl)

j,l +δ ik, j,l , (41)

where δ ik, j,l denotes the estimation noise and pilot contamination corresponding to pilot
sequence b j,l at BS ik. We can immediately observe a potential downside to this. In
order to accomplish (41), BS ik has to know all pilot sequences b j,l . Additionally, the
amount of estimation noise and pilot contamination gradually increases with the number
of pilot sequences. Then, by using all the collected stream specific estimates, the matrix
(Φ̄

(dl)
k )SSE for the SSE approach is given by

(Φ̄
(dl)
k )SSE = ∑

{ j,l}∈Adl

f(dl)
ik, j,l

f(dl)H

ik, j,l
=Φ

(dl)
k +Kk + K̄k + ∑

{ j,l}∈Adl

N(dl)
ik

b j,lbH
j,lN

(dl)H
ik

(42)

where Kk and K̄k are additional interference terms given in (43) and (44), respectively.
In contrast, the estimation expressions (Φ̄(dl)

k )DE for the DE approach are given by

(Φ̄
(dl)
k )DE = R(dl)

k R(dl)
k

H =Φ
(dl)
k +Kk +N(dl)

ik
N(dl)H

ik
(45)

From the expressions in (45) and (42), we can observe that the SSE expression
differs from DE case due to additional estimation error term K̄k and estimated noise
terms N(dl)

ik
N(dl)H

ik
and ∑{ j,l}∈Adl

N(dl)
ik

b j,lbH
j,lN

(dl)H
ik

. In order to compare the DE and SSE

approaches, first, we can see that E[N(dl)
ik

N(dl)H
ik

] is a diagonal matrix of size Mik ×Mik

with each diagonal element equal to N0S, i.e.,

Tr(E[N(dl)
ik

N(dl)H
ik

]) = MikN0S. (46)

For the SSE case, we can form a symmetric matrix Cik = ∑{ j,l}∈Adl
b j,lbH

j,l with the size
of S×S, where the diagonal terms are equal to K/S. Since the matrix trace is invariant
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Kk = ∑
{ j,l}∈Adl
{y,z}∈Adl
(y̸= j&z̸=l)

√
ω

(dl)
j,l ω

(dl)
y,z H(dl)H

ik, j
u(dl)

j,l bH
j,lby,z(H

(dl)H
ik,y

u(dl)
y,z )H

+ ∑
{ j,l}∈Adl

√
ω

(dl)
j,l

(
H(dl)H

ik, j
u(dl)

j,l bH
j,lN

(dl)H
ik

+N(dl)
ik

b j,l(H
(dl)H
ik, j

u(dl)
j,l )

H
)

(43)

K̄k = ∑
{{ j,l},{y,z},{s,t}}∈Adl

(s̸= j&t ̸=l)

√
ω

(dl)
s,t ω

(dl)
y,z H(dl)H

ik,s
u(dl)

s,t bH
s,tb j,lbH

j,lby,z(H
(dl)H
ik,y

u(dl)
y,z )H

+ ∑
{{ j,l},{y,z}}∈Adl

(y̸= j&z̸=l)

√
ω

(dl)
y,z

(
H(dl)H

ik,y
u(dl)

y,z bH
y,zb j,lbH

j,lN
(dl)H
ik

+N(dl)
ik

b j,lbH
j,lby,z(H

(dl)H
ik,y

u(dl)
y,z )H

)

(44)

under cyclic permutations, the following holds

Tr(E[ ∑
{ j,l}∈Adl

N(dl)
ik

b j,lbH
j,lN

(dl)H
ik

]) = MikN0K. (47)

Assuming a practical scenario where the number of users served is larger than the
available pilot resources (sequence length), K > S, then

Tr(E[ ∑
{ j,l}∈Adl

N(dl)
ik

b j,lbH
j,lN

(dl)H
ik

])> Tr(E[N(dl)
ik

N(dl)H
ik

]). (48)

Finally, by taking the MSE of estimates (45) and (42), we can obtain the following
relationship

E[|(Φ(dl)
k )SSE −Φ

(dl)
k |2]≻E[|(Φ(dl)

k )DE −Φ
(dl)
k |2]+ K̄kK̄H

k , (49)

where the inequality follows from (48) and from the fact that K̄kK̄H
k is a positive definite

matrix. Thus, DE provides better estimation performance than SSE in the MSE sense.

2.4.6 Decontamination via pilot reuse

In this section, we consider a traditional pilot reuse approach to enhance the pilot
decontamination further. The main aim is to assess how much additional gain can be
achieved by applying a centralized pilot assignment as compared to the decentralized
direct estimation methods proposed in Section 3.4.1. A simple pilot reuse approach

58



is proposed for a complicated dynamic TDD setup based only on large-scale fading
information of the BS-UE and UE-UE channels. In dynamic TDD networks, finding a
proper utility for the pilot assignment is challenging. For example, the received channel
information at DL UE k in the forward training phase and received channel information
at DL BS ik in the backward training phase are contaminated with different set of BSs
and UEs. Consequently, taking into account the specific challenges associated with the
dynamic TDD scenario, we propose a logarithmically weighted interference-to-signal-
ratio (ISR) based decontamination scheme.

In the considered heuristic method, the pilot allocation is carried out utilizing the
user specific path loss measurements and reports. The basic idea is to reuse the same
pilot for two users when they are physically far from each other. In addition to BS-UE
path loss measurements, we assume UE-UE received signal strength indicator (RSSI)
based measurements are made available at BSs to avoid allocating the same pilots to
severely interfering DL and UL users. In order to do this, UE should be able to listen to
received signals from both BSs and nearby UEs. Based on the RSSI measurements, UE
reports a set of strongest measured RSSI values, both from BSs and UEs to serving BS
via a separate control channel.

To assign the pilots, we define a cost function RGp for every orthogonal pilot
p ∈ {1, ...,S} that is shared with a set of users Gp ⊂ U as

RGp = ∑
k∈Gp

log(1+ ∑
j∈Gp/{k}

I j/Sk) (50)

where Sk is the path gain between user k serving BS ik, and I j is the path gain between
interfering user j and BS ik. Logarithmic ISR weighting is used to provide fairness such
that weak users (far from BS) are not severely penalized. Every time a pilot is reused,
the cost function is increased correspondingly. The resulting ISR value is scaled by 1 to
make the utility function always positive. Finally, the minimization problem used for the
pilot allocation is formulated as

minimize
Gp∀p

S

∑
p=1

RGp

s.t Yk ∩Gp = /0 ∀k, p, (51)

where Yk is the set of users with the shortest UE-UE distance to user k. Finding an
optimal solution for the above integer problem is highly complex for large S and K.
Hence, a sub-optimal greedy method is used to solve the problem and the entire process
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is summarized in Algorithm 2. First, potential cost values for each pair are computed
assuming they share the same pilot. Then, the user pair with the minimum cost is
assigned with the same pilot. Consequently, next pilot resources are assigned to the
unassigned user pairs with the minimum utility value. Continuing this, up to 2S users
are assigned. Then, the rest of the unassigned users are allocated to pilots using the same
greedy method on the per pilot basis in such a way that the corresponding pilot will not
be used more than K/S+1 times. Here, the main target is to minimize the total log
weighted pilot interference in the system. This may not accurately match the original
traffic aware optimization objective in Section 2.3. However, the results show significant
sum rate improvement as compared to random pilot assignment.

Algorithm 2 Pilot Reuse Algorithm

1: Initialize :

– Define kmax = ⌈K
S ⌉ - maximum number of users that are assigned to the same

pilot.
– Find Yk for each user k and set G= /0.

2: First phase: Assign pilots up to 2S users
3: For a = 1 : K, For b = 1 : K, If b /∈ Ya do:
4: Calculate R{a,b} for {a,b} UE pair from (50).
5: End, End, End
6: For p = 1 : S do:
7: Define set X= {{a,b} | {a,b} ⊂ U and {a,b} ̸⊂ G}
8: argmin

∀{a,b}⊂X

R{a,b} → Gp = {a,b}

9: Update user assignment G= G1 ∪ ...∪GS

10: End
11: Last phase: Assign pilots to unassigned users
12: For c = 1 : kmax −2, For p = 1 : S, do:
13: Define set Z= {x | Yx ∩Gp = /0 and x ̸∈ G}
14: argmin

x∈Z
RGp∪{x} → Gp = Gp ∪{x}

15: Update pilot assignment G= G1 ∪ ...∪GS

16: End End
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2.4.7 Complexity and overhead

It is important to study the complexity and associated overhead of the proposed DE-based
strategies. Therefore, in this subsection, we look into those two concerns.

Complexity study

Here, we study the computational complexity of the proposed direct beamformer
estimation methods. All strategies have similar computational complexities. Hence, we
consider Strategy A in this study. In proposed iterative strategies, the complexity is
linearly proportional to the number of OTA signalling rounds. Hence, we focus on one
iteration only. There are four types of nodes involved in computing beamformers. The
corresponding complexity at each node is as follows:

– DL BS - The dominant operation is the matrix inversion in (29). Additionally, there is
a dual variable which we found by a bisection search to satisfy the power constraint.
Hence, the complexity is O(M3

i ×∆×Ki ×Lk), where ∆ is the number of bisection
iterations required to satisfy the power constraint.

– DL UE - Here, the dominant operation is the matrix product operation within the
inverse matrix in (32). Hence the complexity is O(N2

k ×S).
– UL BS - The complexity due to operations in (32) is roughly O(M2

i × (Mi +S+Lk ×
Ki)).

– UL UE - The dominant complexity comes from the bisection iterations and the matrix
inversion in (29). Therefore, the complexity is O(N3

k ×∆×Lk).

It is obvious that BS should have a higher computational capability compared to UEs.
For the proposed strategies, for BSs, the maximum complexity requirement arises when
it is in DL mode, which is O(M3

i ×∆×K ×Lk) per one beamformer signalling round.
Additionally, for UEs, the maximum complexity requirement is O(N3

k ×∆×Lk), which
arises when it is in UL mode.

Overhead model

As in Fig. 4, the TDD frame is divided into two portions: 1. beamformer signalling,
2. data transmission. Therefore, the actual achievable rate of the system pretty much
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depends on the beamformer training duration. Here, we can model it as

Rac = (1− τ0

T
BIT)Rsum, (52)

where, Rac is the actual achievable sum rate and Rsum is the achieved sum rate from
the iterative algorithm after BIT bi-directional precoder/decoder training rounds. The
signalling overhead per one signalling round is τ0

T , where τ0 and T are the duration
for a one precoder/decoder iteration and the duration of the TDD frame, respectively.
Here, we refer to τ0 as the ’effective overhead duration per F-B training round ’. The
following tasks are performed during the τ0

– Tx nodes transmit precoded pilots, which are precoded with transmit beamformers
(F-training).

– Rx nodes estimate receiver beamformers and user-specific weights.
– Rx nodes transmit pilots using the estimated receive beamformers as pilot precoders

possibly weighted by the user-specific weights as described in Section IV.B-D
(B-training). Moreover, in Strategy A, we utilize a separate (quantized) feedback
mechanism to exchange the scalar weights.

– Tx nodes estimate transmit precoders.

In addition to the above tasks, a guard period is required when the communication
direction changes forward to backward and vice-versa. However, the overhead related
for exchanging control messages such as measured RSSI values, explicit information
about the queue sizes and prioritize coefficients is not included in this formula as
the reporting period for such messages is much longer. In numerical examples, we
investigate the optimal number of bi-directional signalling rounds required for a TDD
frame with this overhead model.

2.5 Numerical examples

Numerical analyses of the dynamic TDD system were conducted using two different
simulation models, a 19-cell wrap-up model, and a standalone model. The following
subsections analyse the performance of dynamic TDD with these simulation models.

2.5.1 19-cell wrap-up model

The simulations are carried out for the nineteen cell (= 19) wrap-around model, as
illustrated in Fig. 5. The distances between the BSs are considered to be 200 m and the
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UEs are randomly placed at the cell edge. For all the simulations, the path loss exponent
is fixed to 3.67. The power constraint for DL BSs and UL UEs are normalized such that
P(ul)

k = P(dl)
i /Ki, i.e., the total cell-specific UL power is equal to the DL power. However,

we consider a different power allocation in Fig. 9. Moreover, SNR is defined with
respect to the DL cell edge user (SNR = SkP(dl)

ik
/N0). To simplify the study, all the user

priority weights are assumed to be αk = 1. In Fig. 10, we examine time-correlated block
fading, which is generated using Jake’s Doppler spectrum model with the normalized
user terminal velocity tS fD = 0.01, where tS and fD are the signalling rate and the
maximum Doppler shift, respectively. For the rest of the figures, we have used an
uncorrelated block fading model. We have randomly assigned UL/DL BSs with DL cell
probability = 0.5, for all the results except in Fig. 8. User weights αkQ(a)

k = 1∀k are
used for all results with WSR maximization. Perfect CSIT is assumed to be available
in the simulation results shown in Figs. 6–10. For the practical channel/beamformer
estimation results shown in Figs. 11–13, the pilot gain is considered to be 10dB.

The actual achievable sum rate obtained from the WSR maximization objective
versus the total overhead due to OTA signalling is shown in the top of Fig. 6. The
second figure illustrates the convergence of the beamformer algorithm with respect to
the number of beamformer iterations. In this particular example, we assume that a single
precoder/decoder iteration consumes 1% ( τ0

T = 0.01) of the frame length. Note that
it is possible to have τ0 smaller than 0.1ms with the proposed TDD frame structure
[36]. Hence, we can obtain τ0

T = 0.01 even with a relatively short coherence time (if
the coherence time is 10 ms, we can have a TDD frame with T =10 ms). We can
observe that the scenario with β = 30, ζ = 0.05 and θ = e has a better converging
behaviour in comparison to the WMMSE [81] approach. Additionally, the coordinated
system provides considerable gain as compared to the uncoordinated system. The
uncoordinated beamformer design is introduced as a reference, where the beamformers
are calculated locally without considering the inter-cell interference. This shows the
achievable rate peaks, when the overhead is between 0.05−0.10, i.e., BIT = 5−10
rounds. The achieved gain over the uncoordinated scheme is almost 100% due to the
greatly improved interference coordination. For the rest of the figures, we will use
parameters β = 30, ζ = 0.05, θ = e and BIT = 5.

Fig. 7 illustrates the average rate of the dynamic TDD system versus the transmit
SNR considering the DL, UL and UL/DL sum rates. Note that the results are shown
after 5 precoder/decoder iterations. We can observe that the sum rate improves for
both coordinated and uncoordinated systems with SNR up to 5 dB. After that, the
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Fig. 5. 19-cell wrap-up model (Reprinted, with permission, from [133] ©2018 IEEE).

uncoordinated system performance degrades due to the strong interference from the
other-cell users. However, the proposed coordinated scheme performs well even at a
high SNR region. Due to user specific power constraints, each UL user uses all the
power for transmit beamforming. This leads to high UL-to-DL interference, which
degrades the DL user SINR and rate. Thus, the UL users have a somewhat higher rate at
high SNR. Fig. 8, represents the average rate performance of the dynamic TDD system
with given DL cell probability. Despite difficult UL-DL interference scenarios, the
sum rate is only slightly decreased (around 5−6%) with a 0.5 DL cell probability as
compared to the DL or UL only cases.

The average rate of the dynamic TDD system against the power disparity be-
tween DL and UL transmissions is shown in Fig. 9. Power disparity is defined as
10log10(P

(dl)
i /P(ul)

k ) dB. We change the UL power while keeping DL power fixed to
obtain different disparity levels. We can observe that the UL rate degrades and DL rate
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Fig. 6. Overhead and convergence comparison with cell edge SNR = 20 dB, K = 152,
Ki = 8 & Mi = 8 ∀i ∈ B,Nk = 2 ∀k (Reprinted, with permission, from [133] ©2018 IEEE).
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increases linearly with the power disparity. Additionally, the UL and DL rates show
similar performance when the power disparity is 10dB. Similar to previous cases, the
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coordinated design show a 100% gain in comparison to the uncoordinated case in all
disparity levels.
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In Fig. 10, we compare the proposed beamformer objectives with respect to total
backlogged packets in the system queues for a given traffic arrival rate. As we study the
system for time-correlated fading, we can use beamformers estimated in the previous
time slot to initialize the beamformers for the current time slot (with memory). Thus,
we can improve the beamformer convergence. Note that this is only useful when our
objectives are WQM or QWSR maximization. In other objectives the ’with memory’
approach works only when every user has a large queue. Here, WQM provides better
performance with memory compared to other methods, due to the improved convergence
properties. However, QWSR provides good performance in both the ’with memory’
and ’without memory’ approaches due to its fast rate of convergence. Interestingly,
(W)SR has very poor performance, since it ignores the backlog status in the user queues
altogether and tends to assign non-zero weights ω

(a)
k,l only to a subset of users with good

channel (and interference) conditions. In contrast, using SMSE criterion results in a
somewhat more fair resource allocation as ω

(a)
k,l = 1 ∀ k, l. As a result, the traffic aware

(WQM, QWSR) beamformer design can handle up to 2−3 or 10 times larger traffic
loads than traditional (W)SR and SMSE criteria or uncoordinated design, respectively.

In Fig. 11, the performance of the proposed bi-directional direct beamformer
estimation strategies are illustrated with the SSE approach. In general, we do not assume
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Fig. 11. Comparison of proposed DE strategies with cell edge SNR = 20 dB, N = 19,K = 76,
Ki = 4 & Mi = 8 ∀i ∈ B,Nk = 2 ∀k (Reprinted, with permission, from [133] ©2018 IEEE).

any pilot coordination between cells. Therefore, the user specific training sequences in
both forward and backward directions are non-orthogonal (overlapping). However,
the pilots for same cell users can still be made orthogonal. Thus, in Fig. 11 each pilot
sequence is interfered by up to 72 partially overlapping pilot sequences. For short
sequence lengths, the received precoded pilot matrix is heavily contaminated by pilot
interference. In particular, Strategy C does not perform well in these conditions due
to a significant mismatch between the received pilot matrices R(a)

k and R(a)
k,2 required

to compute the beamformers in (40). Strategy B is less prone to errors in updating
the weights ω

(a)
k,l as they are estimated only for intra-cell users. Therefore, it performs

somewhat better than Strategy A with short sequence lengths. However, its performance
saturates with less overlapping pilots as the user weights from other cell users are
not available. The proposed strategies A and B start to perform reasonably well
when the sequence length is longer than 24. In general, the DE approach provides
significantly better performance than the SSE method. Moreover, due to the improved
decontamination ability discussed in Section 2.4.5, it is possible to provide the same
sum rate as the SSE method with much shorter (≤ 1/2) pilot sequence lengths.

Fig. 12 illustrates the added value of centralized pilot allocation given in Algorithm
2 for both DE and SSE methods (both with Strategy A signalling). As expected, the
centralized pilot allocation, requiring tight resource coordination (via a backhaul)
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among adjacent cells, further improves the performance of both beamformer estimation
schemes. In particular, the performance of the SSE method is greatly improved due to
minimized pilot overlap. However, an uncoordinated random pilot allocation combined
with the proposed direct beamformer estimation framework can provide most of these
gains while requiring minimum or no coordination. Note that in this example, the
number of data streams per user is restricted to 1. Therefore, every stream can be
allocated with an orthogonal pilot for the bi-directional training when the pilot length is
greater than 76. Finally, in Fig. 13, the performance of the Dynamic TDD system by
employing both Strategy A and pilot reuse is illustrated for different UE/BS densities
(Ki). There is a significant rate loss for the Ki = 8 case, when the number of pilots is less
than 20. Therefore, for the number of pilots 8 - 20, the sum rate of the system is in the
range of 10% - 60% in comparison to the orthogonal system. However, note that this is
due to the severe pilot contamination of the system, where the same pilot will be shared
with more than eight users. For all the UE/BS densities, system performance is quite
satisfactory when the pilots/user ratio is greater than 25%.
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2.5.2 Standalone model

In this case, simulations are carried out for the two and three cell scenarios with
four users in each cell. The power constraint for the DL transmission is fixed to
P(dl)

i = 10 ∀i ∈ BD and for the UL user power transmission P(ul)
k = 4 ∀k ∈ BU . All the

priority weights are assumed to be αk = 1. The number of antennas at each BS is
Mi = 4 ∀i ∈ B, and the number of antennas at each user terminal is Nk = 2 ∀k. The
simulation environment is defined by three types of terminal separations, as shown in
Fig. 14. The path loss between the two DL cell edge users (α), UL user to DL user
(β ) and UL BS to DL BS (δ ). Additionally, the path loss from a BS to in-cell users
is normalized to be 0 dB. In Figs. 15–17, we consider uncorrelated fading, which
is modelled using Clarke’s channel model. In Fig. 18, we consider time-correlated
block fading, that is by modelling it using Jake’s Doppler spectrum model with the
normalized user terminal velocity tS fD = 0.01, where tS and fD are the signalling rate
and the maximum Doppler shift, respectively.

The actual sum rate for transmit SNRs 10 dB and 20 dB versus the total overhead
for the two cell DL only case id shown in Fig. 15. One BIT iteration is assumed to take
two OFDM symbols. Thus, γ = 0.01 and γ = 0.02 correspond to frame lengths 200 and
100, respectively. Additionally, the uncoordinated beamformer design is considered
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Fig. 14. Terminal separations in dynamic TDD (Reprinted, with permission, from [129] ©2015
IEEE).

the reference case (beamformers calculated locally without considering the inter-cell
interference). Algorithm 1 with the bi-directional signalling can be seen to obtain the
peak data rate with less than 10% and 15% overhead for the frame length γ = 0.01 and
γ = 0.02, respectively. The actual sum rate improves significantly compared to the
uncoordinated system when the cell separations are equal to α = 0 dB, and it provides
considerable performance gain even for larger signalling overhead. However, for the low
inter-cell interference scenarios (lower transmit SNR with larger cell separation), the
uncoordinated system starts to outperform the proposed beamformer design.

Fig. 16 demonstrates the actual sum rate versus the total overhead of the three
cell network with two DL BSs and one UL BS. We consider the TDD frame length
200 (γ = 0.01), and different α,β and δ values. Similar to Fig. 15, the actual sum rate
improves significantly for a lower α,β and δ values compared to the uncoordinated
system. The peak rate is obtained with less than 12% overhead for all the scenarios and
the sum rate improves even with 30% signalling overhead. Therefore, the proposed
algorithm performs very well when complex interference conditions are present. Fig. 17
illustrates the average sum rate of the system versus the transmit SNR with a similar
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Fig. 15. Actual sum rate vs overhead with different SNR (10, 20 dB) values (Reprinted, with
permission, from [129] ©2015 IEEE).

BS allocation as in Fig. 4, where we vary β (3, 6, 9, 12 dB) while α and δ are
fixed to observe the impact of the UL user transmission on the sum rate. For lower
β and high transmit SNR, UL users dominate the sum rate. This is due to the high
UL-to-DL interference, which degrades the DL user SINR. However, for large β , DL
user dominates due to less UL-to-DL interference.

When BS/user allocation remains constant for a longer time, we can exploit the
fading environment to obtain converged beamformers with less bi-directional signalling
iterations, thus improving the system performance. At a given time instant, the
precoders are optimized for a fixed channel realization. Thus, as a result of iterative
optimization, only the subset of the available users/streams are allocated and the rest of
the users/streams remain inactive. By introducing a periodic beamformer re-initialization
method for a moderately fast fading scenario, the beamformer allocation is periodically
refreshed in order to reflect the changing channel conditions, and hence to improve the
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Fig. 16. Actual sum rate vs overhead at SNR = 20 dB, with diferent α,β ,δ (Reprinted, with
permission, from [129] ©2015 IEEE).

sum throughput of the system. A numerical analysis carried out in Fig. 18 illustrates the
advantage of the beamformer re-initialization method.

Fig. 18 illustrates the impact of the periodic beamformer re-initialization on the
system performance in a time-correlated channel, we consider the two cell DL only
case with 20 dB transmit SNR. The average actual sum rate is obtained over 1000
random channel initializations with 100 correlated channel blocks. Three cases with
different BIT iterations (3, 5, 10) are considered with beamformer re-initialization in
every 10 TDD frames. The actual sum rate is better in the cases with BIT = 3 and 5.
Thus, in a time-correlated channel, the proposed algorithm can be used with periodic
re-initialization to improve the performance vastly with using less BIT.

2.6 Summary and discussion

In this chapter, we have investigated multiantenna interference management for dynamic
TDD systems with several network optimization objectives. In the considered multi-cell
multi-user dynamic TDD network, the available resources per cell can be freely allocated
to either UL or DL depending on the instantaneous traffic demand. Thus, complex
interference scenarios arise as a result of simultaneous transmission of DL and UL data
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in adjacent cells. The centralized beamformer design is also impractical in the dynamic
TDD setting since acquiring the CSI between mutually interfering UEs is tedious.
However, the coordinated beamformer design for dynamic TDD systems can be carried
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out in a decentralized manner with the help of bi-directional F-B training via spatially
precoded OTA pilot signalling. Accordingly, decentralized iterative beamformer designs
are obtained for WQM, (Q)WSR maximization, and SMSE minimization objectives
such that only minimal information exchange is required among BSs and UEs. The
original formulation of the weighted ℓq-norm queue minimization problem was in
non-convex form and NP-hard. After reformulating and introducing auxiliary MSE
constraints, this was solved iteratively by using KKT conditions along with the AO
method.

A novel bi-directional signalling scheme was embedded into the TDD frame to
facilitate OTA signalling for the iterative algorithm. The TDD frame consisted of two
portions: beamformer signalling information and data. A bi-directional OTA signalling
and training framework was developed to iteratively optimize the transmit and receive
beamformers both in UL and DL. A distributed fast converging beamformer design
based on the WQM criterion was shown to be the best approach for handling both
dynamic traffic variation and difficult interference scenarios. Novel bi-directional
beamformer training strategies and methods for direct estimation (DE) of the stream-
specific beamformers are developed for each intermediate beamformer update in a
limited and noisy pilot environment. Three DE strategies were proposed to alleviate
the contamination due to non-orthogonal and overlapping pilot allocations. Strategies
A and B were shown to perform reasonably well even with relatively short pilot
sequence lengths. The proposed signalling and DE schemes allow for non-orthogonal
and overlapping pilots, which considerably reduces the resource coordination effort.
Additionally, the decontamination ability of the proposed strategies are analysed with
limited pilot resources. Finally, a centralized pilot allocation scheme was introduced to
further enhance the pilot decontamination.

Numerical examples were considered to investigate the effect of interference seen
in a dynamic TDD system and the effect of signalling overhead due to bi-directional
signalling. The results demonstrate that the proposed training and estimation framework
provides superior system performance over the uncoordinated scheme for different
dynamic TDD network parameters and optimization objectives. Additionally, the
performance was improved dramatically in a time-correlated fading with the use of
periodic beamformer re- initialization.
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3 Beamformer design for flexible TDD-based
integrated access and backhaul

3.1 Introduction

Motivated by the concerns in Section 1.2.2, we consider a flexible TDD-based IAB
network, such that in a given timeslot, BS and RNs operate in distinct UL/DL modes.
For example, when BS is in the DL mode, RNs are in the UL mode and vice-versa,
as illustrated in Fig. 19. Thereby, RNs are continuously in the two-way HD relaying
mode, which significantly alleviates the HD loss in such a relaying setup. An iterative
beamformer design with the WQM objective and resource allocation design are proposed
to manage the resulting cross-channel interference and to allocate a wireless backhaul
and access resources jointly over two consecutive data delivery intervals required
for communications between the BS and UEs through HD RNs. From the queue
minimization point of view, it is important to consider end-to-end data transmission. To
this end, we introduce user-specific UL/DL queues to RNs, in addition to queues at
UEs and BS, and incorporate them into the end-to-end WQM objective. Similar to
DL only scenarios considered in [85, 86], the WQM problem in the considered IAB
setup is solved via iterative evaluation of KKT conditions leading to a low complexity
distributed algorithm with minimal queue state-related scalar information exchange
between network nodes. Furthermore, the iterative design incorporates a water-filling
type scheme to multiplex user-specific data streams over the backhaul in both DL and
UL directions.

To facilitate practical implementation, we provide an over-the-air (OTA) signalling
scheme as in [37, 39, 36], wherein precoded pilots are used to iteratively exchange
the intermediate beamformers in both backward and forward directions. Then, direct
beamformer estimation methods are applied to alleviate the pilot contamination effect,
as in Section 2.4.1. In this chapter, we further propose a novel centralized approach to
assign users into respective BS or RN by using path gain information and concerning
potential practical constraints that are unique to IAB systems, such as limited spatial
degrees of freedom in the BS-RN channel due to the line-of-sight (LOS) deployment
and significant UL-to-DL interference of the nearby UE pairs. The user assignment is
attained by solving a combinatorial optimization problem, which is in an integer linear
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programming (ILP) form. Since the complexity of ILP increases exponentially, we
propose two approximate approaches to solve it efficiently: 1) Direct linear program
(LP) solution; and 2) SCA based LP solution [144].

Major contributions of this chapter are summarized as follows:

– An iterative beamformer design is proposed for the flexible TDD-based IAB system
by assuming two consecutive data delivery intervals and user-specific queues at each
node with the end-to-end WQM objective.

– The end-to-end WQM problem is solved via iterative evaluation of KKT conditions
and a water-filling type scheme is proposed to multiplex user-specific data over
wireless backhaul links.

– OTA bi-directional signalling architecture and direct beamformer estimation tech-
niques are proposed to provide a practical decentralized beamformer design imple-
mentation and to mitigate the pilot contamination effect.

– A centralized user assignment algorithm is proposed for the considered IAB setting
by using the long term channel statistics, nearby user information, and rank of the
BS-RN channel.

– A thorough numerical study is carried out where the proposed flexible TDD-based
IAB network is shown to significantly outperform the half duplex relaying reference
case.

3.2 System model

We consider a flexible TDD based multi-user MIMO IAB system consisting of one BS
and multiple DF RNs, as shown in Fig. 19. The set of UEs served by the BS or RN i is
denoted by Ui. Here, for the simplicity of the notation, we use i = 1 for the BS and
i ∈ {2,3, . . . .,N}= BR for RNs. The total number of UEs in the system is K and, the
number of UEs served by the BS or RN i is Ki = |Ui|. In addition, the serving BS/RN of
the user k is denoted as ik. Each UE k employs Nk antenna elements, while each BS/RN
i employs Mi antenna elements. The maximum number of spatial data streams allocated
to UE k ∈ Ui is denoted by Lk ≤ min(Mi,Nk). In addition, the maximum number of
spatial data streams between the BS and RN i is denoted as L̄i ≤ min(Mi,M1).

In the IAB system, we consider two-way HD relaying at RNs to eliminate the
half-duplex loss effectively. Hence, in a given timeslot, BS and RNs operate in distinct
UL/DL modes. Note that for UEs served by RN, data transmission from/to BS to/from
UEs takes two timeslots. Therefore, we consider two timeslots to model the end-to-end
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IAB-donor (BS)

IAB-node (RN)

UE

1st Timeslot – IAB-donor in DL mode, IAB-nodes in UL mode

2nd Timeslot – IAB-donor in UL mode, IAB-nodes in DL mode

Fig. 19. Flexible TDD-based IAB Network with two-way HD relaying (Under CC BY 4.0 license
from [134] ©2020 Authors).

system behaviour. In the first time slot, the BS is in DL mode while RNs are in UL mode
(multiple access stage). In the second time slot, the BS is in UL mode, and RNs are in
DL mode (broadcasting stage). Therefore, the following transmissions and transmit
precoders are applied during the first timeslot;

– Tx1 : The BS transmits data to DL UEs. Transmit precoder for DL UE k ∈ U1 via lth

spatial stream is m(dl,1)
k,l ∈ CM1 .

– Tx2 : UL UEs transmits data to the serving RN. Transmit precoder from UL UE
k ∈ Ui via lth spatial stream is m(ul,1)

k,l ∈ CNk .
– Tx3 : The BS wirelessly backhaul data to each RN to serve their DL UEs in the next

timeslot. Transmit precoder for RN i at BS, via lth spatial stream is v(dl)
i,l ∈ CM1 .
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Due to the above transmissions in the first timeslot, the received signal x(dl,1)
k ∈ CNk at

DL UE k ∈ U1 can be expressed as

x(dl,1)
k =H1,k

(
∑

j∈U1

L j

∑
n=1

m(dl,1)
j,n d(dl,1)

j,n +
N

∑
i=2

L̄i

∑
n=1

v(dl)
i,n d(dl)

i,n

)
+

N

∑
i=2

∑
j∈Ui

L j

∑
n=1

H̃ j,km(ul,1)
j,n d(ul,1)

j,n + zk, (53)

where Hi,k ∈ CNk×Mi is the channel matrix between BS/RN i and UE k, H̃ j,k ∈ CNk×N j

is the UE-UE interference channel matrix between UE j and UE k. All transmit data
symbols d(dl,1)

j,n , d(ul,1)
j,n and d(dl)

i,n (∀ j,n, i) are assumed to be independent and identically

distributed (i.i.d.) with E{|d(dl,1)
j,n |2} = 1, E{|d(ul,1)

j,n |2} = 1 and E{|d(dl)
i,n |2} = 1. We

assume complex white Gaussian noise zk ∈CNk with variance N0 per element. Similarly,
the received signal x(ul,1)

i ∈ CMi at RN i can be expressed as

x(ul,1)
i =Ĥ1,i

(
∑

j∈U1

L j

∑
n=1

m(dl,1)
j,n d(dl,1)

j,n +
N

∑
r=2

L̄r

∑
n=1

v(dl)
r,n d(dl)

r,n

)
+

N

∑
r=2

∑
j∈Ur

L j

∑
n=1

HH
i, jm

(ul,1)
j,n d(ul,1)

j,n + zi, (54)

where Ĥ1,i ∈ CMi×M1 is the channel matrix between the BS and RN i. To decode the
received data, the following linear receivers are employed at the receiver nodes;

– Rx1 : The DL UE k ∈ U1 employs linear receiver u(dl,1)
k,l ∈ CNk . Then the estimated

data for lth spatial stream is d̂(dl,1)
k,l = (u(dl,1)

k,l )Hx(dl,1)
k .

– Rx2 : The ith RN employs linear receiver u(ul,1)
k,l ∈ CMi to decode the data from UL

UE k ∈ Ui via lth spatial stream. Then the estimated data is d̂(ul,1)
k,l = (u(ul,1)

k,l )Hx(ul,1)
i .

– Rx3 : The RN i employs w(dl)
i,l ∈ CMi to decode backhaul data from BS via lth spatial

stream. Then the estimated data is d̂(dl)
i,l = (w(dl)

i,l )Hx(ul,1)
i .

Similarly, the following transmissions and transmit precoders are used in the second
timeslot;

– Tx4 : UL UEs transmit data to BS. The transmit precoder of UL UE k ∈ U1 in lth

spatial stream is m(ul,2)
k,l ∈ CNk .

– Tx5 : Each RN transmit data to DL UEs. The transmit precoder for DL UE k ∈ Ui via
lth spatial stream is m(dl,2)

k,l ∈ CMi .
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– Tx6 : Relaying the received UL UE data to the BS by each RN. The transmit precoder
of the RN i to BS, via lth spatial stream is v(ul)

i,l ∈ CMi .

Then, the received signal x(ul,2)
1 ∈ CM1 at the BS can be expressed as

x(ul,2)
1 =

N

∑
i=2

ĤT
1,i

( L̄i

∑
n=1

v(ul)
i,n d(ul)

i,n + ∑
j∈Ui

L j

∑
n=1

m(dl,2)
j,n d(dl,2)

j,n

)
+ ∑

j∈U1

L j

∑
n=1

HH
1, jm

(ul,2)
j,n d(ul,2)

j,n + z1, (55)

where d(dl,2)
j,n , d(ul,2)

j,n and d(ul)
i,n (∀ j,n, i) are the transmit data symbols, which are i.i.d.

with E{|d(dl,2)
j,n |2}= 1, E{|d(ul,2)

j,n |2}= 1 and E{|d(ul)
i,n |2}= 1.

Similarly, the received signal x(dl,2)
k ∈ CNk at DL UE k ∈ Ui can be expressed as,

x(dl,2)
k =

N

∑
r=2

Hr,k

( L̄i

∑
n=1

v(ul)
i,n d(ul)

i,n + ∑
j∈Ur

L j

∑
n=1

m(dl,2)
j,n d(dl,2)

j,n

)
+ ∑

j∈U1

L j

∑
n=1

H̃T
j,km(ul,2)

j,n d(dl,2)
j,n + zk. (56)

To decode each of the received data, we employ the following linear receivers at the
receiver node.

– Rx4 : The BS employs u(ul,2)
k,l ∈ CM1 to decode data from lth spatial stream of UL UE

k ∈ U1. Then the estimated data is d̂(ul,2)
k,l = (u(ul,2)

k,l )Hx(ul,2)
1 .

– Rx5 : The DL UE k ∈ Ui employs u(dl,2)
k,l ∈CNk to decode the received data via spatial

stream l. Then the estimated data is d̂(dl,2)
k,l = (u(dl,2)

k,l )Hx(dl,2)
k .

– Rx6 : The BS employs w(ul)
i,l ∈ CM1 to decode the relaying data from RN i via lth

spatial stream. Then the estimated data is d̂(ul)
i,l = (w(ul)

i,l )Hx(ul,2)
1 .

Here, the corresponding user-specific MSE for UL/DL data detection is denoted in
a common form as ε

(a,s)
k,l = E[|d̂(a,s)

k,l − d̂(a,s)
k,l |2] with a = {ul,dl} and s = {1,2}. In

addition, MSE for the data detection corresponding to backhaul traffic is denoted as
ε
(a)
i,l = E[|d̂(a)

i,l − d̂(a)
i,l |

2]. Hence, the user-specific MSE value corresponding to Rx1 can
be obtained as

ε
(dl,1)
k,l = 1−2ℜ((u(dl,1)

k,l )HH1,km(dl,1)
k,l )+(u(dl,1)

k,l )HM(dl,1)
k u(dl,1)

k,l , (57)
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M(dl,1)
k =H1,k

(
∑

j∈U1

L j

∑
n=1

m(dl,1)
j,n (m(dl,1)

j,n )H+
N

∑
r=2

L̄r

∑
n=1

v(dl)
r,n (v(dl)

r,n )H
)

HH
1,k

+
N

∑
r=2

∑
j∈Ur

L j

∑
n=1

H̃ j,km(ul,1)
j,n (H̃ j,km(ul,1)

j,n )H+N0I (58)

where M(dl,1)
k = E[x(dl,1)

k (x(dl,1)
k )H] is the received signal covariance matrices for DL UE

k. The expression for M(dl,1)
k is given in (58) on top of the next page. Then, the MMSE

receiver corresponding to Rx1 is given by

ũ(dl,1)
k,l = (M(dl,1)

k )−1H1,km(dl,1)
k,l . (59)

The reader is referred to Appendix A for the MSE, received signal covariance and
MMSE receiver expressions corresponding to the receiver types from Rx2 to Rx6.

3.3 Precoder design

In this section, we present an iterative transmit/receive beamformer design with the
WQM objective for the considered flexible TDD based IAB system. For UEs served by
the RNs, it minimally takes two timeslots for the end-to-end data delivery. Hence, in the
WQM objective, we jointly consider queue states at each node during both timeslots.
For a successful IAB communication, the following UL/DL queues are required at each
node;

– At the BS, DL UE queues (Q(dl)
k ) are required for, both, directly serving and relaying

UEs as all DL traffic passes through the BS.
– At each UE, UL queues (Q(ul)

k ) are maintained to send UL traffic to the serving
BS/RN.

– At the RNs, user-specific UL (Q̄(ul)
k ) and DL (Q̄(dl)

k ) queues are employed to store/relay
access and backhaul data, hence to guarantee end-to-end data delivery.

Note that the DL UE queues at RN are filled up as backhaul traffic arrives from the BS
during the first timeslot, and emptied when serving DL UEs during the second timeslot.
Similarly, the UL UE queues at RN grow due to the received UL UE data during the first
timeslot, and drain when relaying the data to the BS during the second timeslot. Hence,
from the overall queue minimization perspective, it is crucial to consider the traffic
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dynamic at each node over two timeslots. Then, we can define a queue deviation metric
Ψ

(dl)
k for all DL UE queues at the BS, after two timeslots, as

Ψ
(dl)
k =

Q(dl)
k −∑

Lk
l=1 R(dl,1)

k,l k ∈ U1,

Q(dl)
k −∑

Li
l=1 a(dl)

k R(dl)
i,l k ∈ Ui, i ∈ BR,

(60)

where R(a,s)
k,l denotes the number of transmitted bits over the lth spatial stream to/from

UE k. The backhaul rate over the lth spatial stream to/from BS to RN i is denoted as
R(a)

i,l . Moreover, by assuming MMSE receivers are employed at each receiver node, the

instantaneous rate can be expressed as R(a,s)
k,l =− log2(ε

(a,s)
k,l ) and R(a)

i,l =− log2(ε
(a)
i,l )

[37]. Here, the backhaul streams are multiplexed with data from several UEs and, a(a)k is
the multiplexed rate portion for each UE k (0 ≤ a(a)k ≤ 1). Moreover, at each UL UE, the
queue deviation metric Ψ

(ul)
k for the UL queues, after two timeslots, is given by

Ψ
(ul)
k =

Q(ul)
k −∑

Lk
l=1 R(ul,2)

k,l k ∈ U1,

Q(ul)
k −∑

Lk
l=1 R(ul,1)

k,l k ∈ Ui, i ∈ BR.
(61)

Similarly, the queue deviation metric Ψ̄
(dl)
k and Ψ̄

(ul)
k for DL and UL UE queues at the

RN ik, after two timeslots are given by

Ψ̄
(dl)
k =Q̄(dl)

k +
Li

∑
l=1

a(dl)
k R(dl)

i,l −
Lk

∑
l=1

R(dl,2)
k,l , (62a)

Ψ̄
(ul)
k =Q̄(ul)

k +
Lk

∑
l=1

R(ul,1)
k,l −

Li

∑
l=1

a(ul)
k R(ul)

i,l . (62b)

In order to simplify the notation, let Ψ̃(a) and ˜̄Ψ(a) denote vectors with elements
Ψ̃

(a)
k ≜ α

1/q
k Ψ

(a)
k and ˜̄

Ψ
(a)
k ≜ α

1/q
k Ψ̄

(a)
k , respectively. Here, αk is a weighting factor,

reflecting user specific priorities.
Note that, before the precoder/decoder design, we assume UEs are already assigned

to a particular BS or RN by using the user assignment algorithm, which is explained in
detail in Section III.C. Here, we define the weighted ℓq-norm queue minimization of
the UL and DL users during two timeslots with sum transmit power constraints at the
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transmitters as

min.
M,W

∑
a∈{ul,dl}

∥Ψ̃(a)∥q +∥ ˜̄Ψ(a)∥q (63a)

s. t.
Lk

∑
l=1

∥m(ul,1)
k,l ∥2 ≤ P(ul)

k ∀k ∈ Ui, i ̸= 1, (63b)

∑
k∈U1

Lk

∑
l=1

∥m(dl,1)
k,l ∥2 +

N

∑
i=2

L̄i

∑
l=1

∥v(dl)
i,l ∥2 ≤ P(dl)

1 , (63c)

Lk

∑
l=1

∥m(ul,2)
k,l ∥2 ≤ P(ul)

k ∀k ∈ U1, (63d)

∑
k∈Ui

Lk

∑
l=1

∥m(dl,2)
k,l ∥2 +

L̄i

∑
l=1

∥v(ul)
i,l ∥2 ≤ P(dl)

i ∀i ∈ BR, (63e)

where M represents the set of all transmit precoders and W represents the set of all
receive beamformers. The maximum transmit power at BS/RN i is denoted as P(dl)

i and
the maximum transmit power at UE k denoted as P(ul)

k .
The WQM problem in (63) is proposed to design precoders to minimize the total

number of backlogged packets in the IAB network over two consecutive timeslots by
optimizing transmit and receive beamformers at each node. An intriguing relationship
can be obtained between WQM and WSRM formulations by considering a special
case of lq-norm in the objective (assuming large queues at each node and q=1) [86].
Moreover, both WSRM and WQM problems are known to be NP-hard even for the
single antenna case[145, 146, 147]. However, computationally efficient solutions can be
found by iterative alternating optimization (AO), similar to [85, 86]. First, by re-writing
the rate terms using the corresponding MSE terms and introducing auxiliary MSE
constraints as in [85] to (63), we can construct an approximated optimization problem

84



as

min.
M,W,T

∑
k∈U1

(
α
(dl)
k (Q(dl)

k −
Lk

∑
l=1

J0t(dl,1)
k,l )q +α

(ul)
k (Q(ul)

k −
Lk

∑
l=1

J0t(ul,2)
k,l )q

)
+

N

∑
i=2

∑
k∈Ui

(
α
(ul)
k (Q(ul)

k −
Lk

∑
l=1

J0t(ul,1)
k,l )q +α

(dl)
k (Q(dl)

k −
L̄i

∑
l=1

a(dl)
k J0t(dl)

i,l )q

+α
(dl)
k (Q̄(dl)

k +
L̄i

∑
l=1

a(dl)
k J0t(dl)

i,l −
Lk

∑
l=1

J0t(dl,2)
k,l )q

+α
(ul)
k (Q̄(ul)

k +
Lk

∑
l=1

J0t(ul,1)
k,l −

L̄i

∑
l=1

a(ul)
k J0t(ul)

i,l )q
)
, (64a)

s. t. ε
(a,s)
k,l ≤ β

−t(a,s)k,l ∀(k, l),a ∈ {dl,ul},s ∈ {1,2}, (64b)

ε
(a)
i,l ≤ β

−t(a)i,l ∀i ∈ BR&∀l,a ∈ {dl,ul}, (64c)

(63b), (63c), (63d), (63e),

where T represents the set of the newly introduced auxiliary variables t(a,s)k,l (∀a,s,k,

l), t(a)i,l (∀a, i, l). In addition, J0 = log2(β ) and β is a predefined constant to adjust the
approximation function such that β > 0 [85]. By introducing these MSE constraints, the
objective becomes a convex function of auxiliary variables t(a,s)k,l , t(a)i,l . However, the MSE
constraints in (64b) and (64c) are still non-convex, and that non-convexity is handled by
applying the successive convex approximation (SCA) method iteratively by using a
first-order Taylor series approximation [85]. For example, (64b) can be approximated as,

β
−t(a,s)k,l =−J1t(a,s)k,l + J2, (65)

where J1 = β
−t̄(a,s)k,l log(β ), J2 = β

−t̄(a,s)k,l + t̄(a,s)k,l J1 and t̄(a,s)k,l is the point of approxima-
tion. For (64c), the same approximation is applied as in (65). Then, by substituting
approximated expressions in (65) to (64b) and (64c), the optimization problem in (64)
can be efficiently solved using the KKT optimality conditions with the iterative AO
method[86].

3.3.1 Alternating optimization method

Here, we present the iterative AO method using the KKT optimality conditions as follows:
we begin by fixing the transmit precoders and solving for the receive beamformers and
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other variables (auxiliary and dual). First, we calculate the MMSE receivers using (59)
and (88), then the corresponding MSE values are obtained from (57) and (86). By using
the complementary slackness of (64b) and (64c), we can update auxiliary variables
t(a,s)k,l , t(a)i,l as

t(a,s)k,l = t̄(a,s)k,l +
1

log(β )

(
1− ε

(a,s)
k,l β

t̄(a,s)k,l
)
, (66)

where t̄(a,s)k,l denotes t(a,s)k,l from the previous iteration. This corresponds to a sub-gradient

update of dual variable t(a,s)k,l with step size 1/ log(β ). Hence, for the faster convergence,

we can experiment with the step size as in [85]. Next, dual variables ω
(a,s)
k,l ,ω

(a)
i,l

corresponding to (64b) and (64c) are obtained as

ω
(a,s)
k,l = (1−ρ)ω̄

(a,s)
k,l +ρ

qJ0
J1

ϒ, (67)

where ω̄
(a,s)
k,l denotes fixed ω

(a,s)
k,l from the previous iteration. Here, ρ ∈ (0,1) controls

the rate of convergence and is used to prevent over-allocation. For Rx1, ϒ is given by

ϒ = α
(dl)
k [(Q(dl)

k −
Lk

∑
l=1

J0t(dl,1)
k,l )q−1]+, (68)

where [x]+ ≜ max{x,0}. For Rx2-Rx6, expressions for ϒ are given in Appendix A.
Next, we fix the MMSE receivers and solve for the transmit precoders. The transmit

precoders can be derived from the first-order optimality conditions of (64). Hence,
transmit precoders for Tx1 transmitter type can be obtained as

m(dl,1)
k,l =

(
Φ

(dl,1)
1 +ν

(dl,1)
1 I

)−1
ω

(dl,1)
k,l HH

1,ku(dl,1)
k,l , (69)

where Φ
(dl,1)
1 is the weighted transmit co-variance matrix and the expression for Φ(dl,1)

1

is obtained as in (70) at the top of the next page. In addition, ν
(dl,1)
1 , is the dual variable

corresponding to the power constraint in (63c). Hence, the transmit beamformers can
efficiently solved from (69) by a bisection search over the dual variables to satisfy
the power constraint. For Tx2-Tx6, the transmit precoder expressions are provided
in Appendix A. Finally, we repeat the above precoder/decoder optimization until the
convergence of the objective function.
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Φ
(dl,1)
1 =∑

k∈U1

L j

∑
l=1

ω
(dl,1)
k,l HH

1,ku(dl,1)
k,l (HH

1,ku(dl,1)
k,l )H+

N

∑
i=2

ĤH
1,i(

L̄i

∑
l=1

ω
(dl)
i,l w(dl)

i,l (w(dl)
i,l )H

+∑
k∈Ui

L j

∑
l=1

ω
(ul,1)
k,l u(ul,1)

k,l (u(ul,1)
k,l )H)Ĥ1,i. (70)

3.3.2 Multiplexing backhaul data

In the proposed beamformer design, we consider that a backhaul carries multiple UE data
at the same time either in UL or DL direction. Therefore, we define multiplexing factors
a(a)k to obtain individual user-specific rates via the backhaul link. Here, the multiplexing
of user specific data over L̄i backhaul streams assigned to RN i can be carried out
using conventional approaches such as frequency-division-multiplexing (FDM) or
time-division-multiplexing (TDM). In this subsection, we propose two approaches to
calculate these multiplexing factors a(a)k : 1) a KKT-based solution; 2) the Heuristic
method.

KKT-based solution

We can model these multiplexing factors a(a)k as optimization variables in the original
optimization problem in (64). In general, for any value of q in (64a), it is a tedious
task to obtain a generalized closed-form solution for a(a)k from KKT conditions as we
have to find the roots of a polynomial equation. However, for the specific case with
q = 2, we can obtain optimized a(a)k values by iteratively evaluating their corresponding
KKT conditions (assuming the fixed receive beamformers and auxiliary variables from
the previous section). Note that q > 2 cases are left for future work. To this end, we
introduce the following additional boundary constraints to the original optimization
problem (64).

|Ui|

∑
k=1

a(a)k = 1 ∀i, (71a)

a(a)k ≥ 0 ∀k. (71b)

Then, by differentiating the modified Lagrangian (with q = 2) w.r.t to a(a)k and applying
the complementary slackness to the boundary constraints (71), we can obtain the
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following closed-form solution

a(a)k = [Z(a)
k − v(a)i ]+, (72)

where v(a)i is the scaled dual variable corresponding to equality constraint (71a), and
Z(a)

k is given by

Z(dl)
k =(Q(dl)

k − Q̄(dl)
k +

Lk

∑
l=1

J0t(dl,2)
k,l )/2

L̄i

∑
l=1

J0t(dl)
i,l . (73a)

Z(ul)
k =(Q̄(ul)

k +
Lk

∑
l=1

J0t(ul,1)
k,l )/

L̄i

∑
l=1

J0t(ul)
i,l . (73b)

Here, v(a)i ,a(a)k are obtained by using a water-filling type algorithm such that ∑
|Ui|
k=1[Z

(a)
k −

v(a)i ]+ = 1. From the above solution, it is obvious that more backhaul resources are
allocated to UEs with larger Z(a)

k values while no data is delivered to users with
Z(a)

k − v(a)i < 0. In each iteration Z(a)
k values change due to the iterative evaluation of the

auxiliary variables. Thus, a(a)k must be re-evaluated in each iteration until convergence.

Heuristic method

In this method, we assign multiplexing factors a(a)k based on the queue state of the UL
and DL traffic and consider those as fixed values in the optimization problem (64). The
proposed heuristic method is essential when we are unable to find an optimization
solution to a(a)k (cases that q ≥ 3) or when we need a simple practical solution.

For the heuristic assignment of a(a)k , we make an assumption that the generated traffic
in the system is delivered to the destination within two timeslots (no backlogged packets
in the relay nodes). In such a case, we may assume that Q̄(a)

k = 0, ∑
Lk
l=1 J0t(dl,2)

k,l = Q(dl)
k ,

∑
Lk
l=1 J0t(ul,1)

k,l = Q(ul)
k and ∑

L̄i
l=1 J0t(a)i,l = ∑

|Ui|
k=1 Q(a)

k . Then, by substituting these values to

(73)–(72) and applying boundary conditions, we can obtain a(a)k simply as

a(a)k =
Q(a)

k

∑
|Ui|
j=1 Q(a)

j

, i ∈ BR. (74)

Finally, the complete iterative beamformer design with the proposed backhaul multiplex-
ing schemes is summarized in Algorithm 3.
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Algorithm 3 Iterative Beamformer Design

1: Initializing feasible transmit beamformers m(a,s)
k,l ,v(a)i,l .

2: Calculate multiplexing factors a(a)k for each UE using (74) (Heuristic method).
3: repeat
4: Estimate MMSE receivers u(a,s)

k,l ,w(a)
i,l by using (59) and (88).

5: Calculate MSE values ε
(a,s)
k,l ,ε

(a)
i,l from (57) and (86).

6: Calculate auxiliary variables t(a,s)k,l , t(a)i,l from (66).

7: Calculate multiplexing factors a(a)k for each UE from (72) (KKT based method).
8: Calculate dual variables ω

(a,s)
k,l ,ω

(a)
i,l using (67), (68) and (89).

9: Estimate transmit precoders m(a,s)
k,l ,v(a)i,l from (69) and (90).

10: until convergence.

3.3.3 User assignment

In this subsection, we propose a novel centralized approach to assign UEs into a
particular BS or RN. Typically, UEs are assigned to their respective serving nodes based
on the strongest received signal strength indicator (RSSI) value. However, that approach
is not always a viable option for the IAB system, due to the asymmetric DL and UL data
transmission and the spatial degree of freedom limitations for the BS-RN backhaul links.
For example, two nearby UEs may be assigned to two different serving BS/RNs based
on their RSSI values. Then, both UEs may suffer from significant UL-to-DL interference
due to the different (UL and DL) transmission modes at BS, and RNs. To avoid this,
we aim to assign nearby users into the same serving node. Moreover, RNs are often
deployed in such a way that the BS-RN channel has a line of sight (LOS) path. Hence,
the fading channels between BS-RNs experience Rician fading statistics due to the
dominant LOS component. With the LOS deployment, we may be able to have a reliable
wireless backhaul between BS and RNs. However, at the same time, the number of
parallel spatial streams available for the backhaul link is limited. The limited backhaul
capacity may constitute a bottleneck for UEs served by RNs, as their incoming/outgoing
traffic is relayed through the wireless in-band backhaul links. Therefore, such practical
constraints unique to IAB systems are also considered in the proposed user assignment
algorithm.

In the proposed user assignment approach, the BS collects the following information,

– Exact RSSI values between BS-UE and RN-UE links.
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– The number of antennas and maximum transmit powers at each terminal.
– The multiplexing order of the BS-RN channels.
– Neighbouring UE information from each UEs based on the measured RSSI values

between UE-UE links.

Initially, we calculate the individual utility value gi,k for assigning an UE k to a particular
BS or RN i. The cost value gi,k is expressed as

gi,k = log2(1+
P(dl)

i Si,k

MiN0
), (75)

where Si,k is the path gain between BS/RN i and UE k. The cost value gi,k represents a
coarse prediction for the DL rate of UE k if served by BS/RN i. Next, the rank of the
BS-RN channel for each backhaul link i is defined as

Di = rank(Ĥ1,i) i ∈ BR. (76)

In addition, the nearby UE set Yk for each UE k potentially constituting high cross-link
interference is given as

Yk = { j | S j,k > Sth for j = 1, ...,K}, (77)

where S j,k is the path gain between UE j and k, and Sth is a design parameter controlling
the size |Yk|.

Each element ci,k ∈ {0,1} in UE allocation matrix C ∈ BN×K matrix represents the
assignment value of the UE k into BS/RN i, where ci,k = 1 if the kth UE assigned into
ith BS/RN, otherwise ci,k = 0. Finally, the user assignment problem for the IAB system
can be formulated as

max.
C,Ai

N

∑
i=1

K

∑
k=1

ci,kgi,k −
N

∑
i=2

ζiAi (78a)

s. t. Ai − (
K

∑
k=1

ci,k −Di)≥ 0 i ∈ BR, (78b)

Ai ≥ 0 i ∈ BR, (78c)
N

∑
i=1

ci,k = 1 ∀k, (78d)

ci,k = {0,1} ∀i,k, (78e)

ci,k − ci,x = 0 ∀k,x ∈ Yk. (78f)
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where Ai denotes the number of UEs exceeding the spatial multiplexing capabilities of
BS-RN link i and ζi > 0 is a penalty value limiting the allocation of UEs to a specific RN
much beyond the rank of the corresponding BS-RN channel. In the objective, we aim to
find an optimal ci,k ∈ {0,1} allocation to maximize the sum utility while penalizing
the over-allocation of users into the RNs. Inequality constraints (78b) and (78c) make
sure that the over-allocation penalty is always non-negative. The equality constraint
(78d) guarantees that each UE is allocated into one serving BS/RN, while the equality
constraint (78f) aims to avoid large cross-link interference by forcing nearby users into
the same BS/RN. Different approaches to solve the proposed user assignment problem
are discussed below.

Direct LP solution

The user assignment problem in (78) is a combinatorial integer linear programming
(ILP) problem [148]. The computational complexity of ILP increases exponentially
with the number of BSs/RNs and UEs. However, we can find an approximated solution
with greatly reduced complexity by relaxing the binary variable ci,k as a continuous
variable 0 ≤ ci,k ≤ 1 and solving it as an LP problem. However, it is crucial to define
nearby users set Yk with properly planned interference threshold Sth to avoid assigning
fractional ci,k values.

SCA based LP solution

As previously stated, there is a chance to obtain fractional valued assignment matrix C
from the direct LP solution due to an inadequate parameter setting or unfavorable user
distribution. Hence, here we present a complementary method for the user assignment,
which is still less complex than the ILP method but more scrupulous than the direct LP
solution. In addition to relaxing the binary variables as continuous variables as in the
direct LP solution, we introduce the following well-known sparsity inducing penalty
function to the objective to enforce a binary solution [144]

f (C) =
B

∑
i=1

K

∑
k=1

log(ci,k +δ ), (79)

where δ is a small positive constant used to limit the dynamic range of the log function.
Moreover, to adapt the objective to the SCA framework, we linearize the penalty
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function by using first-order Taylor series approximation as[144]

f (C(n+1)) = f (C(n))+
B

∑
i=1

K

∑
k=1

ci,k − c(n)i,k

c(n)i,k +δ

. (80)

Now, with the linearized penalty (80) appended to the objective, the optimization
problem in (78) can be solved as an iterative LP.

3.4 Practical implementation

In the previous section, we proposed an iterative precoder/decoder design with the WQM
objective for the IAB system for a given user assignment. In principle, the proposed
design summarized in Algorithm 3 can be implemented either in a centralized or
decentralized manner. A specific challenge for the centralized implementation is the CSI
acquisition of the cross-link interference channels, e.g., among mutually interfering user
terminals. Explicit feedback of the UE-to-UE and RN-to-UE channels to the BS would
be required to enable optimal beamformer design, which would make the centralized
implementation infeasible in practice. In contrast, the proposed coordinated node
specific beamformer design can be implemented in a decentralized manner by employing
bi-directional F-B training via spatially precoded OTA pilot signalling [37, 39, 36].
Here, our primary focus is on the detailed analysis of the decentralized implementation
of the beamformer design in both ideal and non-ideal conditions.

3.4.1 Training and signalling

The 5G 3GPP NR standard allows a large degree of flexibility to define application-
specific frame structures. Specifically, due to the minislot concept introduced in NR,
greatly expedited OTA information exchange is possible in both directions, as already
shown in our previous work [133].

For the decentralized design, we use a specific TDD frame structure, as shown
in Fig. 20. The TDD frame is divided into two portions: 1) beamformer signalling;
2) data transmission. In the beamformer signalling phase, we employ precoded pilot
sequences to exchange initial/intermediate beamformers and user-specific weights
between coordinated nodes in both forward and backward directions iteratively. There,
each node estimates their precoder/decoder based on the received forward/backward
training sequences and the estimated precoder/decoder as the precoder for the next
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Fig. 20. TDD frame structure (Under CC BY 4.0 license from [134] ©2020 Authors).

iteration forward/backward training. The forward and backward phases refer to the
directions where the pilot training is aligned with or opposed to the data transmission,
respectively. In the data transmission phase, the transmit precoders and receive decoders
acquired after the last bi-directional training iteration are used for transmitting and
receiving the data symbols.

There are two different beamformer estimation strategies, which can be used with
bi-directional OTA signalling to obtain the transmit/receive beamformers: 1) the direct
beamformer estimation (DE), and 2) the stream specific estimation (SSE). In the DE
method, the received precoded pilot training matrix is directly applied to estimate the
required beamformer. In contrast, in the SSE, each stream specific pilot sequence is
decoded separately. Then, the estimated stream specific equivalent channels are used to
construct the beamformers. Both schemes perform equally well in ideal conditions, such
as employing orthogonal pilot sequences at each node with high SNR for estimation.
However, the orthogonal pilot allocation is not typically possible for practical dense
network deployments, especially with decentralized resource scheduling. Since the DE
approach has shown good resilience to non-ideal conditions [149], in this study, we
focus on the DE method only.
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Table 2. Pilot precoders and local feedbacks used during OTA bi-directional training (Under
CC BY 4.0 license from [134] ©2020 Authors).

Label Tx nodes OTA pilot precoders
Local

feedbacks

Fwd-1 BS m(dl,1)
k,l , v(dl)

i,l t(ul)
i,l , t(dl,2)

k,l

UEs served by RNs m(ul,1)
k,l NA

Fwd-2 UEs served by BS m(ul,2)
k,l NA

RNs m(dl,2)
k,l , v(ul)

i,l t(dl)
i,l , t(ul,1)

k,l

Bwd-1 UEs served by BS
√

ω
(dl,1)
k,l u(dl,1)

k,l ω
(dl,1)
k,l

RNs
√

ω
(dl)
i,l w(dl)

i,l ,
√

ω
(ul,1)
k,l u(ul,1)

k,l ω
(dl)
i,l ,ω

(ul,1)
k,l

Bwd-2 BS
√

ω
(ul)
i,l w(ul)

i,l ,
√

ω
(dl,2)
k,l u(dl,2)

k,l ω
(ul)
i,l ,ω

(dl,2)
k,l

UEs served by RNs
√

ω
(ul,2)
k,l u(ul,2)

k,l ω
(ul,2)
k,l

3.4.2 Decentralized beamformer estimation

For the DE method, pilot precoders used for OTA bi-directional training and local
scalar feedbacks are summarized in Table 2. In addition to the aforementioned OTA
signalling, control feedback channels are used to explicitly exchange limited scalar-
valued parameters related to initial queue states and the auxiliary variables of the local
nodes (local nodes are referred to as immediate parent-child BS-RN, BS-UE and RN-UE
pairs, and UE-UE pairs are not considered local nodes). Details of the beamformer
design steps at the transmit and receive nodes using OTA training and additional local
feedback channels with minimal signalling are presented below.

Receive beamformer and weight estimation

The received precoded pilots information and explicit scalar valued local feedback
information during Fwd-1 and Fwd-2 are used to estimate the receive beamformers,
MSE values, user-specific weights, and auxiliary variables corresponding to the first and
second timeslots, respectively.

Let b(a,s)
k,l ∈ CS and b(s)

i,l ∈ CS denote the pilot training sequences for lth data stream
corresponding to UE (UL or DL) k and RN i, respectively. Here, S is the length of
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the pilot sequence. In the forward training, the pilots are precoded with the transmit
precoders m(a,s)

k,l and v(a)i,l . Then, the received precoded pilot training matrix at DL UE
k ∈ U1 during Fwd-1 is given by

T(dl,1)
k =H1,k

(
∑

j∈U1

L j

∑
n=1

m(dl,1)
j,n b(dl,1)

j,n +
N

∑
i=2

L̄i

∑
n=1

v(dl)
i,n b(dl)

i,n

)
+

N

∑
i=2

∑
j∈Ui

L j

∑
n=1

H̃ j,km(ul,1)
j,n b(ul,1)

j,n +Nk, (81)

where Nk ∈ CNk×S is the estimation noise matrix for all pilot symbols. Then, by using
the received composite channel information T(dl,1)

k and own pilot training sequence
b(dl,1)

k,l we can directly estimate the MMSE receivers as

u(dl,1)
k,l =

(
T(dl,1)

k T(dl,1)H

k +N0I
)−1

T(dl,1)
k b(dl,1)H

k,l . (82)

Note that, the estimated MMSE receiver and the exact expression in (59) become
identical, when training sequences are orthogonal, and SNR is high [133] (estimation
noise vanishes). Next, the corresponding MSE can be estimated as

ε
(dl,1)
k,l = 1−u(dl,1)H

k,l T(dl,1)
k b(dl,1)H

k,l . (83)

Similarly, for Rx2-Rx6, the received precoded matrices T(a,s)
k ∀ a,s,k and local stream

specific pilot sequences b(a,s)
k,l ∀ a,s,k, l are used to estimate the corresponding MMSE

receiver and MSE similar to (82) and (83). Then, we can calculate node specific auxiliary
variables t(a,s)k,l as in (66), by using the estimated MSE values. Finally, the user-specific

weights ω
(a,s)
k,l are estimated using (67) and, (69) or (90). However, to do this, in addition

to the OTA precoded information, we need explicit information on initial queues and
auxiliary variables (t(a,s)k,l , t(a)i,l ) from the local nodes. We assume this to be information
exchange to happen over separate control feedback channels established among the local
nodes. However, note that some of the feedback information can be outdated due to the
inherent latency in the decentralized estimation.

Transmit precoder estimation

The received precoded pilot information and local feedback information during Bwd-1

and Bwd-2 are used to estimate the transmit beamformers corresponding to the first and
second timeslots, respectively.
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During the backward training, the pilots are precoded with the weighted receivers√
ω

(a,s)
k,l u(a,s)

k,l and
√

ω
(a)
i,l w(a)

i,l . Then, the received precoded pilot training matrix at the
BS during Bwd-1 is given by

R(dl,1)
1 =

N

∑
i=2

ĤH
1,i

(
∑
j∈Ui

L j

∑
n=1

√
ω

(ul,1)
j,n u(ul,1)

j,n b(ul,1)
j,n +

L̄i

∑
n=1√

ω
(dl)
i,n w(dl)

i,n b(dl)
i,n

)
+ ∑

j∈U1

L j

∑
n=1

HH
1, j

√
ω

(dl,1)
j,n u(dl,1)

j,n b(dl,1)
j,n +N1, (84)

where N1 ∈ CM1×S is the estimation noise matrix for all pilot symbols. Note that
the forward and backward sequences are assumed to be the same for any particular
user. With the knowledge of the received training matrices, feedback information
on local user-specific weights (ω(a,s)

k,l ,ω
(a)
i,l ), and training sequences assigned to each

locally served user, each transmit node can locally estimate their corresponding transmit
beamformers. For example, the transmit precoder for UE k ∈ U1 can be obtained in a
closed-form expression as

m(dl,1)
k,l =

(
R(dl,1)

1 R(dl,1)H
1 + Iν

(dl,1)
1

)−1√
ω

(dl,1)
k,l R(dl,1)

1 b(dl,1)H

k,l , (85)

where the optimal ν
(dl,1)
1 is found by bisection search to satisfy the power constraints

(63c). Similarly, for Tx2-Tx6, the received precoded training matrices R(a,s)
k ,R(a,s)

i ,
local stream specific pilot sequences b(a,s)

k,l ,b(a)
i,l and user-specific weights ω

(a,s)
k,l ,ω

(a)
i,l

received over the feedback channels are used to estimate the transmit precoders. This
transmit and receiver precoder estimation is carried out iteratively as in the previous
case. Finally, we can summarize the proposed decentralized beamformer design as in
Algorithm 4.

3.4.3 Complexity study

In this subsection, we study the computational complexity of the proposed decentralized
beamformer design. Since the complexity is linearly proportional to the number of OTA
signalling rounds, we consider a single iteration only. The complexity at each node
during the beamformer estimation is composed of the following.

– At the BS, both transmit and receive beamformers are estimated. For the transmit
beamformer, the dominant operation is the matrix inversion in (85). In addition, there
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Algorithm 4 Decentralized Beamformer design assist with bi-directional training and
local feedbacks

1: Initialize transmit precoders (m(a,s)
k,l ,v(a)i,l ).

2: Calculate multiplexing factors a(a)k for each UE using (74) (Heuristic method).
3: Exchange UL/DL queues (Q(a)

k , Q̄(a)
k ), prioritizing weights (α(a)

k ), initial auxiliary
variables (t(a)i,l , t

(a,s)
k,l ) and multiplexing factors (a(a)k ) between local nodes via feedback

channels.
4: repeat
5: Fwd-1: BS and UEs served by RNs send OTA pilots precoded with transmit beam-

formers m(a,1)
k,l ,v(dl)

i,l . Exchange auxiliary variables t(ul)
i,l , t(dl,2)

k,l (initial or previously
calculated during Fwd-2) to local nodes via feedback.

6: RNs and UEs served by BS estimate MMSE receivers u(a,1)
k,l ,w(dl)

i,l from (82),

and calculate auxiliary variables t(a,1)k,l , t(dl)
i,l from (66) and user-specific weights

ω
(a,1)
k,l ,ω

(dl)
i,l from (67).

7: Fwd-2: RNs and UEs served by BS send OTA pilots precoded with transmit
beamformers m(a,2)

k,l ,v(ul)
i,l . Exchange auxiliary variables t(dl)

i,l , t(ul,1)
k,l (calculated

during Fwd-1) to local nodes via feedback.
8: BS and UEs served by RNs estimate MMSE receivers u(a,2)

k,l ,w(ul)
i,l from (82)

and calculate auxiliary variables t(a,2)k,l , t(ul)
i,l from (66) and user-specific weights

ω
(a,2)
k,l ,ω

(ul)
i,l from (67).

9: Bwd-1: RNs and UEs served by BS send OTA pilots precoded with weighted MMSE

receivers
√

ω
(a,1)
k,l u(a,1)

k,l ,
√

ω
(dl)
i,l w(dl)

k,l . Exchange user-specific weights ω
(a,1)
k,l ,ω

(dl)
i,l

to local nodes via feedback.
10: BS and UEs served by RNs estimate transmit precoders m(a,1)

k,l ,v(dl)
i,l from (85).

11: Bwd-2: The BS and UEs served by RNs send OTA pilots precoded with intermediate

weighted MMSE receivers
√

ω
(a,2)
k,l u(a,2)

k,l ,
√

ω
(ul)
i,l w(ul)

k,l . Exchange user-specific

weights ω
(a,2)
k,l ,ω

(ul)
i,l to local nodes via feedback.

12: RNs and UEs served by BS estimate transmit precoders m(a,2)
k,l ,v(ul)

i,l from (85).
13: until convergence.
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is a dual variable that is found by bisection search to satisfy the power constraint.
Hence, the complexity is O(M3

1 ∆(K1Lk +∑
N
i=2 L̄i)), where ∆ is the number bisection

iterations required to satisfy the power constraint. Moreover, for receiver estimation,
the dominant operation is the matrix product operation within the inverse matrix in
(82). Hence the complexity is O(M2

1 S).
– At the UEs, the transmitter estimation complexity is O(N3

k ∆Lk) and the receiver
estimation complexity is O(N2

k S).
– Similarly, At RNs, the transmitter estimation complexity is O(M3

i ∆(KiLk + L̄i)) and
the receiver estimation complexity is O(M2

i S).

According to the complexity study, the BS should have a higher computational capability
compared to UEs and RNs. Note that due to the decentralized and parallel computation
of the precoders at BS and RNs, the computational complexity per one OTA signalling
cycle considerably is in the same range as any other multiuser MIMO MMSE-type
single-hop beamformer designs[85, 86, 80].

3.5 Numerical examples

In the simulation model, we consider a symmetric IAB model with one BS and four
RNs, with 200m distance between BS and each RN. The number of BS, RN and UE
antennas is M1 = 20, Mi = 8 and Nk = 2, respectively. The power constraint for BS
is normalized to P1 = 10, and power constraints at RNs and UEs are Pi = P1/4 and
pk = P1/20 (to have similar UL and DL power levels in both timeslots), respectively.
Noise power (N0) is obtained assuming the cell edge (100m from BS) SNR for BS
transmission to be 10 dB (SNR = S1,kP(dl)

1 /N0). In addition, the path loss exponent
is 3.67. We consider uncorrelated i.i.d fading for BS-UE and RN-UE channels. The
BS-RN channels in Figs. 21 and 22 are modelled as uncorrelated i.i.d while correlated
Rician fading is assumed for the rest of the figures. In addition, for Figs. 25 to 27,
we consider Di = 2∀i ∈ BR and path gain threshold for nearby user set Sth = 15−3.67.
We consider the Poisson arrival process to generate the traffic in the network, where
λ
(a)
k (τ)∼ Pois(A(a)

k ) is the generated traffic for DL/UL UE k in time instance τ . Here,
A(a)

k = Eτ{λ
(a)
k } are the average number of packet arrivals in bits for the corresponding

UL/DL UEs. Then, the total number of queued packets in each UL/DL queue at (τ +1)th

time instant is given by Q(a)
k (τ +1) =

[
Q(a)

k (τ)−R(a)
k (τ)

]+
+λ

(a)
k (τ), where R(a)

k is the
transmission rate to/from UE k. In addition, the user priority weights (αk) are assumed
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to be 1. Except for Fig. 23, the rest of the figures are limited to 10 beamformer iterations
per scheduling interval (TDD frame) due to practical limitations in OTA beamformer
training process.

It should be noted that the choice of the symmetric placement of RNs was fairly
arbitrary and mainly based on the ability to reproduce the results easily. However, the
proposed beamformer design is independent of the simulation setup and works for
any asymmetric deployment as well. Indeed, the user-specific rates and backhaul rates
depend on the link distance given a limited power budget at each node. Hence, from the
queue minimization perspective, given the same traffic arrival rate per user, the weakest
backhaul links would dominate the accumulated total backlog packets in the network. In
practice, the arrival rate should be adjusted for users served by more distant RNs. The
optimal placement of RNs is given practical constraints imposed by the proposed IAB
setup is an interesting idea for future extension of the current work.

The average total backlogged packets after 1000 traffic arrivals (which is equivalent
to 2000 timeslots) in the system queues versus average traffic arrival rate is shown
in Fig. 21, where UEs are randomly placed within 50m from the serving BS/RN. As
the reference case, we consider a conventional HD relaying system, which takes two
timeslots for each UL and DL data transmission. In the HD system, we assume that for
50% of the time, it is in DL mode, while for the rest of the time, it is in UL mode. We
can observe that, despite the increased cross-link interference, flexible TDD based IAB
system always performs much better in comparison to the HD relaying system in all
traffic arrival rates. The IAB system becomes unstable after the arrival rate reaches
0.9 (after that queues grow linearly with the arrival rate), while the HD case becomes
saturated with much lower arrival rates. In addition, we can observe that RN queues
are in general less congested than the queues at UEs and at BS. Hence, the RNs can
potentially have smaller buffer sizes without deteriorating the system performance.
Fig. 22 illustrates the total backlogged packets in the IAB system with the number of
packet arrivals. For the arrival rate 0.8, the system is in a stable region where the total
number of backlogged traffic fluctuate around 200 bits. However, when the average
arrival rate is at 0.9, the IAB system becomes unstable and queues grow without limit.
Thus, for the considered simulation model, the proposed WQM based beamformer
design is able to optimally utilize network resources up to arrival rate 0.8 while satisfying
all the UE demands.

It should be noted that the beamformers are designed to follow the dynamic traffic
arrival process, where each node is assigned resources based on their instantaneous
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queue states both in UL and DL. Therefore, in such a dynamic environment, the
beamformers never really converge but keep adapting to the instantaneous traffic load
while minimizing the total (weighted) queues in the network over time. However, for a
static snapshot of the dynamic process, the convergence behaviour of the proposed
beamformer design can be studied. Fig. 23 illustrates the convergence of the algorithm
at one particular time instance (with 0.8 arrival rate) averaged over a large number
of channel realizations. The results demonstrate that even though it takes about 20
iterations to reach a point where the objective is not improved anymore, most of the
improvement occurs during thew first few iterations. This a desired feature for an
algorithm which aims at following a dynamic traffic arrival process.

The performance of the IAB system for different antenna configurations are repre-
sented in Fig. 24. As expected, the stable region increases with the number of antennas
both at BS and RNs. Again, in all the cases, IAB system shows superior performance in
comparison to the reference case with HD relays. The performance of the proposed
user assignment algorithm with K = 20 after 1000 random user drops is presented in
Fig. 25. Those results are generated using the direct LP solution that we have proposed
to the optimization problem in (78) (Note that the SCA based LP solution provides quite
similar results for the chosen parameter set). The left figure shows the average number
of UEs assigned to BS and each RN. There, on average, half of the UEs are assigned
to BS while the other half is assigned to the rest of the RNs. Due to the symmetrical
placement of the RNs around the BS, on average, the UEs are equally assigned to RNs.
In addition, when a UE drops in the middle of the BS and a RN, that particular UE is
most likely assigned to BS. The right figure illustrates CDF of the assignment values
(ci.k). We can observe that 80% of the time the ci.k value takes 0, and for the rest of the
time, it takes 1. We hardly observe any fractional values are assigned to ci.k. Hence, the
proposed design assigns only 0s and 1s to the assignment matrix as desired.

The performance of the IAB system after 1000 traffic arrivals with the proposed user
assignment algorithm is shown in Fig. 26. The proposed user assignment algorithm
is labelled as ’UA’. In the reference case, labelled as C-UE, UEs are assigned to BS
or RN based on the strongest RSSI value. We can observe that with the proposed
user assignment method, the performance of the system is improved compared to the
traditional RSSI based user assignment for all K = {15,20,25}. Increasing the total
number of UEs K, the stable region of the IAB system is decreased due to the limited
power budget and degrees of freedom.
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Fig. 21. Comparison of an IAB model with a conventional HD relaying system after 1000
traffic arrivals for Ki = 4∀i (Under CC BY 4.0 license from [134] ©2020 Authors).

In Fig. 27, the performance of the IAB system is shown after 1000 traffic arrivals
when employing non-orthogonal random pilots for OTA training with the decentralized
beamformer implementation. In addition, a 10 dB pilot boost is used in the simulations.
For the considered model, ideally 48 orthogonal pilot sequences (2 for each user and 2
for each BS-RN link) would be required to carry out the OTA bi-directional training
without any pilot contamination (assuming the same pilot is used for forward and
backward training). Therefore, we can observe that the decentralized random pilot
allocation is greatly deteriorated if shorter sequence lengths (S = 16,32) are used due to
the high level of pilot contamination. However, the decentralized pilot assignment starts
to perform reasonably well with S = 48, and with S = 96, it can withstand about 80% of
the traffic load provided by the centralized (orthogonal) pilot allocation.

3.6 Summary and discussion

In this chapter, a flexible TDD-based IAB system consisting of a BS, multiple single-hop
RNs, and UEs was investigated with complex interference conditions due to simultaneous
UL/DL traffic, in-band access, and backhaul traffic. In the considered flexible TDD
mode, RNs and BS are assigned to distinct UL or DL transmission modes to mitigate
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Fig. 22. Total backlogged packets in the IAB system with the number of traffic arrivals for
Ki = 4∀i (Under CC BY 4.0 license from [134] ©2020 Authors).

0 5 10 15 20 25 30 35 40 45 50

Number of Iterations

110

115

120

125

130

135

140

145

150

B
ac

k
lo

g
g

ed
 P

ac
k

et
s 

(b
it

s 
o

r 
p

ac
k

et
s)

Convergence of the IAB system

Fig. 23. Convergence behaviour of the proposed iterative beamformer design for IAB system
with Ki = 4∀i (Under CC BY 4.0 license from [134] ©2020 Authors).

conventional HD loss at RNs. An iterative beamformer design with WQM objective was
proposed to manage the resulting cross-channel interference and to allocate a wireless

102



0.2 0.4 0.6 0.8 1 1.2 1.4

Average Arrival Rate (bits or packets)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
B

ac
k

lo
g

g
ed

 P
ac

k
et

s 
(b

it
s 

o
r 

p
ac

k
et

s)
10

4

M
1
 = 25, M

i
 = 10 for i = 2,3,4,5

M
1
 = 15, M

i
 = 6 for i = 2,3,4,5

M
1
 = 20, M

i
 = 8 for i = 2,3,4,5

IAB system

Half-duplex system

Fig. 24. IAB system performance for different antenna configurations at BS and RNs with
Ki = 4∀i (Under CC BY 4.0 license from [134] ©2020 Authors).

0 0.5 1
Assignment Value (C

i,k
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

1 2 3 4 5

BS/RN ID (i)

0

1

2

3

4

5

6

7

8

9

10

A
v

er
ag

e 
n

u
m

b
er

 o
f 

U
E

s

Fig. 25. Performance of the user assignment algorithm with K = 20; Left figure: Average
number of UEs assigned into each BS/RN; Right figure: CDF of the assignment values ci,k

(Under CC BY 4.0 license from [134] ©2020 Authors).

103



0 0.2 0.4 0.6 0.8 1 1.2 1.4

Average Arrival Rate (bits or packets)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

B
ac

k
lo

g
g

ed
 P

ac
k

et
s 

(b
it

s 
o

r 
p
ac

k
et

s)

10
4

K = 15 with UA

K = 15 with C-UE

K = 20 with UA

K = 20 with C-UE

K = 25 with UA

K = 25 with C-UE
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Fig. 27. IAB system performance of the decentralized implementation by using OTA bi-
directional training with non-orthogonal pilot sequences for K = 20 (Under CC BY 4.0 license
from [134] ©2020 Authors).

backhaul and access resources jointly over two consecutive data delivery intervals
required for communications between the BS and UEs through HD RNs. Dynamic
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traffic behaviour in the IAB system is handled via the WQM objective, and user-specific
UL/DL queues are also introduced at RNs to guarantee reliable end-to-end data delivery.
The original NP-hard optimization problem was solved to obtain a computationally
efficient solution by using the iterative AO method. Backhaul rate multiplexing was
introduced to the original optimization problem and corresponding rate multiplexing
terms were solved either directly via KKT-based algorithm or via a simple heuristic
method.

Bi-directional forward-backward training via spatially precoded over-the-air pilot
signalling is employed to allow decentralized beamformer design across all the nodes. A
novel user allocation method was proposed by solving a combinatorial optimization
problem to assign UEs to BS or RNs based only on long-term channel statistics and
some practical IAB limitations. The numerical examples illustrate the superior system
performance of the considered flexible IAB in comparison to the conventional HD
relaying system. Furthermore, IAB-nodes can potentially be equipped with smaller buffer
sizes without compromising the system performance. Finally, a DE based coordinated
beamformer design was proposed using precoded pilots in OTA bi-directional signalling
and explicit scalar feedbacks. This was shown to perform reasonably well by alleviating
the pilot contamination even with relatively short non-orthogonal pilot sequence lengths.
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4 Conclusions and future work

This chapter summarizes the major contributions and most important results of this
thesis, as well as some future research directions.

4.1 Conclusions

The focus of this thesis is to investigate two types of heterogeneous wireless com-
munication systems, namely dynamic TDD systems and IAB systems. Particular
attention was given to decentralized beamforming design, bidirectional signalling,
and pilot decontamination strategies. In Chapter 1, the motivation for the research
was presented, followed by a review of related prior studies. Chapter 2 focused on
MIMO-based multi-user multi-cell dynamic TDD systems and the designing of the
distributed framework for beamforming and bi-directional transmissions. The focus
of Chapter 3 was on studying a flexible TDD-based IAB system that can be used to
minimize HD loss at IAB nodes and the employment of joint beamformer design for
access and backhaul traffic delivery with the assistance of bidirectional signalling. The
bidirectional signalling framework was emphasized in both chapters to direct pilot
decontamination techniques.

Multiantenna interference management for dynamic TDD systems was discussed in
Chapter 2 in conjunction with several network optimization objectives such as WQM,
(Q)WSR, and SMSE. The original NP-hard optimization problem was solved by applying
a fast converging KKT-based iterative AO method, and the solution was evaluated in a
distributed manner. The OTA bi-directional signalling and training framework was
developed to facilitate transmit and receive beamformers in UL and DL to be optimized
iteratively. The distributed fast converging beamformer approach based on the WQM
criterion was shown to be the best solution for both dynamic traffic variations and
difficult interference scenarios. A new set of DE strategies based on OTA bidirectional
signalling techniques was proposed to address contamination resulting from the use of
overlapping and non-orthogonal pilots. In the case of relatively short pilot sequences,
both strategies A and B demonstrated promising results. Additionally, a centralized pilot
allocation scheme was adopted to further improve the pilot decontamination process.
The numerical results demonstrate that the proposed training and estimation framework
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provides superior system performance over the uncoordinated scheme for different
dynamic TDD network parameters and optimization objectives.

In Chapter 3, a flexible TDD-based IAB system was investigated under complex
interference conditions caused by simultaneous UL/DL traffic, in-band access, and
backhaul traffic. The decentralized multiantenna beamforming techniques were used
to mitigate interference with the WQM objective. In the beamformer design, the
queue dynamics across two timeslots were taken into account. In order to obtain a
computationally efficient solution, an iterative AO method was employed to solve the
original NP-hard optimization problem. An optimization problem involving backhaul
rate multiplexing was formulated and the rates were solved either directly by KKT-based
algorithms or by simple heuristic approaches. A practical, centralized user assignment
algorithm was developed, using combinatorial optimization techniques, to meet the
needs of IAB functionality and WQM. Distributed implementation of the beamformer
design was carried out by using the OTA bi-directional signalling framework and
robust LS-based direct beamformer estimation. In numerical examples, the flexible
TDD-based IAB system with the proposed beamformer design user assignment scheme
showed superior performance in comparison to the conventional HD relaying system.
Furthermore, IAB-nodes can potentially be equipped with smaller buffer sizes without
compromising the system performance. Finally, DE based coordinated beamformer
design was proposed using precoded pilots in OTA bi-directional signalling and explicit
scalar feedbacks. It was shown to perform reasonably well by alleviating the pilot
contamination even with relatively short non-orthogonal pilot sequence lengths.

4.2 Future directions

Flexible TDD is considered in 5G and even in future releases of the 3GPP standards
since its flexible frame structure encourages the use of TDD for different models
of wireless systems that require low latency, efficient spectrum use, and minimal
synchronization overhead. These flexible TDD-based studies conducted considering
dynamic TDD systems and IAB systems can be extended, and the results of these studies
are essential for the development of future wireless systems. With the provision of
MIMO for both dynamic TDD and IAB systems, interference can be mitigated while
optimally managing network utilities with different precoder design objectives. The
proposed MIMO solutions and algorithms can be extended or reused to different types
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of heterogeneous systems such as underlying D2D, cell-free massive MIMO, multi-TRP
and, etc.

The proposed decentralization framework for beamformer estimation and signalling
exchange in limited pilot environments is an important area of interest. It is envisioned
that multipoint transmission and reception (multi-TRP), cell-free massive MIMO will be
crucial for future networks to improve reliability, coverage, and capacity performance
[150, 151]. Distributed resource allocation, encoding, and decoding are essential
parts of those systems. Accordingly, [152] investigated a distributed framework for
the cooperative precoding design in cell-free massive MIMO using OTA signalling
mechanism, and [153] proposed two practical explicit CSI feedback schemes, following
CSI feedback framework from NR Rel. 15. Hence, multi-TRP and cell-free massive
MIMO systems can thus be studied more in-depth using a modified OTA bidirectional
signalling framework that was proposed in Chapters 2 and 3.

The ongoing 5G and beyond system implementations are not that advanced in radio
resource management to enable decentralized beamforming, in which still beamformer
implementation follows a centralized design [154]. There is a dire need to simplify the
decentralized beamformer designs such that the required control signalling overhead
would not harm overall network performance. However, it may be possible to implement
decentralized beamformer designs based on a fast-converging and efficient OTA
signalling framework. This thesis presents algorithms that speed up the convergence
of the beamformer design so that minimal OTA iterations are required to achieve the
desired results. Despite this, there is enough room for further improvements to allow
fast convergence or explore solutions that rely on closed-form expressions. Additionally,
5G and LTE still adhere to a predefined slot allocation policy, which is inefficient for
highly dense small cell deployments and asymmetric traffic. Despite 5G’s ability to
offer application-specific frames, network vendors may still be reluctant to implement
these additional functionalities due to the tedious effort that is required to be put into the
implementation process not yet economical for them [155, 156]. Therefore, further
studies can be carried out on both dynamic TDD and IAB systems to optimize time-slot
allocation by considering dynamic traffic conditions.

The WQM-based beamformer design is unique among all other beamforming
methods, since it takes instant network behaviour into account, delivering traffic with a
minimum delay to minimize the total number of backlogged packets in the network.
Furthermore, WQM addresses important future network requirements, such as low
latency, network congestion, and spectral efficiency to enhance capacity. In Chapters 2
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and 3, WQM-based beamformer designs were developed which demonstrated how
to derive (Q)WSR and SMSE-based beamformers by applying special conditions to
derived expressions. Thus, WQM can be used as the starting point to analyse different
wireless networks, as it can be transformed to obtain a better insight on other network
utilities as well. In addition, there is plenty of room for modifying proposed solutions by
fine-tuning some of the parameters that produce fast convergence or by using novel
methods to obtain desired solutions. Additionally, joint beamformer design is another
interesting approach to optimize network utilities, in which precoders by combining
multiple timeslots or both UL/DL precoders are calculated using a common optimization
objective. The proposed approach of combining all UL/DL precoders over two timeslots
using the WQM objective, as discussed in Chapter 3, proved to be much more effective
as transmissions in both timeslots are required for determining total packet delivery.
This particular approach can be used as a guideline for optimizing more complicated
system models. Furthermore, we have exploited convex optimization tools and heuristic
approaches to optimize resource scheduling in both dynamic TDD and IAB systems.
The proposed algorithms and procedures are not only limited to wireless communication
systems, but they can also be tailored to solve different optimization problems in a wide
range of domains.

The pilot contamination phenomenon will be prevalent in future wireless networks,
particularly in massive-MIMO and densified small cell networks. Hence, it is crucial
to explore various methods through which to deal with this concern, such as utilizing
advanced detection schemes or pilot reuse/scheduling methods. It was demonstrated
in Chapters 2 and 3 that DE provided better decontamination in both dynamic TDD
systems and IAB systems. This DE method with different bi-directional OTA signalling
methods can be further developed for different system models under contaminated
conditions. In addition, further studies can be conducted to improve decontamination
by designing pilot precoders so that noise and interference have a minimal impact
on DE output. Moreover, the proposed pilot reuse design in Chapter 2 reduces pilot
contamination considerably in dynamic TDD systems. The literature places a greater
emphasis on centralized pilot reuse methods that are based on massive MIMO scenarios
since they are relatively easy to implement in practice. However, these algorithms can be
further developed or extended to employ hybrid decontamination techniques to reduce
contamination to a greater extent.

Recent studies on dynamic TDD systems have been focused on different research
directions such as mmWave based hybrid beamforming [157, 158], joint UL/DL cell
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mode selection [159, 160], and employing low-precision ADCs/DACs [161, 162].
With hybrid beamforming, it is possible to suppress interference significantly in both
the analog and digital domains. However, specific challenges may arise during CSI
acquisition (applicable to precoded pilots based OTA bi-directional training as well)
due to the choice of the analog and digital beamformers. Therefore, further studies
can be carried out on hybrid beamforming especially considering the OTA signalling
requirements to reduce the complexity and overhead. The key benefit of dynamic
TDD over synchronous TDD is the advancement in spectral efficiency at the expense
of the complexity associated with handling the additional interference. Hence, the
objective of the UL/DL mode selection at a given time should be matched to the
optimization objectives of beamformer design and resource allocation while considering
dynamic traffic conditions and other priority concerns in the network to gain most of
the benefits offered by the dynamic TDD system. Furthermore, there can be further
studies on joint UL/DL selection, beamformer design, and resource allocation within the
available time/frequency/space dimensions. Moreover, with the advent of mmWave
communication and massive MIMO, dynamic TDD systems can be investigated for
low-bit ADCs/DACs on both the transmitter and receiver sides. Using low-bit ADCs
and DACs with massive MIMO-based dynamic TDD, reasonable performance can be
achieved with minimal power consumption and costs.

IAB is an ongoing research topic for 5G and beyond wireless networks. There are
several use cases and topologies defined in 3GPP, with a focus on improving coverage
through the implementation of small cells while utilizing the benefits of high bandwidth
mm-Wave systems. Numerous research efforts are being conducted for the IAB since
it could be vital for future communication systems. Resource scheduling, backhaul
management, interference management, meeting the latency requirements, complexity at
IAB-nodes, and user assignments are the key considerations of IAB systems. In Chapter
3, many of the aforementioned challenges have been addressed, considering multi-node
single-hop IAB network topology. It is possible to extend this study to multi-hop systems
by modifying the beamformer design according to the IAB model and traffic flow. It
is also possible to study the robustness of the IAB systems since their performance
can be vulnerable to different weather and deployment parameters [51]. Moreover,
mm-Wave communication plays an important role in achieving the anticipated network
performance and communication tasks of 5G and 6G. System architectures such as IAB
systems and small cell systems, hybrid beamforming techniques, massive MIMO, and
machine learning-based systems are being developed with mm-Wave. System models in
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Chapters 2 and 3, can be further analysed for massive-MIMO using the tools of random
matrix theory and for hybrid beamforming techniques assuming mm-Wave systems.
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Appendix 1

1.0.1 MSE, received signal covariance and MMSE receiver expressions
for Rx2-Rx6

MSE expressions for receiver type Rx2-Rx6 given by
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are the received signal covariance matrices at each node, which are given in (87).
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Then, the corresponding MMSE receivers are given by
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1.0.2 Expressions for ϒ

For Rx2-Rx6, ϒ is given by
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1.0.3 Transmit precoder expressions for Tx2-Tx6

Expressions for transmit precoders are given by
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where Φ(ul,1)
k , Φ(ul,2)

k and Φ
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i are the weighted transmit covariance matrices, which are

given in (91) . In addition, ν
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