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Wu, Xiaoting, Machine learning for audio-visual kinship verification 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering
Acta Univ. Oul. C 844, 2022
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Human faces implicitly indicate the family linkage, showing the perceived facial resemblance in
people who are biologically related. Psychological studies found that humans have the ability to
discriminate the parent-child pairs from unrelated pairs, just by observing facial images. Inspired
by this finding, automatic facial kinship verification has emerged in the field of computer vision
and pattern recognition, and many advanced computational models have been developed to assess
the facial similarity between kinship pairs. Compared to human perception ability, automatic
kinship verification methods can effectively and objectively capture subtle kin similarities such as
shape and color. While many efforts have been devoted to improving the verification performance
from human faces, multimodal exploration of kinship verification has not been properly
addressed. This thesis proposes, for the first time, the combination of human faces and voices to
verify kinship, which is referred to as audio-visual kinship verification, establishing the first
comprehensive audio-visual kinship datasets, which consist of multiple videos of kin-related
people speaking to the camera. Extensive experiments on these newly collected datasets are
conducted, detailing the comparative performance of both audio and visual modalities and their
combination using novel deep-learning fusion methods. The experimental results indicate the
effectiveness of the proposed methods and that audio (voice) information is complementary and
useful for the kinship verification problem.

Keywords: audio-visual fusion, datasets, deep learning, kinship verification, texture
analysis
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Tiivistelmä

Ihmiskasvot osoittavat implisiittisesti perhesidonnaisuuden, mikä osoittaa biologisesti sukua ole-
vien ihmisten koettua kasvojen samankaltaisuutta. Psykologiset tutkimukset havaitsivat, että
ihmisillä on kyky erottaa vanhempi-lapsi-parit toisistaan riippumattomista pareista pelkästään
kasvojen kuvien avulla. Tämän löydön innoittamana automaattinen kasvojen sukulaisuuden
todentaminen on syntynyt tietokonenäön ja hahmontunnistuksen alalla, ja monia kehittyneitä
laskennallisia malleja on kehitetty arvioimaan kasvojen samankaltaisuutta sukulaisparien välil-
lä. Verrattuna ihmisen havainnointikykyyn automaattiset sukulaisuuden todentamismenetelmät
voivat tehokkaasti ja objektiivisesti havaita hienovaraisia sukulaisyhteyksiä, kuten kasvojen
muotoa ja ihonväriä. Vaikka monia ponnisteluja on tehty pyrkimyksenä parantaa ihmiskasvojen
todentamista, sukulaisuuden todentamisen multimodaalista tutkimista ei ole käsitelty kunnolla.
Tässä opinnäytetyössä ehdotetaan ensimmäistä kertaa ihmiskasvojen ja äänen yhdistämistä
sukulaisuuden todentamiseksi tavalla, jota kutsutaan audiovisuaaliseksi sukulaisuustodentami-
seksi. Näin luodaan ensimmäiset kattavat audiovisuaaliset sukulaisuustietojoukot, jotka koostu-
vat useista videoista, joissa esiintyy kameralle puhuvia sukulaisia. Näillä äskettäin kerätyillä tie-
tojoukoilla tehdään laajoja kokeita, joissa kuvataan yksityiskohtaisesti sekä ääni että visuaalis-
ten modaliteettien vertailevaa suorituskykyä ja niiden yhdistelmää käyttämällä uusia syvän oppi-
misen fuusiomenetelmiä. Kokeelliset tulokset osoittavat ehdotettujen menetelmien tehokkuuden
ja sen, että ääni- (ääni)informaatio on täydentävää ja hyödyllistä sukulaisuuden todentamison-
gelmassa.

Asiasanat: audiovisuaalinen fuusio, sukulaisuuden todentaminen, syväoppiminen,
tekstuurianalyysi, tietojoukot
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1 Introduction

1.1 Background and motivation

Human faces, as a biometric trait, convey abundant information such as identity, gender,
age, and ethnicity. Due to genetic heredity and lifestyle, children are usually more likely
to “look” like their parents than other people. In our daily life, we always hear statements
such as “John has his father’s nose” or “Joe has his mother’s eyes”. Extensive research
has shown that human has an instinctive perception ability to indicate the familial
genetic relatedness between individuals [1, 2]. This phenomenon has been the subject of
a number of psychological studies [3, 4, 5, 6], aiming at understanding how humans
visually perceive and identify kin signals from faces. DeBruine et al. [3] investigated
which parts bear the most kin signals by showing partially occluded facial images to
participants. Martello et al. [5] in 2006 and Alvergne et al. [6] in 2014 also found that
the upper half of the face contains more kinship information than the lower face, which
was believed to be due to morphological variations in the mouth area, which can produce
noise effects. Other researchers [4, 7] studied the individual’s biological attributes and
pointed out that gender and age differences can significantly reduce the accuracy of
kinship verification due to the variations introduced by them.

These psychological studies provided insights into how humans perceive kinship
relations based on faces. Inspired by those findings, already in 2010 [8], the computer
vision and pattern recognition research community proposed investigating the ability of
machines to recognize kinship from facial images. Therefore, Facial Kinship Verification
(FKV) emerged. FKV refers to automatically determining whether or not two individuals
have a kin relationship from their given facial images or videos.

As a soft biometric trait, kinship information and Facial Kinship Verification can
be used in various potential applications. In the anthropology and genetics domain,
FKV can help in the study of the hereditary characteristics of close relatives in social
relationships [9]. In the field of public social security, it can be applied to finding
missing children, border control and customs, and criminal investigations [10, 11].
In the social media domain, FKV can be used for organizing family photo albums,
improving the performance of face recognition systems and social media analysis [12].
Furthermore, FKV also has potential applications in smart homes, the Internet of Things
(IoT) [13], and personalization.

As an emerging, important, and challenging problem in computer vision, FKV has
attracted increasing attention [14, 15, 16]. Many facial kinship verification methods
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have been proposed [17] in pursuit of improving verification performance. Already
now, several studies [11, 18, 19, 20, 21, 22, 23] show that machine learning methods
can outperform by a wide margin the human ability to recognize kinship. This could
be expected, since human eyes have low sensory perception to quantify the similarity
between two images of two different people [18]. Features such as distance, shape, and
color are not easily judged at a glance, resulting in low recognition accuracy, especially
for unknown faces never been seen before.

In this context, a remaining question is if, in addition to facial features, other biomet-
ric modalities (such as voice) can be used as additional cues for kinship verification.
In practice, it is intuitively known that we can recognize certain traits of a parent’s
voice in their child’s speech. Research on the genetics of the voice dates back to
the early 1990s [24], which found that both genetic and environmental factors affect
vocal characteristics. As a result, similarities in voice quality can be expected within
a family. Human studies [25] indicated that listeners had the ability to identify kin
voices among non-related ones. Specifically, the similarity of voices within families
was [26, 27, 28, 29] quantitatively proven to be perceived by speech parameters such as
the fundamental frequency (F0). Given the above evidence, this thesis explores for the
first time the usage of acoustic features into solving the kinship verification problem.

Furthermore, automatic kinship verification could also potentially benefit from a
combination of discriminant information extracted from both face and voice signals.
The fusion of audio-visual features has been shown to be an effective way to improve
performance in various problems, including emotion recognition [30], speech recogni-
tion [31], event detection [32], and biometrics [33] such as speaker identification and
speaker authentication.

Multi-modal fusion methods exploit complementary sources of information. Differ-
ent sources of information are typically integrated through early fusion (feature level) or
late fusion (score or decision level) [34]. Feature-level fusion using concatenation or
aggregation is often considered to provide a high level of accuracy. Techniques for
score-level fusion using deterministic (e.g., average fusion) or learned functions are
commonly employed but are sensitive to the impact of score normalization methods on
the overall decision boundaries. However, the success of fusing different modalities
depends on representing modal features in an effective manner. In this context, the
input raw data should first be fed into a feature extraction module, where the features
that capture the subject’s identity information are extracted. Deep neural networks
(DNNs) [35] provide an effective way to embed these data and a learnable way to
automatically determine the correlation between two modalities. In this thesis, we set up
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a benchmark study for audio-visual kinship verification and then explore novel deep
frameworks for further improving the performance.

1.2 Objectives and contributions

This thesis aims at driving the development of FKV from faces, voices and multiple
modalities. Given the theoretical and empirical evidence discussed above, we formulate
the hypothesis that FKV can benefit from the fusion of different genetic features. In
particular, we have set the following objectives: (1) Developing a facial feature analysis
method that can improve the discrimination of kinship features, and (2) Learning specific
audio-visual features for kinship verification to further improve the system performance.

In order to achieve the stated objectives, we set four research questions:

1. As there is no audio-visual kinship dataset, what are its the characteristics, so that the
collected data is useful in the study of multimodal kinship verification?

2. How to extract the effective visual features for the FKV problem in order to encode
kinship-related information.

3. Is it possible to use acoustic features to verify kinship, and if so, how should they be
extracted effectively to contain discriminative information.

4. Given the facial and vocal features, how to effectively fuse the multimodal features
to improve the performance of kinship verification?

As discussed in Chapter 1.1, the human voice could possibly show hereditary traits
and hence be another useful biometric for verifying kinship. Furthermore, multiple
modalities potentially provide the combination of multi-source discriminant information,
thus improving system accuracy. Visual FKV systems encounter problems and fail
in their predictions in certain circumstances, such as poor illumination. To mitigate
this issue, multimodal learning provides an alternative solution by introducing other
modality information and enhancing system robustness.

However, there is no available audio-visual kinship dataset. In order to perform
this type of analysis, we first aimed at collecting the first set of representative data. To
avoid the data bias issue, which might bring unwanted environmental clues, possible
familial biases such as recording devices, recording conditions, and speech content are
considered during the data collection procedure. We classify this work into two stages.
In the first stage, we propose the TALKIN database as the first, yet simple, audio-visual
kinship dataset. It consists of limited pairs of talking videos of parent-child relations
only. Based on this first attempt at data collection and the subsequent analysis, we used
the lessons learned to further establish a larger audio-visual kinship dataset named
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TALKIN-Family, which consists of facial videos and synchronous speaking audio with
properties that differ from the existing one. In TALKIN-Family, there are 246 unique
family trees and 1012 individuals with rich annotations of family relationships, age,
gender, and scene conditions. The size of each family tree ranges from 2 to 14 subjects
between 5 and 81 years old. Each subject has multiple talking facial videos with a length
of about 10 seconds, collected under different environmental conditions. Overall, the
TALKIN-Family dataset contains more than 9.2 hours of video.

The general FKV framework includes two main steps: feature extraction and
distance measurement. To evaluate the similarity of two facial images, the facial image
first needs to be represented with features. In the early stage of FKV research (e.g.,
before 2016), some common handcrafted descriptors were applied. They showed good
verification performance with computational efficiency, especially in small datasets.
Compared with naive enumeration features [8] and saliency features [36, 37] (which
are generally affected by detection accuracy and facial variance), feature descriptor
methods [38, 39, 40, 41, 42, 43, 44, 45] show robustness against noise and rotation.

Despite the relative success of these methods, most of the literature for automatic
kinship verification has mainly focused on analyzing only gray-scale face images, hence
discarding color information, which can be a useful additional cue for verifying kin
relationships. From a biological point of view, the chromaticity of the face is tied to
genetically expressed features, such as eye color or skin tone. These hereditary features
are often present in kin-related persons in a similar way.

To address the issue, we propose to explore the usefulness of color for kinship
verification. We consider different baseline methods used in their traditional gray-scale
variants against their counterparts utilizing color information. Instead of analyzing
images from the gray channel only, we introduce different image color spaces into
feature extraction by combining the features extracted from different color channels.
Three color spaces are considered: RGB, HSV, and YCbCr. More specifically, the joint
color-texture features encode both the luminance and chrominance information in the
color images, which enables color feature representations of kinship.

For kinship verification, we would need to find a proper distance measurement
method to compute the distance between an image pair based on feature extraction
methods. Recent deep convolutional neural networks (CNN) are a good alternative,
but they usually benefit from large datasets that contain samples with a wide range
of variations. However, most of the available kinship databases are only composed
of limited data1. CNNs could then possibly overfit the limited training data and show
problems in generalizing unseen test data, especially if collected in very different

1Until the publishing data of paper IV.
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conditions. To mitigate this problem, we apply a new approach to kinship verification
based on the extracted color features with extreme learning machines (ELM) that aims
to deal with small sized training sets.

Lastly, based on the presented audiovisual kinship datasets and visual features, we
propose and explore the problem of audio-visual kinship verification. We first evaluate
the performance of the single modality and set the benchmarks for unimodal methods.
Representing modalities, i.e., audio and video, in an appropriate way is crucial before
fusion. Visual features have been widely studied for FKV [20]. Comparatively, very
few acoustic features are specifically designed for kinship verification, mostly since
these types of studies have been largely under-explored. The well-known acoustic
representations such as Mel-frequency cepstral coefficients (MFCCs [46]) and data-
driven features [47, 48] have been commonly applied in the speech research community.
Similar to the correlation between facial similarity and FKV, we propose to compute the
voice similarity and set new benchmark methods for FKV by using acoustic features.

When fusing audio-visual features for FKV, both early and late fusion methods
are well-established baseline methods. Based on our benchmarks and investigation,
we find that intermodal discrepancy and modal weighting are essential to exploit
informative knowledge. Motivated by adversarial learning [49] strategies, and self-
attention mechanisms [50], we propose a fusion method named Unified Adaptive
Adversarial Multimodal Learning (UAAML), which is based on deep neural networks
(DNN), and addresses the aforementioned challenges. UAAML jointly considers
multimodal feature learning and kinship attention weights with similarity learning.
Particularly, we introduce the L2 norm layer [51] to generate the unified features before
fusion and make the network training stable and efficient.

1.3 Summary of the original publications

Six papers are included in the thesis on the topic of visual kinship verification, of which
papers I-II provide a comprehensive review of FKV works that trace back to 2016 and
2022, respectively. Papers III-IV focus on studying the visual-based FKV problem.
Papers V-VI are related to audio-visual kinship verification. Six publications (forming
the core of this doctoral thesis) are associated with the research questions described in
Chapter 1.2, as shown in Table 1. The supplementary publications [52, 53] are related to
the content of the dissertation but are not included in it.

Papers I and II review the FKV work in the literature. Paper I provides an in-depth
introduction to FKV by identifying the problem definition and challenges. It also
covers a larger scale of FKV works, with an improvement in Paper II that focuses on
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Table 1. Research questions linked to publications. ‘V’ represents the marked paper.

Research
Questions

Chapter Paper I Paper II Paper III Paper IV Paper V Paper VI

Literature
Review

Chapter 2 V V

RQ1 Chapter 3 V V

RQ2 Chapter 4 V V

RQ3 Chapter 5 V V

RQ4 Chapter 5 V V

summarizing works before the deep learning era. We build an intuitive taxonomy and
situate past FKV research works in relation to each other. New ideas and insightful
thoughts derived from the current review are provided for developing the next generation
of kinship verification techniques.

Papers III and IV investigate how the visual features can be used for describing the
kin resemblance in color textures. Paper III investigates for the first time the usefulness
of color information for automatic kinship verification from face images. Paper IV
proposes tackling the kinship verification challenge by combining color texture feature
extraction and Extreme Learning Machines (ELM) for classification.

Papers V-VI study the new problem of audio-visual kinship verification. Two new
and comprehensive audio-visual kinship databases (TALKIN & TALKIN-Family) were
proposed. Paper V presents for the first time the audio-visual kinship verification by
studying the problem with the TALKIN database, which results in identifying the fact
that human voices can be adopted for kinship verification and are useful for further
improving FKV performance. Based on Paper V, Paper VI extended the work from
both the database and data fusion perspectives. Extensive benchmark evaluations
are performed on the TALKIN-Family dataset with 11 kin relations. The proposed
UAAML method achieves an overall competitive performance compared with other
baseline methods. In addition to automatic methods, human performance was evaluated
using a subset of the TALKIN-Family dataset. Generally, an important finding is that
humans tend to have a better ability to verify kinship from the voice than from the
face, while when given synchronous facial videos and voice, humans can make a much
better judgment. Compared with human performance, machine learning methods can
outperform human ability both efficiently and effectively.
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1.4 Organization of the thesis

The thesis is organized into two parts. The first part is an introduction with six chapters.
It gives an overview of different facial kinship verification problems and main ideas
and findings of the original publications. The second part comprises the six original
publications related to the technical content of the thesis. The rest of the chapters in the
first part are the followings.

Chapter 1 gives an introduction to the thesis by presenting the background and
rationale behind the study, pointing out the research problems studied in this thesis,
identifying the contributions and a brief summary of the original papers. Chapter 2 gives
a general overview on facial kinship verification, including the problem definition, a
literature review of state-of-the-art methods, and the publicly available kinship databases
that were used and compared in the experiments of this thesis. Chapter 3 presents
the TALKIN and TALKIN-Family databases that aim at studying the problem of
audio-visual kinship verification under unconstrained conditions. Chapter 4 investigates
the visual features for the FKV problem. In Chapter 5, audio-visual feature fusion
methods are presented. Specifically, it investigates the single model features, especially
the study of the vocal kinship verification problem for the first time, and proposes
improved fusion methods. Chapter 6 concludes the thesis by discussing the results,
limitations, and future directions of the FKV problem.
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2 Overview of facial kinship verification

In this chapter, we summarize the works on FKV in the literature. We first present
the problem definition of kinship verification and provide an in-depth understanding
of FKV by comparing it with the face verification problem. After that, we introduce
the existing methods on FKV from images and videos. Then we present the publicly
available kinship datasets that are used or compared in this thesis and the evaluation
measures for assessing FKV performance. Finally, we summarize this chapter and
discuss open issues.

2.1 Problem definition

Given a pair of facial images, the objective of kinship verification is to judge whether
two people are biologically related (with a typical kin relation). Specifically, current
kinship verification research uses a clear distinction between multiple kin relation
types to study the verification problem. Only close family relationships are involved.
These kin relations can be categorized into three levels of generation, e.g., Siblings,
Parent-Child, and Grandparent-Grandchild2. The four parent-child relations attract the
most attention [12], mainly because of their application value. Kinship verification can
be formulated as a binary classification problem (Kin vs. Non-kin). FKV primarily
consists of two critical sub-problems: feature extraction and classifier designation.
Formally, as shown in Figure 1, given a pair of faces (X,Y)3, appropriate feature
representations (φ(X),φ(Y)) are extracted from both images, and then a classifier is
used to determine or not if the two faces have a kin relationship.

In order to better understand the FKV problem, we would like to point out the
relationship between two similar problems: the FKV problem and the face verification
problem (face pair matching) [54] depicted in Figure 1. As can be seen from Figure 1,
both problems share a similar algorithm pipeline. The classification at the end is used to
judge whether or not if two faces are the same individual in the case of face verification,
or whether or not they have a kin relation in the case of kinship verification. Intuitively,
both problems depend on the existence of similar facial cues for making judgments

2Siblings are family members of the same generation: Brother-Brother (BB), Sister-Sister (SS), and
Sister-Brother (SB). Parent-child relations are the first generation: Father-Son (FS), Father-Daughter (FD),
Mother-Son (MS), and Mother-Daughter (MD). The Grandparent-Grandchild relation belongs to the second
generation: Grandfather-Grandson (GFGS), Grandfather-Granddaughter (GFGD), Grandmother-Grandson
(GMGS), and Grandmother-Granddaughter (GMGD).
3A face detection and normalization procedures are typically used to obtain the face in the images.
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An Input Pair

Kin or not kin 
(Kinship Verification)

Same or different person 
(Face Verification)

Feature Extraction Distance Measurement
and Classification

(b) Face verification

Positive
Pairs

Negative
Pairs

(a) Kinship Verification (The focus of this paper)
BBSS MD FD GFGD GFGD

Positive
Pairs

Negative
Pairs

Fig. 1. General pipeline for face verification task and kinship verification task. Both tasks
calculate the similarity of two facial images. While, positive pairs in the kinship verification
task are negative pairs in the case of face verification. Reprinted, with permission, from
Paper I ©2022 Springer.

[7, 55], especially in the case of face verification where each positive pair represents the
same individual (see Figure 1 (b)). In the case of kinship verification, each positive
pair represents two different individuals with a kin relation (detecting kin clues in
specific areas of the face rather than from the entire face [5]). Note that all positive
pairs (including identical twins) in the case of kinship verification (see Figure 1 (a))
are negative pairs for face verification. It is interesting to ask: Do pairs of the same
individuals (positive pairs in the case of face verification) belong to positives or negatives
in the case of kinship verification4? This question has been overlooked as current FKV
research assumes each input face pair belongs to two different individuals in their
experimental setting. From an anthropological point of view, FKV is based on the
degree of genetic similarity between the faces of two subjects. Thus, it is reasonable to
expect that an FKV system will give high prediction accuracy for facial pairs of the
same person. When facial images from one individual present an age variation, the study
of age-invariant face verification can somehow be viewed as self-kinship verification,
where the system verifies the same individual as related to himself [12, 56]. On the
other hand, as facial aging and kinship are both genetically inherited [57], kinship
is capable of providing guidance for age progression and boosting face verification.
Conversely, a de-aging process can be performed to learn discriminative identity features
for both face verification [58] and kinship verification [59].

4If one expects face verification to achieve age invariance, these pairs of images representing the same
individual can also have an age gap and more significant differences than those of the same age.
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Kinship is a well-established biological concept, but determining what kind of
similar facial cues are critical for FKV is still an open question. According to recent
psychology studies [7, 4], facial similarity and kinship judgments are highly correlated
but not strictly synonymous. This makes FKV a difficult problem with various challenges
which we discuss below.

2.2 Main challenges

As we defined above, FKV is formulated as a binary classification problem. The
difficulty of FKV stems partially from the fact that the kinship facial pairs do not
belong to the same identity and only show hidden genetic facial similarities that are
more complex and less discriminative than similarities in other problems like facial
verification. As discussed above, it is evident from psychology research [7, 4] that facial
similarity and kinship judgments are not strictly synonymous though they are highly
correlated, which makes the problem of FKV even harder. The main challenges of FKV
are summarized in Figure 2, with visual examples for illustration.

(1) Large intraclass variations. As can be seen from Figure 2 (a), there are two
types of intraclass variations: intrapersonal variations (facial appearance changes in the
same identity) and interpersonal variations (facial appearance differences in different
identities). The large intrapersonal variations come from uncooperative subjects such as
changes in age pose, expression and accessories, unconstrained imaging environments
like changes in illumination, imaging distance and angle, variations in image quality
and resolution, blur, and even adversarial attacks (Figure 2 (b1)). All these pose great
challenges for extracting discriminative features for kinship verification and greatly
impact FKV performance. Many early approaches to FKV only considered facial images
acquired in cooperative conditions. Therefore, it is more practical to build large-scale
kinship datasets in the wild.

As the input of an FKV algorithm is a pair of facial images belonging to two
individuals, the goal of FKV is to explore the hidden factors of visual similarity
between the two input faces for kinship determination. Therefore, there are significant
interpersonal variations that increase the intraclass distance between the positive class
samples. Firstly, there can be a significant age gap between the kin pairs, particularly
when verifying cross-generation kinship types. Figure 2 (b2) shows parent-child pairs
with a similar age and a considerable age gap. It has been demonstrated that parent-child
pairs with a similar age have more similarities [60, 7]. However, pairs of older parents
and younger children can have significant textural differences between the two faces,
which negatively influences similarity. Secondly, gender differences also negatively
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influence facial similarity. As shown in Figure 2 (b3), the kin pairs of mother-son,
father-daughter, and brother-sister have different gender variations. It has been shown
that non-kin pairs with the same gender have more similarities than those with a different
gender [7]. Finally, in addition to the existing considered kinship types, facial similarities
can also exist between some family members when one increases the height or width
of the family tree (e.g., by including cousins and nieces). One reason for this is that
the inheritance among different kinship types is not deterministic [61]. It is tough
to determine a mathematical inheritance model due to its randomness and required
multidisciplinary knowledge [61, 62].

(2) Small interclass variations. As we defined above, FKV aims to learn a binary
classifier by distinguishing a number of positive kinship pairs from a number of negative
samples. The similarity among kin faces is attributed to hidden factors rather than
the whole face. As illustrated in Figure 2 (b4), some positive examples may have
small similarities, whereas negative examples may have high similarities. Therefore,
small positive and negative variations decrease the interclass separation and pose
significant challenges for learning the real decision boundary. In addition, there is a
severe imbalance issue [15], i.e., , the number of negatives is significantly more than the
number of positive pairs.

(3) Difficulty in gathering large-scale kinship datasets. The lack of large kinship
datasets impedes the development of FKV algorithms, especially the development
of deep learning-based methods that are data-hungry. It is essential to collect a large
kinship dataset that can represent the actual data distributions of families worldwide,
reflecting the intraclass and interclass variations discussed above. However, due to
security and privacy issues, it is challenging to meet this requirement.

2.3 The extended studies

FKV study is the widely explored and fundamental research problem of kinship
recognition. Due to varying applications of kin-tasks, complementary kin research
problems have emerged (illustrated in Figure 3).

Tri-subject kinship verification

A child’s genetic inheritance comes from both parents (father and mother). This leads to
tri-subject kinship verification [19], where the inputs are both parents’ facial images and
the child’s facial image. Suppose that X1 and X2 represent the father and mother’s facial
images (or videos), respectively, and Y formulates a child’s facial image (or video). The
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feature representations of parents and child are extracted, φ(X1), φ(X2) and φ(Y). The
distances are computed between a child and his or her parents, d(⟨φ(X1),φ(X2)⟩ ,φ(Y)),
to verify whether they have a kin relation. Tri-subject kinship verification is also a
binary classification problem.

Family classification

Family classification [63] is a multiclass classification problem, i.e., the classification
task contains multiple categories, and each category represents a family. Given a pending
facial image, we need to determine which family it belongs to. A collection of k families
is represented by χ = {X1,X2, . . . ,Xk}. The corresponding multiclass label can be
written as {y1,y2, . . . ,yk}. By training a classifier, the system outputs the family label of
an input facial image x. The difficulty of family classification increases when family
classes increase. In the FIW dataset [20], family classification accuracy is only 16.18%
from a total of 564 families.

Family search and retrieval

Family search and retrieval [20] is designed to match family members to the input facial
image, where the search is performed on a set consisting of members from all families.
The input facial image is a query, and the output gives the most matched K family
members. The difference between family classification and family retrieval is that family
classification focuses on the training of family classification models, and family retrieval
tries to retrieve face images that are more similar to the images to be queried through
similarity metric learning and find the input’s parents and other kinship members.

Other tasks

Other tasks include kin face synthesis [64, 65] and kin relation classification [66, 67].
The kin face synthesis study takes the facial images of parent(s) to synthesize the child’s
image. By synthesizing the child’s facial image, kinship data are augmented for training
and improving the model consistency, thus assisting FKV. Besides, it can also be applied
for matching missing children. In the kin relation classification, the inputs are two
facial images with a particular kin relation, and the system estimates which specific kin
relation they have. This task has applications in family album organization and social
media analysis.
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Fig. 3. Kinship analysis tasks. The main task is kinship verification. We categorize
kinship-related research directions into binary classification tasks, family-related
tasks, and other tasks. Reprinted, with permission, from Paper I ©2022 Springer.

Since the study of kinship analysis is still in its initial stages, facial kinship verifica-
tion is the key and core of kinship research, which is also the focus of this thesis.

2.4 Facial kinship verification from images

Facial kinship verification from still images is popular, mainly due to the easily obtainable
datasets and its wide range of applications. Generally, the kinship datasets contain
pre-processed facial images. Facial images are cropped and resized to a normalized size.
The main efforts are dedicated to kin feature extraction and distance measurement. Then
the classifier is used for binary classification.
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2.4.1 The key steps for facial kinship verification

(1) Face detection, alignment and segmentation. The goal of this step is to do face
detection based on the input of raw facial images. After locating the face, the eyes’
position is usually taken as the key feature to align the face. The purpose of face
alignment and face adjustment is to reduce the influence of face scale and angle. The
commonly used methods for face segmentation and alignment include MTCNN [68]
and ERT [69]. Extensive research reviews on this sub-task have been carried out for
example, the survey work of Wu et al. [70].

(2) Kin feature extraction. The two input facial images can be represented as X, Y.
We extract features for these two facial images and denote them with the vectors x and y.
Kin features will then be employed for distance measurement and classification in the
next step. The kin feature extraction step is an important research topic, and it also
affects performance. Before deep learning techniques are used in kinship verification,
some common handcrafted descriptors are applied. With the implementation of deep
learning in kinship verification problems, the traditional feature descriptors are gradually
replaced by deep embeddings.

(3) Distance measurement. By extracting facial image features, two inputs are
represented as two vectors. Then a proper distance metric is used to calculate the
distance of two inputs in the feature space and assess the similarity between two faces.
Metric learning aims to learn a transform matrix to narrow the distance between kin
pairs (positive pairs) and enlarge the distance between non-kin pairs (negative pairs).
The extracted facial features can be mapped into a new feature space and improve the
performance of kinship verification [11, 71, 72].

(4) Classification. The steps above produce a distance value between sample
pairs. Kinship verification is a binary classification problem where commonly used
classifiers are K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and
threshold classification.

2.4.2 Traditional methods

As kinship verification is a relatively new and challenging problem, many kinship
verification methods were proposed during the last decades. At the beginning of the
kinship verification research, traditional methods were proposed for solving the kinship
verification problem. They showed good verification performance with computational
efficiency, especially in small datasets. This subchapter reviews the traditional methods
from aspects of feature extraction and metric measurement.
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Feature extraction methods

To establish an automatic facial kinship verification system, the facial images should be
first represented with features effectively. We categorized these methods into enumera-
tion features, facial saliency features, hand-crafted features, feature transformation based
on color spaces, and feature selection methods. Naive enumeration features started
with the work of Fang [8] et al., which represented the facial traits from low-level
features with different points of view, such as eye color, skin color, hair color, geometric
characteristics between facial key points (eye, mouth, nose) and face shapes (size of the
eyes, mouth or nose). Later, Xia [73, 74] included more descriptive information, such as
age, gender, and race. These features are represented with binary features encoded as
−1 and +1. Nevertheless, the enumeration of these features needs manual efforts to
label the samples, while the resulting features are usually low-dimensional and not
comprehensive enough.

Kinship verification based on saliency features. Methods of kinship verification
based on saliency aim to verify kinship by comparing the similarity of salient facial
parts, such as the nose, eyes, and mouth [36, 37, 75, 76]. Thus, we need to first locate
the facial key points. Given a facial image, to find the salient parts, Guo et al. [37]
proposed to use the eyes, mouth, and nose as the salient facial area. The DAISY
descriptor [77] is applied to extract features and compute the similarity between the
image pairs. Kohli et al. [36] proposed the Differences of Gaussians (DoG) method to
locate the facial key parts. Then in 2014, Wang et al. [75] introduced the widely used 68
facial landmarks [78] extracted from facial images into kinship verification. Besides the
methods that extract facial key points and facial landmarks, Goyalet al. [76] proposed an
edge detection-based kinship feature extraction method. The Canny operator [79] was
used for detecting the facial edges, and areas enclosed by them were considered salient
parts.

Hand-crafted features. The previous subchapters introduced methods based
on the shape of the face. These methods are usually affected by detection accuracy,
facial expression variance, noise, and face rotation, resulting in low verification
accuracy and low noise tolerance under complex conditions. To solve these problems,
researchers proposed feature descriptor methods [38, 39, 40, 41, 42, 43, 44, 45] for
kinship verification. Among them, Local Binary Pattern (LBP) [80] is a widely used
hand-crafted feature extraction method. LBP is an operator that describes the image’s
local texture information. The resulting binary code describes the texture characteristics
of an image block and is invariant to both rotation and gray-scale conversion[81].
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Based on the basic hand-crafted features, many methods improve the performance
in different ways. The Pyramid Multi-level covariance descriptor (PML-COV) [43]
combined the LBP and HOG features extracted from multiple resolutions to establish
the feature pyramid. Goyal et al. [45] proposed the Selective Patch-based Dual-Tree
Complex Wavelet Transform (SP-DTCWT) method, which decomposes the facial image
using six wavelet functions. By computing the similarity between corresponding patches
of an image pair, they can get discriminative feature patches for kinship verification.

Feature selection. Unlike single feature extraction methods, feature selection
aims to study fusion schemes by selecting among multiple features, enriching feature
representations, and reducing feature redundancy [82, 83, 84, 85]. Usually, the inputs of
feature selection methods are multiple feature representations. They can select the most
effective representations by introducing a constraint as an objective function or directly
as the classification accuracy. Alirezazadeh et al. [82] first proposed to fuse local and
global features and select the valuable and discriminative features for kinship verification.
Bottinok et al [83] extracted multiple features from images, including Local Phase
Quantization (LPQ), Weber’s Local Descriptor (WLD), and LBP. Before they classify
the features, to improve the verification accuracy, they propose the Max-Relevance and
Min-Redundancy (mRMR) method to select a subset of variables to best describe the
data.

Metric learning methods

Metric learning was firstly proposed by Eric Xing et al. [86] at NIPS 2002. For the
kinship verification problem, we would need to find a proper distance measurement
method to compute the distance between an image pair based on feature extraction
methods. Ideally, in this metric, the image pairs with kin relations (positive pairs) would
have small distances, while those without kin relations (negative pairs) would have
large distances. It maps the distance metric space into a new metric space [87]. The
commonly used basic distance metrics in kinship verification are Euclidean distance [71],
Mahalanobis distance [11, 72, 88, 89, 90, 91, 92], bilinear similarity [93, 94, 95, 96, 97,
98], graph learning [99, 100], cosine similarity [101, 102], CCA [103] and other metric
patterns [104, 105, 106, 107, 108].

Neighborhood Repulsed Metric Learning. In 2014, Lu et al. [11] proposed the
Neighborhood Repulsed Metric Learning (NRML) method for kinship verification
(which is also the first try at metric learning in solving kinship verification), and provided
the fundamental theory and protocol for the metric learning based kinship verification
study. The motivation of NRML is that the negative neighbors of positive samples can
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confuse the classifier. Based on that, NRML repulses the k negative neighbors and pulls
the positive samples together, thus separating the positive samples and negative samples.
The NRML method showed the best performance at that stage in 2014, achieving 73.8%
and 69.9% verification accuracy on KinFaceW-I and KinFaceW-II datasets. The main
idea of NRML is also used in other metric learning methods. Yan et al. [71] proposed to
map the feature vectors into the hyperplane of SVM and applied the NRML method to
optimize the distance metric. Xu et al. [94] concatenated multiple features into one
vector and combined the NRML method with bilinear similarity to compute the distance
between image pairs. Later, Yan et al [101] and Lei et al. [103] replaced the distance
metric with cosine similarity and CCA. They also demonstrated the effectiveness of
NRML.

Metric learning based on bilinear similarity. Besides the commonly used
Mahalanobis distance measurement, bilinear similarity SW (xi,yi) = xT

i Wyi is also
used for the metric learning-based kinship verification studies, where W is the positive
semidefinite matrix. When W is the identity matrix, bilinear similarity can be viewed
as the cosine similarity without normalization. Bilinear similarity has shown good
performance for image retrieval [109, 110] and it can effectively calculate the similarity
between two sparse feature vectors. Zhou et al. [93, 95] proposed the Ensemble
Similarity Learning (ESL) method to solve the kinship verification problem. The ESL
method has superior computational efficiency and can be applied to high-dimensional
data. Then the inputs of ESL are quadratic, which satisfies the inter- and intra- constraints
on the similarity pattern for image pairs. Qin et al. [97] proposed a multitask-based
bilinear similarity learning method. They combined the four kinship verification tasks to
transfer knowledge from one task to other tasks. Fang [98] introduced the logistic loss
to smooth the objective function and improve the efficiency of the optimization process.

Other metric learning methods. Besides the metric learning reviewed above,
researchers also proposed methods from other points of view. Zhang et al. [104]
proposed a generic metric. In the feature space, the distance between a child and two
parents can be computed by the minimum length from the child feature vector to the
feature vectors of two parents. Liu et al. [105, 106] introduced the angle θ between the
parent’s and child’s feature vector to formulate the objective function. Wu et al. [107]
introduced a low-rank metric learning method to learn the latent subspace and dig more
discriminative representations adaptively. Zhao et al. [108] proposed the multi-kernel
metric learning method, including linear and nonlinear distance metric methods. By
weighted fusing them, they can obtain the final distance. The graph learning method
is also studied for metric learning-based kinship verification. Liang et al. [100] built
the Intrinsic Graph and Penalty Graph according to the relationship between the data.
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They combined the NRML algorithm and graph learning to describe the intraclass
compactness and interclass separability.

Age variance between parents and children can have an adverse effect on kinship
verification. Shao et al. [111, 60] pointed out that children and their parents look more
alike when the parents are young. The idea of reducing the divergence caused by the
aging effect is to utilize the young parent’s facial images as a bridge between children
and elder parents. The module takes images of young parents, old parents, and children
as the source, intermediate, and target, which can be denoted as Xyp, Xop and Y. The
subspace projector matrix W is learned to project the intermediate domain and the other
two domains to have the same distribution. One drawback of this study is that it requires
manual efforts to collect the images of parents both when they are old and young.

Metric learning methods project the feature vectors into a new feature space that
pulls the kin image pairs together and pushes the non-kin image pairs further away. In
this sub-chapter, we reviewed and summarized the existing metric learning-based kinship
verification methods. Traditional metric learning methods are based on the feature
extraction module. Besides that, deep metric learning methods integrate the feature
extraction and metric learning loss to guide the deep network in learning comprehensive
feature extraction strategies. We will review these methods in the following sub-chapter.

2.4.3 Deep learning methods

Traditional hand-crafted feature extraction methods have a limited ability in feature
description. While the CNN-based deep learning methods have a strong capability of
non-linear expression, they can learn the effective feature embeddings from the original
raw data by applying task-related constraints, thus avoiding the traditional hand-crafted
feature extraction rules [112, 113, 114].

With the fast development of deep learning in computer vision and the emergence of
large-scale kinship datasets, researchers started to study the deep learning methods for
kinship analysis in 2016 [53]. The existing facial kinship verification algorithms have
used multiple novel deep architectures, including basic neural networks [115], deep
metric learning [53], architectures based on auto-encoders [115, 65, 10] and attention
networks [116].

The very first method proposed by Wang et al. [115] in 2015 has two stages: feature
extraction and deep metric learning. The facial features are extracted by traditional
methods. Features are fed into nonlinear AutoEncoders followed by the Mahalanobis
distance metric to project the features into a non-linear space. The drawback of the
method is that the input is the LBP feature, and the detailed information of the original
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image is missing. The first End-to-End deep learning method for kinship verification
was proposed by Zhang et al. [117]. The network inputs two stacked facial images, and
then outputs the final result. The architecture of the network is simple yet effective.

Deep metric learning methods. To optimize the distance between two input facial
images, researchers proposed to add a distance metric to the network training, which we
call Deep Metric Learning methods [53, 118, 119, 120, 121, 122]. The typical network
architecture is the Siamese network. Different from one-stream networks, Siamese
networks have two streams that share the same weights and use the distance metric as
the loss function to learn an optimal feature space so that positive pairs (pairs with a kin
relation) have small distances and negative pairs (pairs without a kin relation) have a
large distance.

Li et al. [53] proposed the similarity metric based convolutional neural networks
(SMCNN) method. The inputs of the network are two facial images, X and Y. G(·)
indicates the FC layer output of the network. They employed the l1-norm to compute the
distance of two output embeddings. During the training, Li et al. added a threshold
τ to further partition the positive and negative samples. The labels for the positive
samples and negative samples are denoted as y = 1 and y = −1. We can then have
the cost function of the network: LSMCNN = f (1− y(τ −D(X,Y))), where f (·) is the
generalized logistic loss. To minimize the cost function, the gradient descent algorithm
is adopted to optimize the convolutional neural networks.

Moreover, the commonly used metric-based loss functions include contrastive loss
and triplet loss [123, 124]. These two loss functions are based on distance measurement,
such as the Euclidean distance. The contrastive loss takes positive pairs and negative
pairs as inputs. Different from contrastive loss, triplet loss has three inputs, including
the Anchor (a), Positive (p), and Negative (n). The positive and negative pairs refer
to the anchor sample. Thus, positive sample pairs are clustered, and the positive and
negative samples are separated.

Regarding the deep metric learning techniques, the selection of the sample pairs/tuples
can directly affect the efficiency and performance of the network. Researchers proposed
the hard sample mining methods [125, 15, 126]. Hard sample mining methods are
designed to find positive sample pairs with large distances and negative sample pairs
with small distances from training batches, which can produce large backward losses
and effectively train the network. Li et al. [15] proposed a discriminative sample mining
approach using meta-learning in kinship verification. They abandoned the easy negative
ones and kept the hard samples to dominate the gradient.

Architectures based on auto-encoders. Another deep kinship verification architec-
ture is based on Auto-Encoders (AE) [115, 65, 10, 127, 128, 64, 129, 130, 123]. The
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very first autoencoders to be applied to kinship verification aim to train a model for
facial feature extraction [115]. The encoded feature is the reduced feature represen-
tation of the input. Many auto-encoder methods were motivated by the correlation
between inputs and outputs. They can be categorized into two classes, traditional
autoencoders [10, 130, 127] and NN-based autoencoders [128, 123, 129]. Traditional
autoencoders learn the relation mapping representation by minimizing the loss function
formulated to fit two input images. The NN-based autoencoders use multiple layers of
projection and optimize the network by back-propagation. Liang et al. [128] proposed to
use the intermediate layer to describe the relationship between inputs and outputs. They
first extracted the features of two facial images by a pre-trained CNN. The obtained
features are the inputs of the autoencoders. By minimizing the difference between the
encoded feature and the child’s feature, the autoencoders can be optimized, and the
output of the intermediate layer shows the relational feature of the two facial features.
The method proposed by Liang et al. requires learning the rational feature every time a
new input pair arrives.

Dibeklioglu et al. [123] improved it by encoding both inputs into a dual network and
defined comprehensive losses to learn kin-related features in an End-to-End fashion.
They took a pair of kin images as the inputs of dual autoencoders. They made the
output of each decoder to be similar not only to the input facial image but also to
its kin facial image. At last, they adopted the encoded features as the kin feature
representations. Moreover, some researchers applied image synthesis and generative
techniques to synthesize a child’s facial image given the parent’s facial image by
Generative Adversarial Networks (GANs) [65, 131]. Besides, GANs can also be use to
learn disentangled images or representations when facing challenges such as age and
gender. Wang et al. [59] applied GANs as a cross-generation framework for generating
young parents. The old parents were transformed to their young ages to mitigate the age
gap.

Architectures based on the attention scheme. Psychological research indicates
that kin clues are located in specific areas of the face rather than the entire face [5].
The method discussed above take the whole face as a clue for verifying kinship while
ignoring the facial kin feature distribution. In order to learn an effective kin feature
embedder, multiple attention mechanisms can be applied to guide the network to pay
attention to genetic regions. One possible and widely used method is the channel-wise
attention mechanism [132]. It learns an adapting weight for different feature channels,
as it is assumed that channel-wise features reflect variant information over space. By
training deep networks with kin-constrained loss function, the kinship-interested feature
is generated.
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Yan et al. learned the facial geometric weights directly from the transformation of
the intermediate feature map. They also applied the residual learning idea to retain
original information by summing the weighted feature map with the original feature
map. Specifically, the feature map passes through a pooling operation and convolutional
layer. To restore the feature map to the same size as the original feature map, they used
an up-sampling method followed by a sigmoid function to map the weights to a 0 to 1
scale. The original feature map is formulated as C(X) and F(X) denotes the attention
weights. The weighted feature is denoted as P(X) = F(X)∗C(X). To avoid the loss
of information, Yan et al.applied the residual method P(X) = (1+F(X))∗C(X). The
attention network shows good performance on KinFaceW-I and KinFaceW-II datasets.
They reached 82.6% and 92.0% accuracy, respectively, which is superior to basic CNN.

2.5 Facial kinship verification from videos

Compared to still images, facial videos can provide more information. A video-based
kinship verification system indicates the kin or non-kin relation between subjects present
in video sequences containing faces. This is an important research problem for some use
cases, such as surveillance systems and social media broadcasting. The first video-based
kinship verification study dates back to 2013 [22], when Dibeklioglu [22] combined
appearance and dynamic features to depict kin characteristics. Although video-based
kinship verification is an extension of image-based kinship verification research, it
contains additional spatio-temporal information that can be useful for FKV. However,
due to the significant challenges listed below, video-based kinship verification has still
not reached its full potential.

(1) Low quality of facial videos. Typical facial videos are usually recorded with
subjects who do not always cooperate with the recorder. Hence, the facial quality shows
more variability, especially in pose and illumination, which can fluctuate across subjects
and frames of the same video. In addition, occlusion and target loss are also possible.
Eliminating the noise while adaptively extracting helpful information is still an unsolved
problem, which is usually mitigated in current datasets by simplifying the recording
conditions [22].

(2) Blurry video frames. The understanding of moving faces in sequences is
frequently hindered by frame blurring due to motion. This is especially evident with
slow shutter speeds and long exposure times [133]. Advanced devices can address
this issue by collecting data at higher frame rates, with high-quality optics and short
exposure times. However, this can cause an unnecessary waste of resources [134].
Deblurring video frames for kinship analysis still remains a challenge.
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(3) Integration of faces, audio, and body information. Videos provide rich behav-
ior information and dynamic cues besides facial appearance. Voice [124] and gait [135]
could act as complementary modalities that provide kin clues. The main challenge is to
devise how to properly fuse multiple modalities to learn the complementary features for
kinship verification.

Video-based kinship verification systems are similar to image-based kinship verifica-
tion and follow the similar approach introduced in Chapter 2.4.1. The distinct difference
is in modeling kin features from sequences. We review the existing video-based methods
from constrained video-based kinship verification in Chapter 2.5.1 and unconstrained
video-based kinship verification in Chapter 2.5.2.

2.5.1 Constrained video-based kinship verification

Constrained video-based kinship verification refers to verifying kinship from facial
videos where there is no variance in the shooting environment and subject actions.
A representative constrained dataset is the UVA-NEMO Smile dataset [22]. It is
hypothesized that people with kin relations might also share similar facial expression
dynamic features that could be present in a smiling style, for example. This hypothesis
was corroborated by the original authors in 2013.

Dibeklioglu et al. [22] extracted the dynamic and facial spatio-temporal features
for kinship verification. They localized 17 facial landmarks to track facial movement
and extracted the dynamic features based on them. Together with the spatio-temporal
feature CLBP-TOP, they demonstrated the family resemblance of smiling faces. Boutel-
laa [136] combined deep features and spatio-temporal features (e.g., LBP-TOP) to study
constrained video-based kinship verification. Experimental results showed that deep
features have complementary information regarding spatio-temporal features. In 2017,
Dibeklioglu et al. [123] proposed to measure the similarity of kin facial smile videos by
matching affective intensity. They decomposed the smile video into frames and aligned
the sub-sequence according to the smile intensity of the face. The matched sequence
pair is the input of dual auto-encoders.

Constrained video-based kinship verification studies indicate that people with kinship
have both a similar appearance and smiling expressions. However, it requires strict
collection conditions that hinder its applicability. To answer this limitation, researchers
formulated unconstrained video-based kinship verification, which we will review in the
following sub-chapter.
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2.5.2 Unconstrained video-based kinship verification

Compared with constrained videos, unconstrained videos are collected in the wild.
Relaxing the restriction of the collection conditions makes it easier to enlarge the scale of
the datasets. The collection of large video frames provides a larger number of individual
frames to be used in training, but at the same time, it severely increases the burden of
computation. On the other hand, the variability of the collected videos also provides for
additional multimodal cues that could be exploited in a complementary manner.

Yan et al. [23] investigate the problem of video-based kinship verification with
several metric learning methods. Compared to a single image, a face video provides
more information to describe the appearance of a human face. It can capture the face of
the person of interest from different poses, expressions, and illuminations. Kohli et
al. [10] proposed a three-stage autoencoder to learn the relation between two facial
videos, called Supervised Mixed Norm AutoEncoder (SMNAE). First, every video was
decomposed into a sub-sequence with a specific number of frames, called a vidlet. The
vidlet pair is the input of the three-stage autoencoder. In the first stage, the relation of
the corresponding video frame was learned as the facial resemblance. The second stage
concatenated the spatio-temporal representations. In the end, the third stage fused the
spatio-temporal information and learned the final score of kin probability. This method
has a common drawback, since the learning procedure needs to be repeated for each
input pair.

Besides video-based kinship verification is still a relatively new research topic, only
limited research was found in the literature. Since it shows the potential capability of
describing more comprehensive features related to kinship when compared to facial
images, kinship verification from videos deserves more study in the future.

2.6 Kinship datasets

Databases play an important role in the study of kinship verification. In the era of
big data, the collection of large databases is becoming more and more important. On
one hand, an open standard database provides researchers with experimental data and
unified evaluation standards. On the other hand, the construction and development
of the database further promotes the development of the research problem. Before
researchers first raised the kinship verification problem, there was no relevant kin face
database. Fang et al. [8] from Cornell University established the first kinship database,
named Cornell KinFace, in 2010. It consists on 300 facial images (i.e., 150 parent-child
pairs) and includes four kin relations: FS, FD, MS, and MD. During the next ten years,
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(a) Sample images from the KinFaceW-I dataset.

(b) Sample images from the KinFaceW-II dataset.

Fig. 4. Sample images from the KinFaceW-I & II datasets. From top to bottom are the FS, FD,
MS, and MD kinship relations, and the neighboring two images in each row are with the
kinship relation, respectively. Reprinted, with permission, from [11] ©2014 IEEE.

many scholars established a variety of kinship databases. Compared with the very first
database, new ones have been developed and enriched in terms of size, structure, kin
relation types and data modality. Next, we briefly review the kinship datasets with
images and videos, which are primarily and commonly used in kinship verification.

42



Fig. 5. Sample images from the TSKinFace dataset. Each group consists of father-mother-
child. From top to bottom are Father-Mother-Daughter (FMD) and Father-Mother-Son (FMS)
kinship relations, respectively. Reprinted, with permission, from [19] ©2015 IEEE.

2.6.1 Image datasets

KinFaceW

The KinFaceW5. [11] database has two subsets: that are KinFaceW-I and KinFaceW-II.
They are all collected from the Internet and there is no constrain on the recording
environment. KinFaceW-I and KinFaceW-II proposed by Lu et al. [11] are composed of
facial images with kin pairs. The resolution of each image is 64×64. These two subsets
have the same kin relations. The difference between them is the result of kin images in
KinFaceW-I being cropped from different photos and the kin images of KinFaceW-II
being from the same photo. In KinFaceW-I, there are 134 pairs of FS, 156 pairs of
FD, 127 pairs of MS, and 116 pairs of MD. In KinFaceW-II, every kin relation has 250
pairs of facial images. The KinFaceW database is widely used in research on kinship
verification. Figure 4 shows samples of the KinFaceW-I and KinFaceW-II datasets.

TSKinFace

The TSKinFace6 [19] database is a facial image database proposed by Qin et al..
Different from the KinFaceW database, it is mainly used for the study of tri-subject
kinship verification. TSKinFace has two types of kinship relations: Father-Mother-
Son and Father-Mother-Daughter, for which there are 513 groups and 502 groups,
respectively. Figure 5 shows sample images in TSKinFace that are organized with
triplets. The facial images are all downloaded from the Internet and there are no
constraints on the recording environment. The resolution of each facial image is 64×64.

5http://www.kinfacew.com/
6http://parnec.nuaa.edu.cn/xtan/data/TSKinFace.html
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Fig. 6. Sample images from the FIW dataset. Modified, with permission, from [20] ©2018 IEEE.

FIW

FIW7 (Families In the Wild) [20] is the largest and most comprehensive kinship database
for now. It consists of facial images and was established by Robinson et al.. The FIW
database is organized by family. It has over 13,000 facial images from 1,000 families.
Each facial image is resized to 224×224. FIW consists of multiple facial images from
different periods for each family member. FIW covers the kin relations of siblings, four
parent-child kin relations, and four second-generation kin relations. Figure 6 provides
some samples with 11 kin relations from the FIW dataset. FIW is similar to Family
101 [63], but it is much superior in family structure, data volume, and data variants.

2.6.2 Video datasets

UVA-NEMO Smile

The UVA-NEMO Smile8 [21, 22] database was proposed by Dibeklioglu et al.. The
database was first established to classify spontaneous smiles and deliberate smiles.

7https://web.northeastern.edu/smilelab/fiw/
8http://www.uva-nemo.org/
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Because the participants in the database are family-related, it is also considered to be the
first video-based kinship database. The UVA-NEMO Smile database has 1240 clips of
smiling videos of 400 subjects (597 spontaneous smiling videos and 643 deliberate
smiling videos). The background of the video is black and the illumination environment
is fixed for all videos. The age range is 8 to 76. The resolution of the video frame is
1920×1080. This database has four main parent-child kin relations and three sibling
relations. According to gender, sibling relations include Sister-Sister, Sister-Brother and
Brother-Brother. The shortcoming of this database is that it only has 95 kin pairs and the
subjects are mostly Caucasian.

KFVW

Yan et al. [23] proposed the KFVW9 (Kinship Face Videos in the Wild) database. KFVW
is made up of facial videos. The difference from the video-based kinship database
(UVA-NEMO Smile database) is that KFVW is collected in the natural environment.
Videos have no constrain in illumination, pose, occlusion, background, expression, age,
etc. KFVW has 418 pairs of facial videos. Each clip of a facial video has 100 to 500
frames. The resolution of the video frame is 900×500. These videos are all from the
Internet. KFVW has four main kin relations. Compared with the UVA-NEMO Smile
database, KFVW contains more data, but it doesn’t have a family structure and each
subject has only one clip of facial video.

KIVI

The KIVI10 [137] database was collected by Kohli et al.. It is organized with the family
structure containing facial videos of 503 subjects from 211 families. It has 355 kin pairs
in total. The database is downloaded from the Internet. The average length of the video
is 18.78 seconds, and the frame rate is 26.79 frames per second. There are a total of
250,000 frames. The KIVI has four main kin relations and three sibling relations. KIVI
dataset [10, 138] is organized with the family structure and contains facial videos of 503
subjects from 211 families. The dataset is downloaded from the Internet.

9https://www.kinfacew.com/datasets.html
10http://iab-rubric.org/resources/KIVI.html
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2.6.3 Evaluation metrics

In kinship verification experiments, the data is usually divided into positive pairs and
negative pairs. The positive pairs are all pairs with kin relations in the dataset, while the
negative pairs are most often randomly generated among the image pairs without a
kin relation. Generally, when establishing a protocol, the number of positive pairs and
negative pairs is balanced, although the creation of additional negative pairs has also
been explored [15]. The most typical evaluation protocols are based on N-fold cross-
validation with the intent to reduce overfitting. In the most typical 5-fold configuration,
four folds are used as training data, while the remaining one is used for testing. After
repeating the process through all five testing folds, we can compute the final result with
the average accuracy of each one of the five. Notably, in this configuration, the positive
and negative pairs should only be generated within each fold.

Verification accuracy is the typical assessment criteria in kinship verification studies.
Given True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN), the accuracy A is defined as:

A =
T P+T N

P+N
. (1)

2.7 Conclusion

Automatic facial kinship verification essentially use image feature extraction methods
and machine learning methods to analyze the similarity between two different facial
images to verify whether or not they have some kin relationship. Comparatively, human
eyes have difficulties in quantifying the similarity of two images from different people
solely by the sensory perception of the human eye. Features such as the distance
between the eyes, the shape, and size of the facial parts are not easily judged at a
glance. In addition to facial shapes, the human eye’s ability to distinguish color is
low. Thus during the procedure of kinship verification, the human brain is using fuzzy
judgment, resulting in low recognition accuracy. Complementing to the human eye’s
judgment on kinship verification, computer vision methods can accurately capture the
similarity between parents and children’s faces in terms of shape and color, as well
as distinguish the difference from non-kinship images. Machine learning methods
are based on mathematical measurement. Through optimizing the feature extraction
methods and classifier, machine learning methods are more accurate in inferring whether
or not two facial images have kin relations.

Over the last decade, image-based kinship verification techniques have been de-
veloped to a great extent. In the early research, the first attempts demonstrated the
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possibility of automatically verifying kinship with computer vision methods. With
machine learning methods showing great potential, kinship verification got increasing
attention in the field. Advances were made with many methods proposed. Brand
new ideas of problem formulation [11, 91, 115] and algorithms from different disci-
plines [116] were raised. More recently, deep learning methods [15, 14] have emerged
and have shown powerful learning capability on large datasets. Different methods have
shown different levels of progress in specific tasks. However, most current research
focuses on kinship verification from facial images, while only a few works consider
facial videos. Videos provide an abundance of information that can be leveraged to
compensate for the limited temporal information of individual still images. Compared
with kinship verification from images, research on video analysis is found on a limited
scale, especially for the unconstrained video-based kinship verification. How to learn
kin features from videos (e.g., dynamic facial features, multi-modal features such as
voice, gait, and gestures) is a key research direction.

Although the publicly available kinship databases, including both image and video
datasets, have been an important kick-off for developing useful kinship approaches
and applications, these datasets are limited in presenting multiple modalities of human
biometrics, such as speaking voice. Until now, kinship video datasets are generally
very small and consist of the mono face modality. Generally, only hundreds of subjects
are included in the dataset due to the difficulty of collecting subjects’ facial videos.
Unlike facial images that depict single individuals and can be obtained automatically by
web crawlers (since facial images sometimes have identity tags), facial videos usually
come with multiple non-kin subjects and scene transitions and require careful curation.
Thus, to study and evaluate the vocal usefulness and audio-visual fusion on the kinship
verification problem, new multimodal datasets are needed.
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3 Audio-visual kinship datasets

Visual kinship verification using facial information has been studied extensively.
However, the related research neglects the usage and benefits of other biometric
modalities, such as voices. This is mainly because the existing kinship datasets cover a
variety of visual facial data but lack human talking data. Based on papers V and VI,
in this chapter we present two new audio-visual kinship datasets. Unlike the existing
kinship datasets, we include both human faces and speaking voices in our datasets
called, TALKIN and TALKIN-Family, respectively.

3.1 Introduction

The last decade has witnessed great advances in facial kinship verification, where
the research community devoted many efforts to advance the study of facial kinship
verification by developing methods, databases, and applications [139]. Due to the
various applications of kin-related tasks, complementary kin research problems have
emerged with the publication of new relevant datasets. We identify those studies as
Tri-subject kinship verification [19], Family classification [63], and Family search and
retrieval [20]. To carry out research on the above-mentioned problems, various kinship
databases have been designed, such as the UB Kinface dataset [111, 60], the TSKinFace
dataset [19], the Family 101 dataset [63] and the FIW dataset [20]. In recent years, the
image-based kinship datasets have extended to facial videos, including UvA-NEMO
Smile [21, 22], KFVW [23], FFVW [140] and KIVI [10]. Table 2 compares the main
characteristics of existing kinship datasets. We categorize those datasets based on data
modality.

Even though certain progress has been achieved, the current kinship recognition
research still focuses mainly on analyzing facial features only, mainly because the
existing kinship datasets consist only of single-modality data (i.e., faces). In the
real world, the data usually comes from multiple modalities. Multiple modalities
provide complementary information about the data and potentially help to enhance the
robustness of the verification system. As for the kinship verification problem, besides
the faces that perceive heritage features, voices have also been proven to contain generic
features [141, 27, 26, 28, 29].

To promote the kinship study to a new stage and bridge the gap between current
kinship datasets and real-world usage, in this thesis, we introduce the multiple modality
analysis (i.e., Faces and Voices) into FKV research, as audio-visual kinship verification.
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Face 
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Non-kin
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Non-kin

Kin list

Fig. 7. The collection pipeline TALKIN dataset. Reprinted, with permission, from Paper V
©2019 IEEE.

Thus, a carefully designed multimodal kinship dataset is desired. In our first attempt, we
propose a new kinship dataset composed of facial videos with speaking voices, called
the TALKing KINship (TALKIN) dataset. The TALKIN dataset is organized with
a pairwise structure where the video data comes in kin pairs. Based on the TALKIN
dataset, to enrich and extend the data in aspects of volume, organization, and data
variety, the TALKIN-Family is then proposed. In the following chapters, we introduce
those two datasets in detail.

3.2 The TALKIN dataset

We first introduce a new kinship dataset called TALKIN. It contains several videos of
subjects talking in the wild environment (under unconstrained background, illumination
and recording condition, etc.). The purpose of collecting this is to investigate the newly
raised problem, audio-visual kinship verification in the wild.

3.2.1 Data collection pipeline

The overall collection pipeline for the TALKIN dataset is shown in Figure 7.
Step 1. List of celebrities or family TV shows. The first step is to prepare a list of

celebrities from which we intend to obtain videos. The target number for each relation is
100 pairs of videos. Most of the list is formed of celebrities, such as musicians, actors,
and politicians, with the remaining pairs obtained from reality TV series that involve
family interactions of noncelebrity individuals.

Step 2. Downloading YouTube videos. Videos were downloaded from YouTube2

by searching the name of celebrities or TV series. We collect parent’s videos and child’s

2YouTube is a popular US-based video-sharing website
https://www.youtube.com/

50



Ta
bl

e
2.

M
ai

n
ch

ar
ac

te
ri

st
ic

s
o

fe
xi

st
in

g
ki

n
sh

ip
d

at
as

et
s.

W
e

so
rt

th
o

se
d

at
as

et
s

by
th

e
d

at
a

m
o

d
al

it
y.

In
th

e
ea

rl
y

ye
ar

s,
m

an
y

im
ag

e
ki

ns
hi

p
da

ta
se

ts
w

er
e

pr
op

os
ed

.T
he

n
so

m
e

vi
de

o
da

ta
se

ts
w

ith
al

ig
ne

d
fa

ci
al

in
fo

rm
at

io
n

w
er

e
pr

op
os

ed
.

M
od

al
ity

D
at

as
et

Ye
ar

Si
ze

F a
m

ily
st

ru
ct

ur
e

M
ul

tip
le

sa
m

pl
es

C
on

tr
ol

le
d

en
vi

ro
nm

en
t

Im
ag

e
C

or
ne

llK
in

[8
]

20
10

15
0

pa
irs

N
o

N
o

N
o

Im
ag

e
U

B
K

in
fa

ce
[1

11
,6

0]
20

11
20

0
gr

ou
ps

N
o

N
o

N
o

Im
ag

e
Fa

m
ily

10
1

[6
3]

20
13

10
1

fa
m

ili
es

Ye
s

Ye
s

N
o

Im
ag

e
K

in
Fa

ce
W

-I
[1

1]
20

14
53

3
pa

irs
N

o
N

o
N

o
Im

ag
e

K
in

Fa
ce

W
-II

[1
1]

20
14

10
00

pa
irs

N
o

N
o

N
o

Im
ag

e
TS

K
in

Fa
ce

[1
9]

20
15

10
15

gr
ou

ps
N

o
N

o
N

o
Im

ag
e

FI
W

[2
0]

20
16

10
00

fa
m

ili
es

Ye
s

Ye
s

N
o

Im
ag

e
W

V
U

[1
42

]
20

17
11

3
pa

irs
N

o
Ye

s
N

o
V

id
eo

U
vA

-N
E

M
O

S
m

ile
[2

1,
22

]
20

12
12

40
vi

de
os

N
o

Ye
s

Y
es

V
id

eo
K

FV
W

[2
3]

20
18

41
8

pa
irs

N
o

N
o

N
o

V
id

eo
FF

V
W

[1
40

]
20

18
10

0
gr

ou
ps

Ye
s

N
o

N
o

V
id

eo
K

IV
I[

10
]

20
19

21
1

fa
m

ili
es

Ye
s

N
o

N
o

V
id

eo
,a

ud
io

TA
LK

IN
[1

24
]

20
19

40
0

pa
irs

N
o

N
o

N
o

V
id

eo
,a

ud
io

TA
LK

IN
-

Fa
m

ily
[1

43
]

20
22

24
6

fa
m

ili
es

Ye
s

Ye
s

B
ot

h

51



videos from different video clips corresponding to different backgrounds or recording
conditions.

Step 3. Data preparation. For face detection and alignment, we use the MTCNN
algorithm [144] to detect five face landmarks in every frame of the video. Finally, the
videos are cropped according to the landmarks. The face frames are resized to 224
× 224. Both hand-crafted features and deep features are extracted to represent each
individual. We directly extract audio from the video clips. Standard methods in the
speech field, Mel-Frequency Cepstral Coefficients (MFCCs) [46], and Deep Neural
Networks are used to embed the audio features.

3.2.2 Parameters of the dataset

The TALKIN dataset contains four kin relations: Father-Son (FS), Father-Daughter (FD),
Mother-Son (MS), and Mother-Daughter (MD), with 100 pairs of videos (with audio)
for each relation. As all data originates from uncontrolled Internet resources, the speech
contents vary from subject to subject and video to video, making the voice-related
sub-task text-independent kinship verification, analogous to text-independent speaker
verification. That is, the task is to verify kinship relations regardless of what was said
between individuals.

TALKIN incorporates a wide range of backgrounds, recording environments, poses,
occlusions, and ethnicities. Table 3 shows the distribution of ethnicity in TALKIN.
The distribution is counted by kin pairs rather than individuals, since the image of one
parent might appear multiple times with more than one kid. Note, however, that we
exclude mixed-race samples, i.e. the parent and child in a sample pair always have the
same ethnicity. The dataset has two parts: video and audio. The length of the video
varies from 4.032 seconds to 15 seconds with a resolution of about 1920×1080. Audio
is extracted from video files. The sample rates are all set at 44.1 kHz. Besides the
varied text content, the audio files contain substantial channel variations (due to different
recording devices, for example). Some of them also contain reverberation and additive
noise.

Table 3. Ethnicity distribution (%) of the TALKIN dataset. Reprinted, with permission, from
Paper V ©2019 IEEE.

British American French Australian Chinese Dutch Italian Swedish Turkish

56.50 33.50 6.50 2.00 0.50 0.25 0.25 0.25 0.25
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3.3 The TALKIN-Family dataset

In our previous preliminary attempt, we collected the TALKIN dataset. However,
the TALKIN dataset has some obvious limitations, i.e., a limited number of training
samples, limited diversity in terms of environmental conditions, kinship categories, and
mono-annotation with binary kinship labels only. To address some of these identified
limitations, we aim to establish a new audio-visual kinship dataset named TALKIN-
Family that consists of facial videos and synchronous speaking audio with properties
that differ from the existing one. Specifically, we consider improving the TALKIN
dataset in three aspects. First, to make the audio-visual kinship dataset more applicable
in recognizing kinship from different tasks, we propose to arrange the data with the
family structure instead of simple kin pairs. Within the family structure, beyond limited
parent-child relations, more kinship categories could be generated, e.g., siblings and
grandparent-grandchild relations. Then, besides enlarging the dataset by increasing
the number of subjects, we also intend to collect multiple samples for each subject
under different conditions of environment background (white and non-white ones) and
speaking content (fixed and free text). Lastly, we consider providing more biometric
labels for our data, such as age, gender, family relation labels and scene conditions. This
could help in promoting future deeper kinship recognition studies, since the related
factors could possibly affect the recognition performance as has been discussed in [139].
We found that video-sharing websites such as YouTube usually contain free-style
speaking videos while lacking fixed-text speech. To fill in the blansk, we chose to collect
the TALKIN-Family offline. The video recording task is distributed to the participating
families, and family members record the qualified videos by following the provided
instructions. We will introduce the collection steps in detail in the following section.

3.3.1 Collection pipeline

The overall collection pipeline is shown in Figure 8. TALKIN-Family was collected
offline by recruiting several participants. The participants were asked to record frontal
talking facial videos of themselves and biologically related family members. To
eliminate family-related biases (e.g., recording conditions, recording devices, speech
contents), we set up several recording protocols.

Participants. The subjects involved in the recording mission within one family
should be biologically related. The number of subjects within one family should be
more than two, including collateral relatives and direct relatives across generations. This
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means that collateral relatives cannot be considered an isolated family. Subjects across
different families should have no biological relation.

Environment conditions. The background should be quiet without noise or voices
from other people. There is only one subject that appears in the video. To further ensure
that videos within one family do not have only one background, we ask the subject to
record videos against both the white and the non-white background. We refer to the
white background as “white” and the non-white background as “wild”, as shown in
Fig. 8. This could eliminate the familial background bias [145] by generating kin pairs
across different backgrounds.

Speech content. In speaker verification studies, text-dependent speaker verification
and text-independent speaker verification are considered different tasks. Text-dependent
speaker verification is characterized by using fixed speaking content [146]. On the
other hand, in text-independent speaker verification, subjects talk freely without explicit
cooperation [147]. In our dataset, to facilitate an extensive usage of the TALKIN-Family
dataset we consider both scenarios. In addition this could facilitate avoiding bias due to
family-wise spoken utterances. The participants were provided with the specific content
(that is the Mandarin new year greeting). After the fixed speech content, in separate
videos, they were asked to speak freely, using any desired sentences different from
the provided content. The abbreviations for text-dependent and text-independent tasks
are TD and TI. Therefore, for each subject, there are four talking videos, referred as
BACKGROUND_CONT ENT (i.e., White_TD, White_TI, Wild_TD and Wild_TI), as
shown in Fig. 8.

Shooting device. The videos were recorded by a smartphone camera. The phone
should be held still during recording, and the retouching and video editing functions
were turned off. Within one family, the videos were recorded using multiple (more than
one) phones, in order to minimize possible bias due to the device characteristics. Each
video lasts for about 10 seconds.

Data packing. We set the principle subject as ROOT (“me”), who is one of the
young generations. Family members are backtracked based on the root, and the family
tree is generated and labeled as in Fig. 8. Every involved single-family has a family
folder as FXXX (i.e., F001-F246). In addition, the gender and age labels were also
collected. Under the family folder, each subject has a sub-folder, ID_GENDER_AGE
(e.g., P1_female_6), where ID refers to the subject’s family role defined by the family
tree. GENDER is male or female, and AGE is an integer referring to the subject’s age.
In the subject’s folder, four facial videos are stored.
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3.3.2 Data preparation

In the TALKIN-Family dataset, each video clip was recorded with the cooperation
of the participants, and only one subject appears in each video. Therefore, Speaker
Diarization [148] is not required to determine “who spoke when” before data pre-
processing. We do the pre-processing from visual data and audio data separately, as
described below.

– Visual data. We first extract facial frames from each video, and the faces are
automatically detected, cropped, and aligned as done in [69]. Note that some recorded
videos are shot in landscape mode or upside down. Therefore, in such cases, face
orientation and image rotation are needed during face detection. Then the facial
frames are resized to 224×224 and encoded by face-image descriptors. Chapter 5.5
details the face descriptors we employed in the experiments, including traditional
methods and deep encoders.

– Audio data. Since the subject starts to talk and ends right after the subject stops, we
extract the audio directly from the videos and save them as WAV files. The signal is
converted and normalized to the single channel at a 44.1 kHz sample rate. Standard
methods in the speech field, MFCCs [46] and Deep Neural Networks are used to
embed the audio features.

3.3.3 Dataset statistics

Familial information

TALKIN-Family is organized with family structure, and it contains 246 families. Each
family has 2 to 14 family members. Three levels of generation (Siblings, Parent-Child
and Grandparent-Grandchild) are involved with 1012 subjects and 4048 clips of videos
in the dataset. The age of the subjects varies between 5 years and 81 years old.

Data details

Most videos in TALKIN-Family were recorded indoors. The length of each video clip is
about 10 seconds. In total, TALKIN-Family has 9.2 hours of videos. There are about
1 million facial frames in TALKIN-Family. All subjects are from China and speak
Mandarin Chinese, although some of them have different accents.
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3.3.4 Problem statement

We address the audio-visual kinship verification as a binary classification problem: given
a pair of signals (a pair of video sequences with speech utterances, e.g., (X,Y)), the
objective is to automatically determine whether they have a kin relation. In practice, we
represent X and Y using recording-level representations. The kinship score, a numerical
indicator associated with higher values for kin relation pairs, is obtained by computing
similarity score between the feature representations. Three levels of generation (Siblings,
Parent-Child and Grandparent-Grandchild) are considered in our experiments.

3.4 Conclusion

In this chapter, we introduced our newly established audio-visual kinship datasets:
TALKIN and TALKIN-Family. These two datasets are mainly presented for the research
on audio-visual kinship verification. The TALKIN dataset consists of 100 pairs of
facial videos with synchronous subject’s speaking voices for each kind of parent-child
relation. Though the TALKIN dataset is small, it opens an era of the kinship verification
study of audio-visual modalities. Then, to extend and develop a more comprehensive
dataset, we propose the TALKIN-Family dataset, which is organized by family. In total,
it consists of 246 families and 9.2 hours of videos. The TALKIN-Family dataset is
not only superior in terms of dataset size, it also contains diverse samples with respect
to recording background and speaking content. In the next chapters, we explore the
methods of FKV from visual features, vocal features and the fusion of both.
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4 Kinship verification from visual features

Kinship verification from faces is a challenging task that has been attracting increasing
attention in recent years. Most of the traditional methods have mainly focused on
analyzing only the luminance of the face images, hence discarding the chrominance (i.e.
color) information which can be a useful additional cue for verifying kin relationships.
Moreover, the small datasets suffer from limited training data. To mitigate those
problems, we propose to combine color features and extreme learning machines. In
this chapter, we summarize our findings in publications III-IV, which demonstrate the
importance of color texture features and ELM classifiers.

4.1 Introduction

A key question in kinship verification from faces is about which facial parts exhibit the
kin relation the most. In other words, what are the most shared facial features between
family members? This question has been studied from psychological perspectives
(e.g. [5, 3]), suggesting that the eyes may bear more kin information than other facial
parts. Most of the proposed traditional methods in the literature for automatic kinship
verification have mainly focused on analyzing only gray-scale face images, hence
discarding color information that can be a useful additional cue for verifying kin
relationships. From a biological point of view, the chromaticity of the face is tied
to genetically expressed features, such as eye color and skin tone. These inherited
features are many times present in kin-related persons in a similar manner. This chapter
investigates the usefulness of color information in the verification of kinship relationships
from facial images. We aim at answering the question of whether or not color helps to
improve kinship verification. For this purpose, we compare the performance of several
baseline methods used in their traditional gray-scale variants against their counterparts
using color information. More specifically, we extract joint color-texture features to
encode both the luminance and chrominance information in the color images. The
kinship verification performance using joint color-texture analysis is then compared
against their counterpart approaches that use only gray-scale information.

The most recent studies using deep CNNs have not shown their full potential
due to limited training data. This makes the topic of kinship verification from facial
appearances an exciting and still open research problem. We propose to tackle the
kinship verification challenge by extracting color texture features and using ELM for
classification. Our approach is motivated by two observations: (1) color texture features
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are proven to provide significant enhancement over gray-scale counterparts and (2)
ELM seems to deal better than deep neural architectures when facing small training sets.

4.2 Kinship verification based on color texture analysis

To study the usefulness of color in automatic kinship verification:

1. We considered three baseline methods successfully used in automatic kinship verifi-
cation, namely, Local Phase Quantization (LPQ) [133], Binarized Statistical Image
Features (BSIF) [149] and Neighborhood Repulsed Metric Learning (NRML) [11].

2. We considered three color spaces, RGB, HSV and YCbCr.
3. As the baseline methods were originally designed for grayscale images, we extended

the methods to include color information by considering a joint texture-color analysis
and combining the features extracted from different color channels (e.g. R, G and B).

4. We compared the performance of these three baseline methods (LPQ, BSIF, and
NRML) in the three color spaces (RGB, HSV, and YCbCr) against their performance
in the gray-scale space (Gray).

5. We experimented with two different benchmark kinship face databases, the Tri-
subject Kinship Face Database (TSKinFace) [19] and the Kinship Face in the Wild
dataset (KinFaceW-I & II) [11].

Our kinship verification scheme is depicted in Figure 9. In a nutshell, a target pair
of face images is given as input. These two images are first converted into different
color spaces (e.g. HSV). Then, the features (e.g., BSIF) are separately extracted from
each channel of the considered color space (e.g., H, S, and V). The features are then
concatenated to form one enhanced feature vector. Finally, we apply cosine similarity
between the feature vectors of the pair of face images. The cosine similarity between the
two vectors X and Y is defined as below:

sim(X,Y) =
x⃗ · y⃗

∥⃗x∥ · ∥⃗y∥
, (2)

where ∥ · ∥ is the Euclidean norm, and X,Y refer to parent and child feature vectors.

4.3 Classification using extreme learning machines

Figure 10 depicts an overview of our proposed approach. The input is a pair of two
color face images, e.g., a parent and a child. We convert these images into different
color spaces and encode the facial texture in each channel. We compute the cosine
similarities between the texture features in each color channel. These similarities are
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Fig. 9. An illustration of the proposed classification method. Reprinted, with permission,
from Paper III ©2016 IEEE.

fed to an extreme learning machine (ELM) classifier. The ELM classifier is trained to
predict whether or not the two persons are kin related.

An Extreme Learning Machine (ELM) [150] is a single hidden layer network that has
been shown to perform better and faster than SVM in some classification problems [151].
The output of an ELM network with L hidden neurons can be represented as:

L

∑
i=1

βig(Wi ·X j +bi) = o j, j = 1, · · · ,N, (3)

where βi is the weight between the hidden layer and output layer, and g(x) is the
activation function. Xi = [xi1,xi2, · · · ,xin]

T is the input vector with the ground truth
ti = [ti1, ti2, · · · , tim]T . Wi and bi are the weight and bias of the hidden layer. One key
feature of ELM is to randomly set both Wi and bi to speed up the training process.
The distances between the ground truth and the actual output ∑

N
j=1

∥∥o j − t j
∥∥ should be

minimized. The output weights are optimized by minimizing the approximation in:

H ·β = T, (4)
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where H is the randomly generated hidden layer output matrix,

H (W1, · · · ,WL,b1, · · · ,bL,X1, · · · ,XL)=


g(W1 ·X1 +b1) · · · g(WL ·X1 +bL)

... · · ·
...

g(W1 ·XN +b1) · · · g(WL ·XN +bL)


N×L

,

(5)
and T is the target output:

T =


T T

1
...

T T
N


N×m

. (6)

The optimization procedure in ELM can be reduced to computing the Moore-Penrose
inverse of H, determined at the beginning of the training, rather than optimizing β using
a gradient descent algorithm by tuning the parameters in an iterative algorithm as in
deep architectures. Thus, β̂ can be calculated as:

β̂ = H−1 ·T. (7)

4.4 Experimental results and analysis

For experimental evaluation, we considered three commonly used kinship databases:
KinFaceW-I, KinFaceW-II [11], and TSKinFace [19]. These three databases are
composed of four types of kin relations, namely father-son (FS), father-daughter (FD),
mother-son (MS), and mother-daughter (MD). As TSKinFace was originally formed
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Table 4. Kinship verification accuracies (in %) on the TSKinFace database. Reprinted, with
permission, from Paper III ©2016 IEEE.

Method
F-S F-D

Gray RGB YCbCr HSV Gray RGB YCbCr HSV

NRML [11] 73.5 74.5 77.8 81.3 73.1 74.1 76.0 79.2

LPQ [133] 73.5 76.7 76.6 80.1 70.7 73.1 73.6 79.3

BSIF [149] 75.8 77.9 77.0 81.5 73.1 76.4 76.2 81.4

Table 5. Kinship verification accuracies (in %) on the TSKinFace database. Reprinted, with
permission, from Paper III ©2016 IEEE.

Method
M-S M-D

Gray RGB YCbCr HSV Gray RGB YCbCr HSV

NRML [11] 72.4 74.0 75.0 78.8 70.1 71.7 77.0 77.5

LPQ [133] 72.8 74.4 74.0 80.7 71.5 73.8 77.0 80.3

BSIF [149] 75.6 76.9 77.6 79.9 73.4 76.1 76.6 82.0

of triple relations (two parents and one child), we convert each triplet into two pairs:
father-child and mother-child. The number of positive and negative pairs used in the
experiments is the same for each relation in the three databases. We use a five-fold
cross-validation strategy for the evaluation. We report the mean accuracy over the five
folds. The negative pairs and folds are predefined for KinFaceW-I and KinFaceW-II. In
the case of the TSKinFace database, we randomly generate negative pairs and folds. For
the color texture features, we extracted color-BSIF [149] as this has been shown to
perform better than color-LBP and color-LPQ [152]. The dimensionality of each face
block feature is reduced using PCA before computing the cosine similarities. For ELM,
the number of neurons in the hidden layer is an important parameter. The number is
determined empirically and set to 40.

Tables 4 and Table 5 show the obtained results on the TSKinFace database, comparing
the performance of the three baseline methods (LPQ, BSIF, and NRML) in the three
color spaces (RGB, HSV and Y-CbCr) against the performance of these baseline methods
in the gray-scale space (Gray). From these results, we can clearly see that the use of
color consistently improves the kinship performance compared to the corresponding
gray-scale approaches. When comparing the different baseline methods, we can see
that BSIF yields the best overall performance, outperforming the NRML-based metric
learning method. When comparing the color spaces, although improvement can be seen
in all of them, HSV seems to give the best overall performance. This superiority can be
noted for all individual folds. A statistical ANOVA test performed across all five folds

63



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Gray
RGB
YCbCr
HSV

(a) FS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Gray
RGB
YCbCr
HSV

(b) FD

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Gray
RGB
YCbCr
HSV

(c) MS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Gray
RGB
YCbCr
HSV

(d) MD

Fig. 11. ROC curves of different color spaces using the best performing baseline
feature (BSIF) on the TSKinFace database obtained on the 11(a) F-S set, 11(b) F-D
set, 11(c) M-S set, and 11(d) M-D set, respectively. Reprinted, with permission,
from Paper III ©2016 IEEE.

and all four relationships showed that the better performance of HSV is statistically
significant. Hence, we can conclude that color does provide some discriminative
information that can help in boosting the kinship verification performance. Figure 11
shows the obtained results, validating our findings and pointing out the usefulness of
color information for kinship verification. The ROC curves are shown for the best
performing feature (BSIF) for grayscale and three different color spaces.

Our proposed method is compared against some recent state-of-the-art methods on
KinFaceW-I and KinFaceW-II databases in Table 6. Note that some of these methods,
such as MultiviewSSL, use a combination of different features to describe a face image.
Some other methods are based on deep learning. On the KinFaceW-I database, our
method gives the best performance on the MS subset. For KinFaceW-II, our approach
gives the best results for two subsets: MS and MD. On the larger TSKinFace database,
our approach yields the best results for all four kinship subsets. These results are
promising, and they demonstrate that our proposed approach is competitive compared to
recent methods for kinship verification.
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Table 6. Kinship verification accuracies (in %) of the proposed approach and the state-of-the-
art methods on the KinFaceW-I and KinFaceW-II databases. Reprinted, with permission, from
Paper IV ©2018 IEEE.

Method
KinFaceW-I KinFaceW-II

FS FD MS MD FS FD MS MD

PDFL [71] 73.5 67.5 66.1 73.1 77.3 74.7 77.8 78.0

DMML [72] 74.5 69.5 69.5 75.5 78.5 76.5 78.5 79.5

NRML [11] 72.5 66.5 66.2 72.0 76.9 74.3 77.4 77.6

MultiviewSSL [95] 82.8 75.4 72.6 81.3 81.8 74.0 75.3 72.5

SSML [98] 81.7 75.3 71.4 77.9 82.4 78.6 79.8 77.9

SPML-P [106] 81.1 75.7 73.2 75.7 82.4 77.6 76.6 76.2

Proposed 70.0 64.2 73.0 77.2 78.6 73.6 81.0 79.6

4.5 Conclusion

In this chapter, we explored the FKV problem from visual features using color texture
features and extreme learning machines. Most of the proposed traditional methods in the
literature for automatic kinship verification have mainly focused on analyzing only
gray-scale face images, hence discarding color information. When considering the color
information, the problem usually consists in learning a discriminating color space where
the classification (e.g. kinship verification in our case) becomes more affordable than
with the gray-scale space. HSV has uncorrelated information in every channel. This is
in contrast to RGB color space in which its R, G and B channels may contain redundant
color information. Therefore, we first convert the RGB images into the HSV color
space. Then, the binarized statistical image features (BSIF) [149] are extracted from
each channel separately. Extensive experiments on three kinship databases (TSKinFace,
KinFaceW I & II) showed good performance when color texture features are extracted
for kinship verification. The proposed ELM approach is shown to perform well with the
limited number of training data sets. The results obtained are comparable with those of
recent state-of-the-art methods.

The presented methods show promising performance for FKV from visual features.
It is also worth exploring whether or not the other features from modalities, such as voice,
are useful for FKV. In the next chapter, we discuss leveraging the acoustic features that
are learned from human speaking voices. Then, we systemically investigate the audio-
visual kinship verification problem on the basis of visual and vocal features. It fuses the
multimodal data to recognize the kinship with the aim of improving performance.
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5 Audio-visual kinship verification based on
deep learning

Over the past decade, many efforts have been devoted to improving the kinship verifica-
tion performance only from human faces while lacking other biometric information, e.g.,
speaking voice. As in many visual recognition and affective computing applications,
kinship verification may benefit from a combination of discriminant information ex-
tracted from both video and audio signals. In this chapter, we propose the audio-visual
fusion method for kinship verification by summarizing the findings in papers V and VI,
which interpret and benefit from multiple modalities.

5.1 Introduction

The existing research in kinship verification has extensively focused on exploring kinship
features from the visual modality of the facial images/videos [11, 14, 15, 123, 10].
Certainly, facial similarity plays an important role in FKV, as facial similarity and
kinship judgments are highly correlated according to recent psychology research [7, 55].
However, there have been studies demonstrating that voice similarity is also related to
kinship judgments [141, 27, 26, 28, 29]. For instance, according to [141], the vocal tract
shape that affects voice properties is genetically determined. Consequently, subjects
with kinship have a similar voice. In addition, the study of human perception of kin
voice indicates that humans have the ability to judge kinship by listening to the speaking
voice [25, 153]. Despite this evidence, voice modality has not been explored for FKV
yet.

In recent years, audio-visual fusion has been shown to be an effective way of
improving performance in various problems including emotion recognition [30], speech
recognition [31], event detection [32], and biometrics [33] such as speaker identification
and speaker authentication. Based on the aforementioned discussion, it is natural to
ask: In addition to the visual modality, is it beneficial to explore other modalities
(specifically the voice channel) for the problem of FKV? Therefore, in order to
answer this question, in this chapter we carry out the first study that aims to build an
audio-visual kinship verification framework, in an attempt to further improve the FKV
performance.

We consider the design of the framework for the task of audio-visual FKV. It
encompasses two main steps, i.e., extracting appropriate features and integrating modality
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information [154]. Representing modalities, i.e., audio and video, in an appropriate
way is crucial before fusion. Visual features have been widely studied for FKV [20].
Comparatively, very few acoustic features are designed specially for kinship verification,
because the study has been largely under explored. However, well-known acoustic
representations such as Mel-frequency cepstral coefficients (MFCCs [46]) and data
driven features [47, 48] have been commonly applied in the speech community. Similar
to the correlation between facial similarity and FKV, we propose then computation of
the voice similarity and set new benchmark methods for FKV by using acoustic features.
In the second step, the idea is to fuse facial and vocal features, while at the same time
learning the closeness of kinship and the discrepancy of non-kinship pairs in these feature
spaces. We propose a deep Siamese network for metric learning of multi-modal kinship
verification, based on pair-wise similarities and contrastive loss. Siamese architectures
contain identical sub-networks with the same configurations, parameters, and weights.
They are promising for multi-modal fusion because fewer parameters are required
for their optimization [155]. Based on the Siamese architecture, we find that inter-
modal discrepancy and modal weighting are essential to exploit informative knowledge.
Motivated by the adversarial learning [49] strategy and the self-attention mechanism [50],
we propose the fusion method named Unified Adaptive Adversarial Multimodal Learning
(UAAML) based on deep neural networks (DNN), which addresses the aforementioned
challenges. The UAAML jointly considers multimodal feature learning and kinship
attention weights with similarity learning. Particularly, we introduce the L2 norm
layer [51] to generate the unified features before fusion and make the network training
stable and efficient. Using multimodal learning, we conduct experiments on the proposed
audio-visual kinship datasets to improve the performance of a single modality.

5.2 Related work

5.2.1 Acoustical study of kinship

In our daily lives, people with a kin relation can have similar voices. For instance, it is
sometimes hard to distinguish between father and son over the phone. This phenomenon
has attracted the attention of a few researchers to this field. In this context, we review
works related to speaker verification and relate them to kinship acoustic analysis.
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Speaker verification of identical twins

Voices from two different persons with a close kinship relation might be confusing,
given the latent voice print similarity. One special case is the voices of identical twins, a
case that was addressed almost five decades ago [156]. Ariyaeeinia et al. [157] studied
automatic speaker verification (ASV) performance using the voices of identical twins.
They reported that performance dropped when tested with twin voices, when compared
to other speakers. Künzel et al. [158] studied the performance of commercial forensic
automatic speaker recognition with identical twin data. The performance of the speaker
verification system drops when tested with twins due to voice similarity, especially
in the case of female twin sisters. The length and content of speaking also affect the
performance to some extent. This phenomenon is an observation that poses the reverse
question of how voice could contribute to the assessment of kinship verification for
different relationships.

Kinship acoustic analysis

Based on the above findings, researchers explicitly studied the vocal similarity of kin
people. The earliest genetics of voice research was found in the 1990s. Sataloff [141]
demonstrated that voice function is related to the phonatory organ structures. The
physical features are genetically determined, which intuitively indicates that the human
voice is also genetically determined. Later, psychological studies assessed human
perception in recognizing the kin voice. Studies by [25, 153] showed that humans
could verify kinship from voices by providing listeners with the voice of specific
sentences. Motivated by the above research, acoustic studies quantitatively confirmed
voice similarity within kinship by measuring and comparing various acoustic char-
acteristics [26, 29, 27]. Although many works have been carried out on studying the
vocal similarity of kinship, voice has not been directly applied in automatic kinship
verification.

5.2.2 Multi-modal learning

Multi-modal fusion methods can exploit complementary sources of information. Differ-
ent sources of information are typically integrated through early fusion (feature level) or
late fusion (score or decision levels) [34]. Feature-level fusion using concatenation or
aggregation is often considered to provide a high level of accuracy. However, feature
patterns may also be incompatible and increase system complexity. Techniques for
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score-level fusion using deterministic (e.g., average fusion) or learned functions are
commonly employed but are sensitive to the impact of score normalization methods on
the overall decision boundaries.

In the deep learning literature, Neverova et al. [159] proposed the multimodal dropout
(ModDrop) for gesture recognition problems. First, the weights of each modality are
pre-trained. Then a gradual fusion method is proposed by randomly dropping separate
channels to learn cross-modal correlations while preserving uni-modality specific
representation. When considering multi-modal fusion, one main challenge is eliminating
the modal discrepancy and learning a joint feature space that can better fuse the features.
Recent Generative Adversarial Networks (GANs) [49] have achieved significant success
in mapping the data distribution into the desired one by adversarial training. Inspired by
this, Mai et al. [160] built the encoder-decoder networks for different modal inputs to
learn the latent feature embeddings. Adversarial learning was introduced on the encoder
to learn the joint feature space for different modalities. Then a graph fusion network
was applied to integrate encoded multimodal features. Zhou et al. [161] studied the
multi-modal clustering problem. They developed the End-to-end Adversarial attention
Multi-modal Clustering (EAMC) method, which consisted of the adversarial learning
module and a modal attention module to align the feature distribution and quantify
the important modal weights. A proposed clustering objective was added to guide the
network training on the top of the network.

5.3 A siamese network for A-V fusion

This subchapter presents a new deep Siamese network for the fusion of face and
voice modalities for accurate multi-modal kinship verification. It is trained to evaluate
pair-wise similarities based on face and voice modalities. In a particular implementation,
we fine-tune the VGG-Face [162] CNN cascaded with an Long Short-Term Memory
(LSTM) [163] network for the face modality. For the voice modality extracted from
videos, we fine-tune a ResNet-50 pre-trained on VoxCeleb2 [47]. Finally, a fully
connected (FC) layer is added to fuse the audio and visual information. During the
training procedure, our system is trained on our dataset, using backpropagation and
contrastive loss to learn the correlation between parent and child based on audio visual
modalities.
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Fig. 12. Architecture of the proposed fusion method. Reprinted, with permission, from Paper
V ©2019 IEEE.

Face network

We implement the VGG-face [162] CNN cascaded with an LSTM [163] network for
facial representations. The VGG-Face network is trained on a large face dataset with
2.6 million images of over 2662 people. The input of the network is an RGB image
with the size of 224 × 224 × 3. As shown at the top of Figure 12, it is comprised of 13
convolution layers, each followed by a Rectified Linear Unit (ReLU). Some of them
are also followed by a max pooling operator. The last three layers are FC layers. The
first two FC layers have 4096 outputs and the last FC layer has N outputs as N-class
predictions. We feed the facial frames one by one and collect the deep features from
layer fc7. To integrate both spatial and temporal information, an LSTM layer with 4096
cells is stacked on top of it.

Voice network

In the previous research, the acoustic features are first extracted, and machine learning
methods such as I-vector [164] and the Gaussian mixture model - universal background
model (GMM-UBM) [165, 166] are used to analyze features. In this work (see the top
of Figure 12), we use the ResNet-50 pre-trained with a large speaker verification dataset
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called VoxCeleb2 [48], and then fine-tune with TALKIN data to get feature embedding
from it for audio-based kinship verification.

The audio samples are converted into single-channel and down-sampled to 16 kHz
to be the consistent with the VoxCeleb2 dataset. Then the audio samples are divided into
3-second segments. A Hamming window with 25ms width and 10ms step is applied to
the audio. Following in the same manner as [48], spectrograms with the size of 512 ×
300 can be computed, where 512 is the size of the spectrum and 300 is the number of
frames. After performing mean and variance normalization, the spectrograms are fed
into the ResNet-50.

Fusion network

We propose a deep Siamese network with contrastive loss [53] for kinship verification
based on fusing videos and audio. The whole architecture is shown in Figure 12. For
each voice and face network, we use contrastive loss to learn the intra-class similarity
and inter-class dissimilarity among subjects. The contrastive loss is defined as:

L =
1

2N

N

∑
n=1

(ynd2 +(1− yn)max(M−d,0)2), (8)

where the threshold M is the margin, N is the batch size, d = ∥an −bn∥2, an and bn

denote two sample features, and yn is the label of the sample pair. yn equals 1 when the
inputs have the kin relation; otherwise, yn equals 0.

After training the face and voice networks, we can collect their features – 4096D
features are extracted from the face network and 512D features are extracted from the
voice network. Then, after performing PCA on them to reduce the dimension to 130,
they are concatenated into a 260D feature and followed by an FC layer with 260 nodes.
By adding contrastive loss during the fusion part, we can automatically learn the fusion
rule for kinship verification to narrow the distance between pairs with a kin relation and
enlarge the distance between the negative pairs. After training the network, the feature
extracted from the added FC layer is viewed as the fusion feature of one facial video and
audio signal. The cosine similarity sim(x1,x2) =

x1·x2
∥x1∥·∥x2∥

is calculated to represent the
distance between two inputs (e.g. parent and child represented by feature vectors x1

and x2). A threshold applied to sim allows determining whether two inputs have a kin
relation.
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5.4 Unified adaptive adversarial multimodal learning approach

When fusing audio-visual features for the problem of FKV, based on our benchmarks and
investigation, we find that inter-modal discrepancy and modal weighting are essential to
exploit informative knowledge. Motivated by the adversarial learning [49] strategy
and the self-attention mechanism [50], we propose the fusion method named Unified
Adaptive Adversarial Multimodal Learning (UAAML) based on deep neural networks
(DNN), which addresses the aforementioned challenges. The UAAML jointly considers
multimodal feature learning and kinship attention weights with similarity learning. In
particular, we introduce the L2 norm layer [51] to generate the unified features before
fusion and make the network training stable and efficient.

Modality invariant learning

Visual Encoder

The modality 
discriminator

C

no
rmBackbone

ℒ𝒂𝒅𝒗
ℒ𝒌𝒊𝒏

Adaptive learning

Network Inputs

Voice Audio Clip

Face Image

Spectrogram

Projector

Attention 
layers

Audio Encoder

no
rmBackbone

Projector

Fig. 13. The proposed unified adaptive adversarial multimodal learning method.

The overall framework of the proposed method is shown in Figure 13. It consists
of modality-specific feature generators, modal fusion, and kinship assignment. The
modality-specific networks are encouraged to exploit the distinct modal property. Then
the modal fusion is trained to eliminate the cross-modal discrepancy to parse a better
fusion of multiple feature vectors from different modalities. When obtaining the fused
features, the contrastive loss is added to enforce the network to learn the compactness
within kinship and separation between non-kinship.
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5.4.1 Preliminaries

Let D = {(Xi,Yi, li)|i = 1,2, . . .N} be the training set of N sample pairs, where Xi =

{Xa
i ,Xv

i },Yi = {Ya
i ,Yv

i }. Xi and Yi represent the ith sample pair that comes with both
audio and visual modalities denoted by Xa

i ,Xv
i and Ya

i ,Yv
i , respectively. The pairwise

label li denotes whether the ith the sample pair has a kin relation, i.e., li = 1 represents
that Xi and Yi have a kin relation, and li = 0 denotes that Xi and Yi have a non-kin
relation.

Our method has two feature encoders: the audio encoder Ea(·;θa) and visual encoder
Ev(·;θv) that are parameterized by θa and θv. The audio and visual data are fed into the
modal-specific encoder, and the feature representation is expected to be modal invariant.
This is achieved by the adversarial learning associated with the discriminator D(·;θd),
where θd is the network parameter. Besides, to let the feature pay more attention to
effective kinship traits and emphasize them, the attention mechanism is proposed to
learn the weights for the feature-level fusion. The weight vector w is computed by
the Multiple Layer Perceptron (MLP). The whole network is designed in the Siamese
fashion that shares weights for two different inputs Xi and Yi. To preserve the kin
discrimination of the network, we employ the contrastive loss Lkin to let the model learn
the closeness of kinship pairs and the separation of non-kinship pairs.

5.4.2 Modality-specific networks

Different sources of data are difficult to combine at the raw data level. Therefore, we
first adopt modality-specific networks to transform the face and voice data into the latent
feature space. Following the work in [124], the network inputs are the facial image
and a spectrogram computed from a particular speech. The residual network (ResNet)
architecture [167] is adopted for both face and voice backbone networks, as described
below. We take sample Xi as an example, which goes the same way to the input Yi.

Visual subnet

The visual backbone directly adopts the InsightFace with ResNet-34 architecture [168,
169]. Given an input facial image Xv

i ∈ RD×H×W , we extract the corresponding feature
embedding as xv

i = Ev(Xv
i ). W and H indicate the spatial size, and D is the number of

channels. As the facial image is cropped and resized to 112×112, the generated facial
features fall into 512-D.
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Audio subnet

The audio backbone employs the ResNet-50 pre-trained on Voxceleb2 [47, 170] to
extract the vocal features from the spectrogram inputs. We extract a 3-second utterance
clip and convert it into a single channel with a 16 kHz sampling rate. The spectrogram is
generated by a sliding Hamming window of width 25ms and step 10 ms. Therefore,
the audio network input Xa

i has the size of 512×300, and the corresponding output
xa

i = Ea(Xa
i ) is a 2048 dimensional feature embedding.

Similarly, we can have the audio and visual embedding for Yi as ya
i = Ea(Ya

i ),
yv

i = Ev(Yv
i ).

5.4.3 Model fusion

The modal fusion module fuses audio and visual features for comprehensive estimation.
It consists of the unified feature operation, modal alignment, and feature fusion attention
learning.

Multi-modal adversarial learning

When merging features generated from different modalities, they generally have different
scales and norms. Directly combining these features leads to poor fusion performance
since the larger features can overwhelm the smaller ones. Rather than carefully tuning
the network parameters with efforts, Liu [51] found that normalizing the features before
fusion improves the model stability. Therefore, before learning the modal invariant
features, we add an L2 normalization layer to transform the feature into a unified one.
Formally, for the audio feature xa

i and visual feature xv
i , we normalize them differently

as x̂a
i , x̂v

i using L2-norm,

F(x) = x̂ =
x

∥x∥2
,

s.t. x = {x1,x2, . . . ,xd} ,∥x∥2 = (
d

∑
i=1

|xi|2)
1
2 .

(9)

The audio and visual encoders learn multi-modal representations that may have a
large gap between different modalities. Inspired by the recent generative adversarial
networks [49], we introduce the discriminator D(·;θd) to distinguish between the audio
and visual features. Since the audio and visual features have different dimensions, we
first feed them into one fully-connected layer that is FCa(·) and FCv(·) to map them
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into a common length. Then the two-class classification is performed. The discriminator
is optimized by the following objective function:

min
θd

Ld =−EX,Y∈D

N

∑
i=1

log(D(x̂a
i ))+ log(1−D(x̂v

i ))

+log(D(ŷa
i ))+ log(1−D(ŷv

i )).

(10)

One the other side, the modality-specific networks are trained to confuse the
discriminator with the opposite modal label by minimizing the adversarial loss:

min
θa,θv

Ladv =−λadvEX,Y∈D

N

∑
i=1

log(D(x̂v
i ))+ log(1−D(x̂a

i ))

+log(D(ŷv
i ))+ log(1−D(ŷa

i )),

(11)

where the λadv is the weight coefficient. The discriminator guides the modal encoders to
learn the same distribution representations through min-max adversarial learning.

Feature fusion attention

After we obtain the modality-invariant representations, we concatenate the audio and
visual features for two inputs as x f = [x̂a

i , x̂v
i ] and y f = [ŷa

i , ŷv
i ], the [·] denotes the

concatenation operator. In particular, we design a fusion attention module to emphasize
the efficient vector values. It consists of an MLP with the Sigmoid function, while the
output is the weight vector w with the same dimension of x f and y f , which can be
calculated by:

wx = σ(FCs(x f )), wy = σ(FCs(y f )), (12)

x = x f wx, y = y f wy, (13)

where σ(·) is the Sigmoid function and FCs(·) is the stacked two fully-connected layers.
x and y are the fused representations to get the kinship analysis. We denote the attention
parameters as θatt .

5.4.4 Learning kinship awareness embedding

To perceive the kinship traits, i.e., similarity between kinship and difference between non-
kinship, we adopt the contrastive learning scheme to train the network in a supervised
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way. By integrating the kinship label li, the network objective can be expressed as:

min
θa,θv,θatt

Lkin =
1

2N

N

∑
i=1

(lid2 +(1− li)max(M−d,0)2), (14)

where the threshold M is the margin, d = ∥x−y∥2.
During each training step, two multi-modal encoders are first trained alternatively in

an adversarial way together with a discriminator without kin labels involved. Then the
whole network is jointly trained using the kin labels. During the testing process, the
cosine similarity sim(x,y) = x·y

∥x∥·∥y∥ is calculated to represent the distance between two
inputs. A threshold applied to sim determines whether two inputs have a kin relation as
has been done in [20].

5.5 Experimental settings

In this subchapter, we perform extensive kinship verification experiments on the
TALKIN-Family dataset. We first compare the performance of our proposed method
with other baseline methods. Then, an ablation study is conducted on our method. We
also test the human ability to verify kinship from audio-visual videos. In the end, the
benchmark experiments are also conducted in other environment settings.

5.5.1 Implementation detail

Our experiments evaluate audio-visual kinship verification without considering the
video environment and what the subject has said. Our experiment is a frame-based
architecture. It takes the frame-level inputs and then outputs the feature representations.
During the test phase, we average the frame-level features extracted from one video as
the final feature.

Data preparation for TALKIN

The TALKIN dataset was used to evaluate the performance of the baseline and proposed
methods for uni-modal and multi-modal kinship verification. For each relation – FS,
FD, MS, and MD – there are 100 pairs of videos. We randomly generate 100 pairs of
videos without kin relation as negative pairs. Thus, there are 100 pairs of positive pairs
in total with kin relation, and 100 pairs of negative pairs without kin relation. Then
5-fold cross-validation is performed in our experiment.
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Data preparation for TALKIN-Family

The TALKIN-Family is organized with a family structure. We first generate kinship
pairs with 11 relationship types described in Chapter 3.3. After we obtain the kinship
pairs (positive pairs), we split them into a maximum of five folds to conduct the K-fold
validation [12, 20, 124]. Within each fold, we randomly generate non-kinship pairs as
negative samples, where non-kinship subjects are from different families and biologically
unrelated. The negative samples have the same size as the positive samples. Note that
there is no family overlap between folds. The experimental data statistics distribution of
audio-visual kinship verification in the wild is shown in Table 7. The stratified division
in folds and relations is not possible for practical reasons, since certain relationships
such as SS and BS, do not allow enough negative samples that belong to different
families. We perform the data pre-processing on all videos for visual and audio data as
introduced in Chapter 3.3. Since the video length varies from video to video and the
neighbor video frames have a slight difference, we extract and align 60 facial frames and
audio frames for each video. Due to extreme head pose variations and facial orientations
that cause face detection failures, some frames of videos belonging to a few subjecs
are discarded. Therefore, we could have about 60 pairs of facial frames and their
corresponding utterance clips (3 seconds) as the multi-modal data sample for one kin
sample pair.

Table 7. Data statistics for studying the audio-visual kinship verification in the wild on
the TALKIN-Family dataset. # folds is the number of fold validations for each kin relation.
# families and # subjects represent how many families and individuals are involved when
studying the specific kin relation. # kin pairs is the number of kin pairs at the subject
level. # videos is the total number of videos used, which is usually four times the number
of subjects since each subject has four facial videos. # sample pairs is the number of
frame-level sample pairs in each kin relation.

Relations
Siblings Parent-Child Grandparent-Grandchild

BB SS BS FS FD MS MD GFGS GFGD GMGS GMGD
# folds 5 4 4 5 5 5 5 2 2 3 3
# families 24 33 31 86 62 134 125 9 10 14 12
# subjects 50 70 73 196 136 308 285 19 21 31 27
# kin pairs 200 336 320 848 576 1296 1264 80 88 136 120
# videos 200 280 292 784 544 1232 1140 76 84 124 108
# sample pairs 11570 17530 15124 45444 30379 71740 69926 4328 4724 6181 6250
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5.5.2 Compared methods

To verify the effectiveness of our proposed method on the TALKIN-Family dataset and
compare the performance between the uni-modality and multi-modalities, we perform
baseline methods on vocal and facial kinship verification and four fusion methods. We
briefly introduce those methods below.

Voice features

We employ two traditional methods, GMM-UBM [165, 166] and I-vector [164], for
audio analysis. We extract MFCCs with 12 cepstral coefficients from the audio samples.
The UBM with 128 mixture components of GMM is trained with the training set.

– GMM-UBM [165, 166]. The kin pair model is created from UBM using the
Maximum A Posteriori (MAP) estimation. The verification likelihood is the log-
likelihood ratio between speaker models and registered speakers’ GMM.

– I-vector [164]. UBM is trained using expectation-maximization (EM) with MFCCs.
I-vector is obtained by MAP point estimate. Then the dimension of the I-vector is
reduced by linear discriminant analysis (LDA). We compute the similarity between
two speakers with the cosine similarity of I-vectors.

Besides, we also evaluate the pre-trained deep models as feature encoders.

– pyannote-S. The pyannote.audio [171, 172, 166] is an End-to-End generic PyanNet
that is trained on Voxceleb [48] and Voxceleb2 [47] datasets. The trained model takes
the utterance and samples it with a sliding window to generate overlapping 512-D
features. The pyannote-S means we evaluate the performance using only the single
vocal feature.

– pyannote-A. For the utterance clip, we average all audio features for the sequence as
its final feature representation.

– VGG_M. The model architecture is based on VGG_M [173], and takes the audio
spectrogram as input. The spectrogram is computed with the same method described
in Chapter 5.4. VGG_M is trained on the Voxceleb dataset [48] with the task of
speaker verification. The final audio feature has a length of 1024 dimensions.

– ResNet-50. The model is trained on the Voxceleb2 dataset [47] and the audio
embedding is collected from the FC layer with a length of 2048.
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Facial features

We consider four traditional facial descriptors, the popular metric learning method [11]
and five deep facial image encoders for visual-based evaluation. For traditional features,
we employ color texture features [174, 175] that are evaluated effectively for facial
kinship verification.

– BSIF [149]. Each facial image is divided into non-overlapping 2 × 2 blocks in each
color channel. Each block is represented using 256 features and the whole face with
256 × 4 × 3 = 3072 features.

– LPQ [176]. For each facial image, we divide it into non-overlapping 2 × 2 blocks
in each color channel. Each block is represented using 256 features, leading to a
3072-dimensional (256 × 4 × 3) feature representation for the whole face.

– LBP [80, 81]. We divide the image into non-overlapping 4 × 4 blocks in each color
channel. The parameters of LBP are that the radius is set as 1, the sampling number is
8. Fifty-nine histogram values are used to represent each block. Thus, each facial
image is represented using 59 × 16 × 3 = 2832 features.

– LBP-TOP [177]. The spatial-temporal descriptor, LBP-TOP, is also evaluated in our
experiments. The frames are converted to grayscale. Then the face frames are divided
into 4 × 4 non-overlapping blocks. We extract 59 histogram features for each block
volume in XY, XT, and YT planes, respectively. Thus, one video can be represented
as 59 × 3 × 16 = 2832 features.

Metric learning is commonly used in the kinship verification problem, since it is
able to represent kinship compactness and non-kinship separation. Among those studies,
MNRML [11] method has attracted the most attention.

– MNRML. We implement MNRML by using multiple feature descriptors, LBP, LPQ,
and BSIF features, to learn the multi-view data metric.

Furthermore, deep CNN models pre-trained on large-scale face datasets are also
widely used in kinship verification to encode the facial image with output embedding.

– SphereFace [178, 179] is a CNN model trained with angular softmax (A-Softmax) to
learn more discriminative features. The SphereFace is trained on the face dataset
CASIA-WebFace [180]. Then the deep features can be collected from the FC1 layer
with 512 dimensions.

– VGG-Face network [162] is trained on a large face dataset with 2.6 million images of
over 2662 people. We feed the facial image into the network, and collect features
from layer fc7.
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– FaceNet-C [181, 182]. FaceNet is a deep CNN model trained with the Triple-let loss.
FaceNet-C means the model trained on CASIA-WebFace [180]. The output feature is
a 512-D embedding.

– FaceNet-V [181, 182] means the FaceNet trained on the VGGFace2 [183] dataset.
– InsightFace. As mentioned in Chapter 5.4, in our method, we apply the InsightFace,

that is a ResNet-34 architecture-based model [168, 169]. Compared with SphereFace,
InsightFace utilizes the AcFace loss that has fewer parameters but a better classification
margin. The model is trained on the MS1MV2 dataset. The facial frames are fed into
the pre-trained model, and we can get the final 512-D feature embedding.

Fusion methods

We perform both early fusion and two late fusion methods on audio-visual kinship
verification. The Siamese fusion proposed in our ICB 2019 paper is also compared.

– Early fusion. The multi-view features are concatenated together as the fused feature
for the later similarity comparison.

– Late fusion (mean). For the late fusion, the similarity scores are computed separately
for each modality. Then the mean fusion average scores were obtained from multi-
modalities as the final decision score.

– Late fusion (max). Rather than calculating the averaged score, max fusion takes the
maximum score as the final decision score.

Implementation details

For the Siamese fusion network, after training the face and voice networks, we collect
the 4096 features from the face network and 512 features from the voice network. To
make the dimensional balance of both facial and vocal representations, we conduct
PCA to reduce both the facial and vocal feature dimensions to 130. Then they are
concatenated into a 260-dimensional feature, followed by an FC layer with 260 nodes.
During the training procedure, our system is trained on TALKIN, using backpropagation
and contrastive loss to learn the correlation between parent and child based on audio
visual modalities, which has no family overlap between the training and testing subsets.

For UAAML, we implement our network on the PyTorch library. Since the released
pretrained InsightFace net and ResNet-50 (voice) are implemented based on the MXNet
and Matconvnet libraries, respectively. We first convert those models to PyTorch
formats using open source code from Github [184] and [185]. We use the weights
of ResNet-34 trained on MS1MV2 [168] for the visual network and the weights of
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Table 8. Verification accuracy (%) for the face modality on the TALKIN dataset. Reprinted,
with permission, from Paper V ©2019 IEEE.

Techniques FS FD MS MD Average

BSIF-Average [149] 61.5 58.5 61.0 59.5 60.1

LPQ-Average [176] 62.5 58.0 60.5 59.0 60.0

LBP-Average [80, 81] 61.5 60.0 59.5 61.5 60.6

LBP-TOP [177] 64.5 60.0 67.0 59.5 62.8

VGG + LSTM 76.5 69.5 70.0 71.5 71.9

Table 9. Verification accuracy (%) for the voice modality on the TALKIN dataset. Reprinted,
with permission, from Paper V ©2019 IEEE.

Techniques FS FD MS MD Average

I-vector [164] 63.5 60.0 63.0 63.0 62.4

GMM-UBM [165, 166] 59.5 59.5 66.5 60.0 61.4

Resnet-50 [47] 73.0 60.0 63.5 66.5 65.8

ResNet-50 trained on VoxCeleb2 [47] for the audio network to initialize our network
parameters. Parameters in other layers are initialized using random weights. For training
the proposed method, the parameters of the network are optimized using the Adam
optimizer with a typical learning rate of 1e-6, weight decay of 1e-4, and mini-batch
size of 50. We train the whole network for 250 iterations. The program is run using
two Nvidia V100 GPUs (32 GB). The hyper-parameter λadv determines the degree of
multi-modal discriminative information used during the model training process. In the
case of using small λadv, no sufficient modality discrimination could be applied. We set
the λadv with 1 [186].

5.6 Experimental results and analysis

This subchapter presents experimental results of audio-visual kinship verification on
the TALKIN and TALKIN-Family datasets from both single modality and multiple
modalities. We first compare the verification performance from faces and voice
respectively. Then, the fusion method is evaluated on the multi-modalities. The
performance effectiveness of single-modality against the multi-modal fusion is also
compared.
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5.6.1 Single-modal kinship verification

Experimental results on the TALKIN dataset

Table 8 and Table 9 present the results of experiments for uni-modal kinship verification
on the TALKIN dataset, respectively. VGG-Face with LSTM shows better performance
compared to traditional hand-crafted features. For voice-based kinship verification,
Resnet-50 has better performance, except for the mother-son relation, which has a
small drop compared to the GMM-UBM method. Overall, the proposed methods for
uni-modal based kinship verification show good efficiency, especially when compared
with baseline methods.

Experimental results on the TALKIN-Family dataset

Tables 10 and 11 show the kinship verification accuracy of single-modality (based on
one modality) on the TALKIN-Family dataset. For voice-based kinship verification,
ResNet-50 has the best performance. The traditional methods of I-vector and GMM-
UBM have comparatively low performance. Notice that the Grandparent-Grandchild
results are not provided because the UBM is hard to converge due to limited data. A
possible solution is to employ external data to train UBM. Regarding the pyannote
model, the performance can be improved slightly by averaging all vocal features within
one utterance.

For the kinship verification from faces (Table 11), deep models outperform the
traditional descriptors (LBP, LPQ, BSIF) by a large margin. Compared with traditional
descriptors, the metric learning method MRNML [11] has a better-averaged accuracy,
and the spatial-temporal descriptor LBP-TOP also outperforms the averaged frame-level
features. Among deep learning models, InsightFace surpasses others by a large margin
except for GFGS, where VGG-Face achieves the best performance. The better face
verification models boost the kinship verification performance due to the accurate feature
representations [187]. Hence, we apply ResNet-50 (voice) and InsightFace (Face) as
backbone networks for fusion.

5.6.2 Multi-modalities performance

Experimental results on the TALKIN dataset

Table 12 compares uni-modal based kinship verification with two baseline fusion
methods and the proposed deep Siamese network method. Compared to uni-modals, the
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Table 12. The comparison of verification accuracy (%) from uni-modal and multimodal
techniques on the TALKIN dataset. Reprinted, with permission, from Paper V ©2019 IEEE.

Techniques FS FD MS MD Average

Resnet-50 (audio) 73.0 60.0 63.5 66.5 65.8

VGG+LSTM (video) 76.5 69.5 70.0 71.5 71.9

Late fusion 82.5 67.0 69.0 73.0 73.1

Early fusion 83.0 67.5 69.5 73.0 73.3

Deep Siamese Network (ours) 80.0 70.5 73.5 72.5 74.1

feature fusion method and the score fusion method improve the accuracy in terms of
average, while both have comparable accuracy as video modalities in father-daughter
and mother-son relations. The proposed Siamese network shows a higher level of
accuracy compared with the uni-modal and baseline fusion methods. The average
accuracy is improved by about 3.8% from the uni-modal method and 1.0% from the
baseline fusion method, while the feature fusion method has the best performance in
the father-son relation, and both the feature fusion and score fusion methods have the
highest accuracy in the mother-daughter relation.

Experimental results on the TALKIN-Family dataset

As presented at the end of Table 13, the proposed UAAML method shows improvement
over single modalities for all 11 kin relations and the average level. Figure 14 visualizes
the different methods’ corresponding receiver operating characteristic (ROC) curves.
It can be seen that by fusing the audio and visual features, the performance could be
improved, demonstrating that the vocal and facial features complement each other.
Besides, the proposed fusion method improves the single-modality verification accuracies
and the baseline fusion methods to a certain extent. The average accuracy is improved
by about 3.5%, 2.0% from the single modality and baseline fusion methods. Although
the baseline fusion methods can not beat the UAAML method in terms of average, the
score fusion methods show slightly higher accuracy in relations such as BS, NS, and
GMGS. This is a motivation for future work that further explores multi-fusion strategies
for audio-visual kinship verification.

5.6.3 Influence factors

The audio-visual kinship verification is affected by many factors. From the perspective
of biological attributes, this includes the depth of the genealogical tree, age, and gender.
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Fig. 15. The verification accuracy of different generations with the voice only, face
only, and fusion of both. The performance drops sharply with deeper generation
goes for faces. It also drops when fusing both modalities, but the trend slows
down at grandparent-grandchild. Instead, the voice performance shows a slight
decrease with generation goes and even an improvement from the first generation
to the second generation. Overall, the fusion performance outperforms both face
and voice modality.

From the data acquisition conditions, factors include the recording background and
video speech content. We analyze how those factors influence the performance by
providing the corresponding experimental results.

(1) Genealogical tree. Figure 15 shows the averaged verification accuracy for three
generations of kinship with different inputs. It can be seen that as the genealogical tree
becomes deeper, the performance on faces drops significantly. One reason for this is
the age difference between kinship, as distributed in Figure 15. The siblings of the
same generation have the smallest age difference of about ten years on average, of
which parent-child has about a 26-year age difference. However, the second-generation
subjects have an average age margin of about 50 years. As people age, the appearance of
their faces varies in structure and texture. These differences affect the inner similarity
of kin image pairs, consequently reducing the verification performance [57], whereas
acoustic features compensate for the facial aging issues to some extent, especially for
the Grandparent-Grandchild relationship.

(2) Gender factor. The experimental setting of relation-specific evaluation provides
us the possibility to analyze the influence brought by the gender. From Table 13, we
could observe that the gender influence is significant for the siblings, where the opposite
gender (BS) has the comparatively lower accuracy than the cases with same gender
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(BB, SS). While regarding to the parent-child and grandparent-grandchild relations,
the influence of gender is limited, which the influence is mainly caused by the texture
difference brought by the age gap.

(3) Recording conditions. The data collection conditions potentially influence
system performance, such as the speech text in speaker verification [145], and the same
photo issue exists in kinship verification [146] by providing latent clues. To control
one variable factor at one time, we generate kinship pairs that 1) speak the fixed text
but with different backgrounds (text-dependent) and 2) are recorded under the white
background but with different speaking content (white background). Figure 16 shows the
experimental results in text-dependent and white background conditions with different
inputs. The background influence could be seen clearly from Figure 16 (a) that the
visual-based performance has higher accuracy. Two reasons explain the phenomenon:
1) the noise effect is eased under the white background and 2) the white background
videos within one family are possibly recorded in the same place, where the illumination
provides the data bias [145]. This also explains why we asked the participants to take
videos with two backgrounds, one of which is white, to easily distinguish the same or
different backgrounds during training and test data selection. As illustrated in Figure 16
(b), the fixed text setting achieves comparable performance to the free-speaking setting
due to the equal similarity within kin and non-kin pairs. Overall, the audio-visual
fusion improves performance under all conditions, while under two semicontrolled
environments, the improvement of fusion is comparably limited.
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Fig. 16. The performance of kinship verification on TALKIN-Family under different
conditions.
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5.6.4 Human performance

We test the human performance on kinship verification by using a subset of TALKIN-
Family. Twelve volunteers from China participated in the experiments. Before the test,
they had never seen or known any information about the dataset subjects and were asked
to answer whether the given clips have a kin relation. In general, we set up three kinds
of tasks, namely, kinship verification from (1) facial videos without voice, (2) voice, and
(3) facial videos with voice. For each task, we select two kin pairs and two non-kin
pairs from 11 kin relations, resulting in 22 positive pairs (kinship) and 22 negative pairs
(non-kinship) in total. Note that there is no subject overlap between positive and negative
pairs nor among the three sub-tasks to avoid miscellaneous information between tasks
and comparison. Figure 17 illustrates the human performance results, in which subfigure
(a) shows the overall accuracy and distribution of subject performance, and we compare
the true positive and true negative accuracy in subfigure (b). Generally, humans tend to
have a better ability to verify kinship from voice than from the face, while when given
synchronous facial videos and voice, humans can make a better judgment. Figure 17 (a)
indicates that face and voice information enables human observers to make a more stable
assessment. Figure 17 (b) shows that humans have higher accuracy in verifying the
negative samples, and multimodal information helps humans to recognize non-kinship,
thus improving overall accuracy. It is worth noting that it takes about an hour for a
person to complete the entire test, while machine learning methods spend much less time
in the inference process. We conclude that machine learning methods can outperform
human ability both efficiently and effectively.
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Fig. 17. The human performance on a subset of TALKIN-Family from the face, voice,
and face&voice, respectively. (a) shows the overall verification performance with
different modalities. (b) presents the true positive (TP) and true negative (TN)
distributions of human performance under different settings.
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5.7 Conclusion

Audio-visual kinship verification is a new and potential research topic. In this chapter,
we systematically investigate the problem of audio-visual kinship verification. Moreover,
the baseline experiments of single modal kinship verification are performed, in which
vocal kinship verification is evaluated for the first time. Based on the single modal
methods, a deep Siamese network for multimodal fusion is also proposed for metric
learning of kinship verification. Experiments indicate that the proposed Siamese network
improves accuracy over baseline uni-modal and multimodal fusion techniques for kinship
verification. Additionally, audio (vocal) information is shown to be complementary and
useful for the kinship verification problem. To improve the fusion performance, we
further propose a deep learning framework named UAAML to jointly learn the modal
invariant and adaptive fused features for kinship verification with contrastive loss. Our
proposed fusion method outperforms both the baseline methods and human ability in
kinship verification. The human performance experiment shows that by providing the
face and voice of the subject, people could have higher kinship verification accuracy
than using faces and voice only. We expect this work sets a milestone for audio-visual
kinship verification. To stimulate future study, in the next chapter, we investigate the
limitations of our datasets and the proposed approach and discuss future directions.
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6 Discussion and summary

This thesis gave an overview of the audio-visual kinship verification problem and
presented novel work in (1) establishing two comprehensive audiovisual kinship datasets,
(2) studying the visual features for the FKV problem by introducing the color texture
features and ELM classifier to solve the problem, and (3) extending the current FKV
research from monomodal visual-based methods to acoustic methods, and therefore
proposing the multimodal fusion method for audio-visual kinship verification. In this
chapter, the findings and contributions of this thesis are summarized. In addition, we
discuss the limitations of this thesis and present future research directions.

6.1 Contributions

In this thesis, we addressed the kinship verification from faces and voices. The objective
is to capture the similarity of the kinship from biometric traits in an unobtrusive manner,
e.g., from faces or speaking voices as captured by audio-visual recording devices, and to
verify whether or not two people have a kin relation from this audio-visual data. The
main contribution of this thesis can be summarized in three aspects, i.e., (1) developing
novel audio-visual kinship datasets, (2) studying the effective visual features for the
facial kinship verification problem, and (3) proposing methods for the new kinship
recognition task of audio-visual kinship verification.

First, we considered the problem of kinship verification from both faces and voices,
and raised a new subproblem such as audio-visual kinship verification. However, to our
best knowledge, there is no research on kinship verification from audio-visual features
or related datasets. Therefore, a new kinship dataset composed of facial videos and
speaking voices was established. In particular, we selected 100 pairs of facial videos
with speaking voices from YouTube for each of the four parent-child kin relations.
However, the TALKIN dataset has limitations on size, kin relation, data variety, and
application scenarios. Additionally, we extend the TALKIN dataset to a comprehensive
dataset named TALKIN-Family, which consists of facial videos and synchronous
speaking audio with properties that differ from the TALKIN dataset. In TALKIN-Family,
there are 246 unique family trees and 1012 individuals with rich annotations of family
relationships, age, gender, and scene conditions. The size of the family tree ranges from
2 to 14 subjects between 5 and 81 years of age. Each subject has multiple talking facial
videos about 10 seconds in length under different conditions. Overall, there are 9.2
hours of videos in TALKIN-Family.
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In our second contribution, we study kinship verification from visual features.
Biologically, facial chromaticity is related to genetically expressed features, such as eye
color or skin tone. Indeed, we studied three color spaces in our experiments: RGB, HSV
and YCbCr. We found that the features extracted from these three color spaces can
beat the features extracted from a gray image for different kin relations. Moreover, due
to the orthogonality of the HSV color space, features extracted from it show a higher
discrimination ability. In line with this finding, we proposed an ELM-based network
for recognizing kinship and non-kinship. We compared the image similarity from the
corresponding color spaces, and therefore a distance vector could be obtained as the
input to the ELM for classification. In this way, the method could capture both the
texture and color similarity of kinship.

Based on the audiovisual datasets and learned visual features, we investigate
the problem of audio-visual kinship verification. Before that, we first provide the
benchmarks on the single modality (i.e., face and voice). The facial kinship verification
problem has been widely explored, and based on that we establish architectures with
various methods from traditional to novel deep learning approaches. Kin face research
has attracted the attention of researchers. However, to the best of our knowledge, kinship
verification from voices remains largely unstudied. Similar to the visual features, we
extract various vocal features for kinship verification. For the first time, we proved that
voices could be effective in verifying kinship. Based on our single modal benchmarks,
we carried out the audio-visual kinship verification study. In particular, we proposed
a deep Siamese fusion method that learns both kinship similarity and non-kinship
dissimilarity and multimodal features at the same time. To compare the effectiveness
of our proposed fusion method, we also conducted benchmark experiments on fusion
methods such as early fusion and late fusion. Experimental results show that audio-visual
fusion could outperform mono-modal methods. Kinship verification could benefit from
a combination of discriminant information extracted from both video and audio signals.
Furthermore, motivated by adversarial learning, we proposed a multimodal fusion
network, UAAML, which can jointly learn modal invariant and attentive features with
the unified multimodal features for kinship verification. Finally, extensive experiments
show the effectiveness of the proposed method compared with baseline fusion methods.
Evaluations of human performance also indicate that audiovisual information helps to
improve judgment.

We believe the research is valuable and could provide insight for kinship recognition
studies from faces and audio-visual data. We hope that the work will attract researchers
from different disciplines to the field and promote the development of kinship analysis.
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6.2 Limitations and future work

This thesis thoroughly summarizes the main research works in my Ph.D. studies on
facial kinship verification. First, the audio-visual datasets are established, which until
now did not exist. Second, kinship verification from visual features based on texture
features is explored. Third, the problem of kinship verification from voices and the
fusion of faces and voices is systematically explored.

After finalizing the work of this thesis, there are still several topics that could be
further explored. First, the proposed TALKIN and TALKIN-Family datasets suffer from
limited data. They could be improved in size and diversity (e.g., kin relations). Second,
although our findings in Articles III and IV indicate that the color features could help
to improve the performance of FKV, these features are difficult to track when facing
illumination changes when images taken are under different conditions. Finally, the
performance of audio-visual fusion for kinship verification could be further improved in
verification accuracy and computational efficiency.

Recently, many studies about FKV have been proposed that, focus on exploring
discriminative kinship features. However, kinship verification study is still challenging
due to the uncertainty and stochasticity in genetic heredity and environmental influences.
The technology is still in its early stages and cannot satisfactorily address many of the
challenges listed in Chapter 2.2 and many advanced applications. Still, the insufficient
data sets pose challenges to efficiently and effectively study facial kinship verification,
and deep learning has not yet reached its full potential as face verification.

In the following, we discuss the future research directions of FKV, which we hope
will provide guidance and insight to interested researchers.

Large-scale dataset establishment for FKV. The availability of benchmark datasets
has played a key role in advancing visual kinship recognition research. Clearly, there
is a pressing need to build a large and well-annotated in-the-wild dataset that reflects
the true data distribution of facial kinship worldwide and meets the requirements of
data-hungry deep learning methods. However, despite the recent progress (e.g., the FIW
dataset [20]), such a goal remains unrealized. As we discussed in Chapter 2.2, there are
still many problems in the current kinship datasets, such as the following. First, there is
the issue of an unbalanced ethnicity distribution, which may lead to algorithmic biases
such as demographic bias [188]. Secondly, the current datasets are not large and diverse
enough to reflect real-world conditions. Last but not least, most of the current datasets
focus on direct descendants without giving full consideration to the height or breadth of
the family tree, which is also an important factor for FKV research. Due to privacy,
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security, and labeling concerns, building a large, diverse, and comprehensive dataset for
FKV is much more challenging than for face verification.

Bias and Fairness. Recently, the AI research community has realized the importance
of developing fair and unbiased AI systems [189, 190]. For instance, facial recognition,
Is facial recognition too biased to be let loose [188], has been shown to have serious
demographic bias [191, 192]. Kinship recognition relies on people-centric data and also
faces such issues. This is especially concerning since kinship recognition systems are
intended to be used in critical security applications such as crime scene investigation,
border control, and searching for missing children. As we discussed above, datasets
play a critical role in FKV. If the training datasets reflect unwanted demographic bias
and imbalance, the learned model is unlikely to perform well in the wild. Therefore,
taking both algorithm and data biases into consideration in kinship understanding is an
important future research direction.

Accurate features suitable for FKV. Accurate feature representations, suitable for
the verification of kinship, are critical to obtaining good FKV performance. However, it
still remains a challenging open problem. As we discussed in detail in Chapter 2.2, in
contrast to face verification, kin faces are not identical. FKV has large interpersonal
variations. The facial similarities of kin faces are often not obvious and vary considerably
between different families. All these factors pose great challenges for accurate feature
representation. Furthermore, there is another important question: what features are
suitable for kinship verification? Maybe it is helpful for researchers to be aware of
relevant findings in psychology, neuroscience, and anthropology. Finally, facial attributes
like gender, age, and skin color may be helpful for FKV. This is the key to learning how
to fuse multiple features effectively. Besides, fusing complementary features is also
promising in boosting performance.

Transformer models for kinship verification. The transformer architectures have
been recently applied to a variety of vision problems, and have been shown to be a
potential alternative to traditional CNNs [193]. As the key component of the transformer,
the self-attention mechanism has the ability to learn the long-range dependencies in
the network and extract the intrinsic features [194]. Nevertheless, the potential of the
transformer for the FKV problem has barely been explored. Therefore, it is valuable to
explore the transformer potential of FKV for image/video representation learning, and
multimodal tasks [195].

Multimodality. Most current research focuses on kinship verification from facial
images, while only a few works consider facial videos. It has been shown that visual
kinship verification performance can be enhanced by incorporating multimodal signals
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such as expressions [22], voice [124], gait [135], infrared images [196], hyperspectral
images [197], 3D facial images [198], and facial sketches [199].

Interdisciplinary research. FKV is an important yet challenging problem, with
many open issues. It has been studied in several fields, including psychology, anthropol-
ogy, neuroscience, computer vision, and machine learning. Towards ultimately solving
the problem of FKV, we argue that interdisciplinary research should be advocated. For
instance, in genetics, automatic computational kinship verification can be applied in
exploring facial traits’ computation [200] and genetic problems such as evolutionary
patterns of DNA methylation sites [201].
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