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Abstract

The popularity of accelerometer-based activity monitors has been associated with several
analytical challenges, including how to quantify accelerometer outputs in terms of sedentary
behavior, light-intensity physical activity (LPA), and moderate-to-vigorous physical activity
(MVPA). Recently, machine learning (ML) approaches have been coupled with raw
accelerometry to classify activities by intensity, but the generalizability of ML models outside of
the development datasets remains poorly understood. Currently, the health benefits of meeting the
recommended amounts of sleep and MVPA in adults are well documented, but the
cardiometabolic health implications of sedentary time and LPA are still unclear.

The present study reviewed studies calibrating and validating wearable accelerometers using
ML approaches and preformed cross-dataset tests to evaluate the generalization performance of
ML models for classifying activity intensities from raw acceleration data. Additionally, the latest
follow-up in the Northern Finland Birth Cohort 1966 study (n = 5,840) at age 46 years included
measurement of daily activities for two weeks with two accelerometers. This data was used to
examine how the levels and patterns of accelerometer-estimated activity intensities (sedentary
behavior, LPA, and MVPA) are associated with cardiometabolic health in this large sample of
middle-aged adults, and to create a data-driven hierarchy predicting their activity behaviors.

Based on the study, ML techniques can classify activities in terms of type, category, or
intensity with acceptable accuracy irrespective of accelerometer placement. However, ML models
developed with raw acceleration data for classifying activity intensities (sedentary behavior, LPA,
and MVPA) are not generalizable to other populations monitored with different accelerometers,
suggesting that further strategies are needed to enhance their generalizability. The study suggests
that adults, in addition to MVPA, may also gain cardiometabolic health benefits through LPA,
particularly when it replaces sedentary time. Finally, the data-driven hierarchy of correlates
created consisted of factors of relative importance, and can potentially be used to target and tailor
interventions.

Keywords: adiposity, data mining, dyslipidemias, insulin resistance, machine learning,
metabolic diseases
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Tiivistelmä

Nykyään hyvin suosittujen kiihtyvyysanturiin perustuvien aktiivisuusmittareiden keräämän
datan analysointiin liittyy monia haasteita, kuten paikallaanolon, kevyen liikunnan sekä keski-
raskaan ja raskaan liikunnan tarkan määrän määrittäminen. Viime aikoina on otettu käyttöön
koneoppimismenetelmiä kiihtyvyysanturin tuottaman raakasignaalin analysoinnissa luokittele-
maan liikettä sen intensiteetin perusteella, mutta toistaiseksi näiden menetelmien yleistettävyys
on huonosti tiedossa. Nykyisin tiedetään aika hyvin ne terveyshyödyt, joita saadaan, jos nouda-
tetaan unen sekä keskiraskaan ja raskaan liikunnan suosituksia. Paikallaanolon ja kevyen liikun-
nan vaikutukset sydän- ja verisuoniterveyteen ovat kuitenkin heikommin tiedossa.

Tässä tutkimuksessa tehtiin systemaattinen kirjallisuuskatsaus koneoppimismenetelmien käy-
töstä kannettavien kiihtyvyysanturien kalibroinnissa ja validoinnissa. Työssä testattiin koneoppi-
mismenetelmien yleistettävyyttä fyysisen aktiivisuuden intensiteetin luokitteluun kiihtyvyysan-
turin antaman raakadatan perusteella yhdistäen useita toisistaan riippumattomia mittausaineisto-
ja. Pohjois-Suomen vuoden 1966 syntymäkohortin 46-vuotisaineistonkeruussa (n = 5,840) oli
mitattu liikunta-aktiivisuutta kahdella kiihtyvyysanturilla. Tämän mittaustiedon avulla tutkittiin
sitä, kuinka kiihtyvyysanturilla mitattu fyysisen aktiivisuuden intensiteetti (paikallaanolo, kevyt
liikunta sekä keskiraskas ja raskas liikunta) ja eri intensiteetillä toteutetun aktiivisuuden jakautu-
minen vuorokauden sisällä ovat yhteydessä keski-ikäisten sydänterveyteen. Lisäksi luotiin
aineiston perusteella hierarkinen malli ennustamaan liikuntakäyttäytymistä.

Tutkimuksen perusteella koneoppimistekniikoiden avulla voidaan riittävällä tarkkuudella
luokitella fyysistä aktiivisuutta liikuntamuodon, intensiteetin ja eri intensiteettien jakautumisen
perusteella riippumatta kiihtyvyysanturin sijainnista. Kiihtyvyysanturin tuottamaan raakadataan
perustuvat fyysisen aktiivisuuden intensiteetin luokitteluun kehitetyt koneoppimismallit eivät ole
kuitenkaan yleistettävissä muihin väestöryhmiin, joissa on käytetty erilaisia kiihtyvyysantureita,
vaan tarvitaan lisätutkimusta parantamaan mallien yleistettävyyttä. Tutkimuksen perusteella kes-
kiraskaan ja raskaan liikunnan lisäksi kevytkin liikunta-aktiivisuus, erityisesti jos se korvaa pai-
kallaan oloa, on yhteydessä aikuisten parempaan sydänterveyteen. Aineiston perusteella luotu
hierarkinen malli antoi tietoa useista sydänterveyttä edistävistä tekijöistä ja sitä voidaan käyttää
liikuntainterventioiden räätälöinnissä.

Asiasanat: insuliiniresistenssi, koneoppiminen, rasva-aineenvaihdunnan häiriöt,
rasvakudos, tiedonlouhinta aineenvaihduntasairaudet
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1 Introduction 
Cardiometabolic diseases, including cardiovascular diseases, stroke, and diabetes 
are reportedly among the leading causes of deaths globally (WHO, 2013). Physical 
activity is shown to reduce the risk of cardiometabolic diseases, mortality, and 
many other adverse health conditions (Grgic et al., 2018; Guthold et al., 2018; Lee 
et al., 2012; WHO, 2010). Much of the evidence generated to date—on which 
current physical activity guidelines have largely been based—has been derived 
from self-reported moderate-to-vigorous physical activity (MVPA), typically 
defined as an energy expenditure of three metabolic equivalents (MET) or more 
(Guthold et al., 2018; Kohl 3rd et al., 2012; Rosenberger et al., 2019).  

Recently it has been recognized that movement intensities represent a 
continuum, suggesting that activities across a more broadened spectrum including 
light-intensity physical activities (LPA; activities at 1.5 to 3 MET) and sedentary 
behaviors (activities at under 1.5 MET in sitting or reclined posture), and their 
patterns may also be related to cardiometabolic health in adults (Chastin et al., 2019; 
Ekelund et al., 2019; Tremblay et al., 2017). This is, in large part, due to the 
availability of wearable accelerometer-based activity monitors (Lee et al., 2014).  

Although advantageous, the proliferation of accelerometers has also been 
associated with several considerable challenges regarding how to collect, use, and 
most importantly quantify accelerometer outputs (signals) across the entire 
intensity continuum in terms of sedentary behaviors, LPA, and MVPA (Migueles 
et al., 2017; Wijndaele et al., 2015). There are many algorithms for translating 
accelerometer outputs into activity intensities, yet none has been recognized as 
reliable enough to be adopted as a standardized method, partly because validation 
of those algorithms outside the laboratory have typically shown poor performance 
(Bassett Jr et al., 2012; Freedson et al., 2012; Wijndaele et al., 2015). A reliable 
data processing methodology for accelerometer data has continued to remain a 
challenge even after the promising shift toward machine learning (ML) approaches 
(Bassett Jr et al., 2012), despite their better predictive capabilities (Ellis et al., 2016; 
Montoye, Westgate, et al., 2018).  

Interstudy comparison among existing studies is currently limited due to the 
inconsistency of methodologies used for processing accelerometer signals 
(Migueles et al., 2019; Wijndaele et al., 2015). Hence, based on systematic review 
of literature, even small amounts of physical activity from light-intensity upwards 
may confer cardiometabolic health benefits in adults (Chastin et al., 2019; Füzéki 
et al., 2017). Research has also recognized that time spent in each activity may 
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modify the health-related influence of time spent in any of the other activities 
(Pedišić et al., 2017; Rosenberger et al., 2019). For instance, breaking up sedentary 
time with physical activity could reduce the detrimental effects on cardiometabolic 
markers caused by sedentary behavior (Healy et al., 2008, 2011). However, it is 
still unclear how and when sedentary time should be interrupted before it becomes 
detrimental to cardiometabolic health in adults (Chastin, Egerton, et al., 2015). 
Sleep, sedentary behavior, LPA, and MVPA over a 24-hour sleep and wake cycle 
seems to be codependently related to health (Migueles et al., 2021; Pedišić et al., 
2017). Yet little is known about the combined associations of these activities and 
their patterns with cardiometabolic health in adults (Rosenberger et al., 2019).  

Despite considerable health benefits, few adults meet the current 
recommendation for physical activity (Guthold et al., 2018). Many studies have 
therefore focused on identifying the factors associated with activity behaviors, and 
examined the association between various factors including personal, societal, and 
environmental factors with different indices such as the daily amount of MVPA or 
sedentariness (Bauman et al., 2012; O’Donoghue et al., 2016). However, activity 
behavior has been found to be a multidimensional behavior that is explained by a 
complex web of factors, followed by requests for more complex statistical 
approaches in correlates research to better understand why some adults are active 
but others are not (Bauman et al., 2012; Chastin et al., 2016). 

The present study focused on the in-depth understanding of the levels and 
patterns of activity across the entire intensity continuum (sedentary behavior, LPA, 
and MVPA) and their associations with cardiometabolic health markers in a large 
population-based sample of middle-aged Finnish adults. Additionally, the present 
study reviewed studies calibrating and validating wearable accelerometers using 
ML approaches, developed robust ML models for classifying activity intensities 
from raw accelerometry, and performed comprehensive and powerful analyses of 
the correlates of activity behaviors and identification of target subgroups for future 
intervention. 
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2 Review of the literature 

2.1 Physical activity, inactivity, and health in adults 

Any bodily movement produced by skeletal muscles that requires energy 
expenditure above the basal is defined as physical activity (WHO, 2010). Regular 
physical activity has considerable health benefits such as reduced risk of mortality 
and cardiometabolic diseases (Guthold et al., 2018; Lee et al., 2012; Warburton et 
al., 2017), that outweighs potential risk of adverse events, for example through 
accidents (WHO, 2010). Physical activity can be done at any level of skill and for 
enjoyment (Bauman et al., 2012), and common ways to remain active are by 
walking, cycling, sports, and active games (WHO, 2010). Even people with poor 
mobility may benefit from physical activity (three or more times per week), for 
example to enhance balance and prevent falls (WHO, 2010). 

Conversely, physical inactivity (insufficient physical activity) is the fourth 
leading cause of death worldwide, and was responsible for more than five million 
of the 57 million deaths that occurred worldwide in 2008 (Lee et al., 2012; WHO, 
2010). It is also a risk factor for major noncommunicable diseases (Lee et al., 2012). 
However, more than one in four adults worldwide (in total more than 1.4 billion 
adults) fail to meet the minimum recommended level of physical activity that is 
150 minutes of moderate-intensity aerobic exercise or 75 minutes of vigorous-
intensity exercise per week (Bull et al., 2020; Guthold et al., 2018).  

Active adults compared to their inactive peers have improved quality of life 
and well-being (O’Donovan et al., 2017; Wen et al., 2011), and thus an increased 
likelihood of a healthier ageing (Daskalopoulou et al., 2017). The world is currently 
experiencing a considerable increase in the number of people living longer than 60 
years. Reportedly, the number of people aged 60 years or older worldwide is 
projected to grow more than twofold by 2050, reaching a total number of two 
billion and outnumbering the number of children by 2047 (Chatterji et al., 2015). 
However, it appears that increased longevity is not necessarily accompanied by an 
extended period of good health, and little evidence exists that older people today 
are experiencing an extended period of health compared to previous generations at 
the same age (Beard et al., 2016).  

The higher risk of mortality and adverse health conditions in later life has, to a 
great extent, been attributable to a hazardous accumulated lifestyle, including 
insufficient physical activity during adulthood (Chatterji et al., 2015; Khaw et al., 
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2008). Research has shown that habitual patterns of physical activity starts to 
develop very early during preschool age (Telama et al., 2014). Although the causal 
relationship between high physical activity in adulthood and reduced risk of 
premature death is yet to be proven (Kujala, 2018), it is already well-documented 
that physical activity is modifiable and health-enhancing behavior for nearly 
everyone at every life stage (Bauman et al., 2012; Bull et al., 2020; Wen et al., 2011; 
WHO, 2010). The importance of physical activity during adulthood therefore 
seems to be twofold: An active lifestyle throughout adulthood may improve quality 
of life and reduce the risks of major diseases and health conditions such as 
cardiometabolic diseases, heart disease, stroke and diabetes, and it helps to preserve 
this well-being and health into old age (Bull et al., 2020; Chatterji et al., 2015; Lee 
et al., 2012; Wen et al., 2011).  

2.1.1 Light and moderate-to-vigorous intensity physical activity and 
cardiometabolic health  

Recent evidence shows an L-shaped dose response between the total volume of 
physical activity and risk of cardiometabolic diseases and mortality in adults (Kyu 
et al., 2016; Samitz et al., 2011). Existing studies have typically considered 
achieving a higher physical activity volume through MVPA (Guthold et al., 2018; 
Rosenberger et al., 2019; Warburton et al., 2017), which also appears to be the most 
potent health-enhancing activity intensity, even after accounting for other activities 
during the day (Chastin, Palarea-Albaladejo, et al., 2015; McGregor, Palarea-
Albaladejo, Dall, del Pozo Cruz, et al., 2019). However, previous studies have 
mostly used self-reported MVPA to investigate the associations between this 
movement intensity and different health indicators including the markers of 
cardiometabolic health in adults (Guthold et al., 2018; Warburton et al., 2017). 

Measurement method may have a significant impact on the observed levels of 
physical activity in adults (Prince et al., 2008). Mostly based on self-reported 
physical activity data, guidelines for physical activity have generally recommended 
150 minutes per week of MVPA for health benefits in adults (Rosenberger et al., 
2019; Warburton et al., 2016). However, with the technological advances and the 
availability of device-based methods that allow for relatively more accurate and 
detailed measurement of daily activities than self-reported measures, studies have 
shown that even a lower level of volume and/or intensity of physical activity may 
confer significant health benefits especially for inactive adults (Chastin, Palarea-
Albaladejo, et al., 2015; Strain et al., 2020; Warburton et al., 2016, 2017). This has 
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resulted in the emergence of studies challenging the current threshold-based 
messaging related to physical activity and health,  and suggesting that any amount 
of physical activity could be beneficial for adults (Bull et al., 2020; Ding et al., 
2020; Warburton et al., 2016, 2017). Still, more studies with device-based 
measurement of physical activity are required to warrant these findings.  

More recently, studies have shown that activities at lighter intensities may also 
confer considerable health benefits (Amagasa et al., 2018; Chastin et al., 2019; 
Füzéki et al., 2017). This is important because LPA promotion could potentially be 
a more feasible and sustainable means to increase volume of physical activity, 
especially for inactive people (Pulsford et al., 2017). High-intensity physical 
activity such as brisk walking might not be feasible in many situations (e.g., at work 
or home) or may even be strenuous for some (Chastin et al., 2019). On the other 
hand, LPA does not necessarily require planning or dedicated time commitment as 
it usually involves incidental daily living and is accessible regardless of physical 
fitness and even during occupational time (e.g., ambulation, and convenient and 
causal walking) (Buman et al., 2017). Still, missing from most physical activity 
guidelines are detailed recommendations for light-intensity physical activities (Lee 
et al., 2014; Rosenberger et al., 2019). Although more research is still required, 
there are studies indicating that even replacing sedentary time with standing could 
confer some cardiometabolic health benefits for adults (Healy et al., 2015; 
Saeidifard et al., 2018), and may therefore be a potential solution for a sedentary 
lifestyle. 

Adults spend considerably more daily time in LPA than in MVPA (Chaput et 
al., 2014; Spittaels et al., 2012), yet little is known about the health-enhancing 
potential of LPA, and even less about biological mechanistic information 
explaining the observed associations and effects of this intensity of physical activity 
in humans (Chastin et al., 2019; Füzéki et al., 2017). To date, several population-
based studies have found that higher levels of LPA on a daily basis may confer 
mortality and cardiometabolic health benefits for adults (Ekblom-Bak et al., 2016; 
Fishman et al., 2016; Howard et al., 2015; Pulsford et al., 2017), but detailed 
information on the timing and frequency is still lacking (Rosenberger et al., 2019). 
This appears to be in large part due to insufficient and often contradictory findings 
about the long-term health-enhancing potential of LPA. For instance, a recent meta-
analysis of both experimental and epidemiological studies has found that light-
intensity activity is associated with beneficial acute and long-term cardiometabolic 
responses and lower risk of mortality in adults, but a definitive conclusion could 
not be drawn due to the moderate consistency between experimental and 
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epidemiological studies (Chastin et al., 2019). Other systematic reviews have also 
found that LPA might confer cardiometabolic health benefits in adults (Füzéki et 
al., 2017), also after accounting for MVPA (Amagasa et al., 2018), but similarly 
with some degree of indefinite conclusions, requiring further research on the 
potential cardiometabolic health benefits of LPA.  

Limited technologies for accurate estimation of LPA in daily life is another 
possible reason for relatively less available information about how timing and 
frequency of LPA is related to cardiometabolic health (Lee et al., 2014). 
Considering that LPA are generally incidental and unplanned compared to MVPA, 
recalling and self-reporting daily LPA could be relatively less accurate or even 
infeasible (Lee et al., 2014). In recent years, many studies have started to use 
wearable activity monitors for monitoring daily activities that could yield relatively 
more accurate estimates of daily LPA compared to self-reported measures 
(Amagasa et al., 2018; Chastin et al., 2019). However, even device-based 
estimation of LPA could be relatively less accurate when compared to the activities 
with higher intensity. Studies focusing on classifying activities by intensities from 
wearable activity monitors have shown that estimation of low-intensity activities 
from such devices could be challenging, requiring further studies to improve the  
estimation of LPA from wearable devices (Alberto et al., 2017; Carr et al., 2011; 
Montoye, Westgate, et al., 2018).  

2.1.2 Sedentary time and cardiometabolic health 

According to the consensus definition (Tremblay et al., 2017), all waking activities 
that involve minimal movement and low energy expenditure (≤1.5 MET) in a 
sitting, reclining, or lying posture are sedentary behaviors. Sedentary time, that is 
defined as the total time spent in sedentary behaviors in any context (e.g., at school 
or work), includes a major part of adults’ activity profile. On the basis of self-
reported data, in Europe more than 60%, and globally more than 40% of adults 
spend four or more hours per day in merely sitting (Hallal et al., 2012). Time spent 
in sedentary behaviors typically tend to increase with age (Ortega et al., 2013; 
Spittaels et al., 2012), and device-estimated time-use data indicates that some adults 
spend in excess of 7–10 hours or more per day in sedentary behavior (Matthews et 
al., 2008). However, although sedentary behaviors are modifiable (Chastin et al., 
2016; Owen et al., 2011), the potential cardiometabolic health risks of this 
ubiquitous behavior are relatively unclear when compared to other modifiable 
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health behaviors, such as alcohol intake, tobacco use, and lack of physical activity 
or exercise (Vincent et al., 2017).  

Overall, sedentary physiology is a less well-established discipline than 
physical activity research (Rosenberger et al., 2019; Vincent et al., 2017). This is 
in large part because sedentary behaviors are more complex than merely a lack of 
physical activity (Rhodes et al., 2012). The health associations of sedentary 
behaviors are typically domain-specific and dependent on how sedentary time is 
accumulated and interrupted (Chastin, Egerton, et al., 2015; de Rezende et al., 
2014). Even how adults spend their sedentary time may be important. For example, 
studies have shown that television viewing time is negatively associated with 
cardiometabolic health in adults, but this could partially be due to the possible poor 
dietary choices made while sitting and watching television (Cleland et al., 2008; 
Thorp et al., 2013). Yet, it is still unclear whether it is the sitting posture, the dietary 
intake, or the combination of both that is related to deleterious changes in the 
cardiometabolic health markers (Cleland et al., 2008; Thorp et al., 2013). 
Additionally, the exact physiological responses by which sedentary time is related 
to deleterious changes in cardiometabolic health markers in adults is still unclear 
(Proper et al., 2011; Thorp et al., 2011). Nevertheless, findings of epidemiological 
studies suggest that total time spent in sedentary behavior, particularly when 
accumulated in uninterrupted, prolonged bouts (e.g., 60 minutes), may be 
detrimentally associated with cardiometabolic health and mortality risk in adults 
(Brocklebank et al., 2015; Rezende et al., 2016; Thorp et al., 2011; Wilmot et al., 
2012). Studies have also shown that these detrimental associations may be largely 
independent of the level of physical activity (de Rezende et al., 2014; Ekelund et 
al., 2016; Thorp et al., 2011).  

Existing evidence is still insufficient for suggesting an appropriate time-based 
limit for the daily amount of sedentary time required to minimize cardiometabolic 
health risks in adults. Most guidelines encourage adults to minimize their sedentary 
time without detailed instructions (Bull et al., 2020; Rosenberger et al., 2019; 
Vincent et al., 2017). The findings of existing studies are somewhat mixed (Ekelund 
et al., 2009; Proper et al., 2011; Thorp et al., 2011), especially the findings of those 
studies with statistical adjustment for adiposity level (mostly body mass index 
(BMI) and waist circumference) or for some measures of physical activity level 
(mostly MVPA) (Brocklebank et al., 2015; Thorp et al., 2011). Part of this problem 
has been attributed to incomplete adjusting for other activity intensities and sleep 
duration (typically only MVPA but not LPA and/or sleep) among the existing 
studies (Brocklebank et al., 2015; Powell et al., 2018; Rosenberger et al., 2019). 
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Another reason for this problem appears to be related to poor estimation of 
sedentary time with self-reported measures (Thorp et al., 2011). However, 
inconsistent results have also been observed among the studies with device-based 
measures that are known to be more precise than self-assessment/questionnaires. 
One possible explanation for this inconsistency may the restrictive abilities of 
existing methodologies for differentiating between sedentary behaviors, sleep, and 
non-wear time from wearable activity monitor signals (Janssen, Basterfield, et al., 
2015; Kozey-Keadle et al., 2014; McVeigh et al., 2016), which can potentially 
result in misclassifications among these components and subsequently 
overestimation or underestimation of sedentary time. For instance, a previous study 
of adults found significant associations between total device-estimated sedentary 
time and adiposity measures (Healy et al., 2011). However, this association was not 
replicated in another study with the same study sample when combined 
associations of device-estimated sedentary and MVPA time with obesity risk were 
examined (Maher et al., 2013). It appears that a high level of sedentary time, 
especially when combined with low MVPA (Maher et al., 2013), is associated with 
a higher level of cardiometabolic risk (Powell et al., 2018). However, additional 
research with device-estimated sedentary time is needed to understand how 
sedentary time is associated with cardiometabolic health in adults, after proper 
accounting for other device-estimated activity intensities in waking hours (Chaput 
et al., 2014; Powell et al., 2018; Vincent et al., 2017).  

2.1.3 Interrelationships among sleep, waking activities, and 
cardiometabolic health 

According to expert consensus (Hirshkowitz et al., 2015), the recommended 
amount of sleep for adults is 7–9 hours per night, with reasonably strong agreement 
that sleeping regularly outside this recommended range may have adverse effects 
on health. In line with this, studies relating sleep duration to cardiometabolic health 
have often observed a U-shaped relationship between sleep duration and 
cardiometabolic outcomes, with both short and long durations exhibiting adverse 
associations with cardiometabolic outcomes (Knutson, 2010; Vincent et al., 2017; 
Xi et al., 2014).  

Sleep time and quality appear to be indirectly related to cardiometabolic health 
through affecting activity patterns and intensities during waking hours (Atkinson 
et al., 2007; Vincent et al., 2017). For instance, there is already a well-understood 
relationship between sleep quality and MVPA. Moderate-to-vigorous physical 
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activity is associated with greater ease in falling asleep and deeper sleep (Buman 
et al., 2015; Rosenberger et al., 2019), which may in turn result in meeting the 
recommended amount of sleep duration for adults and potentially better 
cardiometabolic health (Tsunoda et al., 2015). Additionally, insufficient sleep 
appears to be associated with lower levels of physical activity and higher 
sedentariness during the day (Bromley et al., 2012; Lakerveld et al., 2016), both of 
which are related to adults’ cardiometabolic health (Brocklebank et al., 2015; 
Vincent et al., 2017).  

Sedentary behaviors and physical activities may also be interrelated. Based on 
a systematic review of literature, most studies investigating the relationship 
between sedentary behaviors and physical activities found an association between 
higher television viewing and lower leisure-time physical activity, but this 
association was not found between general sitting and leisure-time physical activity 
(Rhodes et al., 2012). This inverse association appears to be partially because 
leisure time spent on watching television may potentially displace leisure-time 
MVPA (Rhodes et al., 2012). Few studies have investigated whether sedentary time 
is linked to sleep duration independent of time spent in MVPA and/or LPA 
(Mansoubi et al., 2014). Research has shown that sedentary time might be 
associated with both shortened and long sleep duration (Basner et al., 2007; 
Lakerveld et al., 2016; Štefan et al., 2019), but those studies have typically 
neglected the effects of physical activity levels.  

Additional relationships, especially about how LPA affects cardiometabolic 
health separately from MVPA, sedentary behavior, or sleep, are largely unexplored 
(Rosenberger et al., 2019). A recent systematic review showed that LPA could be 
beneficial for cardiometabolic health after adjustments for MVPA (Amagasa et al., 
2018), but sleep and sedentary behaviors were not considered in most of the 
reviewed studies. Combined relationships between LPA and MVPA independent of 
sedentary behaviors are also largely unknown (Rosenberger et al., 2019).  

In general, the associations seen between sleep, sedentary time, and/or physical 
activities with cardiometabolic diseases and mortality risk are open to the 
possibility of a reverse causality pathway. Many previous studies investigating how 
patterns and levels of sleep and movement intensities are related to the markers of 
cardiometabolic health were cross-sectional (Knutson, 2010; Powell et al., 2018). 
Due to the cross-sectional study design, inference about the direction of causality 
between sleep, sedentary time, and/or physical activities with markers of 
cardiometabolic health remains limited (Henson et al., 2013; Kanagasabai et al., 
2017). On the other hand, longitudinal studies have generally taken multiple proper 
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measures to account for reverse causation. This includes adjustment for baseline 
diseases, excluding adults with diseases or short follow-up in sensitivity analyses, 
and having moderately long follow-ups (Mezick et al., 2011; Ramakrishnan et al., 
2021; Stamatakis, Gale, et al., 2019). Although concerns about reverse causality in 
previous findings cannot be completely ruled out due to unmeasured and clinically 
undiagnosed diseases, which can potentially alter the patterns and levels of sleep, 
sedentary behaviors, and/or physical activities, it seems that the associations of 
sleep and movement intensities with cardiometabolic diseases tend to remain after 
accounting for measures of reverse causality (Mezick et al., 2011; Ramakrishnan 
et al., 2021; Stamatakis, Gale, et al., 2019). Hence, it appears that activity intensities 
are interrelated and all may be related to cardiometabolic health in adults, and that 
their implications to cardiometabolic health may be affected by sleep duration at 
least through modifying the daily time-use (Rosenberger et al., 2019; Vincent et al., 
2017). For example, adults with shorter sleep time during a 24-hour period may 
spend their extra time in sedentary behavior rather than in physical activity 
(Lakerveld et al., 2016). However, previous studies have not generally considered 
the potential interrelationships among the activity intensities and sleep time, partly 
due to limited technologies for precise measurement and assessment of sleep and 
activities across the entire activity intensity continuum (Chaput et al., 2014; Pedišić, 
2014; Rosenberger et al., 2019).  

2.2 Assessment of physical activities and sedentary behaviors  

The measurement of physical activities and sedentary behaviors is key to 
understanding their true health implications (Warren et al., 2010). Poor estimation 
of physical activities and sedentary behaviors can potentially mask or distort the 
true underlying relationships between activity behaviors and health markers, and 
can even lead to biased inferences and findings (Celis-Morales et al., 2012). The 
accurate measurement of physical activities and sedentary time is now even more 
important and challenging than before. Research has shown that movement 
intensities represent a continuum and are interrelated, suggesting that all movement 
and non-movement behaviors may be related to health and wellness in adults 
(Chaput et al., 2014; Rosenberger et al., 2019). This has created a challenge for 
accurate estimation activity intensities across the entire continuum in terms of 
sedentary behaviors, LPA, and MVPA for examining how the activity intensities 
are related to cardiometabolic health (Rosenberger et al., 2019). In general, there 
are two approaches for the assessment of sedentary behaviors and physical 
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activities, namely subjective methods and device-based methods with wearable 
activity monitors (Celis-Morales et al., 2012; Yang et al., 2010). 

2.2.1 Subjective methods 

Subjective methods are the self-reported levels of physical activities and sedentary 
behaviors according to participants’ own evaluation and perception, often reported 
through a set of questions but also can be maintained in the form of logs or diaries 
(Helmerhorst et al., 2012). These methods are generally cost-effective and easy to 
use in large-scale populations. Different types of questionnaires are currently 
available in several languages (Helmerhorst et al., 2012; Lee et al., 2011), and have 
been widely used across different populations and countries and even on a global 
scale (Guthold et al., 2018). However, subjective methods of measurement of 
physical activity and sedentary behaviors have several limitations. While subjective 
methods continue to provide useful evidence, such as on the context of these 
behaviors and relative indicators of activity intensities (DiPietro et al., 2020; Lee 
et al., 2014), their validity and inaccuracy remain a serious concern (Helmerhorst 
et al., 2012; Shephard, 2003). The main problem with the subjective methods is 
that the self-reporting of the amount and intensity of daily activities is potentially 
subject to response bias and recall problems (Shephard, 2003). Furthermore, self-
reported data does not typically allow researchers to explore timing and precise 
intensities of movements (Lee et al., 2014). 

2.2.2 Device-based methods 

Compared to subjective methods, device-based methods do not have response bias 
and recall problems, and thus are likely to provide better estimates of actual 
physical activities and sedentary behaviors (Celis-Morales et al., 2012). Studies 
comparing measures of physical activity and sedentary behaviors in the same adult 
participants have often reported spurious differences for subjective measures in 
contrast to device-based measures that are more likely to be accurate (Dyrstad et 
al., 2014; Lagersted-Olsen et al., 2014). Device-based techniques typically include 
wearable motion and physiological sensors, such as pedometers, heart rate 
recorders, actometers, goniometers, gyroscopes, accelerometers, or a combination 
of these, for the measurement of activity behaviors (Yang et al., 2010). These 
devices generally work by sensing either physiological or mechanical responses to 
bodily movement, and use these signals to estimate variables that reflect physical 
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activities and sedentary behaviors (Bassett Jr et al., 2012). In addition to these 
devices, the accurate measurement of physical activities and sedentary behaviors 
could be done by other means such as magnetic systems, optical systems, and video 
recording, yet such methods have rarely been used on a large scale due to 
complexity of setup and privacy issues in free-living settings (Yang et al., 2010).  

2.2.3 Accelerometry 

Accelerometers are electromechanical sensing devices that mechanically measure 
any moving object’s acceleration (rate of change in time), whether caused by 
gravity or motion, and convert this data into an electrical signal (Kavanagh et al., 
2008; Mathie et al., 2004). The operation principle for most accelerometers is based 
on Hooke’s and Newton’s laws (Kavanagh et al., 2008).  

According to Hooke’s law of extension and compression, the displacement of 
the spring is linearly proportional to the force. Mathematically, Hooke’s law is 
stated as: 

 𝐹 = 𝑘 ∗ 𝑥  (1) 

in which F is the force exerted on the spring, x is the displacement (distance) of the 
spring’s end from its equilibrium position, and k is the spring constant. Newton’s 
second law states that the force (F) created by a moving object is equal to its mass 
(m) times acceleration (a), giving the equation: 

 𝐹 =  𝑚 ∗ 𝑎  (2) 

Combining these two equations, the acceleration (a) caused by the body mass (m) 
on a spring (whose elongation property is characterized by k) can be known by 
quantifying the distance (x), giving the equation: 

 𝐹 =  𝑘 ∗ 𝑥 =  𝑚 ∗ 𝑎, 𝑎𝑛𝑑 𝑡ℎ𝑢𝑠 𝑎 =  𝑘𝑥/𝑚 (3) 

In practice, there are several techniques and technology for measuring acceleration. 
Piezoelectric, piezoresistive, and capacitive sensors are the most common sensors 
found within commercial accelerometers, and they all operate by converting 
mechanical energy into an electrical signal but with different technologies, as 
detailed elsewhere (Yang et al., 2010). Currently, most accelerometers are available 
in small-to-miniature sizes at low cost. They are also capable of measuring high-
frequency, triaxial acceleration in the three orthogonal axes (vertical, medio-lateral, 
and anterior-posterior in body axis), thanks to micro electro-mechanical system 
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(MEMS) that enable mechanical sensing structures of microscopic size (Yang et al., 
2010). These features, combined with other advances in sensor technologies that 
enable storing high frequency accelerometry signals over longer time periods, have 
made accelerometers appealing for many applications requiring the objective 
measurement of bodily movement, including human activity sensing devices 
(Kavanagh et al., 2008; Mathie et al., 2004).  

2.3 Device-estimated physical activities and sedentary behaviors 
using accelerometers 

In recent years, studies in the field of physical activity and sedentary behavior 
research have increasingly relied on body-worn accelerometer-based activity 
monitors (Lee et al., 2014; Wijndaele et al., 2015). It is widely acknowledged that 
much of the recent advances about how physical activity and sedentary time are 
related to health is in large part due to the availability of accelerometer-based 
activity monitors and their associative advantages (Troiano et al., 2014; Trost et al., 
2005). For instance, continuous, high-resolution accelerometer signals have 
allowed for studying the patterns of physical activity and sedentary time in terms 
of movement behavior profiles, and examining how these profiles are associated 
with cardiometabolic and mortality risk (Lee et al., 2013; Niemelä et al., 2019). In 
particular, the popularity of accelerometer-based activity monitors in 
epidemiological and population-based studies is mainly because they are 
lightweight, reliable, feasible, and inexpensive sensors that can record acceleration 
continuously over extended periods of time (Lee et al., 2014). Additionally, 
accelerometers are non-invasive means of measurement of human movement that 
do not alter or interfere with natural body movement (Yang et al., 2010). 

2.3.1 Accelerometer placement 

Accelerometer placement is one of the main sources of inconsistencies among 
existing accelerometry studies (Rosenberger et al., 2016; Trost et al., 2005). 
Although studies have shown that the assessment of physical activities and 
sedentary behaviors could be more accurate with multiple accelerometers 
combining acceleration signals acquired from different body locations (Cleland et 
al., 2013; Ellis et al., 2014; Trost et al., 2017), most large-scale, population-based 
studies have continued to use a single wear location (Bassett Jr et al., 2012). This 
is mainly because carrying multiple sensors in different body locations could be 
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cumbersome for participants, and even infeasible for some. Multi-sensor devices 
that include multiple sensors such as magnetometer, gyroscopes, heart-rate, and/or 
accelerometers in one device appear to also have increased validity and accuracy 
for estimation of sedentary behaviors and physical activities compared to a single 
accelerometer (Nweke et al., 2019). With the current trend, it appears that the 
technical and computing improvements continue to increase the validity and 
acceptability of multi-accelerometer systems and multi-sensor devices (Nweke et 
al., 2019).  

The hip, wrist, thigh, ankle, arm, knee, chest, and even ear have been all 
proposed and studied as an accelerometer attachment site (Atallah et al., 2011; de 
Almeida Mendes et al., 2018). Although there is still no consensus on a single 
accelerometer placement within the literature, it appears that large-scale studies 
have continued to select the hip and wrist (Wijndaele et al., 2015), and most 
recently also the thigh (Hamer et al., 2020) as the placement of choice.  

Wrist-worn accelerometers have relatively higher compliance and feasibility 
(Troiano et al., 2014), but relating a wrist-based acceleration signal to activity types 
and body posture could be difficult (Atallah et al., 2011; Migueles et al., 2017). 
This may be because the wrist could be in various orientations (e.g., upward and 
downward) during similar activities such as sitting or standing. Besides, in many 
activities such as cycling, the wrist is generally at rest and does not reflect the 
whole-body acceleration (Atallah et al., 2011). Performing such activities at higher 
intensities may not necessarily result in a higher or different wrist-based 
acceleration signal, and therefore the estimation of types and intensity of those 
activities may be less accurate from wrist-worn accelerometers (Cleland et al., 2013; 
Ellis et al., 2014; Montoye et al., 2016b). 

The thigh seems to be the most common wear location for body posture 
detection, specifically when accurate differentiation between sitting/lying, standing, 
and ambulatory (steps) activities is of interest (Berendsen et al., 2014). Practically, 
sitting versus an upright posture can be discriminated using static acceleration and 
determining the orientation of the thigh, and further from ambulatory activity (steps) 
by measuring dynamic acceleration (Edwardson et al., 2017). Due to the high 
accuracy of thigh-worn accelerometry and criterion measures for capturing ground 
truth data under free-living conditions, thigh-worn accelerometry has often been 
used as a ground truth in free-living settings, against which other accelerometers 
worn in other body locations have been validated for posture detection 
(Rosenberger et al., 2016; Vähä-Ypyä et al., 2018). However, current measurement 
protocols require fixed positioning of the sensor on the thigh (typically with 
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breathable bandages) by research assistants, and typically participants are not 
allowed to remove the sensor during the monitoring period, making the thigh a 
relatively less convenient wear location (Berendsen et al., 2014).  

The hip has continued to be the mainstay of activity monitoring (Matthews et 
al., 2012; Strath et al., 2012). It is close to the center of mass, and the whole-body 
movement is generally reflected in the acceleration signal collected from hip (Yang 
et al., 2010). Studies have shown that the hip could be an appropriate single location 
for an accelerometer for measuring the intensity of physical activities (Cleland et 
al., 2013). It also appears that the hip is a relatively acceptable wear location for 
participants (Berendsen et al., 2014). Hence, hip-worn accelerometer may be less 
accurate for identifying stationary and sedentary behaviors (Hart et al., 2011; 
Kozey-Keadle et al., 2011), requiring more advanced approaches for the estimation 
of all movement intensities from hip-based acceleration signals.  

2.3.2 Activity counts and traditional statistical approaches 

Traditionally, accelerometers have provided proprietary integrated signals known 
as “activity counts.” Previous studies have therefore generally used regression 
analysis to relate activity counts with activity energy expenditure, and subsequently 
established a set of cut points for converting activity counts into activity intensities 
(Bassett Jr et al., 2012; Crouter et al., 2013). Receiver Operating Characteristics 
(ROC) curve analysis is another approach that has been used for establishing 
activity intensity cut points (Kim et al., 2012). Using these relatively simple 
methods (referred to as traditional statistical methods in the literature), several 
regression-based equations and sets of thresholds (cut-points) have been 
established for estimating activity energy expenditure and activity intensities 
(Bassett Jr et al., 2012; Kim et al., 2012; Migueles et al., 2019). These regression-
based equations and cut-points have been widely used in the existing literature for 
the assessment of physical activity intensities, sedentary time, and activity energy 
expenditure (Migueles et al., 2017), mainly due to their simplicity of 
implementation (Troiano et al., 2014). However, several studies have emphasized 
that these methods are not accurate in the presence of a wide range of activity types 
under free-living conditions, followed by requests to apply more sophisticated data 
modelling approaches for developing robust models capable of accurate assessment 
of all activity intensities (Bassett Jr et al., 2012; Freedson et al., 2012; Kim et al., 
2012).  
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2.3.3 Raw accelerometry and machine learning approaches 

Machine learning approaches are alternative analytic techniques for calibration and 
validation of accelerometer-based activity monitors (Bassett Jr et al., 2012; de 
Almeida Mendes et al., 2018). Machine learning approaches are advanced 
statistical techniques with the ability to capture complicated relationships and 
nonlinearities in data, making them excellent candidates for the calibration and 
validation of accelerometer-based activity monitors producing either activity 
counts or raw acceleration data (Bassett Jr et al., 2012; van Hees et al., 2016). A 
unique advantage of ML approaches over traditional statistical method is the 
possibility of including dozens or even hundreds of input features describing 
characteristics of acceleration signal in both time and frequency domains (Bassett 
Jr et al., 2012; Freedson et al., 2012; Wang et al., 2019). This has essentially 
allowed to create more sophisticated prediction models based on multiple 
acceleration signal characteristics for predicting activity types, categories, 
intensities, or energy expenditure, as opposed to regression-based approaches 
which typically use only mean acceleration values and linearly relate them to 
energy expenditure (Bassett Jr et al., 2012; Freedson et al., 2012).  

To date, various ML approaches have been explored for prediction of activity 
types, intensities, categories, and energy expenditure (de Almeida Mendes et al., 
2018; Wang et al., 2019), among them the majority of techniques have used random 
forests, support vector machines, artificial neural networks (ANN), decision trees, 
and different boosting approaches (de Almeida Mendes et al., 2018). Those 
previous studies have typically shown that ML approaches have increased accuracy 
when compared to cut-points or regression equations in predicting activity 
intensities and energy expenditure (Ellis et al., 2016; Montoye et al., 2015). 
However, although better in prediction accuracy (Ellis et al., 2016), the 
development and use of ML models could be relatively more complicated than 
other statistical approaches (Bassett Jr et al., 2012). There is still no consensus in 
the literature on which ML technique is best, mainly because their performance can 
depend on several factors such as wear location, population age range, window size, 
and even defined activity categories that can vary from one study to another 
(Bassett Jr et al., 2012; de Almeida Mendes et al., 2018; Mannini et al., 2017; Zhang, 
Murray, et al., 2012). Such parameters and choices may greatly influence the 
predictive ability of ML-based models, but their effects on the predictive ability of 
ML-based models remain unclear. This is currently obscuring better understanding 
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of the potential advantages of ML approaches for the calibration and validation of 
accelerometer-based activity monitors (Bassett Jr et al., 2012; van Hees et al., 2016). 

More recently, with the popularity of accelerometers capable of measuring and 
storing raw acceleration data (van Hees et al., 2016), it has been observed that there 
is a shift from traditional statistical approaches towards ML-based modeling for the 
calibration and validation of accelerometer-based activity monitors (de Almeida 
Mendes et al., 2018). Raw accelerometry, unlike activity counts, are unintegrated 
signals, offering an unprecedented opportunity for providing comparable 
accelerometry results (van Hees et al., 2016), and accordingly enabling interstudy 
comparison (Migueles et al., 2019; Wijndaele et al., 2015). Studies focusing on the 
comparability of accelerometry data have found that raw acceleration signals from 
various accelerometers are not equivalent but could be highly comparable often 
with some further calibration strategies (Bassett Jr et al., 2012; John et al., 2013; 
Montoye, Nelson, et al., 2018). It is therefore likely that increased output 
comparability provided by raw accelerometry together with the predictive ability 
of ML approaches may help to develop more reliable data processing techniques 
capable of predicting physical activities and sedentary behaviors in various 
population groups, independent of accelerometer type and brand beyond existing 
regression-based equations and cut points (Matthews et al., 2012; van Hees et al., 
2016). Such techniques may eventually enable the comparability of results across 
studies and provide opportunities to pool data from different studies (Wijndaele et 
al., 2015). 

2.3.4 Machine learning for activity intensity estimation 

In practice, accelerometer-produced signals/outputs can be used for recognizing 
activity types and intensities, estimating activity energy expenditure, and detecting 
body postures (de Almeida Mendes et al., 2018; Yang et al., 2010). Still, 
categorizing activities by intensity (i.e., sedentary behaviors, light, moderate, and 
vigorous) seems to be the most common measure among the existing 
accelerometry-based studies (Wijndaele et al., 2015). Hence, a universally accepted 
method for predicting activity intensity from acceleration data across the entire 
intensity spectrum is still lacking (Migueles et al., 2021). This may be partly 
because of the limited generalization capability of existing data processing methods, 
including ML-based methods, when applied to populations different from the one 
used for model development (Bassett Jr et al., 2012; de Almeida Mendes et al., 
2018).  
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Few studies to date have investigated the generalization performance of ML-
based models for activity type and intensity prediction (de Almeida Mendes et al., 
2018). Although those studies have consistently exhibited performance 
deterioration when ML models were cross-tested on independent populations, there 
is still no consensus on its cause. For example, while a previous study has identified 
that the differences between acceleration data collected in free-living and 
laboratory settings is the main reason for the performance degradation of 
laboratory-calibrated ML models for activity prediction (Bastian et al., 2015), 
another study has reported that the differences in sample characteristics were the 
main reasons for accuracy degradation (Mannini et al., 2017). These discrepancies 
among previous studies seem to be due to focusing on only one factor at a time, 
whereas there would be several contributing factors in real-world applications, 
ranging from acceleration data and sample characteristics to unseen activities, 
which could all affect the generalization capability of ML models (Bastian et al., 
2015; John et al., 2013; Mannini et al., 2017). This has created a need for more 
realistic tests to better understand the generalization capability of ML models. 

Recent evidence has suggested developing ML-based classification models for 
classifying activities directly according to their intensity categories. The validity of 
this method (Montoye et al., 2016b; Tjurin et al., 2017) as well as its 
generalizability on independent populations have been presented in previous 
studies (Montoye, Westgate, et al., 2018). Although better than simple regression 
equations, ML models developed for energy expenditure estimation models may 
also exhibit high error and bias (Montoye, Westgate, et al., 2018; Staudenmayer et 
al., 2015). Additionally, research has shown that the performance of classification 
models deteriorates as the number of activity categories increases (Ellis et al., 2014; 
Montoye et al., 2016a). Developing a direct method for predicting activity 
intensities may therefore be preferred over indirect methods, which first predict the 
energy expenditure of activities and then classify activity intensity based on energy 
expenditure thresholds, or first predict activity types and then collapse the 
categories into intensity categories (Montoye, Westgate, et al., 2018). However, 
further research is required to understand how well ML models developed for 
activity intensity classification would perform when applied to other populations.  

2.3.5 Limitations and challenges 

Despite numerous advantages, accelerometers have also some inherent limitations. 
Accelerometers have limited abilities in the assessment of body posture and 
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resistance training exercises, and they cannot distinguish whether a person is 
carrying any weight (e.g., walking carrying a heavy bag requires more energy 
compared to walking with no load) (Lee et al., 2014). Traditionally, physical 
activity outcomes in studies calibrating and validating accelerometer-based activity 
monitors have been expressed as absolute intensity measures (e.g., 5 MET, 30 
minutes in 3- to 6-MET range) with no consideration for the functional capacity of 
the individual (Freedson et al., 2012; Kujala et al., 2017). The relative intensity of 
physical activity with consideration of individual fitness and functional status may 
indeed be a better measure than absolute activity intensities for providing tailored 
physical activity recommendations (Kujala et al., 2017). This is because maximal 
exercise capacity in low-fit individuals, in particular among those who are obese or 
have chronic diseases, may be lower than the recommended absolute intensity level 
of MVPA, while fit individuals generally reach this intensity of movement 
relatively easier (Kujala et al., 2017). Consequently, individuals who cannot reach 
the recommended intensity level may not have this intensity of physical activity 
recorded based on absolute intensity values, and generally self-reported physical 
activities could be better means to determine the relative indicators of activity 
intensity (Freedson et al., 2012). Hence, how to incorporate measures of an 
individual’s fitness level into the accelerometry-estimated physical activity metrics 
has remained an issue (Freedson et al., 2012).  

In general, accelerometers could provide good estimates of the intensity of 
certain types of physical activity depending on the wear location (de Almeida 
Mendes et al., 2018). However, accelerometers generally have relatively lower 
accuracy for estimating activity intensities that fall at the lower end of the intensity 
spectrum (i.e., sedentary to light activities) (Alberto et al., 2017; Carr et al., 2011). 
In particular, measurement of different components of sedentary behaviors from 
accelerometry signal may also be challenging and related to the wear location 
(Alberto et al., 2017; Janssen & Cliff, 2015; Kozey-Keadle et al., 2011). For 
instance, the fact that wrist orientation is not always aligned with whole body 
makes it difficult to assess different types of sedentary behaviors from wrist data 
(Staudenmayer et al., 2015).  

Although advantageous, the proliferation of accelerometers has also led to 
multiple analytical and practical challenges. On the surface, all body-fixed 
accelerometer-based activity monitors seem to perform with the same basic 
principle—monitoring total body acceleration. However, there are significant 
differences in sensor properties, measurement protocols, and data processing 
(Bassett Jr et al., 2012; Freedson et al., 2012; Migueles et al., 2017, 2019; Welk et 
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al., 2012). These differences have made it difficult to directly compare outputs from 
different accelerometers (Rosenberger et al., 2016; Rowlands et al., 2017), and in 
turn, comparison of the results of accelerometer-based studies across different 
populations has remained limited (Wijndaele et al., 2015). In particular, 
inconsistencies among existing studies could, to a large extent, be related to 
different data processing methods used for interpreting accelerometry data 
(Freedson et al., 2012; Migueles et al., 2017, 2019).  

2.4 Combined effects of physical activities, sedentary behaviors 
and sleep on cardiometabolic health 

Currently, time-based recommendations for adults are only available for sleep 
duration (7–9 hours per night) and MVPA (150 minutes per week) for which there 
is reasonably strong evidence, whereas only general advice to minimize sedentary 
behavior and perform more LPA have been made (Bull et al., 2020; Knutson, 2010; 
Rosenberger et al., 2019). It remains unclear how time over a full 24-hour cycle 
should be distributed between sleep, sedentary time, and physical activities for 
optimal cardiometabolic health in adulthood (Vincent et al., 2017). This may 
partially be because of the fact that nearly all published studies to date have 
examined the relationship between specific health indicators of interest and time 
spent on only one activity during a daily 24-hour cycle (Chaput et al., 2014; Pedišić, 
2014; Rosenberger et al., 2019), including when cardiometabolic health markers 
have been studied (Amagasa et al., 2018; Brocklebank et al., 2015; Füzéki et al., 
2017; St-Onge et al., 2016). 

Most recently, research has shown that time spent in each activity may modify 
the health-related influence of time spent in any of the other activities (Rosenberger 
et al., 2019). For example, increasing time spent in MVPA may significantly reduce 
the negative effects of sedentary time on cardiometabolic health (Chastin, Palarea-
Albaladejo, et al., 2015; McGregor et al., 2018) and mortality risk (Ekelund et al., 
2016). Sleep time and accelerometer-estimated sedentary time and physical 
activities may indeed be codependently associated with adults’ cardiometabolic 
health (Chaput et al., 2014; Vincent et al., 2017). However, previous studies 
examining the cardiometabolic health implications of sleep and movement 
intensities have generally not considered the potential interrelationships among the 
activities over a 24-hour sleep and wake cycle (Brocklebank et al., 2015; Pedišić, 
2014; Vincent et al., 2017).  
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2.4.1 Time use in the 24-hour cycle 

Historically, movement behaviors have been assumed to be independently 
associated with health outcomes (Chaput et al., 2014; Chastin, Palarea-Albaladejo, 
et al., 2015). Most studies in adults have therefore typically used traditional 
regression methods and separately dealt with sleep, sedentary behavior, LPA, and 
MVPA when examining their cardiometabolic health implications (Pedišić, 2014). 
Few of those studies have considered accounting for other activities, but only 
partially accounted for one or two activities in the 24-hour cycle (Pedišić, 2014). 
Incomplete or improper consideration of other movement behaviors in the 24-hour 
cycle may bias findings (Dumuid, Pedišić, et al., 2019; Dumuid et al., 2018; Pedišić, 
2014; Pedišić et al., 2017), and thus it is important to adjust for the full range of 
24-hour sleep, sedentary time, and physical activities using suitable analytical 
approaches (Chaput et al., 2014; Rosenberger et al., 2019). 

An appropriate balance between sleep, sedentary time, and physical activities 
may be needed for optimal cardiometabolic health (Chaput et al., 2014; Pedišić, 
2014; Vincent et al., 2017). To investigate how the balance among these time-use 
components is associated with different health markers, the isotemporal 
substitution procedure was initially introduced (Mekary et al., 2009; Pedišić et al., 
2017). Isotemporal substitution allows to explore how reallocation of time between 
two movement behaviors (e.g., sedentary activities to MVPA) would contribute to 
the theoretical changes in the health outcomes of interest (Grgic et al., 2018). More 
recently, research has shown that sleep and movement intensities can indeed be 
considered as compositional data, since they are mutually exclusive time-use 
components of a fixed period, such as the 24-hour day (Dumuid, Pedišić, et al., 
2019; Dumuid et al., 2018). A change of time spent in one activity intensity 
necessitates an exchange of equal time for one or a combination of other activity 
intensities and/or sleep. Accordingly, there has been a recent conceptual shift in 
behavioral epidemiology which moves away from exploring movement behaviors 
as independent exposure, towards an approach which allows the influence of all 
movement  intensities and sleep to be considered relative to each other, called time-
use epidemiology approach (Pedišić et al., 2017; Rosenberger et al., 2019). This 
shift has been facilitated by the employment of new analytical approaches based on 
compositional data analysis (Dumuid, Pedišić, et al., 2019; Dumuid et al., 2018). 

Compositional data analysis methods are novel statistical approaches that are 
able to accommodate codependent data that is constrained to a fixed amount of time, 
and are therefore well-suited to analyzing time budgets in a 24-hour cycle (Dumuid, 
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Pedišić, et al., 2019; Dumuid et al., 2018). Researchers have recently started to use 
compositional data analysis to investigate associations of 24-hour time use with 
cardiometabolic health markers in adulthood (Chastin, Palarea-Albaladejo, et al., 
2015; McGregor et al., 2018). These studies have found that MVPA was 
beneficially associated with markers of cardiometabolic health, but results for the 
other movement behaviors were inconsistent (Chastin, Palarea-Albaladejo, et al., 
2015; McGregor et al., 2018). Additional research is needed to understand how 
compositions of 24-hour time-use is associated with cardiometabolic health in 
adults.  

2.4.2 Patterns of accumulation  

With the development of accelerometry techniques, researchers have also started to 
investigate whether and how the accumulation patterns of accelerometer-estimated 
physical activity across the day contribute to cardiometabolic health, beyond the 
total daily level of physical activity (Lee et al., 2013; Niemelä et al., 2019). For 
instance, although studies have often shown that accumulating the recommended 
amount of daily MVPA in sustained 10-minute bouts may provide additional 
cardiometabolic and mortality benefits, recent findings based on accelerometer data 
indicate that health benefits may be achieved with higher physical activity volumes 
from LPA upwards, regardless of accumulation patterns (Chastin et al., 2019; 
Glazer et al., 2013; Warburton et al., 2017).  

In recent years, there have also been significant advances in understanding how 
the patterns of accumulation of sedentary behaviors are related to health markers. 
Observational studies with accelerometer-estimated sedentary time have found that 
accumulating sedentary time in prolonged, uninterrupted bouts is associated with 
higher cardiometabolic risk in adults (Carson et al., 2014; Cooper et al., 2012). 
Additionally, both experimental and observational studies have shown that 
breaking up sedentary time with short and sustained bouts of LPA and MVPA could 
modify those detrimental effects caused by sedentary time on cardiometabolic 
markers in adults (Chastin, Egerton, et al., 2015; Dunstan et al., 2012; Healy et al., 
2008). However, it is still unclear when sedentary time should be interrupted before 
it becomes detrimental to health, and even less is known about the length and 
intensity of interruptions required to minimize the detrimental health effects of 
uninterrupted sedentary bouts (Carson et al., 2014; Chastin, Egerton, et al., 2015; 
Healy et al., 2011; Janssen & Cliff, 2015). 
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Like physical activity research, sedentary research has also generally suffered 
from dealing with sedentary time in isolation, independent of physical activities. 
Few studies have used time-use approaches for examining the cardiometabolic 
health associations of accumulation patterns of sedentary time after accounting for 
physical activities and sleep (Pedišić, 2014; Rosenberger et al., 2019). However, a 
main limitation of time-use approaches is that the interpretation of the results is not 
straightforward and becomes more complicated when accommodating a higher 
number of variables (Dumuid, Pedišić, et al., 2019; Dumuid et al., 2018). Those 
studies have therefore accommodated a limited number of variables, typically only 
total time spent on sedentary and physical activities (Chastin, Palarea-Albaladejo, 
et al., 2015; McGregor et al., 2018). 

Data-driven, person-centered statistical approaches are also suitable methods 
for examining how patterns of accumulation of sedentary time and physical 
activities are related to cardiometabolic health (Migueles et al., 2021). A notable 
advantage of these approaches compared to other commonly-used variable-
centered approaches is that a higher number of variables can be accommodated in 
the analyses for forming the groups (Lee et al., 2013; Niemelä et al., 2019; 
Verswijveren et al., 2020; Xu et al., 2005), offering the possibility for understanding 
how combined accumulation patterns of sedentary and activity behaviors is related 
to health (Migueles et al., 2021). An increasing number of studies have therefore 
used statistical approaches, such as latent profile analysis and ML-based clustering 
methods (e.g., K-means), to identify groups of individuals who share similar 
patterns of activity behaviors and to investigate how these distinct activity patterns 
are related to cardiometabolic health (Gupta et al., 2020; Niemelä et al., 2019; 
Verswijveren et al., 2020) and mortality risk (del Pozo Cruz et al., 2020; von Rosen 
et al., 2020b). However, few of these studies have been performed on adults (Gupta 
et al., 2020; Niemelä et al., 2019), and none of them have included variables 
characterizing how sedentary time was accumulated and interrupted. Further 
studies with data-driven approaches and variables describing how sedentary time 
was accumulated and interrupted may help to better understand how patterns of 
accumulation of sedentary time and sedentary breaks are associated with 
cardiometabolic health in adults.  
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2.5 Correlates of physical activity and sedentary behaviors in 
adults 

Despite numerous health benefits, few adults meet the current recommendations 
for physical activity (Guthold et al., 2018). Correlates of activity behavior (i.e., 
factors associated with different activity behaviors) have therefore been well 
studied to understand the causes of physical inactivity and sedentary behaviors, and 
to inform activity promotion strategies (Bauman et al., 2012; Trost et al., 2002). To 
date, numerous studies have found an association between various factors of 
different domains such as personal, societal, and environmental factors with 
different indices of activity behaviors such as the daily amount of MVPA or 
sedentariness (Bauman et al., 2012; Choi et al., 2017; O’Donoghue et al., 2016). 
With advances in sensor technologies, research into correlates has shown that 
activity behavior could be a multidimensional behavior that is explained by a 
multilevel, complicated web of factors (Bauman et al., 2012; Chastin et al., 2016; 
Kohl 3rd et al., 2012). Accordingly, there have been calls for more research using 
both sophisticated statistical assessment that can capture the multilevel nature of 
correlates and different definitions of activity behavior that better reflect everyday 
life rather than unidimensional metrics (Bauman et al., 2012; Pate et al., 2018; Silva 
et al., 2017; Warburton et al., 2017). 

Most studies to date have typically used classical statistical modeling (such as 
regression analyses) to examine whether and how various factors are associated 
with different activity metrics (Choi et al., 2017; Trost et al., 2002). In classical 
statistics, the analyses could remain restricted to data analysts’ decisions about how 
the association and interaction are hypothesized (knowledge-driven), given that the 
factors selected for inclusion in the analyses are typically chosen subjectively 
according to their conceptual relevance and, in some cases, initial empirical 
associations (Trost et al., 2002; Venkatasubramaniam et al., 2017). This seems to 
be one thing that is limiting the recognition of new and innovative correlate 
categories, which are needed in this field for further progress (Bauman et al., 2012; 
Trost et al., 2002). Ecological approaches that integrate ideas from several theories 
are other approaches that have been used for correlates research, often to overcome 
the limitations of classical statistical analyses (Bauman et al., 2012). Those 
approaches have been used to both conceptualize the factors and their 
interrelationships at all levels explaining activity behavior (such as the 
interconnections between individuals and their social and physical environments) 
(Sallis et al., 2006) and guide variable selection for analyses (Bauman et al., 2012; 
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Trost et al., 2002). However, ecological approaches are also knowledge-driven 
(Choi et al., 2017) and, to some extent, rely on very well-established correlates 
(Chastin et al., 2016; Choi et al., 2017), which might result in missing some 
important factors explaining activity behavior. 

We have now entered a data-intensive era, with increasing popularity for data 
mining approaches (Chen et al., 2014). Data mining approaches originated from 
statistics but are known to capture hidden and novel insights buried in large 
amounts of data (Bellazzi et al., 2011, 2008). They are also excellent methodologies 
for generating data-driven hypotheses (Bellazzi et al., 2011, 2008). These principles 
also apply to the field of physical activity research, in which there is a need for 
more complex approaches to identify the next generation of correlates of activity 
behaviors, understand their relative importance, and capture the complex 
interrelations among the factors at different levels (Bauman et al., 2012; Chastin et 
al., 2016; Choi et al., 2017). Studies have therefore started to use data mining 
approaches for creating data-driven hierarchies of correlates predicting activity 
behaviors (Buck et al., 2019; Lakerveld et al., 2017; Patterson et al., 2018; Yoon et 
al., 2015). However, those studies have generally used a limited number of already 
well-known correlates consisting mainly of environmental and individual factors, 
and defined physical activity or sedentariness according to a single unidimensional 
metric derived from self-reported data (Buck et al., 2019; Lakerveld et al., 2017; 
Patterson et al., 2018). Data mining approaches applied to a broadened list of 
factors and a more representative definition of activity behavior in everyday life 
using accelerometry data may facilitate our understanding of why some people are 
active but others are not.  
  



42 

 



43 

3 Aims of the study 
The present study reviewed studies calibrating and validating accelerometer-based 
activity monitors using machine learning approaches and developed robust models 
for classifying activities by intensity. Additionally, it examined how the 
compositions and patterns of accumulation of sedentary time and physical activities 
are associated with markers of cardiometabolic health and analyzed correlates of 
activity behaviors in a large population-based sample of middle-aged Finnish adults. 

More specifically, the aims of the study were: 

– To reveal the generalization and predictive ability of machine learning 
approaches for the calibration and validation of wearable accelerometers. 

– To evaluate and enhance the generalization performance of machine learning 
models developed for classifying activity intensities across the entire intensity 
continuum (sedentary behaviors, LPA, and MVPA), particularly to examine 
whether activity intensity classification models developed with raw 
acceleration data and validated using within-sample validation are 
generalizable to other populations monitored with different accelerometers. 

– To examine how compositions of 24-hour time-use, and time reallocations 
between sleep duration and accelerometer-measured sedentary time and 
physical activities, are associated with markers of cardiometabolic health in 
adults. 

– To identify profiles according to distinct accumulation patterns of 
accelerometer-measured sedentary time and sedentary breaks in adults, and to 
investigate how these profiles are associated with markers of cardiometabolic 
health. 

– To establish a multilevel, data-driven hierarchy for predicting activity 
behaviors, and to methodologically identify the correlates of activity behaviors 
in adults. 
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4 Materials and methods 
This thesis is composed of five sub-studies, which were performed with three 
different data sources. The sub-studies are referred to in the text using Roman 
numerals I–V. Table 1 summarizes the study setup, data sources, and study design 
by sub-study. 

Table 1. Materials, methods, and study design by sub-study. 

Study Study setup Data source Study design 

I Review of literature to reveal the 

potentials of ML approaches for 

calibration and validation of 

wearable accelerometers 

62 original peer-reviewed 

research articles 

Systematic review 

II Cross-dataset study to evaluate 

and enhance the generalization 

capability of ML models developed 

for activity intensity classification 

Four independent studies 

(three open access 

datasets and one in-lab 

dataset) 

Cross-dataset tests 

III Compositional data analysis to 

examine how compositions of 24-

hour time-use is associated with 

cardiometabolic health markers 

NFBC1966, n = 3,443 Cross-sectional 

IV Cluster analysis to investigate how 

patterns of accumulation sedentary 

time and sedentary breaks are 

associated with cardiometabolic 

health markers 

NFBC1966, n = 4,439 Cross-sectional 

V Data mining using a decision tree 

to identify the correlates of activity 

behaviors 

NFBC1966, n = 4,582 Cross-sectional 

ML = machine learning, NFBC1966 = Northern Finland Birth Cohort 1966. 

4.1 Systematic review (I) 

Material (articles) for the sub-study I were retrieved from the PubMed and Scopus 
databases. These two databases were initially searched on July 1, 2017 for studies 
calibrating and validating accelerometer-based activity monitors using ML 
approaches. The two search strings are provided in Appendix 1. Additional articles 
were identified by searching the references in papers identified by the search. Data 
items such as the predictive accuracies and other important parameters in training 
ML algorithms (e.g., prediction method, windowing approach, data type, etc.) were 
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extracted from the eligible studies, and risk of bias was assessed with a summary 
quality score (range: 0–1 with a higher score indicates better quality) (Kmet et al., 
2004). The criteria used for scoring each study were based on earlier 
recommendations made for studies calibrating and validating accelerometers 
(Bassett Jr et al., 2012; Liu et al., 2012; Welk, 2005).  

4.1.1 Eligibility criteria and study selection  

We included original peer-reviewed journal articles calibrating and validating ML 
models based on data collected from a single body-fixed accelerometer (not 
smartphone-based) in order to predict the type, category, intensity, and/or energy 
expenditure of activities. The monitored activities had to be health-related and daily 
activities such as walking, cycling, sedentary activities, etc. In case of multiple 
accelerometers in various body locations, the study was included if calibration and 
validation of ML models were based on data acquired from each attachment site 
separately. Studies validating a previously developed ML-based model were also 
included. Here, we only present extracted data related to the predictive accuracy of 
the activity recognition models. We use the term “activity recognition” to refer to 
all classification models developed for classifying activities into types, classes, or 
intensities (i.e., using classification techniques not from MET-estimated values). 

Briefly, the initial literature search produced 3,171 articles (sub-study I, Fig. 
1). Additional, 13 articles were manually identified from references in the papers. 
Eventually, 104 articles were read in full text and checked for eligibility using a 
predefined form including the eligibility criteria items, of which 62 articles were 
finally considered eligible for inclusion in this review. Further details about how 
these studies were screened and selected can be found in sub-study I. 

4.2 Labelled training data (II) 

Data for sub-study II were from four independent studies. In the systematic review 
(I), we found three studies (Oregon State University (Trost et al., 2014), PAMAP2 
Physical Activity Monitoring (Reiss et al., 2012), and Daily and Sports Activities 
(Altun et al., 2010)) that made their labeled datasets publicly available to the 
research community at the time of the study (II), and all comprised raw acceleration 
data measured by wearable activity monitors. Additionally, we had similar data 
from another study that was performed by our research team at the University of 
Oulu (Tjurin et al., 2017). A brief description of each study is provided in Table 2.  
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4.2.1 Dataset preparation 

Raw acceleration data from the four independent studies were extracted and used 
to create five datasets, each containing only hip or wrist triaxial raw acceleration 
data (Fig. 1). Throughout the text, the five datasets are referred to as UOULU (H), 
OSU (H), OSU (W), PAMAP (W), and DSA (W), where H refers to hip and W to 
wrist. The dataset PAMAP (W) includes wrist acceleration data from the 
accelerometer sensor with a scale of ±16 g. The dataset DSA (W) includes the right 
wrist acceleration data.  

In all the datasets, direct observation served as the criterion for physical activity. 
The Compendium of Physical Activity for adults (Ainsworth et al., 2011) and 
youths (Butte et al., 2018) were used to assess the energy expenditure associated 
with each activity in the adult (UOULU, PAMAP, DSA) and youth (OSU) datasets, 
respectively. Based on the recommended anatomical postures and absolute MET 
thresholds (Tremblay et al., 2017), the performed activities within each dataset 
were categorized into three intensity categories: ≤1.5 MET: sedentary behavior, 
1.5–3.0 MET: LPA, and ≥3.0 MET: MVPA (sub-study II, Table 2). We created two 
types of dataset; datasets with original down-sampled raw acceleration data and 
datasets with tailored data. The down-sampling from 100 Hz to 25 Hz and 30 Hz 
to 25 Hz was performed by taking one data point out of every four data points and 
five data points out of every six data points, respectively. 

Fig. 1. The general workflow of data preparation (II). 



 

49 

4.3 Northern Finland Birth Cohort 1966 (III, IV, and V) 

Data for sub-studies III–V were from the population-based Northern Finland Birth 
Cohort 1966 study (NFBC1966). NFBC1966 is a life-course study involving 
participants whose dates of birth was expected to be in 1966 in Northern Finland 
(N = 12,058). In general, eligible participants for sub-studies III–V were those 
members of NFBC1966 who had participated in the latest follow-up performed at 
the age 46 years, and wore a hip-worn (III and IV) and a wrist-worn activity 
monitor (V) for the device-based measurement of daily activities (Fig. 2). 

Briefly, the 46-year follow-up included completion of postal questionnaires. 
Cohort members were also invited to attend a clinical examination after fasting 
overnight for 12 hours for the collection of fasting blood samples and 
anthropometric measurements, and an oral glucose tolerance test on a separate day. 
Anthropometric and behavioral information on cohort members participating in the 
46-year follow-up and attending the clinical examination day (n = 5,840) is shown 
in Table 3.  

Fig. 2. The collected data in the latest follow–up of Northern Finland Birth Cohort 1966, 
and how they were used in sub-studies III–V. 
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Table 3. Anthropometric and behavioral information on cohort members participating 
in the 46-year follow-up, and attending the clinical examination day (n = 5,840) 

Variable Men (n = 2,565) Women (n = 3,257) 

Height, cm 178.5 (6.3) 164.8 (6.0) 

Weight, kg 86.9 (14.9) 71.7 (14.8) 

Body fat, % 23.4 (7.2) 33.2 (8.4) 

Fat mass, kg 21.1 (9.9) 24.8 (11.1) 

BMI, kg/m2 27.3 (4.3) 26.5 (5.3) 

Waist circumference, cm 97.6 (11.8) 87.2 (13.1) 

Health-related quality of life score 0.93 (0.1) 0.91 (0.1) 

Education   

Secondary school 102 (4.3%) 81 (2.7%) 

Vocational/college level education 1673 (71.3%) 1976 (65.5%) 

Polytechnic/university degree 571 (24.3%) 960 (31.8%) 

Employment status   

Employed 2029 (88.2%) 2643 (88.1%) 

Unemployed 158 (6.9%) 137 (4.6%) 

Other (e.g., student, homemaker) 113 (4.9%) 220 (7.3%) 

Smoking status   

Non-smoker 1133 (47.8%) 1808 (58.3%) 

Former smoker 728 (30.7%) 757 (24.4%) 

Current smoker 511 (21.5%) 534 (17.3%) 

Values are mean (SD) or count (%). BMI = body mass index. 

4.3.1 Measurements 

Questionnaires 

A postal questionnaire was sent to all living cohort members with known addresses 
(n = 10,321) in 2012–2014. The questionnaire included items on social background,  
frequency and intensity of physical activity, physical and psychological health, and 
socioeconomic situation. Previous diagnosis of hypertension, heart diseases, and 
diabetes as well as medication use for hypertension, high cholesterol, and diabetes 
were also measured. Health-related behaviors and quality of life were measured by 
a separate questionnaire (Sintonen, 2001). Temperament and personality trait 
scores were assessed from responses to another separate survey that was used to 
address opinions and experiences (Cloninger et al., 1994).  
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Clinical examination 

On the day of clinical examination, participants abstained from smoking and 
drinking coffee. Trained nurses measured participants’ height, weight, blood 
pressure, and calculated waist-hip ratio and BMI. Participants’ body composition 
was measured with bio-impedance measurement (InBody720, InBody, Seoul, 
Korea) (Jensky-Squires et al., 2008). A static back muscle strength test (Biering-
Sorensen trunk extension test) was performed to evaluate physical performance 
(Biering-Sørensen, 1984). A submaximal four-minute single-step test during which 
heart rate was continuously monitored was performed to assess cardiorespiratory 
fitness (Kiviniemi et al., 2017). In the laboratory, fasting blood samples were drawn 
and stored for further analyses. Participants who were not previously diagnosed 
with diabetes underwent a 75g oral glucose tolerance test (Alberti et al., 1998) on 
a second fasted examination day. 

Environmental measures 

Residential coordinates of all cohort members whose residences were known at the 
time of the 46-year follow-up data collection (2012–2014) were obtained from the 
Finnish Population Register Centre. A geographic information system (ArcGIS 
10.3) was used to calculate a comprehensive list of built, natural, and 
socioeconomic environment variables that might describe the conduciveness of 
participants’ residential environment to physical activity (Kärmeniemi et al., 2019). 
All the variables were calculated in the year the participant attended the 46-year 
data collection. Quantitative environmental features were estimated using a one-
kilometer-radius circular buffer around the residential locations, and the distances 
(as the crow flies) to amenities were measured using road network data.  

4.3.2 Monitoring and assessment of daily activities 

Those cohort members attending the clinical examination were also asked to wear 
two accelerometers for the measurement of daily activities for 14 consecutive days. 
Participants were instructed to wear a wrist-worn accelerometer-based activity 
monitor (Polar Active, Polar Electro Oy, Kempele, Finland) on their non-dominant 
hand and a hip-worn accelerometer (Hookie AM20, Traxmeet Ltd, Espoo, Finland) 
on the right side of their hip. They were asked to wear the wrist-worn activity 
monitor continuously for 24 hours and the hip-worn accelerometer during all 
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waking hours except when engaged in water-based activities. Polar Active has a 
uniaxial activity monitor that outputs estimated energy expenditure in MET values 
every 30 seconds (Kinnunen et al., 2019). Hookie is a research-based accelerometer 
(Aittasalo et al., 2015), and was set to measure and store raw acceleration signals 
at 100 Hz.  

Processing raw hip-worn acceleration data (III and IV) 

The hip-worn raw acceleration data from Hookie was segmented into 6-second 
epochs and the mean amplitude deviation (MAD) of the resultant acceleration was 
computed for each segment. MAD describes the mean distance of data points 
around the mean (MAD = ∑|𝑟 − 𝑟|) where 𝑛 is the number of data point in the 
windowed segment, 𝑟  the 𝑖  resultant data point within the windowed segment, 
and 𝑟 the mean resultant value of the windowed segment. An excellent agreement 
between MAD values from Hookie and the commonly-used Actigraph GTX3 
accelerometer has been reported (Aittasalo et al., 2015). Non-wear time intervals 
were removed from the 6-second MAD values. Non-wear intervals were identified 
with a widely used approach for count-based data (see sub-study III for more details) 
(Choi et al., 2011). A valid day was defined as ≥10 hours of monitor wear time. 

Time spent asleep and in sedentary and physical activities (III) 

In sub-study III, activity intensities were estimated from the hip-worn 
accelerometry data, and eligible participants were required to provide ≥4 valid days 
of accelerometry. The detected wear-time intervals were cross-referenced with self-
reported sleep times (captured with two questions: “At what time do you normally 
go to bed?” and “At what time do you normally get out of bed?”), and all 
accelerometer data that overlapped with a sleep interval was discarded. The 
remaining 6-second epochs were classified as either sedentary (sitting or lying 
down), standing still, light-intensity physical activity, moderate-intensity physical 
activity, or vigorous-intensity physical activity on the basis of MAD values (Vähä-
Ypyä et al., 2018, 2015), and the duration (minutes per day (min/day)) in each 
activity was obtained by dividing the time spent in each activity by the number of 
valid days. The absolute MET cut-points used for obtaining the daily averages were 
as follows: sedentary and standing still: <1.5 MET, light-intensity physical activity: 
≥1.5 and <3.0 MET, moderate-intensity physical activity: ≥3.0 and <6.0 MET, and 
vigorous-intensity physical activity: ≥6.0 MET. Further differentiation between 
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standing still and sedentary (sitting or lying) was performed using a recently 
validated approach (Vähä-Ypyä et al., 2018). This approach enables posture 
estimation from hip-based raw acceleration data on the basis of constant Earth’s 
gravity vector and upright walking posture, and it has shown good to excellent 
accuracy when compared with thigh-worn posture classification as ground truth 
under free-living conditions (Vähä-Ypyä et al., 2018). For the purposes of sub-
study III, LPA constituted the sum of all min/day spent standing still and engaged 
in light-intensity physical activity, and MVPA was the sum of min/day spent in 
moderate- and vigorous-intensity physical activity. Sleep duration was self-
reported in response to the question “How many hours do you sleep on average per 
day?” Responses were converted to min/day spent asleep.  

Variables for characterizing sedentary time and sedentary breaks (IV) 

The patterns and levels of sedentary time and physical activities may vary 
substantially between weekdays and weekends (Ekblom-Bak et al., 2015; Ortega 
et al., 2013). In sub-study IV, participants with at least seven consecutive valid days 
(one full week) from the hip-worn accelerometry data were included in the analyses 
to minimize the effects of these variations on the analyses. The detected wear-time 
intervals were marked according to the intensity as either sedentary behavior (≤1.5 
MET), LPA (1.5–3.0 MET), or MVPA (≥3.0 MET) on the basis of MAD values 
(Aittasalo et al., 2015; Vähä-Ypyä et al., 2015). According to consensus definitions 
(Tremblay et al., 2017), we identified all the sedentary bouts lasting for ≥1 minute 
with no tolerance time and considered the whole time period between two 
consecutive sedentary bouts as sedentary breaks, if no time-epoch was marked as 
non-wear, starting from the first sedentary bout to the end of the second sedentary 
bout (Fig. 3).  

Thereafter, we computed 10 variables to describe the accumulation pattern of 
sedentary bouts, and 55 variables to describe how these sedentary bouts of different 
lengths were interrupted. The variables computed for characterizing the 
accumulation patterns of sedentary time included duration (in minutes) and 
frequency (number) of 1–5-minute, 5–10-minute, 10–15-minute, 15–30-minute, 
and ≥30-minute sedentary bouts. These variables were averaged across seven 
consecutive valid days to derive per-day values. The accumulation pattern variables 
computed for describing the characteristics of sedentary breaks were the total 
duration of sedentary break and accumulated MVPA time, LPA time, and sedentary 
time (in bouts of <1 minute) in the sedentary breaks. We also computed the 
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frequency (number) of <5-minute, 5–10-minute, and ≥10-minute LPA and MVPA 
bouts, and the frequency (number) of <1-minute sedentary bouts within the 
sedentary breaks. We stratified all the variables describing the characteristics of 
sedentary breaks based on the length of their precedent sedentary bout (i.e., 1–5 
minute, 5–10 minute, 10–15 minute, 15–30 minute, ≥30-minute sedentary bouts), 
and averaged them over the number of corresponding sedentary bouts to derive per-
sedentary-bout values. We used these per-sedentary-bout values for describing the 
characteristics of sedentary breaks since they would altogether be indicative of the 
total duration and frequency of sedentary breaks, how much (total duration) LPA 
and MVPA were included in the sedentary breaks on average per sedentary bout, 
and how often (number) these LPA and MVPA were accumulated in bouts of <5 
minute, 5–10 minute, and ≥10 minute. 

Fig. 3. Schematic representation of how sedentary bouts and sedentary breaks were 
defined and identified in sub-study IV. 
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Machine-learned activity behaviors (V) 

In sub-study V, we defined participants’ activity behaviors based on their machine-
learned activity profiles, which we built in a previous study (Niemelä et al., 2019) 
using the outputs of the wrist-mounted (Polar Active) accelerometer. The recent 
evidence suggests that any single unidimensional metric (including the most 
commonly used criterion that defines physical inactivity as the insufficient activity 
level to meet present recommendations (Warburton et al., 2017)) might not be 
enough to define individuals’ activity behaviors (Chaput et al., 2014; Rosenberger 
et al., 2019; Stamatakis, Ekelund, et al., 2019). A distinct aspect of the current 
approach is that continuous accelerometer-measured activity intensities in one full 
week across the whole intensity continuum (sedentary, LPA, and MVPA) were 
incorporated into an ML approach to obtain the activity profiles using a 
multidimensional approach (Niemelä et al., 2019). The Polar Active device was 
worn continuously for 24 hours during the measurement period. Briefly, 
accelerometer-measured activity intensities (sedentary, LPA, and MVPA) in one 
full week were incorporated into an ML approach to create the activity profiles (n 
= 4,582, valid day defined as ≥10 hours of monitor wear time). Four distinct activity 
groups (clusters) were established, and were named Inactive (n = 1,881), 
Moderately active (n = 802), Evening active (n = 1,297), and Very active (n = 602) 
(Niemelä et al., 2019). For the purposes of sub-study V, we defined those in the 
Moderately active, Evening active, or Very active clusters as active (n = 2,701), and 
the remaining ones in the Inactive cluster as inactive (n = 1,881). From the same 
seven consecutive valid measurement days used to establish the activity profiles, 
total time (min/day) spent in sedentary (≤2.0 MET), LPA (2.0–3.5 MET), and 
MVPA (≥3.5 MET) was also estimated using previously validated cut-points for 
Polar Active (Jauho et al., 2015). These cut-points have shown to provide 
comparable results to commonly used Actigraph GT3X accelerometer across 
different activity intensity categories (Leinonen et al., 2016).  

4.3.3 Cardiometabolic health markers and confounders 

Cardiometabolic health markers (sub-studies III and IV) included a range of 
adiposity markers including waist circumference, BMI, body fat, fat mass, and 
visceral fat area. Additionally, fasting blood samples from participants were 
analyzed for plasma glucose, serum insulin, total cholesterol, high-density 
lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, and 
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triglycerides as previously described elsewhere (Kiviniemi et al., 2017). The ratios 
of total to HDL (total/HDL cholesterol ratio) and LDL to HDL (LDL/HDL 
cholesterol ratio) cholesterol levels were computed (Millán et al., 2009). The 
homeostasis model assessment of insulin resistance (HOMA-IR) was calculated 
from fasting plasma glucose and insulin levels (Wallace et al., 2004). For those 
participants who underwent a 75g oral glucose tolerance test (Alberti et al., 1998), 
two-hour postload plasma glucose and insulin levels were also obtained.  

Potential confounders were chosen a priori based on previous research. Sex 
and birth weight were extracted from medical records. Other confounders were 
self-reported education level, employment status, marital status, household income, 
lifestyle (smoking status and alcohol consumption), health-related quality of life, 
and use of medication (for hypertension, high cholesterol, and diabetes). 

4.4 Data analysis 

4.4.1 Machine learning for activity intensity classification (II) 

In sub-study II, we evaluated the generalization capability of ML models developed 
for activity intensity classification from raw acceleration data. We tested the 
generalization performance of models validated within one population to 
independent ones with different characteristics and accelerometers performing 
different sets of activities from the one used to develop the model (Fig. 4 (a)). For 
this, the placement-specific classification models were validated using leave-one-
subject-out (LOSO) cross-validation within each dataset (Staudenmayer et al., 
2012), and the most optimal fit with the highest accuracy for each dataset was 
obtained. The final models were trained with the data of all participants, and then 
cross-validated on independent populations with similar accelerometer placement 
(out-of-sample testing) to evaluate their generalization performance.  

Additionally, we examined whether the generalization performance of intensity 
prediction models on independent populations can be improved by incorporating 
the information that acceleration data from different body sites (i.e., hip or wrist) 
acquired from various populations might contain (Fig. 4 (b)). For this, to keep the 
validation set independent, one dataset was used for validation at a time and was 
left out from model development (it was not used as training data). Then, using the 
remaining datasets, a merged dataset consisting of a combination of both hip- and 
wrist-based datasets was built and used as a training set to train an intensity 
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classification model. The trained model using the merged training set was then 
validated with the left-out population. To find the most optimal model, all possible 
dataset combinations were tested to find the optimal training sets achieving the 
highest accuracy in predicting activity intensity categories in the left-out dataset. 
For each created merged training set, the most optimal fit was found, and the most 
optimal model for classifying the left-out dataset was selected as the final model. 
These steps were repeated when one of the five datasets was left out at a time to 
find the optimal merged training set for all the five left-out datasets. 

Fig. 4. General schema of the tests in sub-study II. 
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Feature extraction, classification algorithm, and performance evaluation 

The same feature sets were extracted for all five datasets/placements. The non-
overlapping 60-second window length was chosen to segment the data, which is an 
appropriate window length for activity classification for both youths (Trost et al., 
2012) and adults (Ellis et al., 2014). For each interval, thirteen time- and frequency-
domain features were extracted from the three axes of measurement (i.e., x, y, and z) 
and the vector magnitude (i.e., x + y + z ), resulting in a total of 52 features (see 
the full list of extracted features in sub-study II). Artificial neural networks were 
selected to classify the three different activity intensities: sedentary behavior, LPA, 
and MVPA. Confusion matrices were used to evaluate the performance of ANN 
models, and weighted Kappa statistics (K) were calculated to ensure that the overall 
predication accuracy was not done by chance (Cohen, 1968).  

4.4.2 Sedentary time, physical activities, and cardiometabolic health 
in NFBC1966 (III and IV) 

Compositional data analysis (III) 

In study III, the 24-hour time-use composition for each participant was created by 
linearly rescaling the duration of all activities to sum to a total of 1,440 min/day. 
The 24-hour movement behavior composition was described using compositional 
(geometric) means (Chastin, Palarea-Albaladejo, et al., 2015). The variation matrix, 
which provides a proper estimation of dispersion in compositional data (Chastin, 
Palarea-Albaladejo, et al., 2015), was also calculated for the movement behavior 
composition based on the variances of the logs of all pair-wise ratios between 
behaviors (e.g., variance of ln (sedentary behavior/LPA)).  

All cardiometabolic outcome variables were log transformed prior to 
compositional data analyses. Multiple linear regression was used to investigate 
associations of the 24-hour time-use composition with cardiometabolic health 
outcomes. The 24-hour movement behavior composition for each participant was 
expressed as ratios of its parts using isometric log ratio (ilr) transformations prior 
to the regression analyses (Dumuid et al., 2018). The same ilr coordinate system 
was used to back-transform the log-ratio coordinates into proportions for 
interpretation as min/day. From the results of ilr multiple linear regression models, 
we also estimated how time reallocations between movement behaviors were 
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associated with differences in the cardiometabolic health markers (Dumuid et al., 
2018). 

Prior to regression analyses, we examined whether associations between sleep 
duration and cardiometabolic outcomes are U-shaped (Simonsohn, 2018). If 
evidence for a U-shaped association was observed for an outcome, the analysis for 
that outcome was stratified by sleep duration. On the basis of the existing literature 
(Hirshkowitz et al., 2015; Knutson, 2010) and sleep durations in this study sample, 
we stratified the analysis by ≤7.5 and >7.5 hours per day (hours/day) asleep for the 
outcomes displaying a U-shaped relationship (see sub-study III, Supplementary 
Material).  

Profile analysis (IV) 

Profile analysis was performed with the K-means clustering algorithm (Kanungo 
et al., 2002). K-means partitions the data into a user-defined number (K) of disjoint 
clusters based on the input variables (features) (Kanungo et al., 2002). All the 65 
accumulation pattern variables were included in the cluster analysis. Prior to 
inclusion in the cluster analysis, all the input variables were standardized using the 
min-max method to have a range of 0–1 (Mohamad et al., 2013). The similarity of 
subjects was assessed using Euclidian distance, and the optimal number of clusters 
was obtained using the “elbow method” (Kodinariya et al., 2013).  

Differences between profiles according to the variables used for describing the 
accumulation pattern of sedentary bouts and breaks were examined with one-way 
analysis of variance (ANOVA), and the p-values of the overall tests were presented. 
When the differences between groups were found significant (p<0.05), pairwise 
comparison was performed with Tukey post hoc tests for normally distributed 
variables and Kruskal–Wallis tests for skewed variables. 

Linear regression models were conducted to analyze the associations 
(%difference) between the group/profile membership (included as categorical 
predictor) and each of the cardiometabolic health outcome in separate models. All 
the cardiometabolic outcomes were log-transformed prior to inclusion in the 
regression analyses. For each outcome, we tested the association with five 
incremental models, including an unadjusted model and four adjusted models. The 
unadjusted included only profile membership and cardiometabolic outcomes. 
Model 1 was partially adjusted for selected confounders including age, sex, 
education, and employment and marital status, and Model 2 was further adjusted 
for medication use, health-related quality of life score, smoking, alcohol 
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consumption, and income. Model 3 was additionally adjusted for sedentary time 
and Model 4 for MVPA time to examine whether the associations would persist 
independent of these two variables. To address reverse causation (Kivimäki et al., 
2019), we repeated the regression analyses after excluding those participants who 
had hypertension, heart diseases, and/or diabetes. For the association analyses, the 
group that was considered unhealthiest based on their accumulation patterns 
according to existing literature was selected as the referent group (Owen et al., 2010; 
Tremblay et al., 2017).  

4.4.3 Correlates of activity behaviors in NFBC1966 (V) 

In study V, we used the questionnaire and clinical and environmental measures in 
the 46-year follow-up (excluding those that had more than ~10% missing values) 
as input variables in their original form to classify the activity behavior categories 
(active and inactive) using the Chi-squared Automatic Interaction Detection 
(CHAID) decision tree algorithm (Kass, 1980). The decision tree model was 
created and validated with 10-fold cross-validation to ensure the robustness of the 
final decision tree model (Blockeel et al., 2002), and a confusion matrix was shown. 
In the visualization of the final tree, the percentage of active and inactive 
participants in each subgroup, along with the response index (RI), were presented. 
The RI is the percentage of inactive participants in each subgroup relative to that 
of inactive participants in the total sample (i.e., 41.1%), and could be utilized as an 
indicator of the direction and strength of the association (Lakerveld et al., 2017).  

We also examined the association between factors emerging from the model 
and time spent in sedentary, LPA, and MVPA to determine the significance and 
relative importance of the methodologically identified factors. We used adjusted 
generalized linear mixed models, including urban–rural area as a random effect, to 
examine the associations between each independent variable (factor emerging in 
the decision tree) separately with time (min/day) spent in sedentary, LPA, and 
MVPA. Age and gender were used as covariates in all models. We standardized the 
continuous independent variables to obtain a mean of zero and a standard deviation 
(SD) of one before including them in regression analyses. As such, we could 
interpret coefficients (B) from the models encompassing a continuous independent 
variable as a change in the outcome (e.g., min/day of LPA) for every 1 SD change 
in the independent variable. We included the categorical and ordinal independent 
variables in the regression analyses in the form of dummy variables and set 
response categories at the lowest end as the reference category.  
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Statistical tools and implementation (II–V) 

In study II, the “nnet” package in R (version 3.6.2, R Core Team, Vienna, Austria) 
was used to train the ANN, and each network comprised a single hidden layer with 
10 nodes. In study III, all analyses were performed in R, and the compositional data 
analysis was performed with the packages “lmtest,” “robCompositions,” and 
“Compositions.” In study IV, clustering analysis was performed in MATLAB 
(version R2019b, MathWorks, Natick, MA), and association analyses were 
performed using IBM SPSS Statistics (version 25.0, IBM Corporation, Armonk, 
USA). In study V, all analyses (including the decision tree analysis) were performed 
with IBM SPSS Statistics for Windows. For decision tree analysis, the pruning 
criteria were set such that groups smaller than 80 were not split any further, and no 
group smaller than 40 was formed. Additionally, the tree growth was limited to 10 
layers, and missing values were included in the analysis as a separate category that 
was allowed to merge with other categories in the decision tree. A p-value of 0.05 
was used to interpret significance in all statistical analyses (III–V). 
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5 Results 

5.1 Summary of the systematic review (I) 

An overview of all 62 included studies is presented in sub-study I, Table 1. The 
mean quality score in the included studies was high (average: 0.88, range: 0.60‒
1.00). The main sources of bias were small sample size and monitoring a limited 
set of activity types (see Appendix 1). The models were mainly developed for hip- 
(n = 43), wrist- (n = 31), ankle- (n = 15), and thigh-worn (n = 10) accelerometers. 
The predictive accuracies were therefore extracted in relation to these four 
attachment sites. Other accelerometer placements (e.g., chest, ear, knee, shin) were 
used in a total of fourteen studies, and we extracted and reported their predictive 
accuracies under the category “other placements.” The ANN was the most used ML 
algorithm among the included studies (n = 32), followed by support vector 
machines (n = 18), random forests (n = 12), and decision tree (n = 11).  

Forty-eight (77%) out of the 62 included studies calibrated and validated 
activity recognition models. From the studies developing activity recognition 
models, ten (21%) compared activity recognition models with hip and wrist, six 
(12%) with hip and ankle, four (8%) with hip and thigh, seven (15%) with wrist 
and ankle, three (6%) with wrist and thigh, and two (4%) with ankle and thigh (Fig. 
5). Overall, the predictive accuracy of models developed with acceleration data 
from different attachment sites were highly comparable regardless of age groups. 
For instance, although most studies comparing hip- and wrist-based models 
reported a higher accuracy for the hip-based model, on average the absolute 
difference between accuracy of the hip- and wrist-based models was 5.5% (SD 
4.6%).  

Similar patterns of findings were observed when the predictive accuracy of 
activity recognition models from different wear locations were compared (Fig. 5). 
On average, the absolute difference between accuracy of the hip- and ankle-based 
models was 5.6% (SD 6.3%), between hip- and thigh-based models was 8.9% (SD 
5.6%), between wrist- and ankle-based models was 7.1% (SD 5.3%), and between 
wrist- and thigh-based models was 6.0% (SD 7.2%). Six studies tested the validity 
of activity recognition models in an independent population. All those studies 
reported accuracy degradation when the models cross-validated on an independent 
population (range: ~2%–30%).  
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Fig. 5. The extracted prediction accuracies (overall accuracy in %, shown inside the 
bars) of activity recognition models in relation to accelerometer placement, categorized 
by the age range of the population from which the models were developed. The 
literature reference numbers and quality scores are presented in square brackets [ ] and 
parentheses ( ), respectively. The list of reference numbers is according to the reference 
list in sub-study I. *Indicates the data type was not raw acceleration. ^Indicates the data 
was acquired in free-living settings.  
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5.2 Generalization performance of machine-learned models for 
activity intensity classification (II) 

In LOSO cross-validation (Fig. 6), with both raw and tailored data, the overall 
classification accuracy of the hip- and wrist-based models was high, achieving 
above 80% (range: 81.8–95.4%); the only exception was PAMAP (W), which 
showed a slightly lower classification accuracy (raw: 71.9%, tailored: 79.6%). 
Across all five datasets, the differences in classification accuracy of the three 
intensity categories with raw and tailored data were marginal (range: 0.2–9.2 
percentage points), resulting in marginal differences in overall classification 
accuracy (0.7–7.7 percentage points) and Kappa values (K = 0.01–0.09).  

When the models were cross-tested with another dataset (Fig. 7), all models 
demonstrated lower performance than those obtained by within-dataset cross-
validation (Fig. 6). The reduction in classification accuracy ranged from 20.1 to 
44.3 percentage points. Raw and tailored data minimally affected the overall 
accuracies (0.7–13.1 percentage points) and Kappa values (K = 0.01–0.11). 

The performance of the ANN models trained on merged training sets in the 
classification of activity intensities in another population that was not part of the 
training data is shown in Fig. 8. All possible dataset combinations were analyzed, 
having one population left out at a time, but only the most optimal results are 
reported here. In all cases (with both raw and tailored data), the models trained on 
the merged datasets yielded a better generalization performance (Fig. 8) compared 
to those obtained by placement-specific models (Fig. 7). This was primarily 
attributable to the better classification of all three intensity categories. The overall 
classification accuracy and agreements across the datasets were lower (2.5–19.3 
percentage points, K = 0.01–0.21), but approached those obtained by within-dataset 
cross-validation (Fig. 6), and were slightly higher for the dataset PAMAP (W).  
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Fig. 6. Confusion matrices showing the performance of ANN models in activity intensity 
classification with raw data and tailored data (acceleration limited to ±5 g) validated 
using leave-one-subject-out cross-validation within datasets. The values across the 
intensity categories and overall accuracy (95% confidence interval) are presented in 
percentage (%). ∗: The raw data and tailored data were similar. SB = sedentary behavior, 
LPA = light physical activity, MVPA = moderate-to-vigorous physical activity. 
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Fig. 7. Confusion matrices showing the performance of leave-one-subject-out validated 
ANN models in activity intensity classification in an independent population group with 
raw data and tailored data (acceleration limited to ±5 g). The values across the intensity 
categories and overall accuracy (95% confidence interval) are presented in percentage 
(%). SB = sedentary behavior, LPA = light physical activity, MVPA = moderate-to-
vigorous physical activity. 
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Fig. 8. Confusion matrices showing the performance of ANN models trained on merged 
datasets with raw data and tailored data (acceleration limited to ±5 g) in activity intensity 
classification in an independent population group. The values across the intensity 
categories and overall accuracy (95% confidence interval) are presented in percentage 
(%). SB = sedentary behavior, LPA = light physical activity, MVPA = moderate-to-
vigorous physical activity. 

5.3 Studies with NFBC1966 (III, IV, and V) 

5.3.1 Twenty-four-hour time-use and cardiometabolic health (III) 

A total of 3,443 cohort members provided valid hip-based acceleration data, 
questionnaires and other measurement data that were needed. Evidence for U-
shaped relationships were seen for fasting serum insulin, 2-hour glucose, HOMA-
IR, triglycerides, visceral fat area, and BMI (see sub-study III, Supplementary 
Material). Compared to the compositional means of participants who slept >7.5 
hours/day, participants who slept ≤7.5 hours/day had a larger compositional mean 
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for sedentary behavior, LPA, and MVPA (see sub-study III, Table 2). The variation 
matrix of the included sample, overall and stratified by sleep duration is described 
in sub-study III, Supplementary Material. Overall, the largest log-ratio variances 
all included MVPA, which indicates that MVPA was least dependent on the other 
movement behaviors. The lowest log-ratio variance was between sleep and 
sedentary behavior (0.063), which indicates more consistent proportionality (co-
dependency) between these behaviors.  

The composition of movement behaviors across the 24-hour day was 
significantly associated with each of the cardiometabolic outcomes (model P value 
<0.001 for all). Regardless of the shape of the association with sleep duration 
(Tables 4 and Table 5), relative to all other behaviors more daily time in both MVPA 
and LPA were consistently beneficially associated with cardiometabolic outcomes, 
for example 2-hour insulin (MVPA, β = -0.28; LPA, β = -0.30) and body fat (MVPA, 
β = -0.11; LPA, β = -0.15). For outcomes with a linear relationship with sleep 
duration (Table 4), relative to all other behaviors, more time spent asleep and in 
sedentary behaviors were both detrimentally associated with outcomes, for 
example total/HDL cholesterol ratio (sleep, β = 0.13; sedentary behavior, β = 0.05) 
and body fat (sleep, β = 0.01; sedentary behavior, β = 0.16). Time in sedentary 
behaviors was not associated with fasting plasma glucose and time in sleep was not 
significantly associated with waist circumference (although the association 
bordered significance, p = 0.091). For outcomes that showed a U-shaped 
relationship with sleep duration (Table 5), generally more daily sedentary behaviors 
relative to all the other behaviors was detrimentally associated with outcomes.  

The results for time reallocations between 24-hour movement behaviors with 
all cardiometabolic health outcomes are presented in sub-study III, Supplementary 
Material. From the estimates (percentage change), it was apparent that more time 
in MVPA at the expense of all other behaviors was associated with favorable 
changes in outcomes. For instance, as shown in Fig. 9, 30 min/day more MVPA 
relative to the remaining behaviors was significantly associated with lower 2-hour 
insulin (-11.8%, 95% confidence interval (-13.9, -9.6)). In general, reallocating 
time from sedentary behaviors or sleep to LPA was favorably associated with 
outcomes but to a lesser extent compared to MVPA (Fig. 10). For instance, 60 
min/day more LPA at the expense of sedentary behaviors and sleep was associated 
with lower 2-hour insulin (-6.1% (-7.7, -4.4) and -7.4% (-10.3, -4.5), respectively) 
(Fig. 10). Conversely, opposite time reallocations including adding time to any 
other behavior from MVPA, or generally adding time to sleep or sedentary behavior 
from LPA, was associated with unfavorable changes in outcomes. 
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5.3.2 Sedentary time, sedentary breaks, and cardiometabolic health 
(IV) 

The optimal number of clusters characterizing how sedentary time was 
accumulated and interrupted was selected as 4 (see sub-study IV, Supplementary 
Material). All the 65 variables describing patterns of the accumulation of sedentary 
time and sedentary breaks were significantly different between clusters (see sub-
study IV, Table 2), indicating the relevance of all the variables used for creating the 
analysis (overall p-values for all variables in ANOVA tests <0.001). 

Groups of participants with similar accumulation patterns were labelled 
according to their distinguishing accumulation patterns, as shown by high and low 
Z-values (see sub-study IV, Fig. 2) and means (SD) for all the 65 accumulation 
pattern variables (see sub-study IV, Table 2). We named these groups “Couch 
potatoes” (n = 1222, 28% of the sample), “Prolonged sitters” (n = 1179, 27%), 
“Shortened sitters” (n = 1529, 34%), and “Breakers” (n = 509, 11%). Couch 
potatoes had a high number of sedentary bouts of different lengths that, compared 
to the other three groups, were interrupted less frequently by non-sedentary bouts 
lasting for relatively shorter durations. The duration of interruptions of sedentary 
bouts of different lengths were comparable in Prolonged sitters and Shortened 
sitters, but Prolonged sitters accumulated most of their sedentary time in longer 
bouts of ≥15–30 minutes, while Shortened sitters did so in bouts of <15–30 minutes. 
Breakers were engaged in short sedentary bouts, which were, compared to the other 
three groups, more frequently interrupted by non-sedentary bouts of relatively 
longer duration. Since Couch potatoes spent the longest time in sedentary activities 
and had the shortest duration of interruptions of sedentary time, this group was 
considered the unhealthiest and was used as a reference for comparisons. 

Overall, the average consumption of alcohol was highest among the Couch 
potatoes (11.3 grams per day), and they were least frequently non-smokers (49.2%) 
and most frequently (19.0%) on medication for diabetes, cholesterol, and/or 
hypertension (see sub-study IV, Table 1). The proportion of females was lowest in 
the Breakers (48.1%), followed by Prolonged sitters (52.9%), Couch potatoes 
(55.4%), and Shortened sitters (63.9%).  

Table 6 shows the associations between the four distinct groups and 
cardiometabolic outcomes. In unadjusted regression models, Prolonged sitters had 
favorable differences in the markers of cardiometabolic health compared to Couch 
potatoes (range: 1.7%–8.1% lower values depending on the outcome), for example 
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lower levels of 2-hour insulin (8.1%), triglycerides (5.2%), and body fat (1.7%). 
However, although the favorable associations for triglycerides, total/HDL 
cholesterol, LDL/HDL cholesterol, and visceral fat area were still significant in 
partially adjusted models (Model 1), none remained significant when the models 
were further adjusted for all potential confounders (Model 2). 

When included in unadjusted models (Table 6), compared to Couch potatoes, 
Shortened sitters and Breakers both had favorable differences in the markers of 
cardiometabolic health (range: 2.1%–23.5% lower values depending on the 
outcome and group), for example, lower levels of 2-hour insulin (12.6% and 
23.5%), fasting serum insulin (13.6% and 13.2%), triglycerides (11.1% and 12.9%), 
and body fat (2.2% and 5.6%). When unadjusted, Shortened sitters also had 
significantly lower fasting plasma glucose (2.2%) compared to Couch potatoes. 
These associations were all retained significantly in partially adjusted models 
(Model 1) and when the models were adjusted for all potential confounders (Model 
2); the only exception was that Shortened sitters were not associated with a 
percentage difference in 2-hour glucose (in Model 1 and Model 2).  

Results for adjusted models for all potential confounders and sedentary time 
(Model 3) and MVPA time (Model 4) can be found in sub-study IV, Table 3 and 
Table 4. When included in adjusted models for all potential confounders and 
sedentary time (see sub-study IV, Table 3 and Table 4, Model 3), compared to 
Couch potatoes, Shortened sitters and Breakers both had typically favorable 
differences in the markers of cardiometabolic health, for example, lower levels of 
fasting serum insulin (8.0% and 7.6%), body fat (1.8% and 2.8%), and fat mass 
(5.4% and 6.2%). Shortened sitters had also favorable differences in 
cardiometabolic health markers compared to Couch potatoes when the models were 
adjusted for both potential confounders and MVPA time (Model 4), such as lower 
levels of 2-hour insulin (6.5%), fasting serum insulin (8.8%), triglycerides (5.2%), 
and body fat (2.2%). However, when the models were adjusted for both potential 
confounders and MVPA time (see sub-study IV, Table 3 and Table 4, Model 4), 
compared to Couch potatoes, the differences in Breakers for 2-hour insulin, fasting 
serum insulin, triglycerides, 2-hour glucose, and all adiposity measures did not 
reach the level of significance. Similar patterns of associations were observed when 
the analyses were repeated after excluding those participants who had hypertension, 
heart diseases, and/or diabetes (see sub-study IV, Supplementary Material, Table 
S1and Table S2). 
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Table 6. Linear regression analysis of the association (percentage difference with (95% 
confidence intervals (CI)) between the four distinct clusters characterizing 
accumulation and interruption sedentary time and cardiometabolic markers among 
4,439 middle-aged participants. 

Cardiometabolic 

markers 

Prolonged sitters vs. Couch 

potatoes 

Shortened sitters vs. Couch 

potatoes 

Breakers vs. Couch 

potatoes 

 %difference (95% 

CI) 

p-value %difference (95% 

CI) 

p-value %difference (95% 

CI) 

p-value 

2-hour insulin       

Unadjusted  -8.1 (-13.8, -2.0) 0.011 -12.6 (-17.8, -7.1) <0.001 -23.5 (-29.7, -16.8) <0.001 
Model 1 -5.2 (-11.5, 1.5) 0.129 -11.8 (-17.4, -6.0) <0.001 -25.0 (-31.5, -18.0) <0.001 
Model 2 -4.1 (-10.7, 3.0) 0.258 -10.0 (-15.9, -3.7) 0.002 -24.3 (-31.3, -16.6) <0.001 

Fasting serum insulin      

Unadjusted  -4.2 (-8.6, 0.5) 0.077 -13.6 (-17.4, -9.7) <0.001 -13.2 (-18.4, -7.8) <0.001 

Model 1 -3.3 (-8.0, 1.5) 0.168 -13.8 (-17.7, -9.8) <0.001 -15.5 (-20.7, -9.9) <0.001 

Model 2 -0.7 (-5.6, 4.5) 0.788 -11.3 (-15.5, -6.9) <0.001 -13.2 (-18.9, -7.1) <0.001 
Triglycerides       

Unadjusted  -5.2 (-8.7, -1.4) 0.008 -11.1 (-14.3, -7.8) <0.001 -12.9 (-17.1, -8.3) <0.001 
Model 1 -5.1 (-8.8, -1.3) 0.009 -9.5 (-12.8, -6.1) <0.001 -14.4 (-18.7, -10.0) <0.001 
Model 2 -1.5 (-5.4, 2.7) 0.481 -6.7 (-10.2, -3.0) 0.001 -11.3 (-16.1, -6.3) <0.001 

Total/HDL cholesterol      

Unadjusted  -2.8 (-4.9, -0.6) 0.013 -6.9 (-8.8, -5.0) <0.001 -7.5 (-10.1, -4.9) <0.001 
Model 1 -3.2 (-5.3, -1.1) 0.003 -5.4 (-7.3, -3.5) <0.001 -9.2 (-11.7, -6.7) <0.001 
Model 2 -1.8 (-4.0, 0.5) 0.119 -4.1 (-6.1, -2.1) <0.001 -8.2 (-11.0, -5.4) <0.001 

LDL/HDL cholesterol      

Unadjusted  -3.8 (-6.9, -6.8) 0.018 -9.4 (-12.2, -6.7) <0.001 -10.6 (-14.3, -6.9) <0.001 
Model 1 -4.1 (-7.1, -1.0) 0.010 -7.6 (-10.3, -4.8) <0.001 -13.3 (-16.9, -9.6) <0.001 
Model 2 -2.5 (-5.7, 0.9) 0.151 -6.0 (-9.0, -3.0) <0.001 -12.4 (-16.3, -8.3) <0.001 

2-hour glucose       

Unadjusted  -1.6 (-3.7, -0.6) 0.160 -2.1 (-4.1, -0.1) 0.046 -2.8 (-5.5, -0.1) 0.05 
Model 1 -1.8 (-4.1, 0.5) 0.130 -2.0 (-4.1, 0.2) 0.072 -3.5 (-6.5, -0.5) 0.023 
Model 2 -2.0 (-4.3, 0.5) 0.122 -1.7 (-3.9, 0.6) 0.149 -3.9 (-7.1, -0.7) 0.017 

Fasting plasma glucose      

Unadjusted  -0.5 (-1.5, 0.5) 0.299 -2.2 (-3.1, -1.3) <0.001 0.0 (-1.3, 1.3) 0.986 

Model 1 -0.4 (-1.5, 0.6) 0.342 -1.7 (-2.6, -0.7) 0.001 -0.6 (-2.0, -0.7) 0.401 

Model 2 0.2 (-0.9, 1.3) 0.711 -1.1 (-2.1, -0.1) 0.032 0.4 (-1.1, 1.8) 0.617 
Body fat       

Unadjusted  -1.7 (-2.9, -0.5) 0.005 -2.2 (-3.2, -1.1) <0.001 -5.6 (-7.0, -4.2) <0.001 
Model 1 -1.1 (-2.1, 0.0) 0.053 -3.5 (-4.5, -2.6) <0.001 -5.3 (-6.6, -3.9) <0.001 
Model 2 -0.6 (-1.7, 0.5) 0.301 -3.0 (-3.9, -1.9) <0.001 -4.7 (-6.0, -3.2) <0.001 
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Cardiometabolic 

markers 

Prolonged sitters vs. Couch 

potatoes 
Shortened sitters vs. Couch 

potatoes 
Breakers vs. Couch 

potatoes 
%difference (95% 

CI) 
p-value %difference (95% 

CI) 
p-value %difference (95% 

CI) 
p-value 

Fat mass       
Unadjusted  -3.9 (-7.3, -0.5) <0.001 -10.1 (-13.2, -7.1) <0.001 -14.4 (-18.2, -10.3) 0.025 
Model 1 -2.5 (-6.0, 1.1) 0.176 -11.5 (-14.4, -8.3) <0.001 -15.0 (-19.0, -10.9) <0.001 
Model 2 -0.9 (-4.5, 2.9) 0.656 -9.4 (-12.6, -6.1) <0.001 -13.1 (-17.3, -8.5) <0.001 

Visceral fat area       
Unadjusted  -5.2 (-8.2, -1.9) 0.002 -8.9 (-11.7, -5.9) <0.001 -11.4 (-15.1, -7.5) <0.001 
Model 1 -3.8 (-7.1, -0.4) 0.029 -10.0 (-12.9, -6.9) <0.001 -13.2 (-17.1, -9.1) <0.001 
Model 2 -2.0 (-5.5, 1.6) 0.274 -8.1 (-11.1, -4.8) <0.001 -11.4 (-15.5, -6.9) <0.001 

BMI       
Unadjusted  -1.3 (-2.6, 0.1) 0.07 -3.7 (-5.0, -2.5) <0.001 -2.4 (-4.0, -0.6)  0.007 
Model 1 -0.9 (-2.4, -0.5) 0.197 -3.6 (-4.9, -2.4) <0.001 -3.5 (-5.4, -1.8) <0.001 
Model 2 -0.3 (-1.7, 1.2) 0.699 -2.8 (-4.1, -1.5) <0.001 -2.8 (-4.6, -0.9) 0.005 

Waist circumference      
Unadjusted  -0.8 (-2.0, 0.3) 0.170 -3.8 (-4.9, -2.9) <0.001 -2.4 (-3.7, -0.9) 0.002 
Model 1 -0.7 (-1.9, -0.4) 0.190 -3.0 (-4.0, -2.0) <0.001 -3.9 (-5.3, -2.6) <0.001 
Model 2 -0.1 (-1.3, 1.0) 0.809 -2.3 (-3.3, -1.2) <0.001 -3.1 (-4.6, -2.7) <0.001 

Couch potatoes was considered as the unhealthiest profile and selected as the referent group. Unadjusted 

models included only group membership. Model 1 was partially adjusted for age, sex, education, 

employment, and marital status, and Model 2 was further adjusted for medication use (for hypertension, 

cholesterol, and/or diabetes), health-related quality of life score, smoking, alcohol consumption, and 

income. Model 3 was additionally adjusted for total sedentary time, and Model 4 for total MVPA time. 

Results for Model 3 and Model 4 can be found in sub-study IV, Table 3 and Table 4. Significant 

associations are shown in bold. BMI = body mass index, HDL = high-density lipoprotein, LDL = low-

density lipoprotein. 

5.3.3 Data-driven correlates of activity behaviors (V) 

Overall, the variables related to medication use and diseases had the highest number 
of missing values (~20%–50%) while the number of missing values in 
environmental and adiposity-related variables were lowest (~1%–5%). We used a 
total of 168 factors as input variables after eliminating those with over ~10% 
missing values (see the full list of input variables in sub-study V, Supplementary 
Material, Tables S1–S3).  

The overall classification accuracy of the decision tree was 69.7% (Table 7). 
The final decision tree is shown in sub-study V, Fig. 2. The decision tree algorithm 
selected a total of 36 different factors of different domains, by which 54 subgroups 
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of participants were formed, with 26 predicted as active and 28 as inactive. Overall, 
participants with higher body fat percentage (>31%) were more likely to be inactive 
(RI: 1.16 and 1.49) compared with those with lower body fat (<28%). The largest 
subgroup of inactive participants (n = 193, RI = 1.55) included those with the 
highest body fat who reported their physical activity frequency through gardening 
more than once a month, and were with a normalized heart rate recovery slope of 
<55% per second. The largest active subgroup (n = 335, RI = 0.39) was composed 
of participants with the lowest body fat in the study population and with a 
normalized heart rate recovery 60 seconds after exercise of >25 beats per minute. 
Participants who lived in city/rural centers and had a physically demanding 
occupation (i.e., process and transport workers, forestry workers and farmers, and 
other manual workers) had the least risk of being inactive (RI = 0.11).  

Table 7. Confusion matrix showing the performance of decision tree model with 10-fold 
cross validation. 

 Predicted outcome  

Actual outcome Active, n Inactive, n Percent correct 

Active, n 2014 687 74.6% 

Inactive, n 705 1176 62.5% 

Most continuous factors in the relatively high layers of the decision tree model and 
larger subgroups significantly explained min/day in all three activity intensities 
(Table 8). For example, body fat was positively associated with sedentary level (B 
= 26.5) and inversely associated with LPA (B = -16.1) and MVPA (B = -11.7) levels. 
Categorical and ordinal factors were also associated with min/day in sedentariness, 
LPA, and/or MVPA (sub-study V, Table 4). Overall, from the regression coefficients 
(B values, indicative of changes in min/day of sedentary, LPA, and MVPA for every 
1 SD change in the predictor and of changes from the reference response categories, 
respectively), the associations seemed generally stronger for those factors that 
emerged in the higher layer and larger subgroups. For instance, a higher body fat 
percentage and a lower normalized heart rate recovery slope were associated with 
lower and higher min/day in MVPA, respectively, but the former, which appeared 
in the higher level of the decision tree, was associated with MVPA to a greater 
extent (B = -11.7 vs. 9.5).  
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Table 8. Associations with the whole study population (n=4,582) between the 
continuous factors emerged in the decision tree model and time spent in sedentary 
activity, light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). 

Continuous factors emerged in the 

decision tree model 

Sedentary (min/day) LPA (min/day) MVPA (min/day) 

 B (95% CI) B (95% CI) B (95% CI) 

Body fat percentage 26.5 (23.5, 29.6)** -16.1 (-18.5, -13.6)** -11.7 (-12.9, -10.6)** 

Normalized heart rate recovery 60 

seconds after exercise 

-16.1 (-18.1, -13.4)** 9.9 (7.7, 12.1)** 9.6 (8.6, 10.6)** 

Extravagance score 6.3 (3.5, 9.0)** -3.7 (-5.9, -1.5)** -0.6 (-1.6, 0.5) 

Average weekday total sitting time 34.1 (31.5, 36.7)** -25.3 (-27.4, -23.3)** -5.8 (-6.8, -4.7)** 

Number of workplaces 2.9 (-0.1, 6.0) -3.2 (-5.6, -0.7)* 0.6 (-0.5, 1.7) 

Normalized heart rate recovery 30 

seconds after exercise 

-16.9 (-19.6, -14.2)** 11.0 (8.8, 13.2)** 9.1 (8.0 to 10.1)** 

Fear of uncertainty score -1.8 (-4.6, 0.9) 0.7 (-1.6, 2.9) -0.6 (-1.7, 0.4) 

Weight 13.3 (10.3, 16.3)** -8.4 (-10.7, -6.0)** -3.4 (-4.5, -2.2)** 

Skeletal muscle mass -8.4 (-13.1, -3.8)** 3.5 (-0.1, 7.2) 9.6 (7.8, 11.3)** 

Normalized heart rate recovery slope -17.7 (-15.0, -20.4)** 10.6 (12.8, 8.4)** 9.5 (10.5, 8.4)** 

Fitness score -23.4 (-26.2, -20.7)** 15.1 (12.9, 17.3)** 10.7 (9.7, 11.8)** 

Population density 7.5 (3.7, 11.4)** -7.0 (-10.1, -3.1)** 0.8 (-0.5, 2.2) 

Number of housing unit in row 

houses 

3.2 (0.2, 6.2)* -2.9 (-5.3, -0.5)* -0.2 (-1.3, 0.9) 

Average weekday sitting time at the 

office or other such place 

27.9 (25.2, 30.6)** -22.4 (-24.6, -20.3)** -2.6 (-3.6, -1.5)** 

Number of public transportations 

stops 

4.1 (1.8, 8.1)** -3.6 (-6.1, -1.0)** 0.3 (-0.8, 1.5) 

Number of road accidents 5.9 (2.5, 9.4)** -3.8 (-6.6, -1.1)** 0.1 (-1.13, 1.3) 

Explorative excitability score 3.1 (0.4, 5.9)* -2.2 (-4.4, 0.03) 0.6 (-0.4, 1.7) 

Overall health-related quality of life 

score 

-8.4 (-11.1, -5.7)** 5.81 (3.6, 7.9)** 4.1 (3.1, 5.1)** 

Lean body mass -8.8 (-13.4, -4.3)** 3.1 (0.3, 7.6)* 9.4 (7.8, 11.2)** 

Disorderliness score 6.4 (3.6, 9.1)** -4.8 (-6.1, -2.6)** -0.7 (-1.8, 0.3) 

Impulsiveness score 2.2 (-0.5, 4.1) -1.5 (-3.7, 0.7) -0.4 (-1.4, 0.6) 

Average weekday computer use time 14.7 (11.9, 17.5)** -11.4 (-13.7, -9.2)** -4.5 (-5.5, -3.4)** 

The regression coefficients (B) with (95% confidence interval) from generalized linear mixed model 

controlling for gender and age with urban-rural area as a random effect. *p<0.05; **p<0.01. min/day = 

minutes per day. 
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6 Discussion 
The present study reviewed studies calibrating and validating wearable 
accelerometers using machine learning approaches, and evaluated the 
generalization capability of machine learning models developed for classifying 
activity intensities across the full intensity continuum in terms of sedentary 
behavior, LPA, and MVPA. Additionally, this study examined the associations 
between levels and patterns of activity across the entire intensity continuum with 
cardiometabolic health markers in a large population-based sample of Finnish 
adults, and a data-driven hierarchy for predicting their machine-learned activity 
behaviors was created. Based on the systematic review, overall predictive 
accuracies of ML-based models developed for activity recognition could be 
acceptable irrespective of accelerometer placement. Our cross-dataset tests 
revealed that ML models (i.e., ANN) developed with raw acceleration data and a 
within-population cross-validation technique are not generalizable to other 
populations monitored with different accelerometers. Overall, the findings in this 
study suggest that adults may gain cardiometabolic health benefits not only by 
MVPA, but also through LPA. Finally, the data-driven hierarchy of correlates 
created here consisted of factors of relative importance, and can be used to target 
and tailor interventions for promoting physical activity among middle-aged adults. 

6.1.1 Accelerometers and machine leaning approaches (I and II) 

From the systematic review (sub-study I), it was apparent that some ML approaches 
including ANN, support vector machines, and random forests were more 
commonly used than others. Although studies comparing ML approaches to cut-
points and regression equations have generally reported better predictive abilities 
for ML models (Ellis et al., 2016; Lyden, Kozey-Keadle, et al., 2014; Trost et al., 
2017), it is still difficult to identify a single ML technique that is universally better 
than others for activity recognition. Hence, comparative studies examining the 
predictive ability of different ML techniques developed for activity recognition 
have reported that the predictive accuracy of different ML approaches are 
comparable, (e.g., Trost et al., 2017; Zhang, Rowlands, et al., 2012). This suggests 
that certain ML techniques could be adopted in order to harmonize data processing 
methods, and to avoid the proliferation of data processing methods and further 
methodological discrepancies. 
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Currently, it seems that there is no agreement in the existing literature on a 
single optimal accelerometer placement that would provide the highest overall 
predictive accuracy. Previous studies have suggested that accelerometry results 
from different wear locations may be incomparable (Ellis et al., 2016). To narrow 
down the gap between differences in accelerometry results, the existing literature 
has demanded consensus on both data measurement and processing protocols to 
enhance the interstudy comparison among future accelerometry-based studies 
(Strath et al., 2012; Wijndaele et al., 2015). We found that the variation among the 
reported overall predictive accuracy of ML models is minimally related to 
accelerometer placement, as opposed to cut-points and regression equations (Kim 
et al., 2012; Migueles et al., 2019). However, one important observation in the 
systematic review was that a limited number of studies tested the validity of their 
models outside of the development dataset. Therefore, it remains unclear whether 
these minimal differences in the predictive accuracies of ML models would remain 
when applied to another population and free-living data. Nevertheless, it is probable 
that standardized data measurement and processing protocols could be easier to 
achieve and adopt, considering that advanced ML modeling approaches may 
provide the opportunity of processing accelerometer data with minimal accuracy 
loss according to the wear location.  

Based on the findings of systematic review, moving towards standardization of 
accelerometry data processing methods may require further clarification of the 
optimal values for different parameters required to calibrate and validate 
accelerometer-based activity monitors using ML approaches, such as sampling rate 
and window length. In particular, it is still elusive which input features from which 
measurement axes (x, y, z, and/or VM) should be selected in relation to 
accelerometer placement for prediction of activities in terms of type, category, 
intensity, or energy expenditure. An alternative method that does not require feature 
selection is the deep learning approach. Novel deep learning approach may 
eventually facilitate the standardization of accelerometry data processing 
techniques considering that they can automatically identify and learn the 
representations of raw accelerometry data that are needed for activity prediction 
(Wang et al., 2019). Nevertheless, it appears that to date most researchers have 
continued to use cut-points to interpret accelerometer data (Migueles et al., 2017). 
This is partly because cut-point-based methods are relatively easier to deploy and 
understand (Migueles et al., 2017). To facilitate the employment of ML approaches, 
further collaboration may therefore be required between the measurement experts, 
statisticians, developers, and end-users in order to develop easy-to-deploy and 
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point-and-click platforms for ML techniques, and eventually to move towards 
standardized data processing approaches (Bassett Jr et al., 2012; van Hees et al., 
2016). 

Our cross-dataset tests (sub-study II) highlighted that the high accuracy of 
within-dataset-validated models is not transferable to another population, 
indicating that within-dataset cross-validation alone may not be sufficient to 
understand how ML models would perform in another population. In line with our 
findings, few studies examining the generalization capability of activity 
classification models have also shown that there could be a significant reduction in 
the performance of within-sample-validated ML models when applied to another 
dataset (Bastian et al., 2015; Freedson et al., 2011; Montoye, Westgate, et al., 2018). 
Our results extend this finding by signifying that raw accelerometry and advanced 
modeling techniques do not necessarily warrant the generalizability of models to 
different populations, whose activities are monitored by different accelerometers.  

In sub-study II, our ANN activity intensity prediction models trained on a 
merged training set classified the activity intensities with acceptable performance 
in another population group with markedly different characteristics, which was not 
part of the training phase and was monitored using a different accelerometer. These 
results suggest that integrating multiple independent accelerometry datasets into 
the training set might be a viable approach to augment the generalization 
performance of the models. This finding is promising given that there has been a 
lack of methodologies for enhancing the robustness and generalization capability 
of ML models (de Almeida Mendes et al., 2018; Montoye, Nelson, et al., 2018; 
Montoye, Westgate, et al., 2018). The marginal differences between raw and 
tailored data are also encouraging because they imply that enhancing the 
generalization performance of intensity prediction models can be done by 
combining original raw acceleration data even without data preprocessing (e.g., 
data filtering or conversion).   

6.1.2 Sedentary time, physical activities, and cardiometabolic health 
(III and IV) 

The main finding of sub-study III was that, relative to all other behaviors, more 
daily time in both LPA and MVPA was beneficially associated with multiple 
cardiometabolic health markers. The health benefits of MVPA have been well 
documented in both compositional (Chastin, Palarea-Albaladejo, et al., 2015; 
Dumuid, Wake, et al., 2019; McGregor et al., 2018; McGregor, Palarea-Albaladejo, 
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Dall, Stamatakis, et al., 2019) and non-compositional studies (Ekelund et al., 2016; 
Lee et al., 2012; Strain et al., 2020), but the health-enhancing potential of LPA has 
received less research interest (Chastin et al., 2019). LPA is a more feasible 
intensity of movement that is accessible regardless of physical fitness, inclination, 
and opportunity to be more physically active. Evidence has already started to 
emerge that more time spent in LPA (Chastin et al., 2019; Füzéki et al., 2017), even 
after accounting for MVPA (Amagasa et al., 2018), could improve cardiometabolic 
health outcomes. Furthermore, compositional studies have also reported that more 
LPA could be beneficial for reduced mortality risk, even after accounting for other 
activity intensities (von Rosen et al., 2020a) and sleep (McGregor, Palarea-
Albaladejo, Dall, del Pozo Cruz, et al., 2019). Our findings, while supporting the 
established physical activity recommendations that encourage MVPA for better 
health (Bull et al., 2020; Rosenberger et al., 2019), also confirm the findings of 
recent studies suggesting that LPA may also confer meaningful cardiometabolic 
health benefits in adults (Chastin et al., 2019; Füzéki et al., 2017), particularly when 
it replaces sedentary time.  

More daily time spent in sedentary and sleeping beyond 7.5 hours/day (both 
relative to all other behaviors) were both unfavorably associated with 
cardiometabolic health markers. Our results for sedentary time were in line with 
previous studies that reported that more sedentary time is associated with poorer 
cardiometabolic health, although most of those studies failed to account for sleep 
(Thorp et al., 2011). It is noteworthy that, for the outcomes that displayed U-shaped 
relationships with sleep duration, more daily time in sedentary was detrimentally 
associated with outcomes, irrespective of whether participants slept more or less 
than 7.5 hours/day. This suggests that reduced sedentary time may be beneficial for 
cardiometabolic health regardless of sleep duration, which is in line with the 
findings of a previous study using an isotemporal substitution approach (Buman et 
al., 2013). 

In sub-study IV, both Breakers and Shortened sitters were associated with 
favorable differences in cardiometabolic health markers compared to Couch 
potatoes, and Breakers had larger favorable differences in cardiometabolic health 
markers than Shortened sitters. Additionally, Breakers and Shortened sitters were 
associated with favorable differences in cardiometabolic health markers compared 
to Couch potatoes even after accounting for potential confounders and sedentary 
time. These results are collectively in agreement with the existing studies, 
indicating that, in addition to the total volume of sedentary time, patterns of 
accumulation of sedentary time may also be related to cardiometabolic health 
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markers and mortality risk in adults (Carson et al., 2014; Diaz et al., 2017). 
Nevertheless, after accounting for potential confounders and MVPA time, 
compared with Couch potatoes, Shortened sitters were associated with favorable 
differences in cardiometabolic health markers, but the associations between 
Breakers and the same cardiometabolic health markers did not generally reach the 
significance level. This was not surprising considering that MVPA was a major part 
of Breakers’ physical activity profile, while Shortened sitters were more active 
through LPA. These results of sub-study IV collectively suggest that more frequent 
interruptions in sedentary time with any activity intensity from LPA upwards for 
any duration might be beneficial for adults’ cardiometabolic health, which 
complements the findings of sub-study III indicating that, in addition to MVPA, 
LPA may also confer meaningful cardiometabolic health benefits in adults. 

There were two distinguishable differences in the underlying accumulation 
patterns of sedentary time and breaks of Breakers and Shortened sitters compared 
to other groups. First, these two groups were both engaged in relatively fewer 
uninterrupted sedentary bouts of ≥15–30 minutes and simultaneously included 
more LPA bouts of different lengths in their sedentary breaks. Second, Breakers 
also had a relatively lower number of shorter sedentary bouts lasting <15 minutes 
and, in addition to LPA bouts of different lengths, included more spontaneous 
MVPA bouts in their sedentary breaks. Currently, little is known about the 
underlying mechanisms by which prolonged sedentary time may cause detrimental 
changes to cardiometabolic outcomes (Powell et al., 2018). Hence, epidemiological 
evidence is continuing to accumulate that frequent sedentary breaks could be 
beneficial for counteracting such detrimental changes to cardiometabolic health 
markers in adults caused by sedentary time (Carson et al., 2014; Chastin, Egerton, 
et al., 2015; Cooper et al., 2012; Healy et al., 2011; Henson et al., 2013). 
Experimental studies have generally supported this evidence and shown that 
avoiding prolonged sedentary bouts with light-intensity activities (e.g., walking) 
could be beneficial for cardiometabolic health in adults (Chastin, Egerton, et al., 
2015). For instance, consistent with our results, a recent study in a sample of adults 
with type-2 diabetes showed that interrupting sedentary time every 15 minutes with 
light-intensity walking could be beneficial for glucose control (Paing et al., 2019). 
Our results, while supporting the evolving evidence suggesting that sedentary 
breaks of at least LPA may improve cardiometabolic health in adults (Chastin, 
Egerton, et al., 2015), further indicate that in addition to more sedentary breaks it 
is also important to keep the sedentary bouts shorter than 15–30 minutes for better 
cardiometabolic health. 
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6.1.3 Hierarchy of correlates of activity behaviors (V) 

In line with the findings of existing studies (Bauman et al., 2012; Chastin et al., 
2016; Garcia et al., 2017; Sallis et al., 2006), our data-driven model indicated that 
activity behavior could be explained by a multilevel hierarchy composed of various 
factors. Previous studies focusing on understanding the causation of activity 
behaviors have typically conceptualized the influence of activity behaviors by 
theoretically combining common sense and well-established evidence, and 
therefore provided a broad view of activity behavior and its causation for general 
populations (Bauman et al., 2012; Chastin et al., 2016; Garcia et al., 2017). On the 
contrary, our data-driven model specified that activity behavior correlates at 
different levels in each subgroup and may better inform tailored, multilevel 
intervention allocation and design for our study population. Additionally, the results 
of association analyses indicated the relative importance of the identified factors, 
supporting the suggestion that our results can be used to highlight the factors 
associating with activity behavior in terms of priority. 

Most emerged factors in the decision tree model have already been recognized 
as factors associated with activity behavior in the existing literature, including 
education level, profession, overall health status, fitness status, and population 
density (Bauman et al., 2012; Choi et al., 2017; Trost et al., 2002). However, the 
decision tree model also included some factors that were relatively less studied 
within the current literature. Such factors include those that were related to 
personality and temperament, body composition (i.e., lean body mass and skeletal 
muscle mass), and heart rate recovery, as well as a few psychological and 
environmental factors (e.g., enjoyment of daily activities and number of road 
accidents) (Carnethon et al., 2005; Chastin et al., 2016; Choi et al., 2017; 
O’Donoghue et al., 2016). It seems likely that these factors could have remained 
underreported (or unexamined) because of the subjective tendency in existing 
studies toward examining only those factors for which evidence of significant 
associations (positive or negative) with different activity behaviors has been well 
understood (Trost et al., 2002).  

The less established and previously undiscovered factors found in our study 
could be candidates for the next generation of correlates (Bauman et al., 2012). 
These factors were selected by the decision tree to create the final model from a 
broad list of input (independent) variables. This suggests that the emergent factors 
in the decision tree model might be relatively more important correlates and likely 
surrogates for the other previously less established or well-established factors that 
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the decision tree excluded in creating the model, such as behavioral attributes (e.g., 
alcohol consumption, smoking, etc.) or socioeconomic status (Choi et al., 2017). 
Yet, one must infer the relative importance of the emergent factors with caution. 
Due to the data-driven nature of sub-study V, we cannot completely rule out the 
importance of some of the well-known activity behavior correlates that did not 
appear in the final model. For instance, the study participants had a narrow age 
range (46–48 years). This might explain why some of already well-established 
activity behavior correlates, for example age and gender, did not emerge in the final 
model (Bauman et al., 2012; Choi et al., 2017; Trost et al., 2002).  

6.1.4 Strengths and limitations 

The strength of this study includes identifying and reviewing a comprehensive list 
of studies calibrating and validating accelerometer-based activity monitors using 
machine learning approaches. Another strength is independent validation of 
machine learning models developed for classifying activities in terms of intensity 
across different heterogenous datasets. Using a wide population-based sample with 
wide background information available for the participants, and device-based 
assessment of daily activities is also a strength.  

This study has some limitations. In the systematic review, we did not focus on 
the predictive accuracy of ML-based modeling approaches in relation to activity 
types (e.g., sitting, standing, walking, etc.) together with accelerometer placement, 
since in many applications (e.g., observational studies) a wide range of activities 
under free-living conditions is of interest to provide good estimates of total 
sedentary time and physical activities (Bassett Jr et al., 2012; Wijndaele et al., 2015). 
If measuring certain types of activities is of interest, a specific accelerometer 
placement might provide substantially better results. Another limitation was that 
the comparison between the predictive accuracy of ML modeling approaches and 
regression- and cut-point-based methods remained outside the scope of our study. 
Instead, we assumed that ML models are superior to the traditional statistical 
procedures. This is a legitimate assumption, considering that previous review 
studies have emphasized the superiority of ML models (Bassett Jr et al., 2012; 
Strath et al., 2012), but future studies with direct comparison between different 
techniques are required to better understand the magnitude of the superiority of ML 
models.  

In sub-study II, limited meta-data from the open-access datasets was preventive 
for providing conclusive information about which sources of heterogeneities 
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among the dataset played a more important role in the overall performance 
reduction of within-dataset-validated models. Additionally, none of the datasets 
were collected under truly free-living conditions, and therefore further studies are 
needed to test how the models would perform with free-living data. Under free-
living conditions MVPA generally make up approximately 3%–5% of the 24-hour 
movement behaviors (Chaput et al., 2014), but in our datasets MVPA consisted 
approximately 30%–60% of the datasets. This might also limit the ability of our 
models for free-living data. Using direct observation and the Compendium of 
Physical Activity as criterion measures for defining activity intensities rather than 
a gold standard (i.e., indirect calorimetry) may also be a limitation. Hence, direct 
observation appear to be feasible and valid (Cox et al., 2020; Lyden, Petruski, et 
al., 2014), and a commonly used criterion in many analytical studies calibrating 
and validating accelerometer-based activity monitors for estimation of activity 
intensities and types (de Almeida Mendes et al., 2018). Given the findings of sub-
study I, we decided to select ANN as the modeling approach in sub-study II because 
it has been used frequently in previous studies, and it has been reported to be highly 
accurate in predicting both activity type and energy expenditure from 
accelerometer data in different age groups (de Almeida Mendes et al., 2018; 
Montoye et al., 2016b; Trost et al., 2012). Future studies should consider exploring 
other commonly used ML approaches as well as testing their generalization 
capabilities outside the datasets used for model development. 

The studies (III–V) conducted in the NFBC1966 cohort data were cross-
sectional. Inferences about the temporality of associations are therefore limited, and 
causality cannot be determined. Due to the birth cohort settings, the study 
population was homogenous in terms of age and ethnicity. Although beneficial with 
respect to reducing the potential for confounding the observed associations, this 
may limit the generalizability of the results of these three sub-studies to more 
diverse populations. Also, more than 85% of the original cohort members were 
alive in Finland at the time of the latest follow-up, but less than 50% participated 
and wore the accelerometers. It is possible that those were the healthier and more 
active ones. This might have induced selection bias and further limited the 
generalizability of the results. Although in sub-studies III–V accelerometer-based 
measurement of daily activities was captured over a relatively long timeframe, from 
which movement behaviors were estimated using previously validated methods 
(Jauho et al., 2015; Leinonen et al., 2016; Vähä-Ypyä et al., 2018, 2015), there were 
some unavoidable discrepancies among these three sub-studies for processing the 
accelerometry data and defining the intensity categories. This further highlights the 
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urgent need for a standardized data processing method and studies to consider the 
agreement between different accelerometers with respect to the wear location until 
consensus and standardized definitions are achieved.  

In sub-study III, sleep duration was self-reported, and therefore was probably 
measured with less accuracy than the activity intensities. However, it is unlikely 
that our results would be different with device-based measurement of sleep duration, 
considering that the differences between self-reported and device-based sleep 
duration in middle-aged adults could be small (Lauderdale et al., 2006). In sub-
study IV, we noted that the concept of Breakers, Prolonged sitters, and Couch 
potatoes has been theorized and investigated previously (Bakrania et al., 2015; 
Owen et al., 2010; Tremblay et al., 2017), but Shortened sitters is rather a novel 
activity profile that was found in our study. Similar studies should be performed in 
other populations to determine whether similar profiles and associations to those 
identified in our study exist in other populations. Inclusion of only activity 
intensities during awake time in sub-study IV is also a limitation. Further studies 
with 24-hour accelerometry and characterization of sleep patterns are needed to 
warrant our findings. In sub-study V, the binary categorization of participants 
(active or inactive) was the main limitation. In sub-studies II–V, we categorized 
moderate-intensity and vigorous-intensity physical activities together as MVPA. In 
sub-study III, we further differentiated sitting/lying from standing still and 
categorized standing still as LPA. This could be a limitation because standing still 
as a posture as well as moderate-intensity physical activity and vigorous-intensity 
physical activity could potentially have distinct health effects (Powell et al., 2019; 
Shiroma et al., 2014).    
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7 Conclusions 
The present study indicated that the variation among the reported overall predictive 
accuracy of machine learning models developed for activity recognition is 
minimally related to accelerometer placement, but the generalization capabilities 
of machine learning models remains a concern. Our proposed method to integrate 
various data sources in training sets was found to be a viable approach for training 
more robust models capable of classifying activities by intensity in another 
population monitored with a different accelerometer. The study also suggests that 
adults may gain cardiometabolic health benefits through LPA, particularly when it 
is replaced by time spent in sedentary activity. Based on the aims of the study, it 
can be concluded that: 

– Machine learning approaches offer opportunities for predicting activity types, 
categories, and intensities with comparable overall predictive accuracies 
irrespective of accelerometer placement, although it remains unknown whether 
these minimized variations would remain under free-living conditions. 

– Integrating heterogeneous datasets using hip or wrist data in training sets is a 
viable approach for enhancing the generalization performance of the ANN 
models developed for predicting activity intensities from raw acceleration data.  

– More daily time in MVPA at the expense of any other movement intensity or 
sleep could be the most time-efficient change in the 24-hour movement 
behavior composition for improving cardiometabolic health in mid-adulthood. 
Alternatively, more daily time in LPA at the expense of sedentary time (or sleep) 
could also be beneficial for cardiometabolic health, but to a lesser extent 
compared to more time in MVPA. 

– Avoiding uninterrupted sedentary bouts of longer than 15–30 minutes by 
breaking them frequently with short LPA bouts may be beneficial for 
cardiometabolic health in middle-aged adults. In addition to LPA bouts, further 
inclusion of spontaneous MVPA bouts in sedentary breaks may confer 
additional cardiometabolic health benefits for adults. 

– The created data-driven hierarchy consisted of factors of relative importance 
from different domains, and could be used for multilevel intervention 
allocation and design for inactive people in the study population. Additionally, 
the novel and less-established set of factors that were methodologically 
discovered can be a basis for additional hypothesis testing in activity behavior 
correlates research. 
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Appendix 1  
PubMed search string: 
(Prediction OR unsupervised OR supervised OR energy expenditure OR energy 
cost OR physical activit* classif* OR pattern recogni* OR activit* recogni* OR 
machine learning) AND (acceleromet*)  
Scopus search string: 
(Prediction OR unsupervised OR supervised OR energy expenditure OR energy 
cost OR physical activit* classif* OR pattern recogni* OR activit* recogni* OR 
machine learning) AND (acceleromet*) 

Quality scores of the included studies developing activity recognition models, listed by 
first author's last name (publication year). 

Author (year) Crit. 1 Crit. 2 Crit. 3 Crit. 4 Crit. 5 Crit. 6 Crit. 7 Crit. 8 Crit. 9 Crit. 10 Quality 

Score 

Pober (2006) [36] 2 2 1 0 2 2 2 0 2 2 0.75 

Bonomi (2009) [37] 1 1 2 0 2 2 2 1 1 1 0.65 

Preece (2009) [38] 1 1 2 0 2 2 2 0 1 1 0.60 

Khan (2010) [39] 2 2 1 1 2 2 2 0 2 2 0.80 

Atallah (2011) [34] 2 1 0 0 2 2 2 0 1 1 0.65 

De Vries (2011) [40] 2 2 2 1 2 2 2 2 2 2 0.95 

De Vries (2011) [41] 2 2 2 1 2 2 2 2 2 2 0.95 

Gyllensten (2011) [42] 2 1 2 2 2 2 2 2 2 2 0.95 

Lee (2011) [43] 2 2 0 1 2 2 2 1 2 2 0.80 

Ruch (2011) [44] 1 1 2 NA 2 2 2 2 1 1 0.77 

Schmid (2011) [45] 1 1 1 1 2 2 1 1 2 2 0.70 

Oudre (2012) [24] 1 1 2 0 2 2 2 2 1 1 0.70 

Zhang (2012) [46] 2 2 2 1 2 2 2 2 2 2 0.95 

Zhang (2012) [47] 2 2 2 1 2 2 2 2 2 2 0.95 

Cleland (2013) [48] 2 2 2 0 2 2 2 0 2 2 0.80 

Hees (2013) [26] 2 2 2 2 2 2 2 2 2 2 1 

John (2013) [49] 2 1 1 0 2 2 2 0 2 2 0.70 

Mannini (2013) [50] 2 2 1 2 2 2 2 2 2 2 0.95 

Zhao (2013) [51] 1 1 1 1 2 2 2 2 1 1 0.70 

He (2014) [28] 1 0 2 2 2 2 2 1 1 2 0.75 

Trost (2014) [52] 2 2 2 1 2 0 2 2 1 1 0.75 

Arif (2015) [53] 1 2 2 1 2 2 2 0 2 2 0.80 

Bastian (2015) [54] 2 2 2 2 2 2 2 2 2 2 1 

Fida (2015) [55] 2 2 2 1 2 2 2 1 2 2 0.90 

Hagenbuchner (2015) [56] 2 2 2 0 2 2 2 2 2 2 0.90 

Ellis (2016) [57] 2 2 1 2 2 2 2 2 2 2 0.95 
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Author (year) Crit. 1 Crit. 2 Crit. 3 Crit. 4 Crit. 5 Crit. 6 Crit. 7 Crit. 8 Crit. 9 Crit. 10 Quality 

Score 

Kerr (2016) [58] 2 2 2 NA 2 2 2 2 2 2 1 

Margarito (2016) [25] 1 1 2 0 2 2 2 2 1 1 0.70 

Montoye (2016) [59] 2 2 2 2 2 2 2 2 2 2 1 

Montoye (2016) [60] 2 2 2 2 2 2 2 2 2 2 1 

Ren (2016) [61] 1 1 1 1 2 0 2 2 2 1 0.65 

Sasaki (2016) [62] 2 2 1 NA 2 2 2 2 2 2 1 

Arif (2017) [63] 1 2 2 1 2 2 2 0 2 2 0.80 

Chowdhury (2017) [64] 2 2 1 1 2 2 2 1 2 2 0.85 

Kühnhausen (2017) [65] 2 2 2 0 2 2 2 2 2 2 0.90 

Mannini (2017) [66] 2 2 1 2 2 2 2 2 2 2 0.95 

Paveya (2017) [67] 2 1 2 0 2 2 2 2 2 2 0.85 

Rosenberg (2017) [68] 2 2 1 NA 2 2 2 2 2 2 0.95 

Trost (2017) [69] 2 2 2 1 2 2 2 0 2 2 0.85 

Montoye (2018) [70] 2 2 2 2 2 2 2 2 2 2 1 

Staudenmayer (2009) [78] 2 2 2 2 2 2 2 2 2 2 1 

Freedson (2011) [79] 2 2 2 2 2 2 2 2 2 2 1 

Trost (2012) [80] 2 2 2 1 2 2 2 2 2 2 0.95 

Ellis (2014) [81] 2 2 2 0 2 2 2 2 2 2 0.90 

Mu (2014) [82] 1 1 2 2 2 2 2 2 2 2 0.90 

Staudenmayer (2015) [83] 2 2 2 2 2 2 2 2 2 2 1 

Strath (2015) [84] 2 2 2 0 2 1 2 2 2 1 0.80 

Kate (2016) [85] 2 1 2 0 2 1 0 2 2 1 0.65 

2: indicates “yes”, 1: indicates “partial”, 0: indicates “no”, N/A: indicates “not applicable”. Crit. = criteria.  

Please note that the numbers presented in square brackets [ ] are reference numbers, and they are 

according to the list of references in sub-study I. 

Criteria 1: Question/objective sufficiently described? Criteria 2: Study design evident and appropriate? 

Criteria 3: Subject characteristics sufficiently described and representative? Criteria 4: If performed under 

controlled conditions, a wide variety of activities performed with enough duration? Criteria 5: Input features 

clearly mentioned? Criteria 6: Signal axes used for feature extraction clearly mentioned? Criteria 7: 

Window length clearly mentioned? Criteria 8: Sample size appropriate? Criteria 9: Results reported in 

sufficient detail? Criteria 10: Conclusions supported by the results? 
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