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Visuri, Aku, Wear-IT: Implications of mobile & wearable technologies to human
attention and interruptibility. 
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering; Ubiquitous Computing (UBICOMP)
Acta Univ. Oul. C 707, 2019
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract
This thesis explores different ways of leveraging mobile sensing to understand how end users use
and interact with their smart technologies, namely smartphones and smartwatches. These topics
are extensively explored in other parallel research; however, numerous gaps still exist within the
literature. The use of mobile sensing to collect quantified ground-truth information of device use
in-the-wild is critical to collect unbiased experiences and usage traces.

This thesis covers three main themes: (a) the way our affect influences our smartphone use, and
how our smartphone usage can also be analysed from our usage habits; (b) revealing quantified
exploration of smartwatch usage traits, and how these relate to smartphone use, and (c) novel ways
to mitigate interruptions during smartphone or smartwatch use. The thesis begins by explaining
the related work and the overall theme of mobile sensing and how device usage influences
attention; it then proceeds to elaborate on the contribution of each included article to the overall
scope of the thesis. The thesis then concludes with a summary of how the presented articles tie
together in a broader scope.

Considering the vast amount of research in this field by this thesis’ author as well as other
researchers, this type of work can potentially improve the use of novel wearable technologies in
the future. By the end of the thesis, the reader should have a broad understanding of what mobile
sensing is, and how it can be applied to comprehensively uncover technology use as well as
leveraging mobile sensing to enhance the use of technology.

Keywords: analysis, attention, device usage, interruptibility, mobile sensing,
smartphones, smartwatches, ubiquitous computing





Visuri, Aku, Wear-IT: Puettavien ja mobiiliteknologioiden vaikutus valppauteen ja
häiriintymiseen. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta; Jokapaikan
tietotekniikka (UBICOMP)
Acta Univ. Oul. C 707, 2019
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä
Tässä väitöskirjassa tarkastellaan erilaisia tapoja hyödyntää mobiilikäytön tunnistamista ymmär-
tääkseen, miten loppukäyttäjät käyttävät ja ovat vuorovaikutuksessa älykkäiden teknologioiden-
sa, esimerkiksi älypuhelimien ja älykellojen kanssa. Näitä aiheita tutkitaan laajasti muissa rin-
nakkaisissa tutkimuksissa, mutta kirjallisuudessa on vielä lukuisia aukkoja. Matkaviestinnän
käytöstä kerätään kvantitatiiviset tiedot, jotka koskevat laitteen käyttöä luonnossa. Tämän tie-
don kerääminen on kriittistä jotta voidaan kerätä puolueettomia kokemuksia ja käyttöjälkiä.

Tässä työssä käsitellään kolmea pääteemaa; i) miten älypuhelinkäyttöömme vaikuttaa meidän
mielialamme ja miten älypuhelinkäyttöämme voidaan analysoida käyttötapojen perusteella, ii)
paljastaa älykellon käyttöominaisuuksien määrälliset tutkimukset ja miten nämä tulokset heijas-
tuvat älypuhelimen käyttöön ja iii) uusia tapoja lieventää katkoksia älypuhelimen tai älykellon
käytön aikana. Työ aloittaa selittämällä siihen liittyvää työtä ja mobiilin tunnistamisen yleistä
teemaa ja sitä, miten laitteen käyttö vaikuttaa huomiokykyyn, ja jatkuu sitten yksityiskohtaisesti
jokaisen mukana tulevan artikkelin osuuden yleiseen käsittelyyn.

Työssä päädytään yhteenvetoon siitä, miten esitetyt artikkelit sitovat yhteen laajemman koko-
naisuuden ja ottavat huomioon tämän alan tekijän ja muiden tutkijoiden tämän alan tutkimukset,
ja miten tällaista työtä voitaisiin mahdollisesti parantaa edelleen tulevaisuudessa käyttämällä
uusia tekniikoita. Työn päätyttyä lukijalla on laaja käsitys siitä, mitä mobiili-tunnistaminen on ja
miten sitä voidaan soveltaa sekä teknologian käytön kattavaan paljastamiseen että mobiilidatan
tunnistuksen hyödyntämiseen teknologian käytön tehostamiseksi.

Asiasanat: huomiokyky, häiritsevyys, jokapaikan tietotekniikka, laitteiden käyttödata,
mobiiliaistiminen, älykellot, älypuhelimet
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1 Introduction and motivation 
The concept of ubiquitous computing dictates the proliferation of digital devices 
throughout our infrastructure, society, environment and within our daily life. This 
process started with the personal computer during the early 1990s and continued 
with the rise of the Internet into today’s world, where we carry powerful computers 
with us at all times in the form of mobile devices such as smartphones and wearable 
devices. Many services such as booking flights and hotels, ordering food, ordering 
all sorts of products and navigation that would traditionally require a physical 
presence can now be accessed via the Web with the touch of a button. Many of 
these services have also reduced the need for human assistance to a minimum or 
none (e.g. for fully automated services). 

While the world has undoubtedly become more convenient for anyone with a 
computer or a smartphone and a Wi-Fi access point, digital devices are sometimes 
overused. Constant connectivity creates symptoms such as anxiety and stress for 
users. For example, most of us at one point or another became agitated when we 
did not instantly receive a reply in our instant messaging communications, despite 
the iconic double tick indicating that the receiver has already read our message. 
The overuse of social media creates unrealistic expectations for our lives and, 
according to Microsoft Research, the human attention span has been reduced by 
the digitalization of our brain to become second to that of a goldfish. This thesis 
explores the effect of mobile devices on human attention and how we can mitigate 
potential unwanted interruptions during our daily lives. 

The use of smartphones and mobile devices spans through the spectrum of our 
daily lives. This provides an exciting research agenda, as observing human 
behaviour through these devices can offer valuable insights into all aspects of life. 
People also observe their lives with the aid of these omnipresent devices, collect 
information about themselves and transfer mediums such as diaries into a digital, 
portable format. Social media outlets such as Instagram or Snapchat offer tools to 
generate (and share) constant flow of lifelogging material. Mobile devices 
additionally offer the capabilities to effortlessly collect self-reported information in 
the form of exercise trackers, mood trackers or health-related applications such as 
allergy symptom trackers or period trackers. When taken to an extreme, this type 
of information collection transforms into the Quantified-Self movement—
constituting a collection of individuals who are eager to collect information about 
all aspects of their life to better themselves. 
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The emergence of wearable technologies such as Android Wear and iOS 
smartwatches, aimed to work in tandem with the wearer’s smartphone, and health 
orientated devices (with fewer features), coined as Activity or Fitness Trackers, was 
to ease receiving smartphone information without the need to interact with the 
smartphone physically. There are also some issues that slow down the increase in 
popularity of wearable devices, such as battery constraints, high prices and reduced 
attention span caused by an overload of constant interruptions. While smartphone 
owners like their devices due to their capabilities to receive and transmit 
information, many still choose to disable specific functions simply because they 
find them overwhelming. 

Many of the discussed aspects of smartphones (e.g. wearable devices and their 
use) are being researched continuously. As these are broad topics, this thesis 
approaches these areas in tandem with other works, aiming to locate and fill gaps 
within the literature and offering new ideas and researching unexplored aspects. 
This thesis aims to consult the presented topics by exploring three associated 
themes: (a) understanding smartphone use, (b) early quantitative studies of 
smartwatch use and adaptation and (c) human interruptibility and attentiveness as 
the overarching theme alongside mobile sensing. The themes of each original 
article are listed in Table 1. This thesis takes a data-driven approach to analysing 
usage traces from mobile devices to uncover both underlying reasons as well as 
potential solutions to disruptions to our attention. 

Table 1. Individual themes within the overarching theme of mobile sensing explored in 
this thesis. 

Theme Investigated in Contribution 

Smartphone usage behaviour 

 

Article I 

 

Article II 

 

How does our mood affect our smartphone 

application selections? 

Methods for improving the self-report frequency 

Smartwatch usage behaviour 

 

Article III 

 

Article IV 

 

Quantifying frequency and type of smartwatch 

usage 

How does our exploratory smartwatch usage 

evolve? 

Human interruptibility and 

attentiveness 

Article V Methods for improving intelligent prediction 

mechanisms for preventing interruptibility 
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1.1 Articles 

Five articles are included in this thesis, each published in relevant international 
conferences or peer-reviewed journals in the field of human-computer interaction 
and/or ubiquitous computing. The articles are presented thematically rather than 
chronologically, and each entry includes a main research question explored within 
the scope of the article. 

The author of this thesis acts as the principal author in all five works; each 
article was written and conducted in collaboration with other researchers, many of 
whom have at some point worked at the University of Oulu or have contributed to 
the articles through data sets, collaboration, brainstorming and sharing ideas for 
data analysis. Mr. Niels Van Berkel and Dr. Jorge Goncalves offered substantial 
support for all five articles, who, at the time of writing this thesis, were based at the 
University of Melbourne but spent a significant amount of time cooperating with 
Oulu. All five articles were jointly supervised by Prof. Vassilis Kostakos and Dr. 
Denzil Ferreira who gave generous feedback by sharing ideas and assisting during 
the writing process. Lastly, Dr. Reza Rawassizadeh is the author of the data sets 
concerning smartwatches and offered his expertise for preparing these two 
publications. The following five articles are included in this thesis: 

The first article studied the usage behaviour of smartphones. The article 
collated insights from two separate experiments on human behaviour, namely mood 
and its effect on the selection of smartphone applications. Both studies lasted for 
two weeks (14 days) and consisted of 15 and 21 participants. The objective was to 
explore how either happiness or activeness (or a combination of both according to 
the circumplex mood model) influenced application choices. Each participant 
logged their mood multiple times per day, and the subsequent application launches 
(or uses) were logged afterwards. The findings showcase several generalisable 
application choices being influenced by the participant’s mood, similar in both 
studies. The use of application types such as games, media applications (e.g. music 
or video) and travel applications are associated with higher happiness, while social 
media are slightly more likely to be used when unhappy—a result highlighted in 
other studies as well. The article concludes by stating that even these types of 
simple associations could be used to predict or propose user’s mood, based solely 
on their application choices—something that could be considered helpful in 
lifelogging tools. 

Research question: Does our current mood influence our application choices 
on mobile devices? 
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The second article was also concerned with the topic of smartphone use. 
Previous research has studied the effectiveness of several different reminder 
systems for self-reporting applications, ranging from text messages to on-screen 
reminders via the unlock screen. The article proposes an on-screen dialogue that 
converts active smartphone usage time to data contributions for Quantified-Self 
applications, relying on self-reported information. The article highlights how 
selected applications could benefit from alert dialogues as reminder mechanisms to 
increase data precision and frequency and reduce forgetfulness in data logging. The 
article also explores how users are more likely to contribute data via such dialogues 
during different types of smartphone usage sessions (e.g. how users are more likely 
to have excess time for data contribution during more extended sessions). The use 
of the proposed reminder mechanism should be carefully considered; however, 
perceiving it as being highly distractive or interruptive and continually demanding 
user’s attention can cause a significant burden during long-term use.  

Research question: Which mobile device usage-related metrics can be 
leveraged to facilitate more frequent self-reported data logging? 

The third article was an investigation on smartwatch use, using an extensive 
data set from 308 users over six months. This research, first of its kind, was a 
quantitative study on how smartwatches (Android Wear) were used in-the-wild. 
The data set was collected by the Insight 4 Wear application, which offers details 
to users about their smartwatch use (e.g. battery life). The findings showcased 
similarities in interactions, preferred application sources and response times with 
notifications between smartwatches and smartphones. The smartwatch data set was 
compared against the smartphone data set collected and combined from three 
previous smartphone studies. The smartwatch usage sessions were more frequent 
and briefer, which indicated that smartwatches mainly prefer consuming 
information rather than interacting with their devices. 

Research question: How do sensor-level observations of smartwatch usage 
reflect similar metrics on smartphones, and what insights do these metrics give 
about overall smartwatch use? 

The fourth article continued investigating smartwatch use and how it adapted 
over time. Using the same source for the data set in Article IV, although over an 
extended period, the article investigated how smartwatch users inherently opted for 
distinct smartwatch usage styles in terms of session duration and frequency, battery 
use considerations, notification sources, etc. The individual monthly usage 
behaviours were then analysed for consistently accepted behaviours—those that are 
returned to and used for long periods as opposed to those behaviours that are 
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deemed exploratory, indicating shorter patterns and no return to such behaviours at 
a later time. Finally, we revealed differences in usage traces within the two 
behaviours, indicating usage behaviour that might lead to prolonged and more 
beneficial device use. 

Research question: How does smartwatch usage evolve in the long term, and 
what types of sensor-level usage metrics are ultimately preferred to those that are 
merely exploratory? 

The last article explored and expanded the theme of interruptibility. The article 
studied the use of intelligent methods (i.e. machine learning) for applications 
attempting to provide individual users’ intelligent insights or predictions (e.g. 
would the user be interrupted? Would the user answer a call? Or, which types of 
news articles would the user prefer?). Traditionally, the so-called general models 
have been used for predictions, which mean that all users behave alike, and that 
one prediction model is sufficient to cover all behaviours and preferences. 
Alternatively, when the differences between users are considered too large, each 
user will ultimately receive a personalised decision-making model. Due to 
differences in each user’s usage behaviour with mobile devices, the use of general 
models is often significantly sub-optimal. On the other hand, the training data 
required to generate personalised models often take time; thus, decision-making is 
not available from the beginning of device or application use. Article V presents 
and analyses the efficiency of a method where similarly behaving users are grouped, 
and a group model is generated. The findings showcase that the group model 
performs better than either the general or personalised model, considering cases 
where training duration can be considered limited. Over long periods, the 
personalised models should succeed in providing the most accurate predictions. 
The provided methodology could be implemented in any application which collects 
usage data and provides users with an intelligent decision-making system. 

Research question: Can the inclusion of a grouping algorithm in data 
separation and pre-processing increase the overall prediction accuracy in low-data 
scenarios? 

1.2 Thesis outline 

This thesis is organised as follows: Chapter 2 reviews the related literature on the 
topics covered in this thesis. We start with the overarching theme in each of the 
articles—mobile sensing, the basics, how it is conducted and applied and the 
concept of context and contextual sampling. We then cover similar works in the 
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field of interruptibility and attention and finally survey smartwatch-related 
literature. Chapter 3 examines the theme of mobile sensing and explains the 
collected data types, collection methods and applications for mobile sensing; it also 
introduces the data collection frameworks and applications used and what data are 
collected in the thesis’ articles. Chapter 4 scrutinises Articles I–IV and their related 
theme—sensor-based details of smartphone and smartwatch usage habits. The 
chapter discusses in depth similar works and results and presents a summary of the 
answered hypotheses and contributions of each article. Chapter 5 continues to 
discuss the field of interruptibility and user attentiveness (investigated in Article V), 
which leverages concepts introduced in Chapter 4. Chapter 6 concludes the thesis 
and offers recommendations for future work arising from this thesis. 
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2 Related work 

2.1 Context and mobile sensing 

The concept of context relates to natural language, where context describes ‘the 
circumstances that form the setting for an event, statement, or idea, and in terms of 
which it can be fully understood’. In computer science, context has a similarly 
broad definition. The now-famous quote by Dey (2001, p. 2) summarises the use 
of context in computer science: 

“Context is any information that can be used to characterise the situation of an 
entity. An entity is a person, place, or object that is considered relevant to the 
interaction between a user and an application, including the user and 
applications themselves.” 

Furthermore, in human behavioural studies within human-computer interaction, 
the interaction can be replaced by the state of the individual, thus leading to the 
context (the user state, state of applications and devices, usage information, etc.) 
and describing and annotating the person and his state (e.g. mood). 

Context-awareness is a term that describes a system or an application that 
leverages the understanding of context and attempts to make decisions and modify 
its behaviour based on the enveloping context. First thoroughly explored by Schilit 
and Theimer (1994), some level of context-awareness has since become a standard 
in our everyday applications, especially on our mobile devices. One could not 
envision the use of an application such as Uber without access to detailed real-time 
location information or text prediction and auto-completing texts with no 
understanding of where or why the user is typing. 

The different factors considered within the usage context of a mobile device 
are collected via a combination of sensors. Thus, the concept is coined as mobile 
sensing. The details offered by the sensors vary by sensor type and source, ranging 
from simple sensors such as monitoring the screen state of the device (on or off and 
whether the screen or interface is locked via a PIN code, for example) to reading 
the physical speed and acceleration of the device via the accelerometer (often used 
to count the user’s steps taken), monitoring the magnetic fields around the device 
via the magnetometer, tracking the device’s physical orientation or environmental 
measurements such as ambient temperature and light levels. These types of sensors 
and readings are generally classified as hardware sensors (i.e. the sensor readings 
originate from the device hardware). The works published as part of this thesis 
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focus on the Android Operating System (OS); thus the sensor readings are limited 
to those offered by the Android OS. 

The concept of mobile sensing can also incorporate software sensors—
transforming raw data from hardware to less abstract form by developing software 
solutions and social sensors—potentially leveraging information about the user 
from multiple sources outside of the immediate physical device (e.g. calendar 
events or social media profiles and posts). Real-world applications frequently 
leverage this type of information over the raw data offered by the sensors. Knowing 
the device posture by the numbers offers limited information (e.g. angle 
measurement on the x-, y- and z-axis) as opposed to knowing whether the device 
screen is facing the user or not, or whether it is held in the typical device use posture 
(slightly tilted with the screen facing upwards). Similarly, measurements such as 
step counters rely on software solutions to understand the raw accelerometer 
information (acceleration with the effect of gravity included) as steps, transforming 
the data via fast Fourier transformation (FFT) to human-understandable value (i.e. 
steps taken) (Dirican & Aksoy, 2017). The usage of software sensors over hardware 
sensors also enables application developers to develop context-aware applications 
with proper intelligence and triggered events by defining situations (Dey, 2001)—
a combination of different variables being in different states. The states can be more 
accurately defined with the use of software sensors over raw data. 

Liu (2013) studied the use of mobile device sensors for collecting finer-grained 
information and hypothesised that in the future the vision sensor (camera) would 
be utilised more. Their work also encompasses the use of a smartphone as it is 
without the need for any external sensors or devices. The state recognition is a 
common approach in mobile sensing, and recently more efforts have been put into 
creating energy-efficient frameworks. One of the early efforts in state detection and 
state transition detection using methods that ensure normal levels of battery drain 
was performed by Wang et al. (2009). A common criticism for any system aimed 
for real-world deployment is whether the battery consumption is appropriately 
optimised. 

Further advances in mobile sensing focused on different forms of activity 
recognition systems. Sun (Sun, Zhang, Li, Guo, Li, 2010) summarised the advances 
in activity recognition from the recent years, while Choudhury et al. (2008) 
discussed the use of human activity recognition systems for more general topics, 
such as fitness monitoring, eldercare support, long-term care and cognitive 
assistance. McClernon & Choudhury (2013) offered an assistance method focused 
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more on everyday use by proposing the use of smartphone sensors to detect 
smoking habits to tackle unhealthy habits.  

Understanding different forms of behaviour, both human behaviour and device 
usage-related behaviour, is often explored via mobile sensing. Works by Ferreira et 
al. (2014) investigating smartphone application micro-usage, how smartphone 
users revisit their applications by Jones, Ferreira, Hosio, Goncalves, and Kostakos 
(2015) and the analysis of the breaks between usage sessions and the continuity in 
task completion by van Berkel et al. (2016) all contribute to our understanding of 
smartphone use via sensed information. In terms of human behaviour, the perceived 
mood of a user can be associated with mobile sensing data, either by investigating 
and attempting to predict and model mood levels such as stress (LiKamWa, Liu, 
Lane & Zhong, 2013; Sano & Picard, 2013; Servia-Rodríguez et al., 2017) or 
boredom (Matic, Pielot & Oliver, 2015; Pielot, Dingler, Pedro & Oliver, 2015) or 
by directly investigating the association between sensed variables and user’s 
emotional states (Mehrotra, Tsapeli, Hendley & Musolesi, 2017). Kushlev, Cardoso, 
and Pielot (2017) took a step further and investigated the influence of affect (how 
you are feeling) on smartphone interactions with different types of content. 

When investigating the association between specific human (or device use) 
behaviour, the approach starts by selecting a set of variables (e.g. time spent using 
the device and in a different form or distinct application choices, among others) and 
the behaviour we wish to observe. The most straightforward association is the 
relationship between any two variables, as illustrated in the middle of Figure 1. 
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Fig. 1. Conceptual representation of measured states (right) and sensed variables (left) 
and the multivariate association between them. 

The problem in this assessment, especially if attempting to make predictions in the 
said states (e.g. stress), is that both sides of the association are influenced by other 
unseen variables (see Figure 1). A mere change in screen time (details related to 
time spent using the device) can be an indication of stress; however, it can also be 
an indication of multiple other factors. Thus, a detailed prediction or assumption 
needs the analysis of multiple variables. 

Figure 2 illustrates the multivariate association between different measurable 
variables and their potential causes (or outcomes). Measuring any behaviour is by 
no means a straightforward issue because of the sheer number of influencing 
independent variables, and thus careful consideration should be taken when (a) 
making decisions on the tracked variables and (b) interpreting the results. The 
contributions in this thesis aim to mitigate these potential problems by maximising 
the number of features collected, especially when collecting complex human 
sensed data (e.g. affect). These factors are considered in the design and 
experimental implementation of Articles I–V. 

All in all, collecting sensor data via smartphones, often carried with us 
throughout the day and during work hours, leisure time, workouts and even when 
monitoring our sleep, offers invaluable insights that were previously impossible to 
collect accurately. Our everyday applications have thus seen the emergence of  
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Fig. 2. The combinatory effect on both specific sensed variables (left) and measured 
states (right), and how factors outside the scope of measurements (grey area) can and 
usually influence each other. 

context-awareness in recent years, as both the technologies and developers have 
advanced considerably. 

2.2 Interruptibility studies 

The human understanding of social and situational context offers humans great 
insights into understanding how available or attentive the other person is. Our 
assessment of the availability allows behaviour which can be considered natural or 
polite and thus does not interrupt the other person. Interruptions affect the user in 
various forms such as information overload (Okoshi, 2015), delayed task 
completion (Leiva, Böhmer, Gehring & Krüger, 2012) or reduced quality of logged 
information (Mehrotra, Musolesi, Hendley & Pejovic, 2015). Computer systems 
are often unaware of this context and thus end up interrupting a user or prompting 
at inappropriate times. The concept of bounded deferral—deferring an interruption 
to a later time with a specified upper limit—was first investigated by Horvitz, 
Apacible, and Subramani (2005). Later, Okoshi (2015) showcased two methods to 
address interruptions: either rescheduling interruptions to arrive at another time (e.g. 
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during next device use similar to the bounded deferral) or lowering the number or 
frequency of such interruptions or bundling messages together (already in use in 
instant messaging applications, for example). Similarly, Dingler and Pielot (2015) 
analysed user attentiveness to instant messaging using the bounded deferral 
approach. According to Iqbal and Bailey (2008), interruption timing can have a 
positive effect on both time management and task efficiency; thus it is an important 
research agenda in the modern-day world of increased (or even ubiquitous) 
connectivity. 

Context-aware systems are used in the field of interruptibility to attempt to 
determine user’s availability, readiness and interest in given content (Fogarty et al., 
2005) according to their historical responses in different contexts (i.e. training data). 
The training data often include variables such as interaction choices (e.g. click or 
dismiss notification) or measurements of user’s preference via short surveys or 
questionnaires, for example. The responses are then associated with the event’s 
context. Simple external sensors, installed within the environment, can successfully 
predict a person’s interruptibility (or availability, although the terminology 
distinguishes interruptibility from user availability). However, purely modelling 
this based on mobile sensors is more challenging. Intelligent algorithms (e.g. 
machine learning) have proved to be a successful method in predicting 
interruptibility. The combination of mobile phone sensor data (e.g. device posture) 
(Poppinga, Heuten & Boll, 2014), acceleration sensor (Ho & Intille, 2005), 
wearable devices with embedded sensors (Kern, Schiele, and Schmidt, 2007) and 
high-level data such as application usage patterns or location data (Mehrotra, 
Musolesi, et al., 2015; Pielot, 2015; Poppinga et al., 2014) have been shown to be 
successful. Many of these works inspired designing the contextual sampling used 
in Articles I, II and V.  

Several different machine learning classifiers have been created over the years, 
and as the computational capabilities of computers (and hand-held devices) have 
increased, the complexity, scale and computation speed of the classifiers have also 
increased. Bayesian classifiers (e.g. Naive Bayes) are considered the simplest and 
often used as a baseline. More complex algorithms include Support Vector 
Machines (SVM) (e.g. LibSVM) and tree-based algorithms (e.g. the C4.5 algorithm 
or Random Forest), which often outperform other classifiers in situations where the 
training data are not complete. Incomplete training data are described as a training 
data set without access to all (or majority) of the permutations available for the 
algorithm. For example, in a four-week deployment with a combination of 
smartphone sensors, it is not feasible to go through all different permutations of 
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collected variables (inputs) and user responses (outputs). Recently, boosted trees 
(Chen & Guestrin, 2016) and Random Forests (Mishina, Murata, Yamauchi, 
Yamashita, and Fujiyoshi, 2015) are being experimented with as more effective 
predictors, and it seems that they further increase the prediction accuracy and 
reduce memory use (Pielot et al., 2017). 

2.3 Challenges of intelligent methods 

One issue with intelligent predictor mechanisms, such as the aforementioned 
machine learning, is the understandability of the results. Many algorithms function 
as a black box system, implying that the inner workings and decision-making are 
effectively masked from the user. Thus, it can be difficult to understand the 
underlying reasons for the predictions and what ultimately influences the decisions. 
This can cause difficulties in communicating the results to the user in a trustworthy 
manner (as it can be very difficult to pinpoint a reason for a single prediction); it 
can also cause difficulties in communication in the research society (e.g. with 
colleagues, co-researchers or reviewers lacking sufficient knowledge to understand 
the limitations of a system or simply misunderstanding the details).  

Many approaches leverage a multivariate prediction analysis, similar to the 
concept in Figure 2, where substantial data are leveraged as a decision-making 
feature set. Each feature acts as a binary or multivariate state (e.g. true or false, or 
whether the screen is on, off, unlocked or locked) or as a value (e.g. number or text 
string). The decisions are then based on the combination of these features, and a 
simple change in one feature could cause the result to differ vastly. For example, 
even if all other conditions remain the same, being at home makes a person more 
likely to answer incoming phone calls as opposed to when he/she is at work. The 
actual decision-making mechanism can be observed in some cases, such as tree 
algorithms (e.g. C4.5); however, with multiple features, the mechanism will very 
quickly bloat in size and become difficult for a human to grasp. The importance 
and effect of each feature are hard to communicate accurately, simply because the 
effect of each feature has an intertwined relationship with another feature or with a 
set of features. The typical means of assessing the impact of individual features are 
feature importance measurements, measured by either mean decrease impurity 
(MDI) or mean decrease accuracy (MDA)—how much worse does the prediction 
model perform when features are removed from the training set or split and gain-
based measures—split measures imply how often the feature is used in a single 
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decision process (for tree-based algorithms) and gains measures measuring the 
increase in performance when the feature is used as a ‘cover’ feature. 

Using approaches such as MDI or MDA that generalise the feature importance 
into a ranking from ‘most important’ to ‘least important’ can easily lead to 
confusion. While a measurement such as battery charge level can be deemed as the 
essential feature, the actual relationship between battery level measurement and 
other features is still very complicated. In one of the many experiments on the 
association between smartphone sensors and user interruptibility, Poppinga et al. 
(2014) revealed the time of day and screen coverage of good predictors for 
opportune moments to present smartphone notifications. Pielot (2014) investigated 
mobile users’ availability to answer incoming calls and showcased a variety of 
contextual data (e.g. physical activity, screen status, the day of the week) in addition 
to similar hardware sensors to those in Poppinga et al. (2014). Investigating more 
high-level variables (software sensors), users tend to have individually 
distinguishable traits of device usage in terms of session frequencies and durations 
(van Berkel et al., 2016), application selection (Welke, Andone, Blaszkiewicz & 
Markowetz, 2016; Zhao et al., 2016) and interactions (Falaki, Mahajan, Kandula, 
Lymberopoulos, Govindan & Estrin, 2010). These high-level features can 
reconstruct the user’s personal preferences in detail. This past behavioural usage 
data was used by Pielot et al. (2014) to model user’s attentiveness to instant 
messaging applications. 

More detailed investigations on the associations between single or multiple 
features in end-user decision-making have also been carried out. The upside of 
using fewer features and more simplified analysis methods is the increase in 
communication and transparency. Most of Mehrotra’s work has been on the area of 
notification management and understanding the details of user’s notification 
preferences and habits. Highlighted works include (a) PrefMiner (Mehrotra et al., 
2016), a non-black box system aimed at understanding and automating user’s 
notification management settings based on a human-understandable intelligent 
proposal system; (b) MyTraces (Mehrotra, Tsapeli, Hendley & Musolesi, 2017), an 
investigation on the correlation and causality between mental states and 
smartphone interactions; and (c) My phone and me (Mehrotra, Pejovic, Vermeulen, 
Hendley & Musolesi, 2016), which investigates attentiveness and response times 
to notifications. These works take a more simplified approach in automatic 
management but do it with increased understandability and transparency to the end 
user. Other approaches to mitigating the disruptive nature of notifications, for 
example, have also been explored. Leiva et al. (2012) attempted to prepare the user 
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for disruption before the actual interruption arrives and ways to guide the user back 
to the on-going task (e.g. by replaying the prior interactions with the interface). 

Article V offers a novel approach to mitigating the potential problems that arise 
when relying on either general or personalised models. Article V introduces a 
method for recommender and prediction systems to rely on group-based modelling 
that reduces the initial downtime of a prediction system or the inaccuracy of relying 
on generalised approach in situations where individual differences can highly 
influence accuracy.  

2.4 Smartwatch studies 

Smartwatches have re-emerged in the past years as a viable and usable product, 
sitting between wearable products such as activity trackers with somewhat limited 
capabilities and our smartphones. This re-emergence has caused the research 
community to investigate this new trend in multiple areas, from a marketing and 
consumer adoption standpoint to topics closer to those explored within this thesis: 
sensor-based information collection on user habits and usage behaviours. The 
current iteration of smartwatches allows users to synchronise information to their 
smartphones, interact with their applications and receive information in the form of 
instant messages or emails and for navigation or weather purposes, for example. 
Articles III and IV fill the gap in smartwatch literature by introducing a quantitative 
analysis of smartwatch use that leverages mobile sensing. The primary motivation 
for including these works within the scope of this thesis is (a) close the connection 
between Android smartwatches and smartphones, as the devices are meant to be 
used in tandem and (b) observing the similarities and differences in the usage of 
these two device types. 

Part of the research on smartwatches and their use is focused on understanding 
consumer acceptance of smartwatches. While the technology has been available for 
several years in its latest form, it is yet to attain vast popularity. Wu, Wu, and Chang 
(2016) surveyed 212 smartwatch users and noted that users are accustomed to the 
form factor of the smartwatch (i.e. similarity to the wristwatch), although they 
require result demonstrability. The benefits of owning and using a smartwatch 
should be tangible to the user, both as an extension to the smartphone and also as a 
standalone device. In another work, Kracheel, Bronzi, and Kazemi (2014) 
highlighted the dual nature of the smartwatch as an intelligent, connected device 
but also as a traditional wristwatch. Kracheel et al. (2014) also noted that the lack 
of widespread adoption of smartwatches is likely due to the lack of a ‘killer app’, 
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which would sufficiently distinguish the smartwatch from the smartphone or mere 
activity trackers. Alternatively, technological limitations can also withdraw 
potential users from obtaining a smartwatch, with battery limitations often cited as 
the most significant issue (Rawassizadeh, Price & Petre, 2015). 

Min et al. (2015) investigated the differences between inexperienced (with less 
than three months of experience) and seasoned smartwatch users and revealed that 
if only one feature was to be used, the more experienced users prioritised time-
keeping capabilities over notifications, which were favoured by the inexperienced 
smartwatch owners. Overall, however, 98% of the respondents perceived 
notifications as the main functionality of a smartwatch. Similar results are 
highlighted in Maier and Wörndl (2015). The main reason is the ability to covertly 
access information (Cecchinato, Cox & Bird, 2015) without the social 
awkwardness and the negative associations of constantly peeking at your 
smartphone (Palen, Salzman & Youngs, 2000). The increased connectivity and 
availability are seen as a benefit by the end users, as unavailability is a common 
problem in mobile communication (Salovaara, Lindqvist, Hasu & Häkkilä, 2011). 

The ubiquitous nature of smartwatches also contains other benefits. Wearable 
devices have emerged as an essential tool in monitoring health issues (Mortazavi, 
Pourhomayoun, Alsheikh, Alshurafa, Lee & Sarrafzadeh, 2014) due to their ability 
to monitor activity. Smartwatch can also collect biological, environmental or 
behavioural information and is likely to be carried by the user throughout the day. 
The location of the smartwatch also allows more precise activity tracking, such as 
tracking meals (Dong, Scisco, Wilson, Muth & Hoover, 2014), smoking (Scholl & 
Laerhoven, 2012), having a cup of coffee or giving talks (Shoaib, Bosch, Scholten, 
Havinga & Incel, 2015). Research findings suggest that accurate logging of bad 
habits can help mitigate drinking too much coffee, smoking too much or skipping 
meals, for example. 

The research on smartwatch usage is still emerging. This justifies the inclusion 
of the works in this thesis, as the data collected from smartwatch users in-the-wild 
are still scarce, and the owners of smartwatches are still adapting the way they use 
their devices in everyday life. 
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3 Mobile sensing 

3.1 Mobile sensing frameworks and data sets 

The Android OS offers access to several hardware sensors. While the data are not 
raw sensor data (i.e. values such as current read directly from the on-board chip; 
the information provided by the OS is often referred to as raw data). The Android 
OS on-board sensor chips are categorised into three different main categories; 
motion sensors, position sensors and environmental sensors. The sensors are further 
divided into hardware sensors (raw data) and software sensors (processed data), 
although in a sense the hardware sensors are also already processed from the data 
provided by the chip. Table 2 showcases the different smartphone sensors and the 
raw data provided by those sensors. 

Several other sensors offer information directly about the state of the 
smartphone. Although not listed in the official documentation, the sensors still 
provide similar information from on-board chips or other parts of the hardware. For 
reference, a full overview of these sensors is listed in Table 3. As both of the tables 
contain considerable information, the sensors used within the articles in this thesis 
appear in bold type.  
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Table 2. Android hardware sensors. Sensors used in the articles of this thesis are in 
bold type. 

Hardware Sensor Description Common Uses 
Accelerometer Measures the acceleration force in m/s2 that is applied 

to a device on all three physical axes (x, y and z), 

including the force of gravity. 

Motion detection (shake, 

tilt, etc.). 

Ambient temperature Measures the ambient room temperature in degrees 

Celsius (°C). 
Monitoring air 

temperatures. 
Gravity Measures the force of gravity in m/s2 that is applied to a 

device on all three physical axes (x, y, z). 
Motion detection (shake, 

tilt, etc.). 
Gyroscope Measures a device’s rate of rotation in rad/s around 

each of the three physical axes (x, y and z). 
Rotation detection (spin, 

turn, etc.). 
Light Measures the ambient light level (illumination) in lx. Controlling screen 

brightness. 
Linear Acceleration Measures the acceleration force in m/s2 that is applied 

to a device on all three physical axes (x, y and z), 

excluding the force of gravity.

Monitoring acceleration 

along a single axis. 

Magnetic field Measures the ambient geomagnetic field for all three 

physical axes (x, y, z) in μT.

Creating a compass. 

Orientation Measures degrees of rotation that a device makes 

around all three physical axes (x, y, z).

Determining device 

position. 
Pressure Measures the ambient air pressure in hPa or mbar. Monitoring air pressure 

changes. 
Proximity Measures the proximity of an object in cm relative to the 

view screen of a device. This sensor is typically used to 

determine whether a handset is being held up to a 

person’s ear.

Phone position during a 

call. 

Relative humidity Measures the relative ambient humidity in percent (%). Monitoring dewpoint, 

absolute, and relative 

humidity. 
Rotation vector Measures the orientation of a device by providing the 

three elements of the device’s rotation vector. 
Motion detection and 

rotation detection. 
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Table 3. Android software (state) sensors. Sensors used in the articles of this thesis are 
in bold type. 

State 

Sensor 

Description 

Screen Keeps track of the screen state of the smartphone, using four different states: ON, OFF, 

locked, and unlocked. 

Applications Whenever the foreground application changes, the application’s package name (unique 

identifier created by the app developer (e.g. com.facebook.katana for the Facebook main 

application) is logged. 

Bluetooth List of nearby Bluetooth devices, their signal strength (RSSI) and MAC address (unique 

hardware identifier for each device). 

Network The state of different network devices; mobile network ON or OFF, Wi-Fi activated or 

deactivated, airplane mode (ON/OFF), Bluetooth (ON/OFF), GPS activated or deactivated, 

Internet access available or unavailable and the amount of network traffic in both bytes and 

packets. 

Battery Battery level (%) and the charging state, voltage, ampere and battery temperature. 

Calls Incoming and outgoing calls, their result (e.g. answered or unanswered) and either source 

(if incoming) or target (if outgoing). The duration of a call can also be calculated from time 

between start and end of a call event. 

SMS Sent and received SMS messages and the corresponding sender or target. 

Location The latitude and longitude of the smartphones location, the current bearing (direction), 

movement speed, altitude and the location provider (GPS or via network) and estimated 

location accuracy. 

The information provided by the hardware chips, monitoring both the environment 
and the user’s actions, offers limited insights into its raw form. Further processing 
is required for it to become a meaningful measurement of anything besides very 
simplified information.  

3.1.1 Sensor data processing  

In this example, we start with the raw data from the screen sensor that broadcasts 
the state changes (the screen turns on or off and becomes locked or unlocked) in 
the smartphone screen, and when (timestamp) each change occurred. The change 
from a switched off screen to a switched on one can happen automatically (e.g. due 
to an arriving message or a call); however, unlocking the device requires user 
interaction. From this raw data, we can explore measurements such as how often 
the user interacted with their smartphone over a day and at what times of the day.  
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For furthering this process, the information can be analysed by combining 
multiple samples and measuring time differences (e.g. to assess the length of an 
individual usage session): the time between the screen becoming unlocked—
requiring specific user interaction to do so—and the time when the screen turns (or 
is turned) off again. Inactivity can also cause the device to become locked at a 
certain (usually on the minute) interval, which can be identified, and thus usage 
sessions consisting of some level of inactivity can also be identified. The opposite 
of a usage session can also be identified; this was coined as usage gaps by van 
Berkel et al. (2016) in their thorough study of the existence and influence on 
smartphone use from the information between times when devices become 
unlocked. 

Furthermore, different sensor data can also be combined (as discussed 
previously) to either gain a more detailed understanding of an event, or observe the 
influence of one event factor on another. In Article III, the association between 
incoming notifications and usage sessions is analysed by measuring the 
longitudinal nature of both variables. The analysis evaluates whether the usage 
session originated from an arriving notification (and vice versa) or whether an 
incoming notification was observed by the user (indicated by the following usage 
session) swiftly. This approach was enabled by both variables sharing a timecode 
which were then cross-referenced and matched accordingly within the specified 
time window (60 seconds). Figure 3 is from Article III and showcases how 
notifications are categorised based on how swiftly they were observed. In addition, 
each notification and the following usage session were used to categorise a usage 
session into user or notification-initiated usage session. Lastly, the usage sessions 
were also categorised into peek or interaction sessions, based on whether the 
session contained any user interaction (interaction session) or not (peek session). 
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Fig. 3. Our methodology from Articles III & IV for classifying notifications based on their 
observation delays (Reprinted by permission from Article III ©2017 Authors). 

Other commonly used sensors for determining device usage styles involve the 
applications sensor; it indicates which applications have been actively used 
(appears as the foreground activity on the device) and when. For example, the 
battery indicates different types of periods of device’s use based on battery 
depletion rate (or specific time or context for charging the battery). Article I 
explores user’s mood that affects the application choices, and specifically in the 
order of choices being influenced by the current mood and not vice versa. In Article 
I, the mood was self-reported by the user after unlocking his device, and the 
timestamps were then cross-referenced with the applications that launch within the 
following usage session, essentially combining three different sets of data 
(applications, screen, and mood) based on a similar timeframe in which the events 
occur. 

The battery sensor contains simple information of the battery level and 
charging state, logging a database entry every time the battery level or the charging 
state changes. This limited and simple information can be processed further into 
measurements for battery drain rate over time, charging rate over time, and overall 
battery use, indicating heavier and more frequent device usage. In their work, Min 
et al. (2015) explored the current practices for smartwatch battery use and 
management. A more human-centric investigation combining the sensor with 
human interaction is also feasible, as demonstrated by Hosio et al. (2016) in their 
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insightful work on understanding the (monetary) value of a smartphone battery 
charge level. 

The approaches to data analysis above from just the screen sensor are used 
throughout the works that look into device usage and are a person’s typical go-to 
methods for inferring usage sessions and general device use. More in-depth 
analysis has also been performed, which is often more common in the form of a 
post hoc analysis. The approach used by Meyer, Wasmann, Heuten, El Ali, and Boll 
(2017) inspired one of the analysed features in Article IV. Their work analysed 
long-term usage patterns in activity trackers, and how users adapt their use over 
long periods, ranging from intense and frequent usage to periods of inactivity, but 
with the users periodically returning to their devices after inactive periods.  

Meyer et al.’s (2017) work analysed the data from an activity tracker, a carried 
or worn device that uses the accelerometer sensor to track steps. A typical step goal 
for a healthy active lifestyle is 10,000 steps per day. Each day that the device logs 
more than 500 steps is considered a use day, indicating that the device was used 
during that day. The information is then processed further by measuring the density 
of use within a period or in total (ranging from 0% to 100%), uninterrupted series 
of use or non-use days (‘streaks’ and ‘breaks’) and use days per week (from 0 to 7). 
The authors then identified and labelled different use patterns (e.g. ‘power use’, 
‘slow start’, etc.) based on the measurements. 

3.2 Data collection: frameworks and conducted studies 

Collecting sensor data from mobile devices can pursue two goals. One approach is 
enhancing the user experience of application use by adapting the application 
directly through sensed information. Alternatively, the possible adaptations can be 
first investigated remotely by collecting the sensed information and performing the 
analysis before making any direct adaptations to the application. Broadly speaking, 
the approaches can be considered as more business orientated (first approach) or 
research orientated (second approach). However, a post hoc analysis is required to 
conduct the first approach effectively or investigate the adaptations’ effectiveness.  

With the increased connectivity of smartphones, the research community has 
benefited greatly from the ease of directly collecting data from end users’ devices 
through cloud services and servers. Data collection methods for mobile devices 
usually leverage this connectivity to share data from the end devices with the 
centralised servers. Although each platform, framework, application and study 
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conduct the data collection distinctively, the basic principle applies to most. Most 
of the applications we use daily communicate with a server to fetch, share or store 
information; so end users are less likely to see such communications as unwanted 
or dangerous when they are used to collect information, although the emergence of 
personal data protection laws, such as the GDPR (the European Union General Data 
Protection Regulation), has caused the general population to exercise more caution 
in their data-sharing habits. 

In the mobile environment, data are collected to capture the context in the 
domain of mobile computing. Drawing on Dey (2001) and Abowd et al. (1999), 
Ferreira (2013) extends the categories of context for mobile instrumentation, 
offering the following categorisations: 

– Who: the unique identity of the entities (e.g. sensor or application). 
– What: the characteristics of the entities that can be labelled, measured or 

inferred (e.g. a label for a geo-location coordinate, currently engaged physical 
activity for a person, etc.). 

– When: the instance of time in which the event is occurring. 
– Where: the location (e.g. place, application, sensor) of the event. 
– Why: the intelligibility of the system or application, the user intent and 

accountability of the system, application and user.  

Ferreira (2013) adds that the category of why is the most difficult to capture, as it 
implies personal and informed choice based on the information available to humans 
but not necessarily to machines.  

Two different data collection frameworks were used in the thesis’ articles. The 
smartphone-based data were collected using the AWARE framework (Ferreira, 
Kostakos & Dey, 2015). AWARE allows application developers to include sensor 
data within their applications and create studies for their users which automatically 
offload the data from their users to a centralised server. Similarly, researchers can 
set up studies to collect specific hardware or software sensor data from their study 
participants. AWARE has been used for numerous research projects, studies and 
publications throughout the world since its emergence in 2013 and can be 
considered the most popular mobile sensing framework currently in use. Articles 
I–II and V leverage the AWARE framework and collect sensor data during device 
use; each distinct smartphone then uploads the data to the centralised server for 
further access and analysis.  

Article I is based on two distinct studies. The first study was conducted by 
Sarsenbayeva et al. (2017). It investigated the feasibility of using a Vision API to 
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infer user’s happiness from self-portraits. The used application is named 
MoodTracker, and the application details are described in the cited article. The self-
reported happiness value was collected when the user unlocked his device once 
during three different periods of the day: once in the morning (8 a.m.–12 p.m.), 
once in the afternoon (12 p.m.–18 p.m.), and again in the evening (18 p.m.–24 p.m.). 
In case the participant did not unlock his/her device at a designated time slot, we 
would discard the data logging request. The study lasted for two weeks and 
consisted of 15 participants (aged 21–30, M = 26.47, SD = 2.13). The second study 
used in Article I was unpublished at the time of writing of the article. It consisted 
of 21 participants who for two weeks reported their happiness and activity level 
when prompted after unlocking their devices. Both studies passively collected 
application usage data continuously during the two-week study period.  

Articles II and V report data collected initially in the author’s master’s thesis 
work (Visuri, 2016)—the LifeTracker application. The conducted study was based 
on a self-monitoring application that enabled users to track their health, exercise or 
mood daily. Forty-eight participants participated in a four-week long study, during 
which they were instructed to use the application daily. The participants also 
interacted with the application prompts by accepting or dismissing each prompt—
behaviour that is investigated in detail in Article V. The application was built on top 
of the AWARE framework, enabling the base data collection from the participants’ 
smartphones to function in the background while the application itself offered 
expansive interfaces and self-reporting options to the users. Figure 4 showcases the 
self-reporting interfaces of the LifeTracker application. 

The smartwatch data used in Article III and Article IV were collected via the 
Insight 4 Wear application, originally introduced in (Rawassizadeh, Tomitsch, et 
al., 2015). The application was designed for real-life use, offering the user 
information about his battery health and lifetime as well as other information 
related to his/her device use. The data were then shared with the research 
community. It is one of the largest wearable data sets available, especially 
considering its longitudinal characteristic—some users have tracked their data 
since its introduction in 2015. The full data set consists of a fixed set of physical 
activities, heart rate (if available on the wearable device), screen events, battery 
status, notifications, Bluetooth connections and ambient light. The articles in this 
thesis leverage battery, screen and notification data sets to understand the device 
usage characteristics from smartwatch users. 
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Fig. 4. Self-report interfaces (within an application and from an alert dialogue) from the 
LifeTracker application. 

While the AWARE framework is modular, based on the needs of an application 
developer or a researcher, monitoring and collecting data from different sensors can 
be turned on and off; Insight 4 Wear is a standalone application with a fixed set of 
sensors. The benefits of being standalone include better optimisation and energy 
efficiency in terms of battery drain and lifetime, which are common issues with 
modern smartwatches. The application is also reasonably comprehensive to collect 
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high-quality and large data sets from wearable devices. The full data set in Articles 
III–IV is 10 gigabytes in size and contains information from 681 unique devices. 

3.3 Mobile sensing applied to included articles 

As previously stated, all articles within this thesis involve mobile sensing. In all 
cases, the methodology is passive sensing (collecting raw data from hardware 
sensors), interaction or self-reported variables, combined with a post hoc analysis 
of the collected usage data. The following table and chapter summarise how mobile 
sensing is applied in each article for data collection and how the collected data are 
then used for analysis. 

Article I contains simple raw sensor values, and the experiment collects self-
reported mood information. The mood information is collected via an interface 
presented during a device usage session that inquires the user’s current mood using 
the circumplex mood model (Russell, 1980)—using two axes of valence (pleasure) 
and activation (activity). Sensors then passively collect application usage and 
screen data. The analysis itself looks for correlations between specific application 
categories (‘Internet and Social’, ‘Games’, ‘Maps and Travel’, etc.) and the 
reported affect, which is also categorised into eight separate categories according 
to the combination of valence and activation (‘Stressed’, ‘Happy’, ‘Bored’, etc.). 

Article II continues the theme of manual data collection in the smartphone 
environment and investigates ways to encourage the number of daily data 
contributions with a more qualitative approach—using survey responses in addition 
to mobile sensed data to explore the use of potentially interruptive interfaces in 
collecting data contributions. It uses the categorisation of screen data (usage 
sessions) to new and continuing sessions (see van Berkel et al., 2016) and explores 
the timing of an interruption (interface) in the data collection efficiency. Contrary 
to the four-tier interaction classification from Article I, only the data contribution 
is considered here. The articles conclude with a statistical analysis of what types of 
interface timings and during which types of usage sessions there is a higher 
likelihood of data contributions. 
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Table 4. Sensors used in presented works and a summary of the analysis methods. 
Non-native and non-hardware sensed data are included in italics. 
 

Data Analysis 

Article I 

Smartphone Usage 

Behaviour 

Screen 

Applications 

Self-reported 

Affect 

Correlation between user reported affect using the circumplex 

mood model (Russell, 1980) and subsequent application usage. 

Article II 

Smartphone Usage 

Behaviour 

Screen 

Alert Dialogue 

Interactions 

Manual Data Input 

Frequency 

Survey Data 

User’s willingness for manual data contributions via alert 

dialogues in different forms of usage session types and for 

different input modalities. 

Article III 

Smartwatch Usage 

Behaviour 

Screen 

(Smartwatch and 

Smartphone) 

Notifications 

General investigation of differences between usage sessions on 

smartwatches and smartphones in session frequency, type and 

duration. 

Article IV 

Smartwatch Usage 

Behaviour 

Screen 

Battery 

Notifications 

A combination of usage characteristics derived from sensor data 

is analysed longitudinally for consistent long-term changes in 

the participants’ device usage styles. 

Article V 

Human 

Interruptibility and 

Attentiveness 

Screen 

Battery 

Calls 

Network 

Proximity 

Physical Activity 

Alert Dialogue 

Interactions 

Manual Data Input 

Frequency 

Survey Data 

User’s receptiveness to interruptions is modelled with machine 

learning using a vector feature consisting of sensor data (see 

text for details) which is labelled according to the logged 

interactions and manual data inputs. 

Article III continues to discuss the smartwatch device space and uses a collection 
of screen and notification data to explore different types of smartwatch usage 
sessions, which are then compared to a smartphone screen data set collected from 
earlier published works from the same authors. Much of the data in Article III are 
focused on usage sessions, and how the usage sessions differ in the used 
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smartwatch and smartphone data sets. The notification data set timestamped is then 
cross-referenced with the usage sessions, according to the previous illustration in 
Figure 3. The usage sessions are categorised into peek and interaction sessions, 
according to a five-second threshold for the screen to turn back off unless there 
occurs a specific user interaction (touch, voice command, etc.) during use. The 
notification data set is further statistically analysed according to source application 
and its category. Figure 5 is an excerpt from the article and showcases the major 
differences in smartwatch and smartphone use according to the frequency and 
duration of usage sessions; showcasing smartphone sessions is usually significantly 
longer and less frequent. 
 

Fig. 5. Differences between usage sessions on smartwatches and smartphones from 
Article III (Reprinted by permission from Article III © 2017 Authors). 

Article IV uses the same smartwatch data set, albeit with extended duration, and 
incorporates the battery and charging tendencies on top of the screen (usage) and 
notification-related data. The goal of Article IV is to investigate how smartwatch 
users adapt their use over time. The paper takes a more complex approach to 
investigate usage traits, create summaries of user’s daily activities and analyse how 
the activities’ focus shifts over time. The paper incorporates further theorems from 
other researchers, namely the concept of short, isolated and reward-based device 
use (Oulasvirta, Rattenbury, Ma & Raita, 2012), and whether battery levels have 
reached what Hosio et al. (2016) considered low or critical levels. The analysis 
considers daily summaries in terms of (a) ratios (e.g. how many in % of the received 
notifications were quickly addressed or how many of the sessions were swift 
glances (peek sessions), (b) total number of events (e.g. number of usage sessions) 
and (c) means and medians (e.g. average duration of a usage session during the day 
or median time between sessions). The daily summaries are aggregated to 30-day 
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summaries, which average each feature (coined as usage session characteristics) 
within the 30-day time window. Furthermore, Meyer et al.’s (2017) work inspires 
investigation of overall use (or lack thereof) during these 30-day windows, and the 
streak, break, and phase measurements are calculated for the 30-day periods. 
Overall, Article IV presents detailed and complex measurements, going beyond just 
reading raw sensor values. 

As noted in Article V, probably the most complex work in terms of mobile 
sensing, a machine learning algorithm is applied to the sensed data, which attempts 
to predict the user’s attentiveness to presented interruptions, in this case whether 
the user is willing to contribute self-reported data and what their response type 
(accept or reject) is to an incoming interruption. The selected machine learning 
algorithm, Random Forest (Breiman, 2015), uses a vector of samples for training 
and testing its accuracy. The vector is generated from the raw sensor data and used 
as a snapshot of a moment in time—the moment when the user performs a manual 
interaction indicative of his interaction choices. The interaction is used as a label 
for the data vector, which indicates both the result in the training data and the 
predicted interaction choice for the testing data, which otherwise is missing the 
label. In Article V, the interaction choice is defined as a combination of two binary 
options: whether the user contributed data via the presented interface or not, and 
whether the user accepted or rejected the interface. The resulting combination 
offers four distinct interaction choices (labelled as A, B, C and D) that function as 
the label for the data vector. 

The data vector uses a multitude of sensors to collect the user’s context. Table 
4 describes each presented work and the sensors used. Article V uses a combination 
of six hardware sensors, their raw data, processed sensor data and interactions to 
create a simplified idea of the user’s current situation. For those interested in details 
or looking to replicate similar methods, the used sensors in no particular order of 
importance are as follows:  

1. Whether data are contributed in the current usage session. 
2. Delay (in seconds) of the input interface from the beginning of the usage 

session. 
3. The number of usage sessions within the last five minutes. 
4. Duration of the current usage session. 
5. The type of the current usage sessions - whether it is a new or continuing usage 

session (van Berkel et al., 2016). 
6. Time since the last interaction with the data collection application. 
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7. Time since the last data contribution. 
8. Availability of the Wi-Fi connection. 
9. Availability of Internet connectivity. 
10. Cellular network connection type. 
11. Current battery level (in %). 
12. The current battery charging state. 
13. Whether the smartphone screen is covered or not. 
14. The current physical activity of the user. 
15. The current hour of the day. 
16. The current day of the week.  

Points 8–13 are raw sensor data, 14 is a software sensor provided by Google (the 
Google Activity Recognition API) and 15–16 are from the data timestamps. Points 
1, 6 and 7 are from the application usage logs. The usage session points (2–5) use 
screen events, namely screen becoming unlocked and then subsequently turned off, 
identifying periods of device usage and then further process the information either 
by comparing data point timestamps (4), comparing with previously processed 
usage sessions (3 and 5) or comparing with application usage logs (2). 
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4 Understanding technology and its effects on 
the user 

Understanding the dual nature of both technology use of individuals and how using 
technology influences individuals are a core aspect of research in HCI. In addition, 
it is commonly investigated in which ways our technology use is influenced by both 
external and internal context. A plethora of different methods can be used to assess 
the effects, including qualitative methods such as surveys and self-reports, 
interviews and collecting user experiences as well as collecting quantified data 
using mobile sensing. Often several methods can be used in combination, and the 
different methods verify results from each other. Two of the articles (Articles I and 
II) in this thesis probe the topic of technology use (i.e. smartphone use) from the 
aspect of what influences our technology use and how this information could be 
leveraged. The following two articles (Articles III and IV) investigate technology 
use and adaption from the perspective of wearable devices (i.e. Android 
smartwatches). 

4.1 Article 1: The influence of mood in application selection 

Article I introduces two experiments where participants (N = 15 for study A and N 
= 21 for study B) reported their mood levels throughout the day over two weeks. 
In Study A, the participants reported their happiness, and in Study B, the 
participants reported their pleasure and activeness values according to the 
circumplex mood model. The pleasure axis correlates to the happiness value, and 
using the mood model, the angular sum can be used to derive more detailed mood 
categories (see Figure 6). The mood levels were normalised to use a three-tier 
(‘Low’, ‘Neutral’, ‘High’) scale. The application use was collected via the on-board 
sensors, and the data were periodically uploaded to a secure server. The collected 
data set contains a total of 35K instances of application changes (M = 972 per user) 
and 9.2K (M = 254 per user) mood reports. The circumplex mood model entries 
are then mapped to eight distinct mood categories (Figure 6). 

Research has shown an association between different types of smartphone use 
(e.g. application choices), human affect and mental states (e.g. depression in young 
populations who habitually use social media) (Lin et al., 2016). Similarly, Niforatos 
and Karapanos (2014) showed that a specific type of application use leads to a 
heightened mental state among its users. 
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Fig. 6. The circumplex mood model, measuring individual’s affect with two axes: 
activeness and pleasure (Reprinted by permission from Article I © 2016 Authors). 

Using Pearson’s Chi-squared test, the article initially reveals different moods 
experienced at different periods of the day. The most likely experienced moods 
begin with ‘Stressed’ or ‘Upset’ during the morning (6 a.m.–12 p.m.), leading to 
‘Tense’ or ‘Calm’ during the afternoon (12 p.m.– 18 p.m.) and finally to ‘Relaxed’ 
during the evening. The daily cycle and how individuals’ days are structured 
influence how they experience day-to-day life. The statistical test verifies this effect 
(χ2(21) = 168.2, p < .05) for different periods of the day. Hardly a novel result, at 
least in psychology, the work then proceeds to measure how (or whether) these 
differences influence our technology use. 

In both Studies A and B, the happiness level and application choices were 
significantly related (χ2 (14) = 38.61, p < 0.05), and in Study B, both the activeness 
level (χ2 (14) = 84.59, p < 0.05) and happiness level (χ2 (14) = 32.90, p < 0.05) 
were significantly related to the application choices. Furthermore, Chi-squared test 
reveals a semi-weak (Cramer’s V = .23) relation between the experienced mood 
and application choices (χ2(49) = 328.29, p < .05). The experienced pleasure level 
indicates significant differences in application categories of ‘Games’, ‘Internet and 
Social’, ‘Maps and Travel’ and ‘Media’, in particular. This indicates that mood 
plays a critical role in our smartphone use and application selection. 
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Fig. 7. The variance of an individual’s mood during the day. (Reprinted by permission 
from Article I © 2016 Authors). 

Fig. 8. Use of different application types according to the user’s pleasure level. 
(Reprinted by permission from Article I © 2016 Authors). 
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The results of Article I indicate that regarding the presented research question, our 
mood influences our mobile application choices. Similar effects have been discovered 
regarding social media applications, and how negative emotions are often associated 
with increased social media use (and vice versa, although this spectrum was not 
explored in our research). However, many of the relationships between moods and 
application choices can also be explained through third or fourth variables. For 
example, the use of ‘Maps and Travel’ applications is often associated with high 
pleasure levels; however, this could ultimately be an outcome of having a holiday in a 
new location, for example. 

4.1.1 Limitations 

In Article I, we depicted a very broad idea of mood, and how it influenced our 
technology usage choices. The user-reported grading uses a scale (1 to 10 Likert 
scale) that might include a lot of variability and ambiguity, especially when trying 
to generalise over the studies—one person’s medium pleasure level might be 
another’s low, and some participants might experience more daily variance in their 
mood than others. Numerous works have since (and before) analysed mood using 
more rigorous methods, either with more detailed reporting or focusing solely on a 
single axis, such as anxiety, boredom or stress. There is also the ongoing ambiguity 
of self-reported values and the need for either intelligent predictive systems or 
hardware solutions that can be used to track and model personal affect. The use of 
such instruments, however, has been limited thus far. As such instruments make 
further progress and advance the field of affective computing, and its applications 
in both research and consumer use would greatly benefit. 

4.2 Article II: Leveraging traces of technology use for personal 
improvement 

The majority of our smartphone use is unprompted and habitual (Lee, Chang, Lin 
& Cheng, 2014); much of the use is not deemed as meaningful (Lukoff, Yu, Kientz 
& Hiniker., 2018), and the use is rarely planned in terms of continuing existing 
goals (van Berkel et al., 2016). Quantified-Self applications, aiming to collect self-
senses or self-reported data of the user, generally suffer from lack of long-term user 
engagement or motivation for use (Brown, McGregor & McMillan, 2014; Gouveia, 
Karapanos & Hassenzahl., 2015; van Berkel et al., 2015). The goal of Article II was 
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to offer the user a quick and efficient method for data contribution in tandem with 
these short bursts of micro-usage (Ferreira et al., 2014) to ensure a longer 
commitment to using such applications. 

Article II of this thesis deals with the topic of investigating technology use and 
takes a more active stance to influence the end-user directly via observing usage 
habits. Using the same data set as in Article I, although extended through including 
participants outside of merely logging their mood, the work explores self-reported 
data contributions from the full participant pool of 48 participants. Smartphone 
usage characteristics (e.g. distinctly identified session types) are shown to influence 
the participants’ choices in interacting with applications. The data set contains a 
total of 19.3K traces of application interactions via the presented alert dialogues 
(see Figure 4) and 395K screen events, which are further aggregated into 49.3K 
smartphone usage sessions (events between the screen becoming unlocked and 
locked). 

The usage sessions are divided into sessions aiming to either continue a 
previously left task or ones where the user deliberately begins a new task, according 
to a 45-second interval introduced in (van Berkel et al., 2016). Furthermore, each 
presented alert dialogue includes the resulting outcome for the prompt—whether 
the user perceived the context of the dialogue as accepted or rejected, and whether 
the dialogue was presented to the user immediately at the beginning of the usage 
session (‘instant’) or whether the dialogue was ‘delayed’ (five minutes into a usage 
session). These tracker variables, including the session duration, were analysed for 
cases where user data contributions were more likely. These data contributions 
included information of individuals’ self-perceived mood, physical symptoms or 
activity-related information, set at the beginning of the experiment for each 
participant. 

The idea of active continuous self-monitoring, known as the Quantified-Self 
movement, relies on continuous data collection, and any individual who intends to 
achieve personal improvement via technology benefits from both continued data 
collection and increasing the quantity of available data points. The purpose of 
Article II was to investigate the use of the said alert dialogues in such fashion and 
investigate how the use of alert dialogues (and other reminder mechanisms such as 
SMS messages or notifications) could be improved through a more detailed 
understanding of technology use. 



52 

Table 5. The ratio of 'accepted' dialogues according to the delivery timing (upper), and 
data contribution frequency according to the usage session type (lower) (Reprinted by 
permission from Article II © 2017 Authors). 

% of accepted dialogues (N = 19.3K dialogues generated)  

Overall 80.0% 

89.4% 

79.6% 

‘Delayed’ dialogues 

‘Instantly’ delivered dialogues 

Table 6. Data contribution frequency according to the usage session type (lower) 
(Reprinted by permission from Article II © 2017 Authors) 

Session (N = 49.3K) New task during usage Continuing on a previous task 

Overall (N = 49.3K) 71.0% 29.0% 

Includes data contributions 

(N = 5.6K) 
12.5% 9.5% 

The collected data indicate significant increases in data collection frequency when 
dialogues were presented during a session (‘delayed’) rather than at the beginning 
of a usage session (‘instant’). Users tend to be willing (and able) to contribute data 
when they are starting a new task rather than returning to a previously left off one. 
These results have implications for the design of reminder mechanisms to increase 
the frequency of user responses. Identifying moments in time and during device 
use, where the user essentially has more free time (or idle time), will benefit in terms 
of less unwanted interruptions to the user. More results and discussion regarding 
the area of interruptions are presented in Chapter 6. 

Article II also explored the use of a specific novel medium, the alert dialogue 
and how it influenced the user experience by surveying the participants’ 
experiences. Over half (53.3%) of the participants preferred the alert dialogue as 
an input method for self-reported data snippets using an open-ended questionnaire, 
and four recurring themes became evident in their reasoning: (1) improved recall, 
(2) situated data logging, (3) low effort required and (4) even distribution of data 
entries. These findings fit well into the predetermined requirements for leveraging 
breakpoints and idle time during smart use presented in the article: (a) brief 
interactions, (b) appropriate timing of a prompt, (c) easy dismissal and (d) quick 
generation. 

The alert dialogue itself is not a delivery medium whose effect can be directly 
compared with other mediums (e.g. notifications or passive methods). The results 
still indicate that, within our explored research question regarding leveraging, 
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different types of usage sessions and device usage-related metrics for more frequent 
data logging considerations taken during device use can definitely have a positive 
influence on user response frequency (i.e. Which mobile device usage-related 
metrics can be leveraged to facilitate more frequent self-reported data logging?). 
A potential side effect of this can also be an increase in data quality. 

4.2.1 Limitations 

While there were clear takeaways in the results of Article II, not all the feedback 
from the participants was overwhelmingly positive. The frequent prompts were 
occasionally deemed interruptive, and the quality and reliability of self-reported 
information could diminish if the user felt burdened or was prompted too often. 
While the alert dialogue methodology was manageable for the experiment, it might 
not be suitable for long-term deployment. Additionally, if multiple applications 
would simultaneously leverage such methods, the burden to the user would rapidly 
become unbearable. However, the findings in Article II can potentially be applied 
to any delivery method or consideration of when users are more likely to be willing 
to contribute to self-reported data. 

4.3 Article III: Quantifying smartwatch usage sessions  

The research in wearable technologies from both perspectives of usage and design 
is a re-emerging field, which is mainly industry driven due to the re-emergence of 
smartwatches and other wearable technologies (e.g. activity trackers). The use of 
mobile sensing was not available during the era when the smartphone was an 
emerging product; thus it is challenging to reflect on the research of smartphone 
use during its early days. Our work sought to investigate and quantify smartwatch 
use and compare the uncovered details of usage traces to similar characteristics in 
smartphone use. The smartwatch is often described as an extension to the 
smartphone; however, in reality, the two devices often function in tandem.  

Cited research often reveals that the most desired feature of the smartwatch is 
the capability to address the notifications without having to interact with the 
smartphone (Min et al., 2015). Other benefits include inconspicuous use (Palen et 
al., 2000), as overuse of smartphones is often seen as a negative from the societal 
perspective, and increased availability (compared with merely using one’s 
smartphone to address notifications, calls, messages, etc.) (Böhmer, Lander, 
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Gehring, Brumpy & Krüger, 2014; Salovaara et al., 2011). While both Yan, Chu, 
Ganesan, Kansal, and Liu (2012) and Ferreira et al. (2014) have revealed that even 
smartphone use is habitually short-lived and happens in short bursts, it is 
hypothesised that smartwatch usage takes this behaviour even further.  

In Article III, we analysed a data set collected by the Insight 4 Wear application 
(Rawassizadeh et al., 2015) (described in Chapter 3). The data set included screen 
events (N = 800,119), indicating periods of device use, and information on arriving 
notifications (N = 2,801,082), namely the source application of the notification and 
when it arrived. After pre-processing the data into usage sessions, following a 
similar methodology used by Gouveia (Gouveia, Pereira, Karapanos, Munson, and 
Hassenzahl, 2016) (N = 798,423) and removing any outliers (e.g. sessions with 
abnormally long durations, N = 1696 or 0.2% of the entries), the data set was 
categorised by session type and interaction type (Figure 9) and by whether each 
arriving notification was observed within the following 60 seconds (Figure 10). 
This process was described earlier in this thesis in Chapter 3. Figure 9 and Figure 
10 showcase the results of the pre-processing in terms of distributions of user- and 
notification-initiated use, peek and interaction sessions and whether each 
notification was promptly observed or not. 
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Fig. 9. Categorisation of usage sessions into notification- or used-initiated and peek 
and interaction sessions (Reprinted by permission from Article III © 2017 Authors). 

4.3.1 Key findings 

The results presented in Article III are comprehensive. In this thesis, the key 
findings and underlying reasoning for these outcomes are described. The article is 
first of its kind to elaborate smartwatch use and uncovers the following key points: 
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Fig. 10. Distribution of notifications either delayed or promptly observed (Reprinted by 
permission from Paper III © 2017 Authors). 

User-initiated use: While notifications are said to play a significant role in the 
smartwatches usability and benefits (Cecchinato et al., 2015, Cecchinato, Cox & 
Bird, 2017), much of the actual use of smartwatches is initiated by the user. The 
smartwatch screen can be turned on by touch, by moving one’s wrist or by 
incoming notifications as long as the smartwatch is already in a position relative to 
the user where he/she can observe the incoming notifications. Thus, a set of user-
initiated use can merely be attributed to the mistakes of the user or, in some cases, 
outlier events within the data set. Regardless, the naturalistic use of a watch—
keeping and observing time—is likely the most significant reason for the majority 
if use originates from the user. Furthermore, when the user initiates the use, the 
majority (68.0%) of the use also involves interactions with the device. 

Delayed notifications: Of all the smartwatch notifications, 87.9% are not 
attended to within the first minute of arrival. According to Obuchi et al. (2016), 
smartphone notifications are addressed within 10 minutes (603.3 seconds) on 
average. When addressing non-adherence to incoming notifications, Park, Lim, 
Kim, Lee, and Lee (2017) specify an average deferral time of 51 seconds for 
delivering notification successfully. While the ratio of 12.1% notifications observed 
within the first 60 seconds seems low, it is still a significant increase compared with 
the behaviour elicited by smartphone users. The median duration for observing a 
notification in our smartwatch data set was 20.0 seconds, and, although Sahami 
Shirazi et al. (2014) did not report their median, they did specify 50% of the 



57 

notifications were interacted with within 30 seconds—not a significant difference 
compared with  Park et al.’s (2017) work. 

Smartphone use is ubiquitous: Smartwatch users still rely on their 
smartphones during out-of-office hours, mainly focusing on their smartwatch use 
during the day (between 8 a.m. and 8 p.m.). This is likely part of the day when their 
time is limited, and most of the consumed content and information are delivered 
initially through the smartwatch. Similarly, later during the day (and even during 
the night), the smartphone offers more useful functionalities (e.g. video and music 
playback, communication applications) than the smartwatch. A plethora of research 
has been focusing on designing novel methods to interact with the 
smartwatch (Gong, Yang & Irani, 2016; Xu & Lyons, 2015); however, without the 
industry adapting to these designs, in reality, the smartwatch users still neglect to 
rely on their smartwatches for producing content or communication. Furthermore, 
the session duration and density between smartwatches and smartphones are 
separated, as indicated in Figure 5. 

The research question for Article III has mostly been answered, as the main 
differences uncovered in the article between smartwatch and smartphone use are 
already presented. However, there could still be additional significant differences 
if we would analyse other usage trace types. Application choices, reactions to 
incoming notifications, response speed and frequency to messages among others 
could all showcase significant differences between the two device types. Analysing 
these traces would require parallel data sets for reasonable accuracy, which we did 
not have at the time of the original publication. The central insight and its outcome 
in analysing smartwatch usage is that the use is more frequent but less engaging. 
The idea that the smartwatch functions in tandem with the smartphone is partly 
correct; however, the watch has minimal capabilities in terms of engagement and 
interaction. Alternatively, the users merely opt to not engage with all the provided 
functionalities, perhaps due to the difficulty of use. 

4.3.2 Limitations 

Data analysis based solely on quantified information (i.e. data collected without 
further knowledge of the evidence surrounding the collected data) always rouses a 
certain level of interpretation. In contrast to the data collected in Articles I-II and 
V, the smartwatch-related articles rely on data collected by unknown end users. The 
scale of the data set is also larger, leading to further interpretations on behalf of the 
collected data. Odd and unique data traces, if left unidentified, can lead to 
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misinterpretations within the analysis. To prevent such misinformation, in both 
Articles III and IV, we attempted to identify any outliers and filtered the data prior 
to analysis. In Article III, in particular, the number of usage traces were discarded 
in the pre-processing to reduce the number of such outliers; in other words, a high 
number of notifications from certain applications that used notifications in an 
unorthodox manner, and which partly deviated from the design guidelines were 
discarded. 

4.4 Article IV: Usage transition over time in early smartwatch adopters 

The work in Article III offers a general view of smartwatch use. The results piqued 
interests in the authors to investigate smartwatch use in more detail. Considering 
the smartwatch is a new emerging product, it is often claimed in relevant literature 
that the adoption of smartwatches to everyday use is dwindling and that end users 
are unsure of the visible and tangible benefits gained from the technology (Wu et 
al., 2016).  

During the late 1990s and early 2000s, the smartphone, as we know it today, 
was still a novel product. The majority of the devices were mobile phones (i.e. the 
classic Nokia or Motorola devices) that over 90% of people in Finland owned 
during the early 2000s (Puro, 2002). Smartphones, as we know them today, existed 
mainly as personal digital assistants (PDAs), and only a fraction of the population 
owned such a device (6–7% during 2005–2006 in US campuses) (Chase & Herrod, 
2005). Smartphones were mainly seen as a tool to improve work quality and 
efficiency, particularly in health care (Kuziemsky, Laul & Leung, 2005; Lu, Xiao, 
Sears & Jacko, 2005). During the early stages of smartphone adoption, some effort 
was made to understand how and why end users used smartphones, but no 
conclusive answer was discovered. Potential use cases were often related to work, 
especially in business and in healthcare. Qualitative works (e.g. Kim, 2003) 
explored the factors involved in using a smartphone. In the end, as we now know, 
the smartphone was adopted by the general public and became a ubiquitous device. 

Similarly, the use of a smartwatch is currently being explored and investigated 
to understand why and how the devices are used in-the-wild. Article IV investigated 
the use and adoption of the use of the smartwatch during 2016 to understand how 
end users adopted their use to obtain the mentioned tangible benefits from their 
devices and whether any conclusions can be drawn of these beneficial usage styles. 
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From the same data source as Article III, we collected an extended longitudinal 
data set between December 2015 and March 2017 and identified 81 individuals 
who had logged data for a minimum period of four months. In addition to data from 
notification sensor and screen sensor, Article IV included battery-related 
information, as battery constraints are often cited as critical features in smartwatch 
adoption (Min et al., 2015) most valued by users (Hosio et al., 2016). From the 
sensor data, 98 different types of usage characteristics (features) were derived (see 
the last article at the end of the thesis for a full list and description of these 
characteristics). These features explore:  

a) Notification-related behaviour (e.g. ratio of promptly observed 
notifications). 

b) Session-related behaviour (e.g. ratio of short duration, less than 30 
seconds, or isolated, two consecutive sessions at least 10 minutes apart). 
The concepts of ‘short, isolated, or reward-based’ (SIRB) use was 
originally introduced in Oulasvirta et al. (2012). 

c) Battery-related behaviour (e.g. the battery level at the beginning of a 
charging event). 

d) Usage consistency-behaviour (e.g. the longest streak of consecutive 
usage days). The concepts of usage consistency was originally introduced 
in Meyer et al. (2017).  

From each user’s daily data, daily statistics were generated for each feature in 
feature groups 1–3 (notification, session and battery-related behaviour), and the 
statistics were further averaged for every 30 days (one month), with the feature 
group 4 (usage consistency) included. This process resulted in a total of 486 unique 
30-day long usage style periods. 

4.4.1 Exploratory and accepted usage behaviours 

Based on these 30-day periods of averaged usage statistics, the k-means clustering 
method was used as an approach to group similar usage behaviours. The process of 
grouping behaviours together according to different number of unique behaviours, 
ranging from 5 to 100, benchmarked using Dunn index (Maulik & Bandyopadhyay, 
2002) (measuring the distance between each unique group) and Shannon’s Entropy 
(Pincus, 1991) (measuring the entropy in distribution of behaviours into different 
groups), resulted in an optimal set of 33 unique types of behaviours. As each 30-
day was mandated to fit into a group, some of them could be placed sub-optimally. 
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Thus, we discarded any outlier behaviours within groups by measuring the mean 
distance (Euclidean distance of all the combined features) from the behaviour to 
the centre of that behaviour and discard those that were deemed too different from 
the core behaviour (centre). 

 

Fig. 11. Usage style behaviour transitions (Reprinted by permission from Paper IV © 
2019 Authors). 

For each user, their behaviours were then ordered based on their timing within the 
data collection period, thus creating a longitudinal set of user behaviours. Figure 
11 highlights the transitions from one behaviour to the next for each of the 
participants. From the time series data set, we can then observe whether users 
returned to any past behaviours, and how long they spent within the same behaviour 
type. By assessing whether (and when) a behaviour recurs during the data set, we 
can categorise the usage behaviours into exploratory and accepted behaviours. 
Each behaviour that occurred once only (N = 6 out of 33) is discarded as irrelevant 
for further analysis. 

– Total of 10 behaviours recurred and decreased in popularity over time 
indicating that these usage styles were prominent during early device use but 
were habitually abandoned as the adopted usage style. These 10 behaviours are 
classified as exploratory behaviours—behaviours that the users tried but 
deemed unviable for long-term device use. 

– Total of 16 behaviours recurred and became increasingly popular, indicating 
that the users collectively adapted their device usage to the characteristics of 
this behaviour. These 16 behaviours are thus classified as accepted 
behaviours—behaviours that benefit the user according to their goals and 
expectations for owning and using a smartwatch. 
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Another evidence found from the data to support these exploratory and 
accepted behaviours was derived from looking at the transitions and transition 
frequency from one usage behaviour to another. For example, annotating one 
participant’s (P71) transitions from one usage behaviour (annotated by Bxx) to 
another with an arrow notation resulted in the following: 
 

B14→B17→B21→B21→B21→B21→B32→B32→B32→B32→B32 
 

In this example, P71 starts with exploratory behaviours (B14 and B17), then 
transitions to another behaviour (B21) and does not return to the previous behaviour. 
The article also revealed that outside of the select 16 accepted behaviours, users 
would not return to their previously abandoned exploratory behaviours and tend to 
remain within an accepted behaviour for longer periods. These results highlight the 
effectiveness of the used methodology and reveal user’s proneness to adapt their 
use away from unbeneficial usage styles. 

Lastly, as the exploratory and accepted behaviours were analysed in terms of 
the individual usage features (e.g. the number of usage sessions during the day or 
number of arriving notifications), three key findings were revealed to distinguish 
between the two types of usage behaviours: 

- Notification-related use: Accepted behaviours elicit fewer daily 
notifications (M = -64.8, p < .01), less promptly observed notifications 
(difference of -.30 in the ratio, p < .05) and more notifications from ‘Other’ 
(+.04, p < 0.01) and ‘Games’ (-.001, p < .05) categories. Lastly, the 
notification-initiated sessions are less likely for accepted behaviours 
(difference of -.03 in the ratio, p < 0.01), albeit by a small margin and with 
more variance within the exploratory behaviours. The differences are 
illustrated in Figure 12.  
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Fig. 12. Differences in notification-related usage characteristics between accepted and 
exploratory behaviours (Reprinted by permission from Paper IV © 2019 Authors). 

- Battery-related use: There are noticeable differences in both daytime 
charging and draining behaviours between the accepted and exploratory 
behaviours. The accepted behaviours generally elicit higher charging 
likelihood (+.06, p < .05) during the evening hours (21 p.m.–23 p.m.) and 
higher hourly drain rate (ranging between +0.4 and 1.4, p <.05) during the 
night (12 a.m.– 2 a.m.) and the afternoon (14 p.m.–17 p.m.). The 
differences are illustrated in Figure 13.  

 

Fig. 13. Differences in battery charging and battery drain features between the accepted 
and exploratory behaviours. X-axis denotes hours and Y-axis the frequency of charging 
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events (right) and the draining ratio (left) (Reprinted by permission from Paper IV © 2019 
Authors). 

Fig. 14. Differences in usage frequency between the accepted and exploratory 
behaviours (Reprinted by permission from Paper IV © 2019 Authors). 

- Frequency of use: Accepted behaviours show decreases both in terms of 
daily usage sessions (-25.6, p < 0.01), frequency of use (-.01, p < -.05) 
during the morning hours (7 a.m.–9 a.m.) as well as shorter usage streaks 
(-2.7 days, p < .01) and usage phases (-3.7 days, p < .01) (see Figure 14 
for details).  

As described in the conclusion of the previous article, we hypothesised that 
smartwatch users self-regulated their engagement with the smartwatch. Article IV 
explored this idea further by revealing several key metrics that are preferred by the 
smartwatch users. The use evolves to become significantly selective, and 
smartwatches are used in chosen scenarios rather than being ubiquitous in use. 

4.4.2 Limitations 

One significant limitation in the exploratory analysis of Article IV is the lack of 
certainty about when a user first installs the logging application. Thus, some users 
might have been using it on their smartwatches for a long time, while others might 
install it right after purchasing a new smartwatch. This article examined numerous 
revisions, and this was part of the reviewer’s critique of the article. The finalised 
approach takes this limitation into account, as it only attempts to identify two types 
of behaviour without commenting on when such behaviours would be exhibited.  
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4.5 Discussion 

Due to the emergence of increased connectivity in our smartphones, compared with 
earlier used terms such as ‘cellular phone’ for similar form-factor, the research 
community has been provided with efficient tools for measuring end users’ 
technology use. While the 2000s saw a share of this type of HCI research, the 
possibilities provided by mobile sensing took it further. For other smart devices 
(e.g. the re-emergent smartwatch), this type of sensing technology did not exist 
either. This thesis and its presented articles related to technology use among 
individuals explored ways to understand further human-computer interaction as 
well as methods for leveraging that understanding. 

Several previous or parallel works have either leveraged sensing or qualitative 
approaches to understanding technology use in smartphones or watches. An early 
landmark work was conducted by Falaki et al. (2010) who explored diversity in 
smartphone user base. The work revealed ever-present diversity within the users 
with no two identical users in a data set of 225 users, analysed from the perspective 
of usage sessions, battery and application choices. Soikkeli, Karikoski, and 
Hämmäinen (2011) also focused on the topic of user diversity in usage sessions 
according to varying contexts. The paper described more extended usage sessions 
within Home-context vis-à-vis Office-context (location-based); it concluded by 
recommending adapting the design to accommodate for context-awareness.  

Both Oulasvirta et al. (2012) and Jones et al. (2015) explored application 
choices and usage and showcased distinct differences between individuals, how 
they revisited their applications (e.g. recurring use of communication applications) 
and how this behaviour made smartphone usage pervasive. Several factors can 
influence application choices, and many of them remain unexplored. The variance 
in the subject’s affect can be one of them, which was discussed in Article I. 
Naturally, as technology and application space evolve over time, so does the 
underlying reasoning for user choices and interactions. 

Another factor in technology use is understanding not only the influence of the 
user on technology (user-driven interaction choices) but how technology can be 
used to influence user decisions. Within the scope of this thesis, we addressed the 
reminder mechanisms and application-initiated data collection methods (i.e. ESM 
- experience sampling methods) (Larson & Csikszentmihalyi, 1983). Prior work in 
enhancing data collection frequency, quality and accuracy via reminders used both 
SMS messages (Patrick et al., 2009) and notifications (Bentley & Tollmar, 2013). 
Both showcase benefits; however, the problem of continuously interrupting the user 
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can persist. Article II explored the use of a more covert intervention mechanism via 
the alert dialogue and revealed advancements over prior work. 

Many works also elicit the use of qualitative methods for both labelling and 
enhancing the collected sensor data or simply gathering similar information sets 
via surveys, interviews or focus groups. In many cases, it is absolutely necessary 
to collect qualitative information to capture and label sufficient training data for 
modelling human behaviour. Investigating fragmented but continuous smartphone 
usage sessions (van Berkel et al., 2016), understanding people’s receptivity to 
mobile notifications (Mehrotra, Pejovic, Vermeulen, Hendley & Musolesi, 2016) 
or exploring the value that end users attach to their existing battery charge levels 
(Hosio et al., 2016) may not be conducted based solely on sensor data. Similarly, 
both Articles I and II collected self-reported information of human affect for data 
collection and labelling purposes as well as for modelling human behaviour. This 
approach was continued in Article V and addressed in Chapter 5. 

The existence of qualitative information is not always necessary, as indicated 
by both Articles III and IV that investigated the use of smartwatches solely from 
the sensor data perspective. The quantitative approach functions well as long as the 
agenda of the analysis is not the exact understanding of the user’s motivations for 
actions but merely the actions themselves. However, in understanding the use of 
smartwatches, authors such as Schirra & Bentley (2015), Cecchinato et al. (2015) 
and Pizza et al. (2016) have taken a purely qualitative approach, using surveys, 
interviews or observations, for example, via lifelogging (continuous video 
recordings of an individual’s daily life). Both Weber (Weber, Voit, Kratzer & Henze, 
2016) and Min et al. (2015) combine the approaches to understand specific parts of 
smartwatch use, namely notifications in multi-device environments and how 
smartwatch users place value and manage their smartwatch batteries—one of the 
critical points of critique for the end-user adoption of smartwatches. Tables 7 and 
8 summarise some of the recent research contributions in understanding technology 
use in both smartphones and smartwatches. 
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Table 7. Summary of recent research in smartphone use, and how the presented articles 
fit into the landscape. 

Author Year Device Quantitative Qualitative   
SP SW Sessions

(screen) 

Notifications Battery Location Other Survey & 

interviews

Focus 

groups 

Self- 

reports 

Lifelogging 

(Falaki et 

al., 2010) 

2010 X 
 

X X X 
  

(Soikkeli 

et al., 

2011) 

2011 X 
 

X 
  

(Denzil 

Ferreira et 

al., 2011) 

2011 X X 

(Oulasvirta 

et al., 

2012) 

2012 X  X    X   X  

(Rahmati 

& Zhong, 

2013) 

2013 X X X X X 

(Lee et al., 

2014) 

2014 X X 

(Ferreira 

et al., 

2014) 

2014 X X X X X 

(Pielot et 

al., 2014) 

2014 X  X X    X    

(Jones et 

al., 2015) 

2015 X X 

(Van 

Deursen 

et al., 

2015) 

2015 X 
  

X 
  

(Hosio et 

al., 2016) 

2016 X X X X X X X 

(van 

Berkel et 

al., 2016) 

2016 X X X X 

(Mehrotra 

et al., 

2016b) 

2016 X X X X X 

Article I 2016 X X X 

Article II 2016 X X X 
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Table 8. Summary of recent research in smartwatch use, and how the presented articles 
fit into the landscape. 

Author Year Device Quantitative Qualitative   
SP SW Sessions 

(screen) 

Notifications Battery Location Other Survey & 

interviews

Focus 

groups

Self-

reports

Lifelogging 

(Schirra & 

Bentley, 

2015) 

2015 
 

X 
  

X 
 

(Min et al., 

2015) 

2015 
 

X 
  

X X 
 

(Cecchinato 

et al., 2015) 

2015 X X 

(Pizza et 

al., 2016) 

2016 X X 

(Cecchinato 

et al., 2017) 

2017 X X 

Article III 2017 X X X X 

Article IV 2018 X X X X X 
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5 Interruptibility and human attentiveness 

The last chapter of this thesis is devoted to the field of measuring human attention via 
sensing. A recent comprehensive survey on attention management systems by Anderson 
et al. (2018) provided several key takeaways in designing such systems as well as 
understanding human attention. Attention is either captured or steered by external and 
internal stimuli, while the stimulus properties impact the user’s reaction to the stimulus.  

“Attention is often considered as selective processing of incoming sensory 
information, with limited capacity and reactive and deliberate processes. Attention 
is also referred to as the ability to ignore irrelevant information.”  

(Anderson, 2018, p. 3) 

Ashcraft (2006) summarise the definition of attention via cognitive psychology as 
the mental process of concentrating effort on a stimulus or mental event. 

Thus, the lack of attention can often lead to interruptions, and similar niche of 
research is described as research in interruptibility. Both Chang and Tang (2015) and 
Dingler and Pielot (2015) investigated attentiveness to mobile messaging, while Pielot 
(2014) approached the same scope from the perspective of availability to calls. The 
field of interruptibility research aims to determine a user’s availability, readiness and 
interest in a given content element (Fogarty et al., 2005). Social and behavioural cues 
allow humans to assess a person’s level of interruptibility (Barker, 1968; Hatch, 1987). 
In 2005, Fogarty et al. (2005) found that relatively simple external sensors could be 
used to successfully construct a model on a person’s interruptibility.  

Sensor-based modelling approaches leverage machine learning classifiers 
traditionally to create predictions (or evaluate prediction accuracy when in-the-wild 
deployments are not conducted). Similarly, machine learning has been used to model 
human affect based on sensor data (e.g. different mental states, coined as affective 
computing) (Mohr, Zhang & Schueller, 2017) or simpler conditions such as boredom 
(Pielot et al., 2015). The use of machine learning in this scope has its drawbacks; 
however, as the target of the modelling is human, who tends to have individual 
behavioural habits. Additionally, collecting sufficient contextual information is 
challenging (if not impossible), as a vast number of different predictors (or features) 
influence human decision-making and activities. Simply put, while machine learning is 
a reliable method for modelling scenarios with perfect (or near perfect) information, 
introducing the human subject creates uncertainty in the predictions. Including the 
individual differences introduces another challenge, as it is not necessarily appropriate 
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to include person A’s data into person B’s model. These issues are part of the reason 
why the gold standard for sensor selection and prediction accuracy is yet to be reached 
in tandem with mobile sensing, and frequently a prediction accuracy of roughly 80% 
can be seen as sufficient. 

5.1 Training data collection for human interruptibility 

Addressing the challenges of training data collection in machine learning is difficult, 
especially the so-called cold start problem; if the model has no prior knowledge of 
a person’s behaviour, it cannot offer any predictions. Traditionally, this is addressed 
by generating a general model that comprises the data of all available subjects 
(users). However, as previously described, this can be troublesome as individual 
differences can account for substantial prediction inaccuracies. On the other hand, 
relying solely on personal models collected solely from a person’s training data 
over time introduces a time restraint to predictions, as it will be necessary to wait 
until sufficient amount of training data have been collected prior to receiving any 
predictions. 

Article V aimed to mitigate this challenge by using group-based models. In 
essence, through the use of external factors to assign subjects to similarly behaving 
groups we can alleviate the cold start problem by assigning a new user into the best 
fitting group and use the groups’ combined model for predicting individual user’s 
behaviour.  

Similar to Article II, the data for Article V were collected via the LifeTracker 
application (Visuri, 2016) but with an extended number of features, somewhat 
similar to those in Article IV. The analysis slightly considered processed raw data 
from the screen sensor (processed into usage sessions), network sensor (type, 
availability), battery sensor (charging state and level), proximity sensor, the 
physical activity sensor, LifeTracker dialogue generation details (delay and timing) 
and interactions with the said LifeTracker application. Each event of an alert 
dialogue that was presented to the user was then tagged with this contextual sensor 
data, and the label (prediction) for each event was extracted from the interactions 
with the application. We used a 2 x 2 matrix to infer the label classification 
according to whether the user contributed data using the alert dialogue or opted to 
classify the dialogue as interrupting (clicked ‘Do not bother me’) or not (clicked 
‘Ok’). These resulted in four classifications (A, B, C and D) for each event, as 
described in Table 9. 
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Table 9. Training data label classification in Article V (Reprinted by permission from 
Paper V © 2017 Authors). 
 

Dialogue accepted (non-interrupting) Dialogue rejected (interrupting) 

Data contributed A. Non-interrupting, data 

contributed (N = 8,099) 

C. Interrupting,  

data contributed (N = 374) 

No data contributed B. Non-interrupting,  

no data contributed (N = 7,490) 

D. Interrupting,  

no data contributed (N = 3,277) 

5.2 Grouping similar users 

Our grouping approach aimed to construct distinct user group profiles. In Article V, 
we utilised demographic information (age, gender), the pre-study survey (Q1–Q4 
below) and each user’s device daily usage patterns (usage frequency during 
different hours of the day) to form user groups with a total of 40 dimensions, using 
the k means clustering algorithm. Since none of this information was included in 
the data used to create the machine learning classifiers, the grouping procedure did 
not bias the predictions (e.g. by appointing higher importance to features more 
prominent in one group over another). 

– Q1. ‘Do you often read the arriving notifications immediately?’ On a 4-point 
scale (Never, Sometimes, Usually, Always). 

– Q2. ‘What kind of applications (categories) do you use on your smartphone?’ 
According to a selection from Play Store categories, including the ‘Other’ 
category, which allows the user to be more specific using free text. 

– Q3. ‘Would you describe your smartphone use as active (frequent short 
periods), passive (only check when you are prompted by notification, for 
example) or mixed?’. 

– Q4. ‘Would you describe yourself as a technology enthusiast?’ On a 4-point 
scale (Definitely not, Not really, Somewhat, Definitely). 

Using this approach, we identified four groups of users with distinguishable (and 
human understandable) characteristics: ‘Casual users’, ‘Social chatterers’, ‘Work 
on-the-go’ and ‘Night owls’. 
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5.3 Discussion 

The approach in Article V turns out to be an efficient method for alleviating the 
cold start problem and deployable in a real-world setting. The best performing 
classifier out of the benchmarked ones, the Random Forest, offers a 79.0% 
prediction accuracy across the four classes as a general model. The leave-one-out 
validation method—each user is used as testing data and the remaining users as 
training data—to simulate the cold start challenge offers somewhat lower accuracy 
(78.7%). The user models—each model trained solely on the user’s data—increase 
the accuracy slightly (80.4%). 

The group-based modelling, however, shows significantly (p < .05, t = 3.20, df 
= 151.35,) higher mean accuracy (81.9%, SD = 2.8%) when compared with any 
other models. The changes are small, albeit statistically significant. The reasons for 
such small differences are likely the validity of the base classification approach and 
sensor selection as well as the quality of the training data. Many prior works have 
used similar sensor sets when classifying either interruptibility (willingness to 
address arriving notifications, messages or calls) or for modelling and predicting 
human behaviour (e.g. stress or boredom). Notably omitted sensors in Article V 
were arriving notifications, details of application choices (namely application 
names) and location information, which were at the time omitted in order to retain 
user’s privacy during the experiment. The applications were collected; however, 
numerical identifiers (first used application as 1, second as 2, etc.) were used for 
each separate user, which made it infeasible to collectively know which application 
was assigned to which number (as the numbering was different for each user). 

Another positive indicator of the approach was revealed when we looked at the 
feature rankings in each distinct group. To understand how and why our users 
interacted with the dialogues in specific ways, we used feature extraction to gain 
insights into each factor. MDA showed the impact of each feature on the accuracy 
of the classifier if the feature was removed, and MDI was used as the impurity 
function. 

Overall, the classifiers that used user clustering understood changes in physical 
activity and proximity in more detail, and individual clusters put weight on features 
such as network type and hour (‘Casual Users’, Cluster 1), Wi-Fi and Internet 
availability (‘Night Owls’, Cluster 2) and session duration (‘Work On-the-go’, 
Cluster 5). Also, while the general model used the dialogue delay as the most 
important feature, four out of five clusters found dialogue delay to be less impactful. 
The same applied to session type, new or continuing.  
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From our work, it is evident that personal applications should not rely on 
generalised models, as differences in smartphone use between users have been 
brought up repeatedly in the literature. Different user types are more active during 
different times of the day, have different usage styles in terms of usage session 
frequency and duration (van Berkel et al., 2016; Visuri et al., 2017), prefer different 
types of applications (Welke et al., 2016; Zhao et al., 2016) and interact with their 
devices differently (Falaki et al., 2010). Applications can leverage this approach to 
use historical data from their user base as training data for new users by matching 
the characteristics of new users to existing user groups. From the perspective of the 
presented research question, there are increases in the prediction accuracy when the 
data was separated and filtered during pre-processing. A more important result, 
however, could be that data separation in Article V could mitigate the larger cold 
start problem.  

5.4 Limitations 

In many cases, the approaches proposed in Article V cannot be universally applied. 
The approach requires external details inputted by the user or collected via sensing 
approaches, and not all applications support this type of information collection. 
Users can also opt to deny access to such information on both personal and sensor 
level.  
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6 Conclusion and future work 
This thesis explored the field of mobile sensing via increasing and adding to our 
combined knowledge of how smart technologies are used in-the-wild. Throughout the 
thesis, we presented methodologies and insights on how end users interact with their 
devices. This knowledge can be leveraged to effectively create intelligent and less 
disruptive mobile applications and solutions. A plethora of other research exists within 
the same scope; thus one of the limitations of this thesis is its lack of coverage of the 
entire scope. To address this limitation, we included a range of other works in the 
discussion (and within the presented articles) to highlight our contribution. We believe 
that this thesis in tandem with the other conducted research offers a solid basis for 
understanding the fundamentals of mobile sensing, deploying application and 
experiments that leverage mobile sensing and drawing useful insights from the sensed 
data. 

While the works presented in this manuscript all address the topic of attention, 
it should be noted that any influence on attention is left mostly unanalysed. 
Measuring human attention, especially a longitudinal analysis during a long-term 
study performed in-the-wild can be challenging. Some research has been conducted 
in modelling attention, e.g. (Grillon, Robinson, Mathur & Ernst, 2016); however, 
the work is still in its early stage, and models and methods for assessing changes in 
attention are not in extensive use. The area itself is both exciting and 
interdisciplinary and could prove to offer good grounds for future research. 

Article I demonstrated that mood affected smartphone application use. 
However, it is difficult to encourage granular logging of such mood. Thus, Article 
II explored different methods to improve the quality and quantity of self-reported 
data by analysing usage traits when data were willingly contributed by end users. 
In Article III, we wanted to know how smartwatches were used in-the-wild and 
how they compare with smartphones’ use. Article IV explored the smartwatch-
related usage over time to understand how the usage of such novel technology 
evolves. Article V continued the overall theme of mitigating interruptions, which 
are key to both self-reported data on any device type and the reduction of 
interruptions caused by notifications and information overload—one of the leading 
motivations for obtaining smartwatches, although it ends up amplifying the 
problem instead of alleviating it. 

An added benefit of this wide-ranging field of research within mobile sensing is 
the fact that much of it is still open for future work. This thesis forms a research arc, 
starting from a fundamental understanding of technology use in a particular case 
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(Article I) to creating a more high-level understanding of users’ available attentiveness 
to interruptions (Article V). The study of attention, how our available attention is 
influenced by the existence of technology around us and how we use it pose an 
important and interesting research agenda that could be investigated in detail via mobile 
sensing. Physiological measurements can offer longitudinal insights into the user’s 
affect and well-being in-the-wild, which is something that has been somewhat lacking, 
as most experiments are focused on either using lab studies or survey methods or 
relying solely on modelling affect instead of measuring it. 

In summary, we are very optimistic about the future of mobile sensing and its 
applications in research scope. The limitations discussed within this thesis can 
efficiently be solved by applying new technologies and by the development of 
innovative methods. Consumer interests in areas such as personal health and activity 
tracking are increasing, which offer both an agenda for researchers and a group of 
participants with inherent interest. Wearable and mobile technologies to measure 
activity and health are becoming ubiquitous and could be the next step in mobile 
sensing and applying sensing to understand human decision-making and everyday life 
in general. 
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