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Abstract

Interacting many-body problems are central to most fields of physics. In
condensed matter physics, the systems of interest consists of a number of
bodies on the order of Avogadro’s constant, ∼ 1023. The precise modeling
of such systems is usually impossible. Under certain circumstances how-
ever, even these problems can become tractable. One such circumstance
is that of a Fermi liquid. At sufficiently low temperatures, in describ-
ing the dynamics of a system of interacting fermions, it is possible to
forgo description of the fermions themselves, and instead concentrate on
the collective excitations of the entire fermion system. These collective
excitations are called quasiparticles.

In this thesis we study two phenomena related to the motion of ob-
jects in a Fermi liquid. First, we study the transmission of transverse
oscillations through a thin film of normal Fermi liquid. The dynamics
of normal Fermi liquid are described by Landau’s Fermi liquid theory.
Landau’s theory predicts the existence of new modes of sound under con-
ditions where sound ordinarily would not propagate. Using the equations
of motion for the Fermi liquid quasiparticles, we calculate the linear re-
sponse of a Fermi liquid film to the transverse oscillations of a planar
substrate under a wide range of conditions. We present the linear re-
sponse in terms of the film’s acoustic impedance and study the effects of
quasiparticle collisions and of the Fermi liquid interactions.

The second phenomenon we study is the supercritical motion of a
wire in a superfluid Fermi liquid. The prevailing assumption is that if
the velocity of an object moving in a superfluid Fermi liquid surpasses
a characteristic critical velocity, the object experiences a sudden onset
of viscous forces. This viscosity is caused by the escape of quasiparti-
cles, produced by pair breaking on the surface of the object, into the
surrounding superfluid. We study Andreev reflection of the quasiparti-
cles by the surrounding superfluid flow field, and modifications to the
flow caused by pair breaking, as possible mechanisms for low-dissipation
motion above the critical velocity.

Keywords: 3He, Normal Fermi liquid, Fermi liquid theory, Transverse
zero sound, Acoustic impedance, Fermi superfluid, Supercritical motion,
Pair breaking, Andreev reflection
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1

Introduction

Everything flows.
– Heraclitus

Particles in the Universe can be divided into two groups; fermions
and bosons. This division is delineated by a particle’s spin, a form of
internal angular momentum. The spin of a particle can “point” in dif-
ferent directions, but its magnitude is intrinsic to the type of particle.
Bosons have an integer spin, while fermions have a half-integer spin. The
important distinction between fermions and bosons is that fermions are
subject to the Pauli exclusion principle. The wave function of a sys-
tem of fermions has to be antisymmetric with respect to the exchange
of particles. Alternatively, no two fermions can simultaneously occupy
the same quantum state. This has a profound effect on the statistical
behavior of particles. In a low energy system of bosons, particles can all
crowd into the lowest available energy state. In a system of fermions,
particles must fill the available energy states starting from the bottom
up, with only a single particle fitting into each individual state.

Generally speaking, matter is made of fermions, while particles that
intermediate forces are bosons. In the presence of a binding force, parti-
cles may group together to form a composite particle, such as an atomic
nucleus. This composite particle can then be either a boson or a fermion,
depending on the sum of the spins of the constituent particles. The el-
ement helium has two stable isotopes, one bosonic and one fermionic.
A helium atom has two electrons. In the ground state, the spins of the
electrons point in opposite directions. As a result, the spin of a helium
atom is completely due to the spin of its nucleus. The nucleus of the
more common helium isotope, 4He, consists of two protons and two neu-
trons. The spins of these particles cancel each other, leaving a total spin
of zero. The 4He atom is thus a boson. The other isotope, 3He on the

1



2 1. INTRODUCTION

other hand, has two protons but only one neutron, producing a total spin
of 1/2, making it a fermion.

Helium is the only substance known to exists in a liquid state at
absolute zero. In the context of classical physics, we would expect all
liquids to solidify at this temperature, as the thermal motion of atoms
has stopped. One of the consequences of quantum mechanics is that
the position and momentum of a specific particle cannot simultaneously
have absolute certain values. This phenomenon, called the Heisenberg
uncertainty principle, is a result of the fact that position and momentum
are conjugate variables. An eigenstate of position, i.e., a state where the
position of a particle is known without ambiguity, is a state where the
momentum of the particle is completely uncertain, and vice versa. A
curious ramification of this is that atoms continue to move at absolute
zero in what is called zero-point motion. In the case of helium, this
zero-point motion is enough to preserve a liquid state at absolute zero.
Helium exhibits this behavior because helium atoms are very light, which
amplifies the zero-point motion. Helium is also an inert gas, so the
interatomic forces that would bind the atoms into a solid are very weak.
No other element fulfills these conditions; the other inert gases are much
heavier than helium, and the other light elements, such as hydrogen and
lithium, are highly reactive.

Near absolute zero, instead of solidifying, helium becomes the most
freely moving substance in nature, a superfluid. This has to do with the
concept of Bose–Einstein condensation. In a low temperature system,
bosons occupy the single-particle state with the lowest energy. Because
the particles are in the same quantum state, their behavior is coherent
and the system as a whole exhibits macroscopic quantum mechanical
properties. 4He atoms are bosons and readily form a condensate. For
4He the transition to a superfluid state takes place at the temperature of a
few kelvin [1]. 3He atoms on the other hand are fermions and so cannot
occupy the same state en masse. At these temperatures, 3He behaves
like a degenerate Fermi gas, where the single-particle states are filled by
individual particles, starting from the state with the lowest energy. 3He
in this state is called normal liquid, to distinguish it from the superfluid
state.

In comparison to 4He, the superfluid transition of 3He takes place at
the much lower temperature of a few millikelvin [1, 2]. This is because in
order to form a condensate, 3He must first form Cooper pairs. The con-
cept of Cooper pairing was originally introduced to explain the related
phenomenon of superconductivity, where certain metals, once cooled to
a sufficiently low temperature, exhibit zero electrical resistance. In a
Cooper pair, two fermions pair together to form a composite boson as
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a means of reaching a lower energy state. It can be shown that Cooper
pairs are formed as long as there exists an arbitrarily small attractive
potential between the particles. In a superconductor, Cooper pairs are
formed by conduction electrons and the attraction is provided by the
ionic lattice through which the electrons move. In helium, there is a
direct van der Waals-type attraction between the atoms [1]. Both su-
perconductivity and 3He superfluidity may here be understood as the
condensation of Cooper pairs into the same quantum state. In 3He, the
Cooper pairs are not formed directly by the helium atoms themselves,
but rather by 3He quasiparticles, particle-like elementary excitations of
the fluid. Collectively, the superfluid phases of helium, normal state 3He,
and the conduction electrons in metals are referred to as quantum liquids.

The history of quantum liquids arguably begins with the liquefaction
of helium by Heike Kamerlingh Onnes in 1908, an achievement which
soon led Kamerlingh Onnes to also discover the phenomenon of super-
conductivity [3]. Given that these discoveries took place well before the
full formulation of quantum mechanics, theoretical explanations were
not offered until decades later. The first steps in the theoretical study
of quantum liquids were made by Satyendra Nath Bose and Albert Ein-
stein, who in 1924 proposed that a system of bosons at low temperature
would condense into the lowest available energy state and thus exhibit
macroscopic quantum mechanical properties [4]. This theoretical concept
became reality thirteen years later, when 4He superfluidity was discov-
ered in 1937, independently by Pyotr Kapitza [5], and by John Allen and
Don Misener [6]. Fritz London suggested that the underlying cause of
this, then called “λ-phenomenon”, was related to Bose–Einstein conden-
sation [7].

The first theoretical explanation for 4He superfluidity was provided
by Lev Landau in 1941 [8]. Landau argued that the underlying cause of
superfluidity was the impossibility of the creation of low energy excita-
tions of the fluid. Later, starting in 1956, Landau introduced his theory
of Fermi liquids, a description of the properties of a low temperature
Fermi system [9, 10]. This theory predicted that a low energy system of
interacting fermions, a Fermi liquid, would behave in a manner similar
to a degenerate Fermi gas. The theory also introduced the concept of
a Fermi liquid quasiparticle, a low energy excitation of the Fermi liquid
with particle-like properties.

The concept of Cooper pairing was proposed as an explanation for the
phenomenon of superconductivity by Leon Cooper in 1956 [11]. Soon af-
ter this discovery, Cooper together with his colleagues John Bardeen and
Robert Schrieffer would formulate the microscopic theory of supercon-
ductivity, the BCS theory [12]. Following the work of Bardeen, Cooper,
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and Schrieffer, efforts were made to study the possibility of different kinds
of Cooper pairing. The Cooper pairs of BCS theory form in a zero angu-
lar momentum, i.e. l = 0 state. The possibility of pairings with higher
angular momentum were studied theoretically well before the discovery
of superfluid 3He, particularly by Philip Anderson and Pierre Morel [13],
and Roger Balian and Nathan Werthamer [14] who introduced the ABM
and WB pairing states with l = 1. Superfluidity of 3He was finally discov-
ered by Douglas Osheroff, Robert Richardson, and David Lee in 1971 [2].
It was found that 3He has two superfluid phases, now called A and B. It
soon became clear that these phases could be understood as the Cooper
pairing of the quasiparticles of Landau’s Fermi liquid theory in the ABM
and BW states. The names of the two phases were solidified as the result
of a historical coincidence, as the experimentally observed phase transi-
tions corresponding to the ABM and BW states were fittingly named A
and B as they were first recorded. Initially, these phase transitions were
thought to be taking place in solid 3He, but this misconception was soon
corrected [15].

In this thesis we study two separate phenomena related to the motion
of a Fermi liquid. The first phenomenon under study is the transmission
of transverse sound waves through a thin film of normal Fermi liquid.
Landau’s Fermi liquid theory predicts the propagation of new modes of
sound, called zero sound. Unlike ordinary sound, which propagates by
means of interparticle collisions, for zero sound the mechanism of prop-
agation is a nonlocal interaction between Fermi liquid quasiparticles. In
Pub. I, we study the linear response of a thin film of normal state Fermi
liquid to the transverse oscillations of a substrate. The linear response is
stated in terms of the film’s acoustic impedance. The acoustic impedance
depends on both the presence of transverse zero sound, as well as the
frequency of quasiparticle collisions. The relative strength of these con-
tributions depend on the mean free path of the quasiparticles, and the
strength of the Fermi liquid interactions. This study is partially moti-
vated by experiments that show a film of normal state 3He decoupling
from a mechanical oscillator as the temperature is lowered [16, 17]. We
study Fermi liquid interactions as a possible source of this decoupling. In
Pub. II, we investigate a more accurate modeling of quasiparticle scatter-
ing from a surface, and what effect this has on the acoustic impedance.

The second phenomenon we study is the supercritical motion of a wire
moving in a Fermi superfluid. The most famous property of superfluids
is that they flow without viscosity. In a Fermi superfluid, the fundamen-
tal reason for this is the formation of Cooper pairs and the associated
binding energy, which, below the Landau critical velocity, prevents the
creation of excitations in the fluid. It is expected that if the motion of
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the fluid surpasses the critical velocity, there is a sudden onset of viscous
forces. However, recent experiments have shown that a wire moving with
uniform velocity in superfluid 3He does not experience this anticipated
onset of viscosity and instead is able to move at velocities well above the
critical velocity while experiencing only minor dissipation [18]. We refer
to this as supercritical motion. In Pub. III, we attempt to shed light on
this unexpected phenomenon by calculating the drag force on a macro-
scopic cylindrical object moving in a Fermi superfluid. This calculation is
formulated in terms of the elementary excitations of the Fermi superfluid.
We consider the effects of Andreev reflection, as well as the alterations
to the superfluid flow caused by the production of elementary excitations
on the surface of the wire as mechanisms for the low-dissipation motion.

The body of this thesis consists of two chapters, each focusing on
one of the aforementioned topics of research. In Chap. 2 we discuss the
motion of a normal Fermi liquid film on an oscillating substrate. In Chap.
3 we study the supercritical motion of a wire in superfluid Fermi liquid.
Finally, Chap. 4 offers a conclusion and summary of the results.
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Fermi liquid film on an
oscillating substrate

We investigate the transmission of transverse sound waves through a
thin film of normal state Fermi liquid. We begin in Sec. 2.1 with an
introduction to Fermi liquid theory and introduce kinetic equations that
describe the dynamics of Fermi liquid quasiparticles. In Sec 2.2 we apply
these equations to the problem of a thin film of normal Fermi liquid on
top of an oscillating substrate. Finally, in Sec. 2.3 we discuss the details
of the numerical approach, along with some analytically solvable limiting
cases and present results of the numerical simulation.

2.1 Fermi liquid

A group of non-interacting fermions is called a Fermi gas. Or rather,
there is no direct interaction between the fermions, but they still adhere
to the Pauli exclusion principle. The energy of a non-interacting particle
is its kinetic energy,

ε =
p2

2m
, (2.1)

where p is the momentum of the particle and m the mass of the particle.
The probability that in a system of fermions at temperature T a state
with energy ε is occupied is given by the Fermi–Dirac distribution

n(ε) =
1

exp [(ε− µ)/kBT ] + 1
, (2.2)

where kB is the Boltzmann constant and µ the chemical potential.
The ground state of a Fermi gas is one where the particles fill the

states from the bottom up, with each particle occupying the state with

7



8 2. FERMI LIQUID FILM ON AN OSCILLATING SUBSTRATE

the lowest available energy. The energy and momentum magnitude as-
sociated with the highest occupied energy state are called Fermi energy
εF and Fermi momentum pF , respectively. By studying the Fermi–Dirac
distribution, we see that the ground state is achieved when T = 0 and
µ = εF . Since the energy of a particle with momentum p is proportional
to p2, in momentum space the ground state forms a sphere. This is
called the Fermi sphere. Excited states of this system can be created by
adding particles outside the Fermi sphere and thus producing particle-
like excitations, or by removing them from within, producing hole-like
excitations. These are called the elementary excitations of the Fermi gas.
The energy of such an excitation is

|εp − εF | = |
p2

2m
− εF | ≈ |

pF
m

(p− pF )|. (2.3)

where εF = p2
F /2m. The linearized approximation can be made when

the excitation is close to the Fermi surface. The absolute value ensures
that hole-like excitations, which have momentum below pF , also have
positive energy.

In contrast to a Fermi gas, a Fermi liquid is characterized by strong
interactions between the constituent particles. In 3He for instance, in
addition to experiencing a nonlocal interatomic attraction, a 3He atom
must push other atoms aside as it moves. These conditions obviously
hold true for all liquids. Fermi liquid theory, originally formulated by
Lev Landau [9, 10], is based on the idea that an interacting Fermi system
can have elementary excitations that are similar in nature to those of the
non-interacting system. The excitations can no longer be identified with
individual particles, but instead correspond to collective excitations of
the entire interacting system. These are referred to as quasiparticles.

How could a system with strong interactions behave like a non-
interacting system? As the excitations have energies very close to the
Fermi energy εF , and since all the states inside the Fermi sphere are
filled, the Pauli exclusion principle severely restricts the scattering of
quasiparticles. For a particle with momentum p to scatter from a par-
ticle inside the Fermi sphere, the final state of the interaction has to be
one with two particles outside the Fermi sphere and an empty state or
hole inside. Otherwise the initial and final states are indistinguishable.
This means that the initial particle can only scatter from particles within
a thin shell of thickness |p−pF | on the surface of the Fermi sphere, since
this is how ‘deep’ it can reach without yielding all of its own energy. The
closer the particle is to the Fermi surface, the more severe this restriction
becomes. This means that at low temperature the quasiparticles have
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long lifetimes and it is reasonable to use them to describe the state of
the system.

In comparison to the particles of a Fermi gas, the energies of the
Fermi liquid quasiparticles are changed by the inclusion of interactions.
The kinetic energy of the quasiparticle is changed, as it has to move
against the background of the particles that fill the Fermi sphere. The
quasiparticle has an effective mass greater than the mass of a bare par-
ticle, as some of this background is dragged along with it. In addition
to its kinetic energy, a quasiparticle also has an interaction energy with
other excited quasiparticles. These changes to the energy in turn change
the quasiparticle distribution, it being a function of energy.

The occupation of a specific quasiparticle state with momentum p
and spin σ is given by the distribution function npσ. For the ground
state the distribution is the same as for a Fermi gas:

n0
pσ =

{
1, if p ≤ pF
0, if p > pF .

(2.4)

The energy of a quasiparticle becomes a functional of the distribution,
εpσ = εpσ{np′σ′}. If we assume that the distribution of quasiparticles npσ
differs only a little from the ground state distribution n0

pσ, we can express
the quasiparticle energy in terms of a series expansion [19, 20]:

εpσ − εF =
pF
m∗

(p− pF ) +
1

V

∑

p′σ′
f(p, σ,p′, σ′)δnp′σ′ + . . . , (2.5)

where m∗ is the effective mass, δnpσ = (npσ−n0
pσ) and V is the volume of

the system. The interaction energy between two quasiparticles is given by
f(p, σ,p′, σ′)/V , and this energy is summed over the momentum and spin
states where the distribution differs from the ground state distribution.
The interaction is symmetric with regard to the exchange of particles,
f(p, σ,p′, σ′) = f(p′, σ′,p, σ). The inclusion of the leading correction is
necessary for the energy equation to satisfy Galilean invariance. If this
term was not included, Galilean invariance would require that m∗ = m.
Effective mass is defined using the Fermi velocity vF as

vF =

(
∂ε0pσ
∂p

)

p=pF

=
pF
m∗

, (2.6)

where ε0pσ = εpσ{n0
p′σ′}, the energy of a particle added to a system that

is otherwise in its ground state.
The interaction between quasiparticles is generally dependent on spin.

In the context of normal 3He, the spin depence may be written in terms
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of a spin symmetric and a spin anti-symmetric component [9, 19, 20].
Using matrix notation the interaction becomes

f(p,p′) = f s(p,p′) + σ · σ′fa(p,p′). (2.7)

where σ are Pauli spin matrices. The anti-symmetric term describes the
exchange interaction between particles. In the absence of an external
magnetic field there is no preferred spin state and the anti-symmetric
component of the interaction energy will disappear in a summation over
spin states. Hereafter, the phenomena we discuss are such that we can
ignore the anti-symmetric component of the quasiparticle interaction.

2.1.1 Sounds in Fermi liquid

Sound in an everyday context is a moving density fluctuation, consisting
of sequential regions of increased and decreased density. This fluctuation
is transmitted by particle collisions. If a region of fluid has an increased
density and pressure, the particles within this region push nearby par-
ticles through collisions. If ω is the frequency of sound and τ a typical
mean free time of the fluid particles, a requirement for the transmission
of ordinary sound is that ωτ � 1. This means that the collisions have
to occur quickly enough, that the pushing is coherent and that by the
time the next sound wave maximum arrives, the particles in the volume
element have returned to a thermodynamic equilibrium. In the context
of liquid 3He, a sound wave that is transmitted through particle collisions
is called first sound.

If ωτ ≈ 1, only part of the originally displaced particles have collided
with others and returned to their equilibrium state. As a result, there is
no clearly defined front to the density fluctuation and sound is dissipated
into the random motion of particles.

Sound also has a transverse mode, in which the oscillations occur per-
pendicular to the direction of propagation. This is more commonly asso-
ciated with solids, where the parallel layers of the medium are strongly
tied by atomic bonds, so that transverse movement in one layer is easily
transmitted to nearby layers. In an ordinary fluid, this type of shear
wave is very quickly dissipated, as there is an obvious difficulty associ-
ated with the transmission of momentum in a perpendicular direction
through particle collisions.

In a free Fermi gas there are no particle collisions and therefore no
sound waves. One might assume that the same holds true for a Fermi
liquid in the collisionless regime ωτ � 1. In reality however, the inter-
action between quasiparticles that characterises Fermi liquid gives rise
to a new unique form of sound, zero sound. The idea of zero sound
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was first presented by Landau in his second publication on Fermi liquids
[10]. A region with increased density can push coherently on neighbor-
ing elements through modification of the quasiparticle interaction term
in Eq. (2.5). Zero sound has transverse and longitudinal modes. Since
the propagation occurs via a nonlocal interaction instead of particle col-
lisions, transverse zero sound does not suffer from the same difficulties
with propagation that transverse first sound does.

2.1.2 Quasiparticle dynamics

Dynamics of a Fermi liquid can be studied by concentrating on the Fermi
liquid quasiparticles, the elementary excitations of the fluid. To this end,
we formulate an equation of motion for the quasiparticles. We examine
the time evolution of the distribution function np(r, t) that decribes the
mean number of quasiparticles in an element of phase space with vol-
ume drdp/(2π~)3. A theory that employs a distribution function that
depends on both position and momentum is inherently classical. Quan-
tum mechanics will enter in the way we define the energy distribution
of the quasiparticles and how we describe interparticle collisions. The
resulting model is then called semi-classical. We can get away with this
by ensuring that the systems we study are in a scale where we are not
at risk of violating the Heisenberg uncertainty principle ∆r∆p ≥ ~/2.
For a system at temperature T , the Fermi distribution function changes
significantly with the characteristic momentum variance ∆p = kBT/vF .
Therefore [19],

∆r � ~vF
kBT

. (2.8)

By taking the total time derivative of the distribution function np(r, t),
we arrive at the Landau kinetic equation [10]

dnp
dt

=
∂np
∂t

+
∂np
∂r
· ṙ +

∂np
∂p
· ṗ = I(np) (2.9)

The kinetic equation is a continuity equation that describes the rate of
change in the occupation of a given volume of phase space. The term
added to the right side of the kinetic equation is called the collision
integral. Interparticle collisions are considered instantaneous and can
lead to a net change in the occupation of a given volume element. If
there are no collisions, the distribution is constant, dnp/dt = 0.

With the aid of Hamilton’s equations, ṙ = ∂H/∂p and ṗ = −∂H/∂r,
the kinetic equation can be recast into the form

dnp
dt

=
∂np
∂t

+ ∇np ·
∂εp
∂p
− ∂np

∂p
·∇εp = I(np), (2.10)
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where we have replaced the Hamiltonian with the quasiparticle energy
εp and written the partial derivatives with respect to r using the ∇-
operator.

In order to solve the kinetic equation, we assume that the excitations
of the system are low-lying, meaning that they all have momentum with
magnitude pF and exist on the Fermi surface. We can freely make this
assumption, since it is a part of the definition of a Fermi liquid. We write
both the quasiparticle distribution function and energy in terms of an
equilibrium value and a small deviation from equilibrium as [10]

np(r, t) = n0
p + δnp(r, t), (2.11)

εp(r, t) = ε0p + δεp(r, t). (2.12)

By comparing the equation for the quasiparticle energy εp(r, t) with that
introduce previously in Eq. (2.5), we can identify the deviation δεp(r, t)
with the quasiparticle interaction energy. By introducing Eqs. (2.11) and
(2.12) into the kinetic equation and neglecting all nonlinear terms, we
arrive at the linearized kinetic equation

∂δnp
∂t

+ vF p̂ ·∇
(
δnp −

∂n0
p

∂εp
δεp

)
= Ip̂. (2.13)

This is the kinetic equation describing the motion of the excited quasi-
particles. The term inside the parentheses is often written as δn̄p. It can
also be stated as δn̄p = np−n0(ε0p+δεp) and is called the deviation from
local equilibrium. Function n0(ε0p + δεp) has the form of the Fermi–Dirac
distribution where the energies have been shifted by the quasiparticle in-
teraction energy. Next, we introduce the energy-integrated distribution
functions

φp̂(r, t) =

∫
δn(p̂, ε, r, t)dε ≈

∫
δn(p̂, ε, r, t)vFdp, (2.14)

ψp̂(r, t) =

∫
δn̄(p̂, ε, r, t)dε ≈

∫
δn̄(p̂, ε, r, t)vFdp, (2.15)

where the approximations have been made assuming that δnp and δn̄p
differ from zero only near the Fermi surface. In terms of ψp̂(r, t), the
kinetic equation becomes

∂

∂t
(ψp̂ − δεp̂) + vF p̂ · ∇ψp̂ = Ip̂. (2.16)

Since we assume that all excited quasiparticles are close to the Fermi
surface, the interaction energy between two quasiparticles should depend
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(a) Legendre polynomials Pl(p̂ · p̂′)

l = 0 px

py

l = 1 px

py

l = 2 px

py

(b) Deformations of the Fermi surface

Figure 2.1: In (a) are shown the first three Legendre polynomials Pl(p̂ ·
p̂′), assuming that p̂′ is aligned with x̂. In (b), types of deformations of
the Fermi surface corresponding to the different terms in the Legendre
polynomial expansion in Eq. (2.17). The solid black line depicts the
equilibrium Fermi surface, and the dashed line the deformed surface.
The red hatching depicts the region where δnp 6= 0, which is exaggerated
for clarity.

only on the relative directions of their momenta. This allows the expan-
sion of the interaction energy as a series of Legendre polynomials, in
terms of the two distributions φp̂ and ψp̂, as

δεp̂ =
∞∑

l=0

F sl 〈Pl(p̂ · p̂′)φp̂′〉p̂′ =
∞∑

l=0

Asl 〈Pl(p̂ · p̂′)ψp̂′〉p̂′ , (2.17)

where the two expansion coefficients are related by

Asl =
F sl

1 + F sl /(2l + 1)
. (2.18)

The brackets 〈. . .〉p̂ denote averaging over momentum directions

〈Pl(p̂ · p̂′)φp̂′〉p̂′ =
1

4π

∫
Pl(p̂ · p̂′)φp̂′ dΩp̂′ , (2.19)
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where ∫
dΩp̂ =

∫ 2π

0

∫ π

0
sin θp dθp dφp. (2.20)

The Landau parameters F sl describe the strength of the quasiparticle
interaction. Legendre polynomials are an orthogonal system of polyno-
mials, which means that 〈Pm(p̂ · p̂′)Pn(p̂ · p̂′)〉p̂ = 0 if m 6= n. A function
which is orthogonal to a given Legendre polynomial will not “survive”
averaging over momentum direction 〈. . .〉p̂. The series expansion in Eq.
(2.17) thus split φp̂ and ψp̂ into components that are parallel with a given
Pl(p̂ · p̂′). This is illustrated in Fig. 2.1.

The first symmetric Landau parameter F s1 is related to the effective
mass of quasiparticles as

m∗

m
= 1 +

F s1
3
. (2.21)

The origin of this relation is discussed in App. A. If F s1 > −3, the ef-
fective mass is positive. This is a reasonable requirement. The value of
effective mass can be extracted from specific heat measurements which
show it to be pressure dependent. In this way, the Landau parame-
ter F s1 can and has been measured [21]. For example, at zero pressure
F s1 = 5.4. A similar relation can also be derived for the zeroth symmetric
Landau parameter F s0 which relates its value to the speed of first sound
[22]. The antisymmetric Landau parameters F a0 and F a1 are dependent
on magnetic susceptibility [22, 23] and spin diffusion [24], respectively.
One motivation behind the study of zero sound is that it may allow the
measurement of the higher Landau parameters, such as F s2 .

2.1.3 Quasiparticle collisions

The term on the right side of the kinetic equation in Eq. (2.16) is called
the collision integral. We approximate the collision integral by assuming
that the gas of excited quasiparticles is rarefied enough that collisions
only take place between two individual quasiparticles. In the same vein,
we assume that the distributions of individual quasiparticles are uncor-
related, so that a multiparticle distribution can be represented by their
product. Generally, for a sparse gas, the collision integral can be written
as [25]

Ip1 = −
∫
dρ′1dρ2dρ

′
2

{
w(p′1,p

′
2;p1,p2)f(p1)f(p2)

− w(p1,p2;p′1,p
′
2)f(p′1)f(p′2)

}
.

(2.22)
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Function f(p) is the distribution function and dρi = d3pi/(2π~)3, a mo-
mentum space volume element. w(p′1,p

′
2;p1,p2) is the probability of a

collision where particles with momenta p1 and p2 collide and end up
with momenta p′1 and p′2. In our case we can assume that the principle
of detailed balance holds, i.e.

w(p′1,p
′
2;p1,p2) = w(p1,p2;p′1,p

′
2). (2.23)

Additionally, for fermions we have to require that the state a particle
scatters into is empty. The collision integral can be written as

Ip1 =−
∫
dρ′1dρ2dρ

′
2w(p1,p2;p′1,p

′
2)

×
{
f ′1f
′
2(1− f1)(1− f2)− f1f2(1− f ′1)(1− f ′2)

}
,

(2.24)

where we have used shorthand notations fi = f(pi) and f ′ = f(p′).
For practical purposes, the collision integral outlined above is too

complicated. It does however inform on the form that other, approx-
imate approaches can take. One such approach is the relaxation time
approximation [19]

Ip = −
δnl.e.
p

τ
, (2.25)

where δnl.e.
p is the deviation from the local equilibrium distribution, and

τ the relaxation time. This reflects the fact that a system of particles left
to its own devices should spontaneously evolve towards an equilibrium
state. Once this state is reached, the collision integral disappears.

What is the distribution nl.e.
p where the system has reached equilib-

rium? An elastic collision between two particles should conserve particle
number, momentum and kinetic energy [25]. Other conserved quantities
can be written as a linear combination of these independent collision in-
variants. If ϕ is an additive conserved quantity carried by a particle,
then in a collision of two particles

ϕ1 + ϕ2 = ϕ′1 + ϕ′2. (2.26)

In an equilibrium state, the entropy of the system, and the distribution
function, should be constant, i.e. dnp/dt = Ip = 0. This can be achieved
by requiring that the term inside the curly brackets in Eq. (2.24) is zero.
This in turn means that at equilibrium the quantity ln(f/(1−f)) satisfies
the conservation condition Eq. (2.26) and is thus a collision invariant. We
may write it in terms of the other collision invariants [25]

ln

(
f

1− f

)
= C · 1 +B · p+AE. (2.27)
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where f is the distribution where the collision integral disappears, i.e.
the local equilibrium distribution, and C, B, and A are constant to be
determined later. By writing A = 1/kBT , b = −B/A, and c = −C/A,
the deviation from local equilibrium distribution can now be written

δnl.e.
p = np − n0(ε0p + δεp − c− b · p), (2.28)

where n0 is the Fermi–Dirac distribution. Distribution δnl.e.
p is the devi-

ation from local equilibrium, δn̄p, defined in conjuction with Eq. (2.13),
but with chemical potential c and drift velocity b. The energy integrated
form of Eq. (2.28) is simply

δψl.e.
p̂ = ψp̂ − c− b · p̂. (2.29)

where we have defined δψl.e.
p̂ =

∫
δnl.e.
p dε. What is left is to determine the

constants c and b. This is done by ensuring that the collision integral

Ip̂ = −
δψl.e.
p̂

τ
, (2.30)

conserves particle number and momentum:

∫
Ip̂dρ = 0,

∫
pIp̂dρ = 0. (2.31)

We find that c = 〈ψp̂′〉p̂′ and b = 3〈p̂′ψp̂′〉p̂′ . By pre-emptively writing
b · p in terms of a Legendre polynomial, Eq. (2.29) can be written as

δψl.e.
p̂ = ψp̂ − 〈ψp̂′〉p̂′ − 3〈P1(p̂ · p̂′)ψp̂′〉p̂′ . (2.32)

We obtain a more general form by allowing the deviations from lo-
cal equilibrium to relax at rates that depend on their angular behavior.
This is achieved by expanding the collision integral in terms of spherical
harmonics Ylm as [19]

Ip̂ = −4π

∞∑

l=0

l∑

m=−l

〈δψl.e.
p̂′ Y

∗
lm(p̂′)〉p̂′
τl

Ylm(p̂). (2.33)

We use a collision term in which the components of the above expansion
with l > 2 have the same relaxation time τ . This is most easily done
by adding to and subtracting from Eq. (2.33) a term similar to its right-
hand side, but where τl is replaced by τ . With the help of a spherical
harmonics closure relation, we can show that such a term is in fact equal
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to the simpler relaxation time approximation Eq. (2.30). The collision
integral may thus be written as

Ip̂ = −
δψl.e.
p̂

τ
−
∞∑

l=0

(2l + 1)

(
1

τl
− 1

τ

)
〈Pl(p̂ · p̂′)δψl.e.

p̂′ 〉p̂′ , (2.34)

where the relation

Pl(p̂ · p̂′) =
4π

2l + 1

l∑

m=−l
Ylm(p̂)Y ∗lm(p̂′), (2.35)

has been used. All terms of the sum in Eq. (2.34) with l > 2 are zero
by our requirement on the relaxation times τl>2. Likewise, the terms
l = 0, 1 can also be ignored by once again requiring that particle number
and momentum are conserved. We are left with just the quadrupolar
term l = 2, and consequently the collision integral can be written as

Ip̂ = −1

τ

[
ψp̂ − 〈ψp̂′〉p̂′ − 3〈P1(p̂ · p̂′)ψp̂′〉p̂′ − 5(ξ2 − 1)〈P2(p̂ · p̂′)ψp̂′〉p̂′

]
,

(2.36)
where ξ2 = τ/τ2.

2.2 Oscillating substrate

We will now use Eq. (2.16), the linearized Landau kinetic equation, to
study the transmission of transverse sound through a film of Fermi liq-
uid. The closely related problem of an infinite fluid layer was studied
by Bekarevich and Khalatnikov [26], by Fomin [27, 28], by Flowers and
Richardson [29], and by Richardson [30]. We reformulate the arguments
presented in these papers in terms of the energy integrated distribution
ψp̂ and with the modification that the fluid film have finite thickness.

Transverse sound waves are generated by an oscillating substrate in
the xy plane, positioned at z = 0. The movement of the substrate is
harmonic with velocity u = ux̂e−iωt. We assume that all points on the
substrate are identical and that they oscillate in the same phase. The
distribution of quasiparticles inherits this plane symmetry and depends
spatially only on the z coordinate. We choose our coordinates so that
the substrate oscillates along the x axis. This allows us to write the
distribution function as

ψp̂(r, t) = p̂xψ(p̂z, ζ, t), (2.37)

where ζ = z/d is a dimensionless z coordinate, with d being the thickness
of the fluid film. We have used notation p̂x = sin θ cosφ and p̂z = cos θ
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for the components of the momentum direction vector p̂, where θ is
the quasiparticle propagation angle in the xz plane, measured from the
positive z axis. Since ψp̂ is now antisymmetric with regard to p̂x, the
zeroth-order term of the Legendre polynomial expansion can be written
as

〈P0(p̂ · p̂′)ψp̂′〉p̂′ = 0, (2.38)

where P0(p̂ · p̂′) = 1. This is in fact a statement on the nature of trans-
verse sound: For distribution Eq. (2.37), there is no net change in the
volume of the Fermi sphere in comparison to the equilibrium state. This
means that the density of particles is constant and transverse sound is
thus not a density wave.

If we truncate the Legendre polynomial expansion of the quasiparticle
energy in Eq. (2.17) to l ≤ 2, the kinetic equation becomes

∂

∂t

(
ψp̂ −

F s1
1 + F s1 /3

〈P1(p̂ · p̂′)ψp̂′〉p̂′ −
F s2

1 + F s2 /5
〈P2(p̂ · p̂′)ψp̂′〉p̂′

)

+ vF p̂ · ∇ψp̂
= −1

τ

[
ψp̂ − 〈ψp̂′〉p̂′ − 3〈P1(p̂ · p̂′)ψp̂′〉p̂′ − 5(ξ2 − 1)〈P2(p̂ · p̂′)ψp̂′〉p̂′

]
.

(2.39)

We assume that the time dependence of the quasiparticle distribution
is harmonic as a result of the harmonic motion of the substrate. This is
in accordance with assumptions we made in the context of linearizing the
kinetic equation, that the quasiparticle distribution and energy deviate
only minutely from their equilibrium values. The kinetic equation can
now be rearranged as

τvF
a
p̂ ·∇ψp̂ + ψp̂ − 3b〈P1(p̂ · p̂′)ψp̂′〉p̂′ − c〈P2(p̂ · p̂′)ψp̂′〉p̂′ = 0, (2.40)

where the following dimensionless constants have been used:

a =1− iωτ, (2.41)

b =
1/a+ F s1 /3

1 + F s1 /3
, (2.42)

c =
5/2 + F s2
1 + F s2 /5

− 5ξ2

a
. (2.43)

We apply the definitions of the Legendre polynomials and find that the
two averages in the kinetic equation may be written as

〈P1(p̂ · p̂′)ψp̂′〉p̂′ =
1

4
p̂xg1(ζ), (2.44)

〈P2(p̂ · p̂′)ψp̂′〉p̂′ =
3

4
p̂xp̂zg2(ζ), (2.45)
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where

g1(ζ) =

∫ 1

−1
dµ(1− µ2)ψ(µ, ζ), (2.46)

g2(ζ) =

∫ 1

−1
dµµ(1− µ2)ψ(µ, ζ). (2.47)

Here µ = pz = cos θ. Using ψp̂ of the form given in Eq. (2.37) and the
definition ζ = z/d, we obtain for the first term in the kinetic equation

p̂ ·∇ψp̂ =
p̂z p̂x
d

∂

∂ζ
ψ(p̂z, ζ). (2.48)

The whole kinetic equation can be written as

µ

h

∂

∂ζ
ψ(µ, ζ) + ψ(µ, ζ)− 3

4
bg1(ζ)− 3

4
cµg2(ζ) = 0. (2.49)

We have defined a dimensionless complex-valued coefficient

h =
ad

vF τ
=

d

lξ2
− iΩ(1 + F s1 /3), (2.50)

where l = vF τ2 is the mean free path of the quasiparticles and Ω =
ωd/vF (1 + F s1 /3). We integrate the kinetic equation from ζ0 to ζ and
obtain

ψ(µ, ζ) = ψ(µ, ζ0)e
h
µ

(ζ0−ζ) +
3

4

h

µ

∫ ζ

ζ0

e
h
µ

(ζ′−ζ) [
bg1(ζ ′) + cµg2(ζ ′)

]
dζ ′.

(2.51)
This form shows that the coefficient h/µ is a complex wavenumber. The
real part of h leads to an attenuation of the sound wave as it travels
through the liquid. The attenuation is decreased for large values of the
mean-free path l. The factor µ ensures that sound moving in a more
oblique direction travels a longer distance in a given space δζ than sound
moving directly in the direction normal to the substrate. The imaginary
part of h produces the oscillations of the sound wave.

Eq. (2.51) can be used to calculate ψ in the direction of particle
propagation, so that for positive µ the particle moves in the direction of
increasing ζ, and for negative µ in the direction of decreasing ζ.

2.2.1 Observable quantities

In order to make comparisons with experiments, we derive relations be-
tween distribution functions, such as δnp̂, and observable quantities.
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This is done using the linearized kinetic equation by making comparisons
to hydrodynamic conservation laws [1, 31]. We start from Eq. (2.13):

∂δnp
∂t

+ vp ·∇δn̄p = Ip̂. (2.52)

Multiplying with the particle mass m and summing over momentum and
spin states leads to the law of mass conservation

∂δρ

∂t
+m∇ ·

∑

pσ

vpδn̄p = 0, (2.53)

where δρ = m
∑
pσ δnp is the mass density fluctuation. The right side is

zero since collisions conserve particle number. Comparing to ∂ρ
∂t +∇·J =

0 one can identify the mass current

J = m
∑

pσ

vpδn̄p =
mp2

F

π2~3
〈p̂ψp̂〉p̂, (2.54)

where in the latter form we have once again assumed that the excitations
are on the Fermi surface. The x component of mass current can be
conveniently expressed in terms of the integral defined in Eq. (2.46) as

Jx =
3

4
mnpF g1(ζ). (2.55)

Similarly, multiplying the kinetic equation with momentum p, sum-
ming over momentum and spin states and making comparison to the law

of momentum conservation, ∂δg
∂t + ∇ ·

↔
Π = 0, where δg =

∑
pσ pδnp is

the momentum density fluctuation, allows us to identify the stress tensor
↔
Π, the components of which are given by

↔
Πij =

∑

pσ

pivjδn̄p = 3n〈p̂ip̂jψp̂〉p̂, (2.56)

where n = p3
F /(3π

2~3) is the number density of particles.

The oscillating substrate is oriented with its surface normal pointing
in the z direction. The shear force acting in the x direction is given by
the xz-component of the stress tensor:

↔
Πxz = 3n〈p̂xp̂zψp̂〉p̂ =

3

4
ng2(ζ), (2.57)

where in the last equality Eq. (2.47) has been used.
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The transverse acoustic impedance Z is related to the stress tensor
by

Z =
↔
Πxz(ζ = 0)/u, (2.58)

where u is the oscillation amplitude of the substrate. As a consequence
of having written the time-dependence of the substrate velocity in the
complex form, u ∝ exp(−iωt), the resulting acoustic impedance is also
complex valued, Z = Z ′ + iZ ′′, where Z ′ is the acoustic resistance and
Z ′′ the acoustic reactance. The force on the substrate can be written in
terms of only real quantities as

↔
Πxz = (Z + iZ ′′)u = Z ′u+

Z ′′u̇
ω

. (2.59)

The force proportional to acceleration is conservative and so only the
resistive part of the impedance leads to energy dissipation. The reactive
part can be understood to describe the portion of fluid moving in phase
with the oscillating substrate.

2.2.2 Boundary conditions

In order to solve the equations of motion, Eqs. (2.51), (2.46) and (2.47),
we need a way of describing the scattering of quasiparticles from the
boundaries confining the Fermi liquid. These boundary conditions must
be formulated in terms of the distribution function ψp̂. The boundary
conditions are of central importance, since it is through them that mo-
mentum transfer between the fluid and the oscillating substrate takes
place.

Arguably the most basic model for surface scattering is that of spec-
ular, i.e. mirror-like, reflection. The component of the reflected parti-
cle’s momentum parallel to the surface is conserved while the compo-
nent normal to the surface changes sign. This may be expressed as
pR = p− 2n̂(p · n̂), where p and pR are the momenta of the particle be-
fore and after the reflection, respectively. The distributions of incoming
and outgoing particles are related simply by

ψpR = ψp. (2.60)

In the case of the liquid film, the surface normals at the boundaries of
the film point in the positive and negative z directions. For distribution
ψp̂ = p̂xψ(p̂z, ζ) we obtain the specular boundary conditions

ψ(µ < 0, ζ = 1) = ψ(−µ, ζ = 1), (2.61)

ψ(µ > 0, ζ = 0) = ψ(−µ, ζ = 0), (2.62)
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where µ = p̂z = cos θ.

The problem with specular scattering is that there is no transfer of
transverse momentum between the confining walls and the quasiparticles.
This in turn means complete decoupling of the fluid from the substrate
and no measured transverse impedance. Thus, specular scattering alone
is not sufficient.

Another simple model for surface reflection is that of diffuse reflec-
tion. We may imagine that instead of being smooth and mirror-like, at
microscopic scale the surface of an object consists of tiny microfacets
that are oriented randomly with respect to the macroscopic surface nor-
mal. Particles hitting this rough surface are thus reflected in a random
direction.

In terms of the quasiparticle distribution function, such random-
ization of propagation direction means that the distribution becomes
isotropic. Since all quasiparticles are on the Fermi surface and have
momentum magnitude pF , the distribution of quasiparticles following
a diffuse reflection is the local equilibrium distribution. For transverse
oscillations, where the volume of the Fermi surface does not change, it
follows that δnp = δn̄p = 0 and as a result ψp̂ = 0. The boundary
condition for diffuse reflection at a stationary wall is given by

ψp̂out = 0, (2.63)

where p̂out signifies that the particles are traveling out from the scattering
surface.

If the wall is moving, we can derive the corresponding diffuse bound-
ary condition by considering the situation in the laboratory frame and in
the rest frame of the moving wall. Since in the rest frame the reflected
quasiparticles are at local equilibrium, we can write the distribution in
the laboratory frame (to first order) as

np = n0(ε0p + δεp − p · u) ≈ n0(ε0p) +
∂n0

∂εp
(δεp − p · u). (2.64)

By writing δnp = np − n0(ε0p), this may be rearranged as

δnp −
∂n0

p

∂εp
δεp = −

∂n0
p

∂εp
p · u. (2.65)

On the left side we have δn̄p, deviation from local equilibrium. Definition
of ψp̂ in Eq. (2.15) gives

ψp̂out = pF p̂ · u. (2.66)
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If we substitute ψp̂ = p̂xψ(p̂z, ζ) and u = ux̂, the boundary condition at
a diffusely reflecting moving wall becomes

ψ(p̂z > 0, ζ) = pFu. (2.67)

The fluid is confined by two boundaries; the oscillating substrate at
ζ = 0 and the surface of the fluid film at ζ = d. We form more general
boundary conditions at each boundary by combining specular and diffuse
scattering. We do this by introducing mixing parameters s1 and s2 that
describe the specularity of the surfaces. We write

ψ(µ < 0, ζ = 1) = s2ψ(−µ, ζ = 1), (2.68)

ψ(µ > 0, ζ = 0) = s1ψ(−µ, ζ = 0) + (1− s1)pFu. (2.69)

These boundary conditions describe a sharp specular highlight combined
with a diffuse background.

It is obvious that if the surface of a real object is in fact made up of
microfacets, then these are not actually oriented completely randomly.
Instead, the microfacets will have a tendency to point somewhat in the
direction of the macroscopic surface normal. Scattering from this sur-
face could be simulated by broadening the specular highlight to have
some finite width. A detailed discussion of this more realistic boundary
condition is given in Pub. II.

2.3 Numerical implementation

In this section we outline the process of numerically solving the quasi-
particle kinetic equation. The numerical method consists of forming and
solving discrete versions of Eqs. (2.51), (2.46) and (2.47) using linear al-
gebra. We begin with nondimensionalization of the relevant quantities.

We see from the boundary condition in Eq. (2.67) that the distribu-
tion ψ in Eq. (2.51) and, by extension, distributions g1 in Eq. (2.46) and
g2 in Eq. (2.47) are proportional to pFu. We can define their dimension-
less counterparts,

ψe =
ψ

pFu
, ge1 =

g1

pFu
, ge2 =

g2

pFu
. (2.70)

In the following the superscript e will be omitted.
The steps taken in the previous chapters have reduced the problem

of the oscillating substrate into the two-dimensional phase-space deter-
mined by the coordinates µ = cos θ, the transverse component of mo-
mentum, and ζ, the distance from the oscillating substrate. Integration
over µ in Eqs. (2.46) and (2.47) is done using a simple quadrature as
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Figure 2.2: A schematic of the computational lattice. Lattice points are
placed at the intersections of the dashed lines. Blue arrows show the
direction of particle propagation and the gray arrows indicate how the
boundary condition (b.c.) is applied.

∫ 1

−1
f(µ)dµ ≈

m∑

i=1

wif(µi). (2.71)

Weights wi and abscissae µi are selected using either Gaussian quadra-
ture or the trapezoidal method. An even number of m is used in order to
avoid the propagation direction parallel to the substrate, as this direction
could require special consideration.

The integral over ζ appearing in Eq. (2.51) is of the form

I =

∫ x2

x1

eαxf(x)dx, (2.72)

where α is a complex number. The exponential part of the integrand is
potentially rapidly oscillating. If the non-exponential part is linear over
some short interval [x1, x2], by applying partial integration we obtain

∫ x2

x1

eαxf(x)dx ≈ w1f(x1) + w2f(x2),

w1 =
eαx2

α2(x2 − x1)
[1− (1 + α(x2 − x1))eα(x1−x2)],

w2 =
eαx1

α2(x2 − x1)
[1− (1− α(x2 − x1))eα(x2−x1)].

(2.73)

which is exact for f(x) = a+bx. We split the ζ axis into n points and use
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Eq. (2.51) with the above integration formula to calculate the relation
between each pair of adjacent points.

The lattice resulting from the above discretization is shown in Fig.
2.2. At each point in this lattice we have a value ψ(µi, ζj) and at each
distance ζj we have values g1(ζj) and g2(ζj). We may write all these
values into a single vector in the following manner:

Ψ = (ψ(µ1, ζ1), . . . , ψ(µm, ζn); g1(ζ1) . . . , g1(ζn); g2(ζ1), . . . , g2(ζn)).
(2.74)

The length of this vector is d = mn+ 2m. If the integrals in Eqs. (2.46),
(2.47) and (2.51) are discretized according to the above scheme, they
produce a network of linear dependencies between distributions evaluated
at different grid points, which may be represented by a matrix D of
dimension d×d. Matrix D is a sparse matrix with 7mn−4m potentially
non-zero elements. If we take some values we call Ψold, we may use D
to calculate a new set of values Ψnew as

Ψnew = DΨold +B, (2.75)

where vector B is a result of the boundary condition at the oscillating
substrate. If we search for a steady state solution, we may write Ψnew =
Ψold = Ψ. We solve Ψ and obtain

Ψ = (I −D)−1B. (2.76)

This equation is used to solve Ψ by calculating the inverse of (I −D).

2.3.1 Limiting Cases

In this section we study three limiting cases in which the acoustic im-
pedance of the fluid film can be calculated analytically. We expect for
example that at high temperatures the Fermi liquid should behave like a
classical viscous fluid, and that the results of the general theory should
be in agreement with those derived from hydrodynamics. In the first two
limiting cases, damped mechanical oscillator and hydrodynamic limit, the
acoustic impedance is derived in a manner that is divorced from that of
the general theory, and as such serves to test both the validity of the
theory itself as well as the numerical process. The ballistic gas limit is
the only limiting case derived directly from the general theory.

Damped mechanical oscillator

Under certain conditions the entire fluid film could move as a solid mass,
with all parts of the film in phase with each other. A simple mechanical
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analogy to this would be a moving wall attached to a mass m via a
damping element. We now calculate the mechanical impedance of such
a system.

We mark the positions of the wall and mass with s and x respectively,
and the extension of the damping element with sd. We thus have x =
s + sd. If the wall is moved, the mass experiences an accelerating force
through the damping element and, therefore, the associated forces must
be equal, i.e.

F = mẍ = −bṡd. (2.77)

where b describes the strength of the damping. Assuming the motion is
harmonic, the velocity of the moving wall can be written as

u = ṡ =
d

dt
(x− sd) =

(
1

iωm
+

1

b

)
F. (2.78)

One can identify the impedance Z from Z = F/u. By setting b = m/τ
we get

Z =
1

i
mω + τ

m

=
mω

i+ ωτ
. (2.79)

We may write the real and imaginary parts of Z separately as

R(Z) = Z ′ =
mω2τ

1 + (ωτ)2
, I(Z) = Z ′′ =

mω

1 + (ωτ)2
. (2.80)

Clearly it is possible for the fluid to move as a solid mass only if the
oscillation frequency is small enough. The oscillation wave length must
be many times greater than the thickness of the fluid film for all parts of
the film to be in phase.

Hydrodynamic limit

It is informative to compare the motion of a Fermi liquid to that of
an ordinary liquid. In hydrodynamic theory, the equation of motion
governing the dynamics of a viscous fluid is the Navier-Stokes equation.
For an incompressible Newtonian fluid it may be written as [31]

ρ
∂v

∂t
= ρf −∇p+ µ∇2v, (2.81)

where ρ is the density of the liquid, f describes the external forces the
fluid is subject to, p is the pressure, and µ is the viscosity. In our case
there are no external forces. In addition, there is no pressure gradient in
the z direction. By denoting vx = v, the x component of Eq. (2.81) is

∂v

∂t
= ν

∂2v

∂z2
, (2.82)
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where ν = µ/ρ is the kinematic viscocity.
The system is translationally invariant in the xy plane. The velocity

of the substrate is given by u = x̂ue−iωt. We expect the fluid velocity
to only depend on time and the z coordinate, and be aligned with the
motion of the substrate. We write

v(z, t) = x̂ue−iωtv(z). (2.83)

On the surface of the oscillating substrate, the fluid should move along
with the oscillations and thus have the same velocity as the substrate.
The top surface of the fluid is at distance d from the substrate and should
be a free surface. We thus have the boundary conditions

v(z = 0) = 1,
∂v(z)

∂z

∣∣∣
z=d

= 0. (2.84)

Using the above ansatz and the boundary conditions to solve Eq. (2.81),
we obtain

v(z) =
e(1−i)z/δ

1 + e2(1−i)d/δ +
e−(1−i)z/δ

1 + e2(1−i)d/δ e
2(1−i)d/δ, (2.85)

where δ =
√

2ν/ω is the viscous penetration depth.
In order to calculate the acoustic impedance, we first solve the viscous

force caused by the fluid on the oscillating substrate. This is given by
the stress tensor σij as

F = −σxz = −µ∂vx
∂z

= −µue−iωt∂v(z)

∂z

= −µue−iωt 1− i
δ

(
e(1−i)z/δ

1 + e2(1−i)d/δ −
e−(1−i)z/δ

1 + e2(1−i)d/δ e
2(1−i)d/δ

)
.

(2.86)

On the surface of the substrate we obtain

F (z = 0) =
µu

δ
(1− i)1− e−2(1−i)d/δ

1 + e−2(1−i)d/δ e
−iωt. (2.87)

Since µ
δ = ρωδ

2 , the impedance can be written as

Z =
F

u
=
ρωδ

2
(1− i)1− e−2(1−i)d/δ

1 + e−2(1−i)d/δ (2.88)

Using the parameters of the general theory, the viscous penetration depth
can be expressed as:

δ =

√
2µ

ρω
=

√
2v2
F τ

5ωξ2
(1 + F s1 /3) = d

√
2l

5Ωd
. (2.89)
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Ballistic gas limit

At the limit of low temperature, quasiparticle collisions become increas-
ingly rare to a point where they can be ignored. This is the domain of
zero sound, where the mean free path of the quasiparticles is infinite,
l/d→∞. However, this alone does not lead to any major simplification
of the general theory. The equations of motion, Eqs. (2.46), (2.47) and
(2.51), still have to be solved numerically. If in addition we remove the
Fermi liquid interactions by setting parameters F s1 and F s2 to zero, the
coefficients b and c become zero and Eq. (2.51) reduces to

ψ(µ, ζ) = ψ(µ, ζ0)e
h
µ

(ζ0−ζ). (2.90)

If there are no collisions and no Fermi liquid interactions, the distribu-
tion of particles traveling out from either fluid boundary is unatteuated
during the journey through the fluid film, and changes only by a phase
factor. We may use the above equation to relate the distribution on the
fluid surface to that on the oscillating substrate directly by setting ζ0 = 0
and ζ = d, or vice versa. By also employing the boundary conditions

ψ(µ < 0, ζ = 1) = s2ψ(−µ, ζ = 1), (2.91)

ψ(µ > 0, ζ = 0) = s1ψ(−µ, ζ = 0) + 1− s1, (2.92)

we complete a rectangular loop in (µ, ζ)-space, as indicated in Fig. 2.2,
and solve ψ(µ, ζ). We obtain

µ > 0 : ψ(µ, 0) =
1− s1

1− s1s2e−2h/µ
, (2.93)

µ < 0 : ψ(µ, 0) =
s2(1− s1)e2h/µ

1− s1s2e−2h/µ
. (2.94)

At the ballistic gas limit we have simply h = −iΩ. Here, we use Eqs.
(2.47), (2.57) and (2.58) to express the acoustic impedance:

Z =
3

4
npF (1− s1)

∫ 1

0
dµµ(1− µ2)

1− s2e
2iΩ/µ

1− s1s2e2iΩ/µ
. (2.95)

If using the ballistic gas limit, we set s1 = 0 and s2 = 1, corresponding
to a fully diffuse oscillating substrate and a free fluid surface, which allows
an analytical calculation of the above integral.

2.3.2 Results

Here, we present some results of the numerical calculations outlined in
the previous sections. The acoustic impedance Z = Z ′ + iZ ′′ is cal-
culated using the dimensionless mean free path l/d as an independent
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variable, while keeping other parameters constant. We display the real
and imaginary parts of the impedance separately as functions of l/d and
together in a parametric representation. We express the distributions ψ,
g1 and g2 in the units of pFu. Based on Eq. (2.56), the corresponding
dimensionless units for the acoustic impedance are pFn. It is also useful
to give acoustic impedance in other dimensionless units, pFnΩ.

The calculation depends on multiple different parameters, such as the
Landau parameters F s1 and F s2 . The value of F s1 is pressure dependent
and well known through experiments [21]. The experimentally most im-
portant values are at zero pressure where F s1 = 5.4, and at the minimum
melting pressure of solid 3He, i.e. at 29.3 bar, where F s1 = 13.3. The
value of F s2 is not know, but is thought to have values that range between
−1 and 1, based on longitudinal sound measurements [32]. The specu-
larity of the surfaces that confine the film of Fermi liquid are controlled
by parameters s1 for the oscillating substrate and s2 for the surface of
the fluid. Both of them take values in the range 0 ≤ si ≤ 1. Lastly, we
have the dimensionless substrate oscillation frequency Ω and the relax-
ation time parameter ξ2. For the latter we will use either ξ2 = 1 or the
estimation ξ2 ≈ 0.35 given in Ref. [29].

We can make some preliminary observations on the effects of some
parameters. From the equation of motion in Eq. (2.39) we find that set-
ting F s1 = 0 removes the dipolar term from the quasiparticle interaction
energy. Setting F s2 = 0 on the other hand removes the quadrupolar com-
ponent of the quasiparticle interaction energy, while conversely setting
ξ2 = 1 removes the corresponding term from the collision integral. Set-
ting s1 = 1 should decouple the fluid film from the oscillating substrate
completely.

One requirement for the propagation of zero sound is that the sound
velocity should be greater than the Fermi velocity vF , as otherwise there
will be a resonant transfer of energy between the sound wave and the
quasiparticles, which leads to damping of the sound wave. This require-
ment can be stated as [33]

F s1 +
3F s2

1 + F s2 /5
> 6. (2.96)

In Fig. 2.3 the numerically obtained acoustic impedance is shown in
a parametric representation for a small oscillation frequency, Ω = 0.01,
together with various analytically obtained limiting cases. We show data
for different values of F s1 , F s2 and s1. We first discuss the limiting cases.
At the origin, the fluid film is completely decoupled from the oscillating
substrate and Z ≡ 0. This is called the stationary film limit. At the end
of the Z ′′/pFnΩ axis, where Z/pFnΩ = −i, we have the rigid body limit
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Figure 2.3: Parametric plot of Z = Z ′ + iZ ′′ with parameter l/d, which
takes values in the range [10−3, 103]. The oscillation frequency is small,
Ω = 0.01. Curves with different values of the Landau liquid parameters
F s1 and F s2 , and the substrate specularity parameter s1 are shown. ξ2 =
0.35. Various limiting cases are also shown. Figure first published in
Pub. I.

where the entire fluid film moves in phase with the oscillating substrate.
With increasing l/d, the fluid initially follows hydrodynamic behavior,
regardless of the parameters used. Plots with small values of s1 adhere to
the hydrodynamic limit for almost their entire length, while those with
high values of s1 deviate fairly quickly. At the point where l/d ≈ 1,
the propagation of any kind of transverse oscillation through the film is
impossible, and the film instead behaves like a dissipative mass. At this
point, the data coincides with the behavior of a damped oscillator. For
large values of the mean free path, as we approach the ballistic regime
where l/d� 1, we begin to see the influence of the Landau parameters.

In Fig. 2.3, the effect of substrate specularity is studied. We find
that increasing s1 can amplify the effect of the Landau parameters F s1
and F s2 to a degree. As specularity is increased, the film begins to de-
couple from the substrate. Since Z ′′ can be interpreted as signifying the
portion of the fluid moving along with the substrate oscillations, we find
that if s1 = 0.95, roughly half of the fluid has decoupled from the sub-
strate. Up to this point, decoupling increases the value of Z ′, leading
to greater dissipation. While we have not drawn plots with s1 > 0.95,
we can infer that if the substrate specularity was increased further, the
impedance plots would ”shrink” towards the origin until finally the film
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Figure 2.4: Parametric plot of Z = Z ′ + iZ ′′ with parameter l/d, which
takes values in the range [10−3, 103]. The effect of F s2 is studied at dif-
ferent oscillation frequencies, if F s1 = 0, ξ2 = 1, s1 = 0 and s2 = 1.
The ballistic limit is also shown. The area inside the dashed rectangle is
studied in more detail in Fig. 2.5.

decouples completely. Most importantly, we find that the scale of the
effects of the Landau parameters are orders of magnitude smaller than
the effect of s1, and do not lead to any significant decoupling of the fluid
film, unlike s1. Experiments reported in Refs. [16, 17], using an experi-
mental setup corresponding to Ω ∼ 10−5, show a thin film of normal 3He
decoupling from a mechanical oscillator as the temperature is lowered.
In Fig. 2.3, the larger frequency of Ω = 10−3 is used, but there is no
qualitative difference between this and smaller frequencies. In Fig. 2.3,
the decoupling would correspond to a large reduction in impedance when
l/d� 1. We do not see this, and thus our model cannot account for the
experimentally observed decoupling in the ballistic region.

In Fig. 2.4 we show the acoustic impedance at different frequencies
and with two different values of F s2 , while keeping F s1 = 0 and ξ2 = 1. We
have used specularity s1 = 0 and s2 = 1. The ballistic limit is also shown,
since the plots with F s1 = F s2 = 0 use the same parameters as those used
to calculate the ballistic limit in Sec. 2.3.1 and thus end on this limit.
Only the Ω = 0.1 curve really coincides with the damped oscillator limit if
l/d ≈ 1. This is to be expected, since at higher frequencies, the thickness
of the fluid film is greater than the wavelength of the oscillations and it
is thus impossible for the film to move as as solid mass. We find that in
isolation, i.e. with F s1 = 0 and ξ2 = 1, the effect of F s2 disappears with
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Figure 2.5: Study of the effects of parameters F s1 , F s2 and ξ2 in the
ballistic regime when Ω = 0.1. For solid plots, ξ2 = 1 and for dashed
plots ξ2 = 0.35. Other parameters are as in Fig. 2.4. Shown in black
are the ballistic (solid), hydrodynamic (dashed) and damped oscillator
(dot-dashed) limits.

decreasing Ω.

In Fig. 2.5, we make a more detailed study of how the different pa-
rameters change the behavior of the fluid film in the ballistic region. We
concentrate on the case of Ω = 0.1. Specularity parameters are again
s1 = 0 and s2 = 1. First of all, we change the relaxation time param-
eter. We study the cases ξ2 = 1 and ξ2 = 0.35. We find that while ξ2

has an effect in the region where l/d ≈ 1, it does not affect the ballistic
behavior, since the data for both values of ξ2 end at the same point in
the long mean free path limit. Moreover, we find that if we set F s1 = 0,
then F s2 has hardly any effect on the behavior of the fluid film. This is
likely related to the condition for the existence of zero sound, i.e. Eq.
(2.96). If F s2 has an effect on the velocity of zero sound, then its value
does not matter if zero sound does not propagate.

In Fig. 2.6 we further study the effect of ξ2. We show the real and
imaginary parts of the acoustic impedance Z = Z ′ + iZ ′′ separately as
function of l/d and in units of pFn. We use two different values of F s1
and ξ2. The influence of ξ2 if confined in the region around l/d ≈ 1.
This is sensible; the parameter ξ2 is the ratio of relaxation times, i.e.
ξ2 = τ/τ2. If all quasiparticles relax very rapidly or conversely have
extremely long lifetimes, then a difference in the relaxation of the dipolar
and quadrupolar components of the collision integral in Eq. (2.39) should
not matter. In Fig. 2.6 we have used a large oscillation frequency Ω = 5.
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Figure 2.6: The real and imaginary parts of Z = Z ′ + iZ ′′ in units of
pFn, plotted separately as functions of l/d. The different values of F s1
and ξ2 have been used. For solid curves ξ2 = 1 and for dashed curves
ξ2 = 0.35. We have used the parameter values Ω = 5, F s2 = 0, s1 = 0
and s2 = 1.

We see that the scale of the effect of F s1 is greatly increased from that
seen at small frequencies. The reason for this is that at larger frequencies,
multiple wavelengths of the transverse oscillation can fit within the fluid
film. This leads to resonance and antiresonance effects between the film
and the substrate oscillations. As a result, the effects of the Fermi liquid
interactions are amplified.

Finally, in Fig. 2.7, in an attempt to gain some insight into what
constitutes a thin film of Fermi liquid, we show the impedance while using
parameter values from an experiment in Ref. [34]. In the experiment, the
fluid is confined between two diffusely reflecting plates. We simulate this
by setting s1 = s2 = 0. The plates are separated by a distance of 25
micrometers. The pressure is 23 bar, which corresponds to F s1 ≈ 11.8.
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Three different oscillation frequencies f have been used, 36 MHz, 60 MHz
and 108 MHz. By using known values of vF and F s1 in

Ω =
2πfd

vF (1 + F s1 /3)
, (2.97)

we find that Ω obtains values between 31 and 93. We can display the
impedance as a function of temperature by expressing the mean free path
in terms of Fermi velocity vF and relaxation time τ ∼ 1/T 2 as l = vF τ .
We multiply the resulting acoustic impedance with vF (1 + F s1 /3) and
obtain

Z

pFn
vF

(
1 +

F s1
3

)
=

Z

pFn

pF
m

=
Z

ρ
, (2.98)

where ρ is the mass density of the liquid and we have used m∗ = m(1 +
F s1 /3) and vF = pF /m

∗. In this form, the impedance has the dimension
of velocity and is given in units of cm/s.

In Fig. 2.7, we also show results for the infinitely thick fluid layer
from Refs. [29] and [30]. Difference between the infinite fluid layer and
thin film results are barely perceptible for Z ′/ρ, but are more apparent
for Z ′′/ρ. Importantly, the differences arise at temperatures below the
superfluid transition temperature Tc ≈ 2 mK.

Deviation from the infinite fluid layer result is essentially chaotic.
This is caused by resonance effects. For the thin film, the presence of the
fluid surface is felt when a transverse sound wave traveling out from the
oscillating substrate is reflected back by the fluid surface. If the reflected
sound wave is in phase with the substrate oscillations when it arrives
back at the substrate, it will enhance the oscillations of the substrate.
This reduces the experienced impedance. Conversely, if the returning
wave is in opposite phase, it will hinder the substrate oscillations, thus
increasing the impedance. This means that if an experiment was devised
that was sensitive to the fluid surface, for example using a thinner fluid
film, then the measured impedance would be very sensitive to anything
that changed the velocity or frequency of the sound waves.
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Figure 2.7: The real and imaginary parts of Z/ρ, reported in units of
cm/s, shown separately as functions of T , with different oscillation fre-
quencies f . For the imaginary part Z ′′/ρ, it is for some reason customary
to plot −Z ′′/ρ instead. Specularity parameters are s1 = s2 = 0. Other
parameters used are F s1 ≈ 11.8, F s2 = 0 and ξ2 = 0.35. Black lines indi-
cate hydrodynamic behavior, while dashed lines display the behavior of
a fluid film of infinite thickness. Figure first published in Pub. I.



36 2. FERMI LIQUID FILM ON AN OSCILLATING SUBSTRATE



3

Moving wire in superfluid
Fermi liquid

In this chapter, we investigate the flow of 3He-B. We are interested in
the case of a long cylindrical object, a wire, moving through a Fermi
superfluid. It is expected that above the Landau velocity vL, such motion
becomes dissipative and the drag force on the object approaches the
value experienced in normal liquid. The behavior of vibrating wires
in 3He-B has been the subject of intense study, both theoretical and
experimental [35, 36, 37, 38, 39, 40, 41]. Here we concentrate on the
related problem of a wire moving through 3He-B with a constant velocity.
Recent experiments seem to show that under such conditions, there is no
indication of a critical velocity and the wire experiences only a marginal
drag force even at velocities well above vL [18]. The effects of Andreev
reflection, and the alterations to the superflow caused by pair breaking
are studied here as potential explanations for the experimentally observed
low-dissipation motion.

We begin in Sec. 3.1 with an overarching view of the problem and
discussion of some central concepts. In Sec. 3.2 we introduce the equa-
tions of motion that govern the dynamics of the elementary excitations
of a Fermi superfluid. In Sec. 3.3 we investigate how the fluid flow is
altered by pair breaking. Lastly, in Sec. 3.4 we discuss the details and
the results of the numerical implementation.

3.1 Overview

By definition, a viscous fluid resists the movement of objects. Fundamen-
tally, the resistance arises as the momentum of the object is transferred
into the surrounding fluid through the creation of collective excitations

37
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of the fluid, such as sound waves or vortices. A superfluid behaves like
an ideal fluid and flows without viscosity. The underlying reason for
this phenomenon is the presence of an energy gap in the spectrum of
elementary excitations. Below a certain critical velocity the energy gap
prevents the creation of the aforementioned carriers of momentum. The
concept of a critical velocity was first discussed by Landau in the context
of 4He superfluid [8]. Surpassing the Landau critical velocity vL leads to
a sudden onset of viscous forces. This can be viewed as a partial break-
down of the superfluid state, where the superfluid 3He is accompanied by
a viscous normal liquid component. This is referred to as the two fluid
model.

A weakly excited state of the superfluid can be described as the com-
bination of a collection of elementary excitations. Microscopic theories
of superfluidity are formulated in terms of these elementary excitations,
called quasiparticles. Quasiparticles of supefluid theory are more com-
plex than their normal liquid counterparts. This results from an in-
creased number of internal degrees of freedom, such as a particle-hole
characteristic.

Excitations which are able to escape the wire surface into the sur-
rounding bulk liquid contribute directly to the drag force. The quasi-
particles of a Fermi superfluid are subject to a special scattering process
called Andreev reflection, in which a quasiparticle entering a region where
the energy gap exceeds the quasiparticle’s energy is reflected back along
its original trajectory as a quasihole [42, 43]. Conversely, a quasihole will
be reflected back as a quasiparticle. Any macroscopic object immersed
in a moving fluid causes the surrounding flow field to vary spatially as
the fluid is forced to flow around the object. The effective energy gap
experienced by quasiparticles depends on the local superfluid flow veloc-
ity and, as a result, the flow around a macroscopic object can lead to
Andreev reflections, preventing the escape of excitations.

In this chapter we investigate the drag force and critical velocity of a
steadily moving wire in 3He-B. This is done by studying the creation and
escape of elementary excitations from the wire surface into the surround-
ing bulk liquid, while taking into account the changes to the superflow
caused by the excitations. We concentrate on the creation of linear, or
sound-like elementary excitations. In practice, it is possible that there
are other dissipative mechanism at play, such as vortices in the fluid or
thermally excited quasiparticles. If the flow is not steady, dissipation
can also be increased by some complex dynamical effect. Experimentally
it is generally found that dissipation sets in well before vL is reached.
Considering only linear excitations represents a sort of optimal case for
the possibility of low-dissipative motion above vL.
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Figure 3.1: Superfluid quasiparticle excitation spectrum together with
the normal state spectrum. Horizontal dashed red line depicts the energy
gap ∆. Red arrows show the direction of the group velocity vg in relation
to the direction of the momentum p at vairous points. Excitations with
momentum magnitude less than pF have their group velocity pointing
in the direction opposite to momentum direction, and are hole-like. The
size of the energy gap has been exaggerated for visual clarity.

3.1.1 The superfluid phases of 3He

At the low temperatures of a few millikelvin [2, 15], 3He makes a tran-
sition into a superfluid state. The underlying cause of this phase tran-
sition is the formation of Cooper pairs, bound states formed by pairs of
fermions. For two fermions interacting above a filled Fermi sphere, an
arbitrarily weak attraction is enough to lead to the formation of a bound
state. This is due to the Pauli exclusion principle, which prevents the
interacting particles from occupying the states within the Fermi sphere,
i.e. with k ≤ kF [11].

Cooper pairing binds particles with opposite momenta, p and −p.
The energy of the resulting state, in which the motion of the two fermions
is correlated, is negative. As a result, a filled Fermi sphere of uncorrelated
fermions becomes unstable and is no longer the true ground state of the
system. In the new ground state, a portion of fermions have formed into
Cooper pairs. The center of mass of a Cooper pair is at rest. Thus
the Cooper pairs all occupy the state with zero momentum, similar to
a Bose–Einstein condensate. This is the transition to a superconducting
or a superfluid state [12].

In Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [12]
it is assumed that the ground state of the Cooper pair condensate can be
described by a wave function that is the product of the wave functions
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for each pair state. The Hamiltonian of the system is presented in terms
of the creation and annihilation operators of individual particles and in-
cludes a non-diagonal term describing the interaction between particles.
Diagonalization of the BCS Hamiltonian, originally performed by Bo-
goliubov [44] and Valatin [45], shows that the elementary excitations of
this system are not pure particles, but instead superpositions of a parti-
cle and a hole. These are called Bogoliubov quasiparticles (or sometimes
Bogoliubons). An elementary excitation is formed when a Cooper pair is
broken, meaning that a pair state is only partially occupied. The energy
of an elementary excitation with momentum p is given by the dispersion
relation [1, 46, 47]

ε(p) =
√
ξ2
p + ∆2

p, (3.1)

where ξp = p2/2m∗ − εF is the kinetic energy measured from the Fermi
surface. This is the energy of normal Fermi liquid quasiparticles in Eq.
(2.3). For low energy excitations this can be linearized as ξp ≈ vF (p −
pF ). Here ∆p is the minimum excitation energy, the energy gap. The
dispersion relation Eq. (3.1) is shown in Fig. 3.1, assuming a constant
gap, ∆p = ∆. Unlike in the normal state, excitations on the Fermi
surface have non-zero energy. The energy gap ∆p can be thought of as
the binding energy of a Cooper pair at T = 0. In order to produce an
excitation, a Cooper pair must first be broken.

The group velocity vg of an excitation is given by the slope of the
dispersion relation, vg = ∂εp/∂p. In Fig. 3.1 the direction of the group
velocity is depicted at certain places on the dispersion curve. Excitations
can be created both above and below the Fermi surface. For excitations
with |p| < pF , the group velocity and the momentum are antiparallel.
Such excitations have a negative effective mass and have hole-like char-
acteristics.

The wave function of a system of fermions must be antisymmetric
with respect to the exchange of particles. BCS theory of superconduc-
tivity originally describes the Cooper pairing of electrons in a conductor.
The possible solutions to the Cooper pair spatial wave function consist of
a radial component and a spherical harmonic. For a BCS Cooper pair,
the lowest energy solution is the symmetric s-wave with zero angular
momentum, l = 0. As a consequence, the spin component of the wave
function is antisymmetric. This is called singlet pairing, where the total
spin of the pair is zero, S = 0, and the pair wave function is given by

|Ψ〉 = ψ0 (|↑↓〉 − |↓↑〉) , (3.2)

where ψ0 is the spatial component of the wave function and the arrows
represent the spins of the particles composing the pair.
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In contrast to Cooper pairs of BCS theory, 3He Cooper pairs have
a complicated internal structure. The fact that superfluid 3He remains
sensitive to external magnetic fields means that the Cooper pairs have
non-zero total spin, namely S = 1, with three possible values for the
spin projection, Sz = −1, 0, 1. This is called triplet pairing. The spin
component of the wave function is symmetric and the wave function itself
may be written

|Ψ〉 = ψ1,+1|↑↑〉+ ψ1,0 (|↑↓〉+ |↓↑〉) + ψ1,−1|↓↓〉, (3.3)

where ψS,Sz are the spatial wave functions of the three spin substates
and the subscripts indicate the values total spin and the spin projection.
The spatial component of the wave function must now be antisymmetric.
The hard core repulsion between 3He atoms also suggests that the spatial
component should be one that disappears if the interatomic distance goes
to zero, thus preventing the atoms from overlapping. Such conditions are
satisfied by states with odd angular momentum, l = 1, 3, 5, ... [46]. The
state with the lowest energy is the one realized in nature. This is found to
be the antisymmetric p-wave with l = 1 [1]. Since the angular momentum
also has three possible projections lz = −1, 0, 1, the result is nine-fold
complexity in comparison to a Cooper pair in a superconductor [46].
One consequence of this complexity is that 3He has multiple superfluid
phases.

in the absence of an external magnetic field, 3He has two superfluid
phases, the anisotropic A phase and the isotropic B phase. Isotropy here
means that 3He-B is an equal superposition of all of the substates with
different spin projection Sz, whereas in 3He-A one of these substates,
namely that with Sz = 0, is unoccupied. There is also a third phase,
called A1, which is only stable in an external magnetic field, and in
which only the Sz = 1 substate is occupied. We will be dealing solely
with 3He-B in which, at equilibrium, the energy gap ∆ is also isotropic
[14, 46].

3.1.2 Critical velocity and pair breaking

If an object moves in a superfluid with a velocity which is higher than
the so-called critical velocity, it begins to experience dissipative forces,
as excitations are generated in the superfluid. We consider the excita-
tions produced by pair breaking on the surface of an object moving with
velocity v with respect to the rest frame of the fluid. Here, we assume
the object is small, so that the flow of superfluid is not disturbed by the
object and the flow velocity is the same everywhere. We can consider the
dispersion relation in Eq. (3.1) in a reference frame moving along with
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Figure 3.2: Left: Fermi surface displaced by movement in the negative x
direction. Right: Quasiparticle energy Eq. (3.4) in a frame of reference
moving with velocity v > vL to the left. The figure shows both the
positive and negative branches of the square root in Eq. (3.4), in blue and
black respectively. Energy states with positive momentum are lowered,
while states with negative momentum are raised. Positive momentum
states close to the Fermi surface have negative energy.

the object at velocity v. By Galilean transformation, in this frame an
excitation has the energy

ε(p) =
√
ξ2
p + ∆2 − p · v. (3.4)

If we concentrate on just the Fermi surface where ξp = 0, the above
equation simplifies to ε = ∆ − pF p̂ · v. This is the minimum excitation
energy, or energy gap in a moving frame of reference. If the frame of
reference is moving at such a velocity that pF p̂ · v > ∆, the excitation
has negative energy. This condition is first satisfied at the Landau critical
velocity, vL = ∆/pF by excitations traveling along motion of the object,
i.e. with p̂ · v = vL.

The dispersion relation in Eq. (3.4) is depicted on the right in Fig.
3.2. This is called the semiconductor picture. In the semiconductor pic-
ture, in the ground state of the superfluid, all negative branch states are
considered to be filled with quasiparticles. An excitation with momen-
tum p can thus be formed in two alternative ways; either a quasiparticle
with momentum p can be added into the positive branch, or a negative
branch quasiparticle with momentum −p can be removed. Both of these
options result in an excitation with momentum p.

If an object moves through superfluid 3He, then in the rest frame
of the object the distribution of quasiparticles is tilted as shown in Fig.
3.2. If the velocity of the object surpasses the Landau critical velocity,
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Figure 3.3: Production of Bogoliubov quasiparticle pairs. The energy
range in which quasiparticles can be created is marked in blue. Energy
conservation ε1 + ε2 = 0 can be satisfied by the creation of a pair that
consists of two quasiparticles, two quasiholes, or a quasiparticle and a
quasihole.

then there are some empty states with negative energy. Thus it is ener-
getically favorable to produce excitations in these states. Moreover, in
the semiconductor picture there exists a range of energies where there
are both filled and empty states. The moving object can now scatter
quasiparticles from the filled states to the empty ones.

An elementary excitation of the superfluid ground state, i.e. a Bogoli-
ubov quasiparticle, is formed by having a pair state be occupied by only
a single 3He quasiparticle. Scattering from a moving object, a process
which destroys Cooper pairs but conserves the number of 3He quasiparti-
cles, must then produce two elementary excitations, as a 3He quasiparti-
cle is removed from one state and placed into another [48]. Even though
the produced excitations transfer momentum away from the moving ob-
ject, we can assume that for a single instance of scattering this transfer
is small and to first order the energy of the moving object is unchanged.
It follows that for the produced pair of excitations, ε1 + ε2 = 0, where
ε1 and ε2 are the energies of the two excitations. This is clearly first
possible at the critical velocity which allows ε1 = ε2 = 0. Above the
critical velocity vL there is a range on energies,

− |∆− pF p̂ · v| ≤ ε1 ≤ |∆− pF p̂ · v|, (3.5)

in which an excitation can be created. The other produced excitation
has the energy ε2 = −ε1. The creation of quasiparticle pairs is depicted
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in Fig. 3.3. Scattering from the moving object produces beams of quasi-
particles and quasiholes traveling in opposite directions.

3.2 Equations of motion

Our study of the motion of superfluid 3He is based on the quasiclassi-
cal theory of Fermi superfluids. Details of this theory are found in Ref.
[47]. The idea behind quasiclassical theory is to represent the complex
interaction between Fermi liquid quasiparticles using phenomenological
parameters. The similarity between this and Landau’s Fermi liquid the-
ory is not a coincidence, as quasiclassical theory is in essence a more
general version of Landau’s theory. The state of the liquid is represented
by quasiclassical propagators, from which certain internal degrees of free-
dom, such as the quasiparticle energy, have been integrated out. These
“unnecessary” degrees of freedom are removed and replaced by the phe-
nomenological parameters before undertaking computationally expensive
calculations.

The following is an outline of the dynamic equations of the low-
frequency, ~ω � ∆, and long-wavelength, ~kvF � ∆, limit of the general
quasiclassical theory. This limit is derived from the general theory by
expanding the dynamic equations in terms of ~ω/∆ and ~kvF /∆ and
considering only the leading order terms. The resulting equations are
presented in Sec. 7 of Ref. [47]. All energies are small in comparison to
the Fermi energy, ξp,∆, u, a, ε� vF pF .

The energy of a quasiparticle excitation with momentum p in the
quasiclassical theory is

ε(p, r, t) =
√
|ξp + u(p̂, r, t)|2 + |∆(p̂, r, t)|2 + a(p̂, r, t). (3.6)

Here, u(p̂, r, t) and a(p̂, r, t) are effective potentials or molecular fields
that describe the quasiparticle-quasiparticle interaction. They are even
and odd with respect to momentum, i.e. u(−p̂) = u(p̂) and a(−p̂) =
−a(p̂). Clearly u(p̂, r, t) acts to shift the chemical potential in a manner
similar to the definition of local equilibrium in the context of normal
liquid. The potential a(p̂, r, t) is analogous to the interaction term added
in the normal liquid case to ensure Galilean invariance.

If we fix the direction of momentum, energy depends only on the
magnitude of momentum through ξp. For each value of the energy, there
are two possible choices of ξp. It is convenient to split the distribution of
elementary excitations into two branches, so that

f(r, ξ, t) =

{
φB1(r, ε(r, ξp, t), t), if ξp + u > 0,

φB2(r, ε(r, ξp, t), t), if ξp + u < 0.
(3.7)
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The group velocity vg of an excitation is given by the slope of its
dispersion relation, vg = ∂ε/∂p. It follows that excitations in branch
φB1 have a group velocity in the same direction as their momentum and
are thus particle-like, while excitations in φB2 have a group velocity that
points against their momentum and are hole-like. The two branches
φB1 and φB2 represent the distributions of the particle- and hole-like Bo-
goliubov quasiparticles, respectively. In the quasiclassical theory, the two
distributions are symmetrized and obtain values in the range [−1/2, 1/2].
The value 1/2 corresponds to a filled state and the value −1/2 to an
empty state. The equilibrium distributions at temperature T is given by

φB1 = φB2 = −1

2
tanh (ε/2T ), (3.8)

which at T = 0 simplifies to φB1 = φB2 = 1/2 − θ(ε). In a reference
frame moving with velocity v, the distributions are Galilei transformed
as φBi(p̂, ε) → φBi(p̂, ε + pF p̂ · v). In the case of the zero-temperature
equilibrium distribution this becomes φBi = 1/2− θ(ε+ pF p̂ · v).

In Ref. [47], the equations that describe the dynamics of distributions
φB1 and φB2 are derived using techniques based on Green’s functions.
At the low-frequency long-wavelength limit it is possible to arrive at the
same equations in a much simpler manner. By studying the total time
evolution of the two distributions, using the dispersion relation in Eq.
(3.6), we find Boltzmann-like kinetic equations

∂φB1

∂t
+ ν−1vF p̂ ·∇φB1 +

[
ν−1∂u

∂t
+
∂a

∂t
+
|∆|
ε̃

∂|∆|
∂t

]
∂φB1

∂ε
= IB1,

(3.9)

∂φB2

∂t
− ν−1vF p̂ ·∇φB2 +

[
−ν−1∂u

∂t
+
∂a

∂t
+
|∆|
ε̃

∂|∆|
∂t

]
∂φB2

∂ε
= IB2,

(3.10)

where ν = |ε̃|/
√
ε̃2 − |∆|2, and we have defined ε̃ = ε − a. IBi is a

collision term as in the context of normal liquid. We consider only a
time-independent and collisionless case, in which the kinetic equations
reduce to

p̂ ·∇φB1 = 0, p̂ ·∇φB2 = 0, (3.11)

which simply state that the distributions φB1 and φB2 are constant along
the trajectory of a quasiparticle.

The Boltzmann-like equations for the distributions φB1 and φB2 are
accompanied by self-consistency equations for the molecular fields u(p̂, r, t)
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and a(p̂, r, t), and for the gap ∆(p̂, r, t), which can be written as

u(p̂) =
U

1 + F s0

+
1

2

∫
dΩ′p
4π

As(p̂ · p̂′)
∫ Ec

−Ec
dεΘ(ε, p̂′)

[
φB1(ε, p̂′)− φB2(ε, p̂′)

]
,

(3.12)

a(p̂) = −vFA · p̂

+
1

2

∫
dΩ′p
4π

As(p̂ · p̂′)
∫ Ec

−Ec
dεN(ε, p̂′)

[
φB1(ε, p̂′) + φB2(ε, p̂′)

]
,

(3.13)

∆(p̂) = −1

2

∫
dΩ′p
4π

V (p̂ · p̂′)

×
∫ Ec

−Ec
dεN(ε, p̂′)

[
φB1(ε, p̂′) + φB2(ε, p̂′)

] ∆(p̂′)
ε− a(p̂′)

, (3.14)

where

Θ(ε, p̂) = θ
(
[ε− a(p̂)]2 − |∆(p̂)|2

)
, (3.15)

N(ε, p̂) =
|ε− a(p̂)|√

[ε− a(p̂)]2 − |∆(p̂)|2
Θ(ε, p̂), (3.16)

U = Uext +
~
2
ψ̇, A = Aext −

~
2
∇ψ, vs =

~
2m

∇ψ, (3.17)

As(p̂ · p̂′) =

∞∑

l=0

AslPl(p̂ · p̂′), Asl =
F sl

1 + F sl /(2l + 1)
, (3.18)

where θ(x) is the Heaviside step function. Here
∫
dΩp denotes integration

over a unit sphere of p̂. N(ε, p̂) is the density of states given in units
N(0) = mpF /2π

2~3. Uext(r, t) and Aext(r, t) are external fields, which
we assume to be zero. V (p̂ · p̂′) describes the effective potential between
the components of a Cooper pair. Eq. (3.18) is a Legendre-polynomial
expansion of the quasiparticle interaction energy As(p̂ · p̂′) in terms of
symmetric Landau parameters F sl , familiar from Landau’s Fermi liquid
theory. The limit of integration Ec is a computational cut-off energy.

In order to simplify our calculations, we assume a constant ∆. This
assumption entails that the fluid velocity on the surface of the object
does not greatly exceed vL/2, as pair breaking begins to distort the gap
once the critical velocity is exceeded [1, 49].

In the time independent and collisionless case, neither u(p̂, r, t) nor
a(p̂, r, t) appear in the kinetic equation, while a(p̂, r, t) still appears in
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the definition ε̃ = ε − a. This means that u(p̂, r, t) does not affect the
kinetics, but we must ensure that a(p̂, r, t) is self-consistent since it de-
pends explicitly on itself. We concentrate solely on the field a(p̂, r, t)
and Eq. (3.13).

Since a(p̂, r, t) is antisymmetric with respect to momentum, only the
odd terms in the polynomial expansion of As(p̂ · p̂′) can be nonzero. We
truncate the polynomial expansion at l = 1, and assume that the effects
of higher terms are negligible. The self-consistency equation of a(p̂, r, t)
in Eq. 3.13 can now be written

a(p̂) = mvFvs · p̂

+
1

2

F s1
1 + F s1 /3

∫
dΩ′p
4π
p̂ · p̂′

∫ Ec

−Ec
dεN(ε, p̂′)

[
φB1(ε, p̂′) + φB2(ε, p̂′)

]
.

(3.19)

We find that we can separate the momentum dependency from a and
write a(p̂, r, t) = α(r, t) · p̂. From Eq. (3.19), one can also calculate that
in the absence of excitations (φB1 = φB2 = −1/2), α = pFvs. The field
α describes the local tilting of the distribution function as depicted in
Fig. 3.2.

Force on the wire is calculated from the stress tensor

↔
Π(r, t) = vF pFN(0)

∫
dΩ

4π
p̂ p̂

∫ Ec

−Ec
dεΘ(ε, p̂) [φB1(ε, p̂)− φB2(ε, p̂)] .

(3.20)

Force on a surface with area dA and normal n̂ is dF = (n̂ ·
↔
Π)dA. The

total drag force on the wire can be calculated in cylindrical coordinates
as

F (t) = l

∫ π

−π
Rdϕn̂ ·

↔
Π(R,ϕ, t), (3.21)

where l is the length of the wire and R its radius.
The mass current density is given by

j(r, t) = mvFN(0)

∫
dΩp

4π
p̂

∫ Ec

−Ec
dεN(ε, p̂′)

[
φB1(ε, p̂′) + φB2(ε, p̂′)

]
.

(3.22)
We also define, at a given energy, the number current density of excita-
tions [50]:

je(r, t, ε) = vFN(0)

∫
dΩp

4π
p̂Θ(ε, p̂) [φB1(ε, p̂)− φB2(ε, p̂)] . (3.23)

Comparing this to the stress tensor Eq. (3.20), we can make the interpre-
tation that the net force on the wire is caused by the excitation current,
each escaping excitation carrying away momentum pF p̂.
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3.2.1 Andreev reflection

Andreev reflection is a scattering process in which a particle-type exci-
tation is converted into a hole-type excitation and reflected back along
its original trajectory, or vice versa [42]. It can take place in materi-
als where the superconducting energy gap ∆(r) changes significantly on
the scale of the superconducting coherence length ξ0. The most often
considered example of this is an electron moving through the interface
between a superconductor and a normal metal. In the context of wires
moving in 3He-B, Andreev reflection has been studied as it pertains to
the movements of thermally excited quasiparticles [39, 40]. It is also
an essential component in any realistic microscopic modeling of quasi-
particle reflections from a surface, since the energy gap is suppressed at
the interface of a superfluid and an object [43, 51]. Here, we focus on
the effects Andreev reflection has on the propagation of quasiparticles
produced by pair breaking.

Andreev reflection results from the interplay of conservation of en-
ergy, momentum and particle number. Due to energy conservation, a
particle may not enter into a region where the local energy gap is greater
than the energy of the particle. At the same time, there is no hard
scattering potential on such a boundary that could impart a momen-
tum impulse of the order of the Fermi momentum pF to the particle,
which is what is required for ordinary reflection to take place. Instead,
a hole is reflected back and a Cooper pair is produced on the other side
of the boundary. The hole has nearly identical momentum as the ini-
tial particle, changed only slightly by the transition through the Fermi
surface, and travels backwards along the same trajectory. This is called
retroreflection. Cooper pairing takes place between particles with oppo-
site momenta, so the total momentum of the produced Cooper pair is
zero. Momentum and particle number are thus conserved.

The energy of an excitation is given by the dispersion relation in Eq.
(3.6). Assuming a constant ∆, the minimum allowed excitation energy
is

Emin = ∆ + a(p̂, r) = ∆ + p̂ ·α(r). (3.24)

The effective energy gap experienced by a quasiparticle thus depends on
the direction of its momentum p̂ and the local value of the field α(r). If a
macroscopic object is immersed in a flowing liquid, there are unavoidable
gradients in the flow velocity as the fluid is forced to divert around the
object. This produces a situation similar to that on the boundary of
a normal metal and a superconductor; an energy gap that depends on
position and momentum direction, and can change as the quasiparticles
travel through the liquid. In this way quasiparticles can be Andreev
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Figure 3.4: A particle-like excitation is Andreev reflected by the changing
effective energy gap. Initially the quasiparticle has group velocity to the
right and energy ε > ∆+a(p̂, r). Reaching a region where ε < ∆+a(p̂, r),
it is prevented from traveling further, instead changing its particle-hole
nature and traveling back along its original trajectory. There is only a
minor change in momentum, δp � pF when the quasiparticle is trans-
ported through the Fermi surface.

reflected by the superflow. This process is depicted in Fig. 3.4.
In the quasiclassical theory of Fermi superfluids, Andreev reflection is

present as a boundary condition for the two branches of the quasiparticle
distribution function. If the quasiparticle is entering a region where the
local energy gap is greater than the quasiparticle’s energy, then on the
boundary of this region [ε− a(p̂, r)]− |∆(p̂, r)|2 = 0 and [47]

φB1(p̂, ε, r) = φB2(p̂, ε, r). (3.25)

This is called branch conversion. Branch conversion can also occur as a
result of a collision process, either with the object moving through the
liquid or with other quasiparticles described by the collision integrals IBi
in Eqs. (3.9) and (3.10). The latter possibility is ignored in our model.

3.3 Superfluid flow past a cylinder

In this section we will discuss the flow of Fermi superfluid past a cylin-
drical object and our methods for finding a self-consistent flow in the
presence of pair breaking. First however, we discuss the flow when pair
breaking is not present.

3.3.1 Potential flow

A flow that is irrotational,, i.e. ∇× v = 0, is called potential flow, since
the fluid velocity can be expressed as the gradient of a velocity potential
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ψ, i.e. v = ∇ψ. Mass transport is related to the probability current of
the mass carriers

J = − i~
2m

(Ψ∗∇Ψ−Ψ∇Ψ∗) . (3.26)

Because the order parameter for 3He-B, which can be understood to
be the wave function of the mass carriers, may be written in terms of
a real quantity multiplied by a complex phase factor, Ψ = R(r)eiψ(r),
superfluid velocity vs must be proportional to the gradient of the phase
[1, 52]:

vs =
~

2m
∇ψ(r), (3.27)

where the factor 1/2 follows from each Cooper pair consisting of two
particles and m is the mass of the bare fermion.

Flow past an object must satisfy the continuity equation

∂ρ

∂t
+ ∇ · j = 0, (3.28)

where ρ is the mass density and j = ρv is the mass current density. In
the time-independent case, this recudes to ∇ · j = 0, which means that
the fluid is incompressible. The condition of incompressibility implies
that the phase ψ satisfies the Laplace equation

∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂ϕ2
+
∂2ψ

∂z2
= 0, (3.29)

where the Laplace operator ∇2 has been expressed in cylindrical coor-
dinates. For a cylindrical object aligned with the z axis, the flow is
invariant in the z direction and the last term of the Laplace operator is
zero.

In addition to the Laplace equation, a velocity potential has to satisfy
appropriate boundary conditions. In the case of flow past an object, there
should be no flow through the surface of the object. Therefore

n̂(ϕ) · v(R,ϕ) = 0, (3.30)

where it has been assumed that the object is cylindrcal. Here n̂ is the
surface normal of the object and R is its radius. Far from the object,
the flow velocity should approach a constant value. For a superfluid flow
past a cylindrical object with radius R aligned along the z axis moving
at velocity vx̂, a phase that satisfies these conditions is given in the rest
frame of the cylinder as

~
2m

ψ(r, ϕ) = −vr
(

1 +
R2

r2

)
cosϕ. (3.31)
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Figure 3.5: Ideal flow past a cylinder in a reference frame where the
cylinder is stationary. Far away from the cylinder the fluid is moving
with velocity −vx. Streamlines show the direction of flow, while the
dashed lines are contours of constant speed, placed at intervals of 0.1v.
On the points directly on the front and back of the cylinder the flow
velocity is zero. At points P and Q the flow velocity is −2vx. The
trajectory of a quasiparticle starting from position r0 in direction p̂ is
shown in red.

The flow generated by this velocity potential is depicted in Fig. 3.5. An
important feature of the flow is that at points P and Q the fluid flows at
twice the velocity it has far from the cylinder. If the flow is also inviscid,
it does not generate a drag force on moving objects. A fluid that is both
incompressible and inviscid is called ideal.

3.3.2 Effects of pair breaking

Below the Landau critical velocity vL, superfluid 3He behaves like an
irrotational ideal fluid. If vL is exceeded anywhere in the fluid where
there is also a mechanism for scattering quasiparticles, pair breaking will
begin to take place. A cylindrical object begins to scatter quasiparticles
first at points P and Q if the asymptotic fluid velocity, the velocity far
from the object, reaches vL/2. If the velocity is further increased, the
regions of pair breaking will expand out from points P and Q to cover
more of the cylinder surface.

Pair breaking produces excitations in the form of quasiparticles. These
quasiparticles are created at the wire and travel out into the surrounding
liquid, carrying away momentum. This produced flow of quasiparticles
will then alter the flow of liquid near the wire, thus also changing the
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Figure 3.6: Allowed quasiparticle energies along a trajectory r = r0 +sp̂.
The trajectory starts from the surface of the wire at s = 0. The region
below curve ∆ + a(p̂, s) is the energy gap where quasiparticles cannot
exist. K, L, M and N denote the energy ranges categorized by access to
the wire surface and the far region of the fluid, as discussed in the text.

fluid velocity on the surface of the wire.
We have to study the propagation of quasiparticles. Starting from

some location r0, the trajectory of a quasiparticle with momentum p̂ can
be parametrized as r = r0 + sp̂, where r0 is fixed and s ∈ R. We define
the following energies along such a trajectory:

ε1(p̂, r0) = min
r

[a(p̂, r)] + ∆, minimum gap along trajectory,

ε2(p̂, r0) = a(p̂, r0) + ∆, gap at point r0, (3.32)

ε3(p̂, r0) = max
r

[a(p̂, r)] + ∆, maximum gap along trajectory.

The minimum allowed energy, or effective energy gap ∆ + a(p̂, r) along
a trajectory that starts from the wire surface is pictured in Fig. 3.6.

Quasiparticles arriving from the far region in Fig. 3.6 are only able
to reach the wire surface if they are in energy range M where the energy
of the particle E > ε3. Quasiparticles in the energy range N are Andreev
reflected, since at some point along their trajectory the local energy gap
exceeds their energy. If quasiparticles approaching from the far region
are present, for example if T > 0 and there are thermally excited quasi-
particles, only those in region M can contribute to the drag force on the
wire.

If the critical velocity is surpassed on the wire surface, ε2 < 0 and the
wire begins to scatter quasiparticles into region L. However, if ε2 < ε3,
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the resulting quasiparticles will be Andreev reflected by the flow field
and thus do not contribute to the drag force. It is only if ε3 < 0 that
quasiparticles in states M, with unrestricted access to the far region of
the liquid, are produced by pair breaking.

It is also possible for there to exist quasiparticle states K with energy
ε1 < ε < ε2. There is no scattering into these states, since they have no
access to the wire surface.

The condition that ε3 < 0 for quasiparticles to escape is predicated
on the assumption that quasiparticles are only created at ε ≤ 0. However
we know that once ε2 is below zero, there is a range of energies in which
quasiparticles can be created,

− |ε2| ≤ ε ≤ |ε2|, (3.33)

since in the semiconductor picture there will be filled states with positive
energy which can scatter into the empty states with positive energy, thus
producing quasiparticles with positive energy. The quasiparticles are
fermions and follow Pauli exclusion principle, and are created in pairs. If
a quasiparticle pair, where the positive energy particle has energy ε > ε3
is created, then the positive energy particle is able to escape, while the
negative energy particle may not. This leaves the negative energy state
filled, which prevents the creation of another pair with the same energy
and momentum. We assume that the system has reached a state of
equilibrium where all the confined negative energy states of type L are
filled. If a pair is created at the Fermi surface and ε3 < 0, then both
members of the pair are able to escape, leaving behind an empty state
to be filled again.

3.3.3 Self-consistent flow

In this section we will investigate how ideal flow is modified by the exci-
tations produced by pair breaking. The excitations carry mass current,
as indicated by Eq. (3.22). In order to find a self-consistent solution
to the flow, we have to find fields a(p̂, r) and vs(p̂, r) that satisfy both
self-consistency Eq. (3.19) for a(p̂, r) and continuity equation ∇ · j = 0.
In practice, this must be done through an iterative process.

We begin work on the self-consistency Eq. (3.19). We assume that
the cylinder is large in comparison to the superfluid coherence length,
R� ξ0 = ~vF /2πkBTc. We also assume the that T = 0 so that there are
no thermally excited quasiparticles. We will also neglect quasiparticle-
quasiparticle collisions. An example of the other extreme where quasi-
particle-quasiparticle collisions dominate the dynamics in the near region
of the wire is discussed in Sec. VII of Pub. III.
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We separate momentum dependency from a by writing a(p̂, r) =
α(r) · p̂ and form a corresponding self-consistency equation for the field
α(r) as (

1 +
F s1
3

)
α(r) = pFvs(r) +

F s1
2
Ĩα(r), (3.34)

where

Ĩα(r) =

∫
dΩ

4π
p̂

∫ Ec

−Ec
dεN(p̂, ε, r)[φB1(p̂, ε, r) + φB2(p̂, ε, r)], (3.35)

with

N(p̂, ε, r) =
|ε−α(r) · p̂|√

(ε−α(r) · p̂)2 − |∆|2
θ([ε−α(r) · p̂]2 − |∆|2). (3.36)

Mass current density j can be stated in terms of Eq. (3.35) as

j = mvFN(0)Ĩα(r). (3.37)

The integrand in Eq. (3.35) is non-zero only if (ε− a)2− |∆|2 > 0, or
in other words if

ε > a(p̂, r) + |∆(p̂, r)| = E+(p̂, r) or (3.38)

ε < a(p̂, r)− |∆(p̂, r)| = E−(p̂, r), (3.39)

where we have defined energies E+ and E−. Since a(−p̂, r) = −a(p̂, r)
we find that E+(−p̂, r) = −E−(p̂, r). A similar relation exists for the
distributions, φB1(−p̂,−ε, r) = −φB2(p̂, ε, r). Assuming that the en-
ergies E+ and E− are within the interval [−Ec, Ec], we can split the
integration into two parts, one on the interval [E+, Ec] and the other on
[−Ec, E−]. With a change of variables p̂→ −p̂ and ε→ −ε, we can show
that the resulting two terms are equal. The integral may thus be written
as

Ĩα(r) = 2

∫
dΩ

4π
p̂

∫ Ec

E+(p̂,r)
dε ν(p̂, ε, r)[φB1(p̂, ε, r)+φB2(p̂, ε, r)]. (3.40)

where

ν(p̂, ε, r) =
|ε−α(r) · p̂|√

(ε−α(r) · p̂)2 − |∆|2
. (3.41)

One of our underlying assumptions is that the wire surface is the
only source of quasiparticles. At zero temperature there are no ther-
mally excited quasiparticles. In addition we are neglecting quasiparticle-
quasiparticle collisions. This means that only momentum states that
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encounter the wire at some point along their trajectory, have a change
of being occupied. If we shift the distributions φB1 and φB2 by 1/2, we
can only concern ourselves with trajectories that hit the wire, since for
any other trajectory the integrand will be zero. We write

Ĩα(r) = 2

∫
dΩ

4π
p̂

∫ Ec

E+(p̂,r)
dε ν(p̂, ε, r)

[
−1

2
− 1

2

]

+ 2

∫

hit

dΩ

4π
p̂

∫ Ec

E+(p̂,r)
dε ν(p̂, ε, r)

×
[(
φB1(p̂, ε, r) +

1

2

)
+

(
φB2(p̂, ε, r) +

1

2

)]
,

(3.42)

where
∫

hit signifies the integration over momentum directions that en-
counter the wire. The first integral can be calculated analytically. We
obtain

Ĩα(r) =
2

3
α(r) + 2Iα(r), (3.43)

where

Iα(r) =

∫

hit

dΩ

4π
p̂

∫ Ec

E+(p̂,r)
dε ν(p̂, ε, r)

×
[(
φB1(p̂, ε, r) +

1

2

)
+

(
φB2(p̂, ε, r) +

1

2

)]
.

(3.44)

In terms of Iα(r) the self-consistency equation for α(r) becomes

α(r) = pFvs(r) + F s1 Iα(r). (3.45)

Similarly, the mass current density can be written as

j(r) = 2mvFN(0)

(
pF
3
vs(r) +

(
1 +

F s1
3

)
Iα(r)

)
. (3.46)

This explicitly shows that the mass current, in addition to the component
caused by the superflow vs, also has a component that depends on the
presence of excitations. Each excitation carries the mass of a Fermi liquid
quasiparticle, m∗ = (1+F s1 /3)m. However, the separation is not as clear
as the above equation makes it seem since, for a self-consistent flow,
changes caused by the excitations will also be included in vs.

Based on the kinetic equation (3.11), we know that in the time-
independent and collisionless case the distributions of quasiparticles φBi
are constant along the trajectory of a quasiparticle. This means that
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along their entire trajectory, quasiparticles will have the same distribu-
tion that they have at the point where they originate. If the quasipar-
ticles originate from the wire, their distribution will be that given by
a boundary condition φbc

Bi(p̂, Rr̂, ε) at the wire surface. At a point of
Andreev reflection with [ε− a(p̂, r)]2 − |∆(p̂, r)|2 = 0, the distributions
are equal, φB1(p̂, r, ε) = φB2(p̂, r, ε). For example, for given momentum
and energy, the distribution of outgoing hole-type quasiparticles from
the site of Andreev reflection is the same as the distribution of incoming
particle-type excitations. Within the gap, [ε− a(p̂, r)]2 − |∆(p̂, r)|2 < 0
and the distributions are not defined.

The energy integration in Eq. (3.44) can be split into intervals where
the distributions φB1(p̂, r, ε) and φB2(p̂, r, ε) have known values. First,
we define the following limiting energy values at some point r = r0 + sp̂
on the trajectory of a quasiparticle:

ε0(p̂, r) = E+(p̂, r) = a(p̂, r) + ∆,

ε2(p̂, r) = amax<(p̂, r) + ∆,

ε3(p̂, r) = amax>(p̂, r) + ∆,

εmax(p̂, r) = max{ε2, ε3} = amax(p̂, r) + ∆,

εmin(p̂, r) = min{ε2, ε3}.

(3.47)

Here amax< is the maximum value of a along the trajectory of a quasi-
particle towards the wire, and amax> the same, but away from the wire.
Finally, amax is the maximum value along the whole particle trajectory.
The energy integration for a given momentum direction can be divided
along these energies as

∫ Ec

E+

dε =

∫ εmin

ε0

dε+

∫ εmax

ε2

dε+

∫ Ec

εmax

dε, (3.48)

where the different parts of the integral correspond to regions K, L and
M of Fig. 3.6, respectively. States K are the only type of states with no
access to the wire surface. We refer to these states as trapped states, and
mark their distribution with φtrap

Bi .
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Eq. (3.44) thus becomes

Iα(r) =

∫

hit+

dΩp

4π
p̂

∫ Ec

εmax

dε ν(p̂, ε, r)

[
φbc
B1(p̂, ε, r) +

1

2

]

Particle states M, which have free access from the wire surface
to the bulk liquid.

+2

∫

hit+

dΩp

4π
p̂

∫ εmax

ε2

dε ν(p̂, ε, r)

[
φbc
B1(p̂, ε, r) +

1

2

]

Particle states L propagating out from the wire, and hole states
that have been Andreev reflected and are propagating back to-
wards the wire.

+

∫

hit−

dΩp

4π
p̂

∫ Ec

εmax

dε ν(p̂, ε, r)

[
φbc
B2(p̂, ε, r) +

1

2

]

Hole states M, which have free access from the wire surface to
the bulk liquid.

+2

∫

hit−

dΩp

4π
p̂

∫ εmax

ε2

dε ν(p̂, ε, r)

[
φbc
B2(p̂, ε, r) +

1

2

]

Hole states L propagating out from the wire, and particle states
that have been Andreev reflected and are propagating back to-
wards the wire.

+2

∫

hit

dΩp

4π
p̂

∫ εmin

ε0

dε ν(p̂, ε, r)

[
φtrap
Bi (p̂, ε, r) +

1

2

]
.

Trapped states K. Includes hole and particle states propagating
in both directions, towards and away from the wire in a sequence
of Andreev reflections. Since all states are Andreev reflected,
hole and particle states have the same distribution φtrap

Bi .

(3.49)

All other possible integration intervals will be over states propagating
from the far regions of the liquid to the wire surface, which by our as-
sumptions are unoccupied.

When calculating the force on the wire, the stress tensor is evaluated
on the surface of the wire. A similar process as above applied to the
stress tensor in Eq. (3.20) leads to

↔
Π(r) = 2vF pFN(0)

∫

n̂·p̂>0

dΩp

4π
p̂ p̂

∫ Ec

εmax

dε

[
φbc
B1(p̂, ε, r) +

1

2

]

− 2vF pFN(0)

∫

n̂·p̂<0

dΩp

4π
p̂ p̂

∫ Ec

εmax

dε

[
φbc
B2(p̂, ε, r) +

1

2

]
,

(3.50)

where r is now some point on the wire surface. In the integrals over
momentum direction we have taken into account that all quasiparticle
trajectories intersect the wire surface.

In Sec. III of Pub. III, a boundary condition describing the diffuse
scattering of quasiparticles from a planar surface is introduced. This
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boundary condition gives the distributions of scattered quasiparticles and
is formulated with the explicit goal of satisfying the continuity of mass
current n̂·j = 0 and excitation number current n̂·je = 0 at the boundary.
These continuity conditions are discussed in App. B. In Sec. V of Pub.
III it is shown that when no quasiparticles are able to escape from the
near region of the wire, i.e. below the critical velocity, the distributions of
quasiparticles scattered from the wire surface are given by the equilibrium
distribution φb.c

Bi = 1/2−θ(ε). We thus expect that using the equilibrium
distribution gives the correct value for the critical velocity. In Sec. V of
Pub. III the drag force on the wire is also calculated assuming that
the flow field around the wire is not modified by pair breaking. It is
discovered that using the distribution φb.c

Bi = 1/2− θ(ε) for the reflected
quasiparticles even above the critical velocity does not differ qualitatively
from using the diffuse boundary condition introduced in Sec. III of Pub.
III.

When calculating the self-consistent field, we will use the equilib-
rium distributions φb.c

Bi = 1/2 − θ(ε). Our reasons for this are two-fold.
First, the integrals in Eqs. (3.44) and (3.50) are simplified, since the
distributions are step functions and so only change the limits of energy
integration. Second, in the mass current and excitation number current
conserving boundary condition, the distributions φb.c

Bi can depend on the
value that a(p̂, r) takes anywhere in the fluid, which means that the
distributions have to be constantly re-evaluated on every iteration step.
This is computationally impractical.

For the distribution φtrap
Bi of trapped states in region K, we make two

different simple suppositions, which we will call model 1 and model 2. In
model 1, we assume that the trapped K states are all empty, since they
cannot reach the wire. This is in line with a steady-state view of the
system. In model 2, we assume that when the wire first began accelerat-
ing, the states in region K had access to the wire surface, but were later
blocked off as the wire gained speed and the extant α-field was formed.
In such a case, those K states that have wire-intersecting trajectories
are in equilibrium with the wire surface. Since we already only consider
states that intersect the wire, the two models can be summarized as

model 1 :

{
φbc
Bi = 1/2− θ(ε),
φtrap
Bi = 1/2− θ(ε− a),

model 2 :

{
φbc
Bi = 1/2− θ(ε),
φtrap
Bi = 1/2− θ(ε).

(3.51)
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Making the above substitutions in Eq. (3.49) yields

I1(r) =

∫

hit

dΩp

2π
p̂ θ[−amax<(p̂, r)−∆]

×
(√

a(p̂, r)2 −∆2 −
√

[amax<(p̂, r)− a(p̂, r) + ∆]2 −∆2
)

−
∫

hit

dΩp

4π
p̂ θ[−amax(p̂, r)−∆]

×
(√

a(p̂, r)2 −∆2 −
√

[amax(p̂, r)− a(p̂, r) + ∆]2 −∆2
)
,

(3.52)

and

I2(r) =

∫

hit

dΩp

2π
p̂ θ[−a(p̂, r)−∆]

√
a(p̂, r)2 −∆2

−
∫

hit

dΩp

2π
p̂ θ[−amax>(p̂, r)−∆]

×
(√

a(p̂, r)2 −∆2 −
√

[amax>(p̂, r)− a(p̂, r) + ∆]2 −∆2
)

+

∫

hit

dΩp

4π
p̂ θ[−amax(p̂, r)−∆]

×
(√

a(p̂, r)2 −∆2 −
√

[amax(p̂, r)− a(p̂, r) + ∆]2 −∆2
)
.

(3.53)

These integrals have to be evaluated numerically.

The force on the wire given in Eq. (3.21) requires calculation of n̂ ·
↔
Π.

Using the equilibrium distribution φbc
Bi = 1/2− θ(ε) in Eq. (3.50) yields

n̂ ·
↔
Π = −2vF pFN(0)

∫
dΩp

4π
p̂|n̂ · p̂| θ[−amax(p̂, r)−∆] (amax(p̂, r) + ∆) .

(3.54)

3.4 Numerical implementation

This section offers a brief discussion on the numerical methods employed
in calculating self-consistent flow around a cylinder moving at super-
critical velocities. At the end of this section results of the numerical
calculation are presented.

There are three equations that govern self-consistent flow. First, the
self-consistency equation for α was given in Eq. (3.45) as

α(r) = pFvs(r) + F s1 Ii(r). (3.55)
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Secondly, the continuity equation ∇ · j(r) = 0. In the steady state using
Eq. (3.46), we obtain Poisson’s equation

∇2ψ(r) = − 2m

~pF
(3 + F s1 )∇ · Ii(r). (3.56)

It is similar to the Laplace equation that was used to determine the flow
of ideal fluid, with the addition of a source term of the right side that
depends on the excitations. If there are no excitations, then Ii(r) ≡ 0
and the flow is ideal. Finally, the flow velocity is given by

vs(r) =
~

2m
∇ψ(r). (3.57)

Solution for the self-consistent flow is obtained by finding vs (or α) for
which both Eq. (3.55) and Eq. (3.56) are satisfied. In practice, this is
done through an iterative numerical process.

We make a transformation to unitless variables using

α = pF vα̃,

I = pF vĨ,

∆ = pF v∆̃,

ε = pF vε̃,

vs = vṽs,

r = Rr̃,

ψ =
2mvR

~
ψ̃.

(3.58)

In the following, we do not write the tildes over the unitless quantities.
In addition, we study the problem in terms of deviation from ideal flow,
δvs = vs − v0. The equations governing self-consistent flow can thus be
written as

α(r) = δvs(r) + v0 + F s1 Ii(r), (3.59)

∇2δψ(r) = −(3 + F s1 )∇ · Ii(r), (3.60)

∇δψ(r) = δvs(r). (3.61)

In our numerical solution, we define a lattice of points around the
wire, with point (j, k) having polar coordinates (rj , ϕk) where rj = R +
j δr and ϕk = δϕ/2 + k δϕ. Lattice spacings are typically of order δr ∼
10−2 and of δϕ ∼ 10−2. A schematic of the lattice is shown in Fig. 3.7.
In practice, we can limit ourselves to only a single quadrant of the space
surrounding the wire, so that 1 ≤ rj ≤ R∞ and δϕ/2 ≤ ϕk ≤ (π−δϕ)/2.
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Figure 3.7: Schematic of the lattice used in the numerical computation.
Lattice points are placed at the intersection of the dashed lines. A lattice
point has been highlighted in blue. Quasiparticle trajectories in the rϕ
plane that originate from the cylinder surface and end at the highlighted
lattice point are show in red. In the numerical solution, the trajectories
are selected so that they are equally spaced on the surface of the cylinder.

This is a result of symmetry conditions. Because the wire is cylindrical
and far from the wire the liquid flows in the −x̂ direction, the flow has
mirror symmetry over the x axis. In a reflection over the y axis, the flow
is antisymmetric. This is due to a time reversal symmetry; reversing the
direction of the wire’s motion should produce the same result as reversing
the direction of time.

The above group of equations is solved at each point of the lattice.
Derivatives are calculated using the finite difference method. If evalu-
ating the integrals over momentum directions appearing in Eqs. (3.52)
and (3.53) at some given lattice point at position r0, we have to find the
value of a(p̂, s) on trajectories r = r0 + sp̂ that meet the wire surface.
Such trajectories are selected so that on the surface of the wire they are
spaced equidistantly. This ensures that at the edges of the cylinder, as
seen from point r0, the trajectories are spaced more tightly. We expect
that on these trajectories, which are nearly tangential to the wire, a(p̂, s)
will change rapidly between adjacent trajectories and greater accuracy
is thus needed. The trajectories obviously will not pass directly through
the lattice points (rj , ϕk) and thus we interpolate fields α and vs to
find their values in the spaces between. The integrals over momentum
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ẑ

p̂

ϕp

β θp

Figure 3.8: A schematic showing vectors r0 and p̂ and the relevant co-
ordinate axes and angles. Coordinate ϕ is the polar angle of position r0

measured from the positive x axis. The direction of p̂ is given in spher-
ical coordinates with angles θp and ϕp. The dashed gray circle depicts
the cross section of a wire with radius R. At point r0 the angular size of
the wire is 2β.

direction are evaluated using the trapezoidal method.

The algorithm for solving Eqs. (3.59), (3.60) and (3.61) goes as fol-
lows. First, we choose some initial value for field vs. The usual choice
is to use the ideal flow field v0 at the given wire velocity v, in which
case we have δvs(r) ≡ 0. Then, a fixed-point iteration (Newton-Raphson
method) is used to solve the corresponding α from Eq. (3.59). Once α
has converged, we use Eq. (3.60) to solve the corresponding δψ. From
this, a new δvs can be calculated using Eq. (3.61). The new δvs is then
plugged back into Eq. (3.59) and the process is repeated untill δvs con-
verges. When calculating δvs from Eq. (3.61), we use the method of
succesive under-relaxation in an attempt to introduce stability to the
iterative process.
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3.4.1 Choice of coordinates

In order to complete the integration over momentum directions, we use
two different sets of coordinates. We fix the origin of a cylindrical co-
ordinate system at the center of the moving wire. The z axis is aligned
with the wire, and we denote with ϕ and r the polar angle and the dis-
tance from the wire center. We denote the location of the point at which
we evaluate Eqs. (3.52) and (3.53) with r0. Centered on the point r0

we have a set of spherical coordinates which we use to parametrize the
direction of momentum vector p̂. These coordinates are oriented so that
angle ϕp = 0 points along vector r0 and θp is measured from ẑ. These
choices are depicted in Fig. 3.8. In the cylindrical coordinates we can
parametrize the momentum direction as

p̂ = sin θp cosϕpr̂ + sin θp sinϕpϕ̂+ cos θpẑ. (3.62)

The system is translationally invariant in the z direction and α · ẑ = 0.
We write amax(p̂) = sin θpamax(ϕp). If p̂ points too far out of the rϕ
plane, then the Heaviside step function appearing in the integrals of Eqs.
(3.52) and (3.53) is zero. Making use of this fact and the symmetry of
the integrand around the angle θp = π/2, we can write for example that

∫

hit

dΩp

4π
p̂ θ[−amax(p̂, r)−∆]

×
(√

a(p̂, r)2 −∆2 −
√

[amax(p̂, r)− a(p̂, r) + ∆]2 −∆2
)

=
1

4π

∫ β

−β
dϕpθ[−amax(ϕp)−∆]




cosϕp
sinϕp

0



∫ π/2

θl(ϕp)
dθp sin2 θp

×
(√

a(ϕp)2 sin2 θp −∆2 −
√

([amax(ϕp)− a(ϕp)] sin θp + ∆)2 + ∆2

)
,

(3.63)

where β = arcsin (R/r), so that [π − β, π + β] is the range of angle ϕp

occluded by the wire and θl(ϕp) = arcsin
(
− ∆
amax(ϕp)

)
.

3.4.2 Iterative methods

Newton-Raphson method is an iterative process for finding the roots (or
zeroes) of a function f(x) [53]:

xn+1 = xn −
f(xn)

f ′(xn)
. (3.64)
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With a sufficiently good initial guess for x0, the starting value of the iter-
ation, the above recursion will converge on a value that satisfies f(x) = 0.
For a system of non-linear equations, the Newton-Raphson method takes
the form

xn+1 = xn − J−1
f (xn)f(xn), (3.65)

where Jf (x) is the Jacobian matrix of f(x) and x is a vector holding all
the variables on which f depends. The elements of Jf (x) hold partial
derivatives of f(x) with respect to each component of x. Herein lies a
difficulty. Since quasiparticles traveling out from the wire surface can in
principle be reflected back at any point along their trajectory, there is
no way for us to know what form the Jacobian will take beforehand. We
must use a method that does not employ the Jacobian.

We are looking for a solution to α = f(α), where f is the right side
of Eq. (3.59). If we define a new function that satisfies g(α) = α−f(α),
we can use the Newton-Raphson method in finding the zeroes of g(α).
By inserting g(α) into the Newton-Raphson formula, we can write the
recursion

α(k+1) = α(k) − g(α(k))

g′(α(k))
= α(k) − α

(k) − f(α(k))

1−M . (3.66)

The derivative of f(α) has been replaced by the parameter M .
We can understand what value M should take by the following rea-

soning. Assume that the equation

x = f(x) (3.67)

has a fixed point at x = a. A fixed point iteration xn+1 = f(xn) will
converge only if the derivative of the function at the fixed point satisfies
|f ′(a)| < 1. By adding Mx to either side of Eq. (3.67), we can form a
new equation that has the same roots as Eq. (3.67), given by

x =
f(x) +Mx

1 +M
= g(x). (3.68)

The derivative g′(x) can now be adjusted with the parameter M to satisfy
|g′(a)| < 1. In practice, M = 2 seems a good choice.

If solving δvs from Eq. (3.60), we first “mix” δψ with the value it
had on the previous iteration step, with a mixing parameter τ . This is
called successive under-relaxation [53], and can be written as

δψ(k) = τδψ
(k)
C + (1− τ)δψ(k−1), (3.69)

where δψ
(k)
C has been solved from the continuity equation Eq. (3.60)

at iteration step k and 0 < τ < 1. This effectively slows down the
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Figure 3.9: The field α in units pF v at v = 0.8vL. The gray segment
of a disk represents the cylinder. The color gradient signifies magnitude,
|α|, and the stream lines the direction of α. Contours of constant |α|
are displayed at intervals of 0.1pF v. The color scaling is the same in all
figures. Figure first published in Pub. III.

convergence, introducing a modicum of stability as oscillation around the
steady state solution is avoided. The method is more commonly applied
as successive over-relaxation, in which the convergence of an iteration
can be accelerated by using 1 < τ < 2.

3.4.3 Results

Here, we present some results of the numerical calculations outlined in the
previous section. These are mostly the results found in Sec. VI of Pub. III
with some additional analysis and comments. In all calculations we have
assumed zero temperature, constant gap, and F s1 = 5.4, corresponding
to zero pressure in liquid 3He.
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Figure 3.10: Deviation from the ideal flow, δvs, in units of v at v =
0.8vL, corresponding to the quasiparticle potentials in Fig. 3.9(b) and
Fig. 3.9(c). The gray segment of a disk represents the cylinder. The
color gradient signifies |δvs|, and the stream lines the direction of flow.
Contour lines of constant |δvs| are displayed at intervals 0.01v. The ideal
flow is modified in a manner that diverts the liquid from the regions where
critical velocity is exceeded locally. Figure first published in Pub. III.

Fig. 3.9 displays numerical results for the self-consistent α-field. Wire
velocity is v = 0.8vL. As a point of comparison, Fig. 3.9a displays the
ideal flow field, given by the potential in Eq. (3.31). Results for model 1,
corresponding to Eq. (3.52) are shown in Fig. 3.9b and results for model
2, corresponding to Eq. (3.53) are shown in Fig. 3.9c. Far from the wire
the fields are the same, but close to the wire surface magnitude of α
is suppressed in both model 1 and model 2, to the point that the field
maximum detaches from the wire surface. This feature is much more
pronounced in Model 2. Suppression of α at the wire surface means that
fewer quasiparticles will scatter and subsequently there will be fewer
excitations.

Fig. 3.10 shows results for δvs = vs − v0, deviation from ideal flow,
corresponding to the α-fields show in Figs. 3.9b and 3.9c. As is expected,
the flow is modified only in the region close to the wire. For both models,
the flow is driven to circumvent the region close to the wire surface,
effectively ‘shielding’ the wire from the incoming flow. This effect is
much larger for model 2.

From Fig. 3.10 it seems that current is not conserved, since every-
where along the y axis there is a deviation δvs from ideal flow that points
in the direction of the negative x axis, which means that overall more
superflow is going past the wire than in the ideal case. However, from
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Figure 3.11: Drag force exerted on a macroscopic cylinder (R � ξ0)
as a function of velocity in the collisionless approximation. The force
is calculated for three different flow fields, the ideal flow, model 1, and
model 2. The force on a microscopic pointlike object is also shown for
comparison. The force in each case is reported in units of force in normal
liquid on an object with the same dimension.

Eq. (3.46) we know that the total mass current j includes also a com-
ponent that depends on excitations. This opposing mass current carried
by excitations ensures that j is conserved.

The calculated drag force on the wire is shown in Fig. 3.11. The
force is measured in units of force on a cylinder moving in a normal state
Fermi liquid using a diffuse boundary condition, which is given by [54]

Fn =
43π

48
pFnfvlR, (3.70)

where nf = p3
F /3π

2~3 is the number density of fermions, v is the velocity
of the wire, and l and R are the length and radius of the wire, respectively.
For comparison, the force on a microscopic pointlike object

F = θ(v − vL)
(v − vL)2(v + vL)

v3
Fn, (3.71)

is also shown in Fig. 3.11. For details see Sec. IV of Pub. III.
A cylindrical object begins to scatter quasiparticles at v = vL/2, but

the escape of quasiparticles into the far regions of the liquid becomes
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possible only if v = vL. We expect the drag force to set in beyond this
velocity. From Fig. 3.11 we find that for the pointlike microscopic object,
the ciritical velocity is vL as expected. For the cylindrical object how-
ever, the critical velocity is increased, roughly to 1.12vL. The spatially
varying flow field near the macroscopic wire is preventing the escape of
quasiparticles. Comparing ideal flow to model 1 and model 2, we find
that the critical velocity is the same for all models. However, the force
for both model 1 and model 2 is reduced in comparison to ideal flow;
self-consistent flow either reduces scattering since α is reduced on the
wire surface, or is more effective at preventing the escape of quasiparti-
cles. In all cases, the calculated force is greatly reduced from the force
in a normal liquid, being roughly of the order of 10−2 in the units of Fn.

Fig. 3.12 displays the value of the effective energy gap ∆ + a(p̂, s)
along a specific trajectory starting from point (r = R,ϕ = π/2) on the
surface of the wire and heading out in the positive x direction at two
different wire velocities, v = 0.8vL, which is below the calculated critical
velocity, and v = 2vL. At v = 0.8vL, even though there is a siginifi-
cant difference in the effective energy gap in the near region of the wire
between the two models and the ideal flow case, the maximum value of
a(p̂, s)+∆ along the trajectory is roughly the same. Moreover, the value
is positive, which means that along this trajectory the quasiparticles are
all Andreev reflected. At v = 2vL we find that the maximum value along
trajectory is below zero and differs slightly between the models. For such
a trajectory the effect of the reduced magnitude of α on the wire surface
is also very evident. Gap on the wire surface is much lower for ideal flow,
which means that there is vastly more scattering.
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Figure 3.12: Effective energy gap ∆ + a(p̂, s) in units of ∆ at different
wire velocities along a trajectory starting from point (r = R,ϕ = π/2) at
the top of the wire cross section and heading in direction x̂, calculated for
three different flow fields, the ideal flow, model 1, and model 2. Position
on the trajectory, s, is given in units of wire radius R.
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4

Conclusion

In this thesis we have studied the motion of objects immersed in both
normal and superfluid Fermi liquid. In the first half we concentrated on
the phenomenon of transverse zero sound, and its propagation through
a thin film of Fermi liquid. We applied the kinetic equations of Fermi
liquid theory to the determination of the linear response of a Fermi liq-
uid film to the transverse oscillations of a substrate. We calculated the
acoustic impedance of the fluid film over a broad range of values for the
mean free path of the Fermi liquid quasiparticles. This allowed us to
investigate the linear response under various conditions, ranging from
the collision dominated hydrodynamic region to the ballistic region. We
investigated the combined effects of Fermi liquid interactions and sur-
face specularity. We found that we cannot explain the experimentally
observed decoupling of the fluid [16, 17], without requiring unreasonably
high surface specularity, and even then the decoupling is not related to
the Fermi liquid interactions. A possible continuation of this work would
be to consider the motion of a Fermi superfluid.

In the latter portion of the thesis, the supercritical motion of a wire
moving in superfluid 3He was investigated. Using the quasiclassical the-
ory of Fermi superfluids, we developed a model describing the dynamics
of elementary excitations in the vicinity of a macroscopic cylinder moving
in a Fermi superfluid. Based on this model, we studied how the motion of
the cylinder alters the flow of the surrounding superfluid and calculated
the drag force on the wire. We found that the critical velocity of the
wire is increased from the expected value of vL to roughly 1.12vL. We
also found that the force on the wire is reduced by a factor of ∼ 10−2 in
comparison to the normal state value, although this is still quite far of
from the experimentally reported value of ∼ 10−5 [18].

In the latter project there are many possibilities for improvement. We

71
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have ignored the effects of quasiparticle collisions. The way the model
treats the scattering of quasiparticles from the wire surface could also
be improved. Most obviously, we could apply the boundary condition
detailed in Sec. III of Pub. III when calculating the self-consistent flow
above the critical velocity. In addition, we could consider the effects of
gap suppression near the wire. We could also include time dependence in
the model. This could allow an accurate determinations of the distribu-
tion of quasiparticles in those states that are trapped by the superfluid
flow, of which we made only general assumptions that we called model 1
and model 2. This work could also serve as a starting point to the study
of the related, time dependent problem of a vibrating wire.



Appendix A

Effective mass of Fermi
liquid quasiparticles

In this appendix the relation between the effective mass of Fermi liquid
quasiparticles m∗ and the first symmetric Landau parameter F s1 is cal-
culated. We study a system of fermions using a reference frame moving
with some velocity u. Since, according to Landau’s theory, the number
of quasiparticles in the system is the same as the number of particles, the
addition of a single quasiparticle with momentum p increases the mass of
the system by m, the bare particle mass. This means that in the moving
frame, the momentum of the whole system is increased by p−mu. The
increase in energy of the whole system can be identified with the energy
of this added particle. Calculating this energy in the moving frame we
get

ε′p−mu =
|p−mu|2

2m
= εp −mp · u+

1

2
mu2, (A.1)

where εp = p2/(2m). Since the momentum p is arbitrary, we may write

ε′p = εp+mu − p · u−
1

2
mu2. (A.2)

Here, assuming that mu � p, we can expand εp+mu as a Taylor series
as

εp+mu = εp +mu · ∇pεp + . . .

= εp +
m

m∗
pFu · p̂+ . . . ,

(A.3)

where in the last equality it has been assumed that the quasiparticle is
on the Fermi surface, and the definition of Fermi velocity vF = pF /m

∗

73
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has been used. By dropping the quadratic term from the energy equation
we obtain

ε′p = εp + (
m

m∗
− 1)pFu · p̂. (A.4)

On the other hand, the ground state distribution has been shifted in
the moving frame and is centered around −mu. This corresponds with
the middle figure in Fig. 2.1b. A shifted Fermi surface leads to a non-zero
quasiparticle interaction energy. If u is fairly small, we can express the
distribution in the moving frame using the series expansion

n′p = n0
p+mu = n0

p +mu · ∇pn0
p + . . . (A.5)

At low temperatures, n0
p resembles a step function and is thus isotropic.

We have that δn′p = mu · p̂ ∂n0
p/∂p = −mu · p̂ δ(p− pF ). Accordingly,

we find that the energy integrated distribution can be written as

φp̂ = −mvFu · p̂ = − m

m∗
pFP1(u · p̂). (A.6)

In the last equality, we have used P1(x) = x. The orthogonality of
Legendre polynomials means that with this distribution, only the l = 1
term is non-zero after the averaging over momentum directions in Eq.
(2.17). We obtain the energy

ε′p = εp −
m

m∗
pF
F s1
3
u · p̂. (A.7)

By comparing our two results for the quasiparticle energy we find that

m∗

m
= 1 +

F s1
3
. (A.8)

This is the same relation as in Eq. (2.21).



Appendix B

Superfluid diffuse boundary
condition

In Pub. III, a boundary condition for the diffuse reflection of Fermi su-
perfluid quasiparticles from a planar surface is introduced and applied
to the problem of a moving wire. This boundary condition is specifically
formulated to satisfy the conditions for mass and excitations conserva-
tion. The components of mass current j and excitation number current
je perpendicular to a planar surface should vanish, i.e. n̂ · j = n̂ · je = 0,
where n̂ is the surface normal. The objective of this appendix is to verify
that these conditions hold.

We begin by restating the diffuse boundary condition. We define

A(ε) =

∫

n̂·p̂<0
dΩp|n̂ · p̂|N(p̂, ε)φB1(p̂, ε)

−
∫

n̂·p̂>0
dΩp|n̂ · p̂|N(p̂, ε)φB2(p̂, ε),

(B.1)

B(ε) =

∫

n̂·p̂<0
dΩp|n̂ · p̂|Θ(p̂, ε)φB1(p̂, ε)

+

∫

n̂·p̂>0
dΩp|n̂ · p̂|Θ(p̂, ε)φB2(p̂, ε),

(B.2)

where

Θ(p̂, ε) = θ([ε− a(p̂)]2 − |∆(p̂)|2), (B.3)

ν(p̂, ε) =
|ε− a(p̂)|√

[ε− a(p̂)]2 − |∆(p̂)|2
, (B.4)

N(p̂, ε) = ν(p̂, ε)Θ(p̂, ε). (B.5)
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The distributions of reflected quasiparticles can be written in terms of
incoming particle distributions as

φB1(p̂, n̂ · p̂ > 0, ε) =
g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
, (B.6)

φB2(p̂, n̂ · p̂ < 0, ε) =
g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

]
, (B.7)

where we have used the normalization factor

g−1(ε) =

∫

n̂·p̂>0
dΩpn̂ · p̂Θ(p̂, ε). (B.8)

Here we verify that on the surface of the wire the boundary condition
satisfies n̂ · j = 0 and n̂ · je = 0 at arbitrary energy. These conditions
may be written as

n̂ · j = 0 :

∫
dΩp

4π
n̂ · p̂N(p̂, ε)[φB1(p̂, ε) + φB2(p̂, ε)] = 0,

n̂ · je = 0 :

∫
dΩp

4π
n̂ · p̂Θ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)] = 0.

(B.9)

Concentrating on the first equation, conservation of mass, we split the
integration over momentum direction to those pointing towards (n̂ · p̂ <
0) and away from (n̂·p̂ > 0) the wire. We can categorize the distributions
as

n̂ · p̂ > 0 :

{
φB1 = reflected particles,

φB2 = incoming holes,

n̂ · p̂ < 0 :

{
φB1 = incoming particles,

φB2 = reflected holes.

(B.10)

For the reflected distributions, we insert boundary conditions in Eq. (B.6)
and Eq. (B.7) into Eqs. (B.9) and obtain

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂N(p̂, ε)

(
g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
+ φB2(p̂, ε)

)
+

∫

n̂·p̂<0

dΩp

4π
n̂ · p̂N(p̂, ε)

(
φB1(p̂, ε) +

g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

])
= 0.

(B.11)

Moving those parts of the integrands which do not depend on p̂ outside
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of the integrals and using the definition of ν(p̂, ε), Eq. (B.4), we obtain

g

2
A

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θ +

g

2
B

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂N

+

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂NφB2 +

∫

n̂·p̂<0

dΩp

4π
n̂ · p̂NφB1

− g

2
A

∫

n̂·p̂<0

dΩp

4π
n̂ · p̂Θ +

g

2
B

∫

n̂·p̂<0

dΩp

4π
n̂ · p̂N = 0.

(B.12)

We employ a change of variables from momentum direction p̂ in the
specularly reflected momentum direction p̂ = p̂ − 2n̂(n̂ · p̂). We also
apply the identity

n̂ · p̂ = n̂ · p̂− 2n̂ · n̂(n̂ · p̂) = −n̂ · p̂. (B.13)

If there is no flow through the wire, α · n̂ = 0, then

α · p̂ = α · p̂− 2α · n̂(n̂ · p̂) = α · p̂. (B.14)

If in addition |∆(p̂)| = |∆(p̂)|, we obtain the symmetry relations

Θ(p̂, ε) = Θ(p̂, ε), (B.15)

N(p̂, ε) = N(p̂, ε). (B.16)

Using the change of variables p̂ → p̂ on some of the integrals where
n̂ · p̂ < 0, we obtain

g

2
A

g−1

︷ ︸︸ ︷∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θ +

g

2
B

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂N

+

∫

n̂·p̂>0

dΩp

4π
|n̂ · p̂|NφB2 −

∫

n̂·p̂<0

dΩp

4π
|n̂ · p̂|NφB1

+
g

2
A

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θ

︸ ︷︷ ︸
g−1

−g
2
B

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂N = 0,

(B.17)

where the appearance of g−1 has been pointed out. The second and sixth
terms on the left side cancel. Using the definition of A in Eq. (B.1) in
the above equation, we find that the condition n̂ · j = 0 is satisfied for
all values of A.
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For the excitation current je a similar process leads to

g

2
A

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θν−1 +

g

2
B

g−1

︷ ︸︸ ︷∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θ

−
∫

n̂·p̂>0

dΩp

4π
|n̂ · p̂|ΘφB2 −

∫

n̂·p̂<0

dΩp

4π
|n̂ · p̂|ΘφB1

− g

2
A

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θν−1 +

g

2
B

∫

n̂·p̂>0

dΩp

4π
n̂ · p̂Θ

︸ ︷︷ ︸
g−1

= 0.

(B.18)

The first and fifth terms on the left side cancel. Using the definition of B
in Eq. (B.2) in the above equation, we find that the condition n̂ · je = 0
is satisfied for all values of B.
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