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Abstract

Helium is the second most abundant element in the Universe. It is the only known
substance that can exist in liquid state at absolute zero. There are two stable iso-
topes of helium, fermionic 3He and bosonic 4He. At sufficiently low temperatures,
both isotopes undergo a phase transition into a superfluid state. These superfluids
are usually characterised by their ability to flow without resistance, but this is by
no means their only remarkable property.

In this thesis, we study theoretically superfluid 3He. The work consists of two
separate projects. First, we study the effect of a quantised vortex line to spin
dynamics of the superfluid. We find that the interplay between the vortex and
the magnetisation of the liquid generates spin waves, dissipating energy. We find
that the theoretically predicted energy dissipation is in agreement with experi-
mental data, implying that spin-wave radiation can be an important mechanism
of magnetic relaxation in superfluid 3He.

Second, we study the drag force acting on an object moving through zero-
temperature superfluid at a constant velocity. The drag arises if momentum is
transferred from the object to the fluid. At low velocities, no such mechanism
exist and thus the drag vanishes. If the velocity exceeds the Landau velocity vL,
it becomes possible for the object to create quasiparticle excitations that could,
in principle, transfer momentum away from the object. Thus, vL has been gen-
erally assumed to be the critical velocity, that is, the velocity above which the
drag force starts to increase rapidly towards the normal-state value. We find that
this is not necessarily the case. Objects much larger than the superfluid coher-
ence length modify the superfluid flow field around them. The spatial variation
of the flow field can shield the object, preventing quasiparticles from transferring
momentum away from the object. This leads to a critical velocity greater than vL.

Keywords: Superfluid 3He, Vortices, Spin waves, Landau velocity, Critical velocity
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Chapter 1

Introduction

For decades, liquid 3He has served as a playground for physicists to study pecu-
liarities of quantum many body systems. Due to the light mass of 3He atoms,
their quantum mechanical zero-point motion is so significant that the liquid does
not solidify, not even at zero temperature, provided that the external pressure is
sufficiently low (p . 34 bar) [1]. This makes low-temperature 3He a paradigm of
fermionic quantum liquid.

Even though 3He atoms interact strongly with each other, at sufficiently low
temperatures (T . 100 mK) liquid 3He behaves like a system of weakly interacting
quasiparticles. The quasiparticles are particle-like objects whose properties may
differ from those of the bare 3He atoms. For example, the effective mass m∗ of a
quasiparticle is larger than the mass m of a 3He atom by a factor of ∼ 5, depending
on pressure. Such behaviour of 3He is successfully described by the Fermi liquid
theory [2, 3], originally developed by Lev Landau [4, 5].

At even lower temperatures (T . 1 mK), a curious phenomenon occurs: the
quasiparticles start to form pairs. These so-called Cooper pairs, named after
Leon Cooper who first studied the problem [6], comprise two fermions near the
Fermi surface and are thus bosons. Unlike the fermionic quasiparticles by them-
selves, the bosonic Cooper pairs can condense into the same quantum state, a
phenomenon similar to Bose–Einstein condensation [7]. This condensate forms a
superfluid with numerous interesting properties, such as zero viscosity, success-
fully described by the Bardeen–Cooper–Schrieffer (BCS) theory [8, 1], which was
originally developed to explain superconductivity in metals [9, 10]. Since the for-
mation of Cooper pairs is energetically favourable, breaking a pair costs energy.
This means that the spectrum of elementary excitations has an energy gap.

Cooper pairs in conventional superconductors form in a state with orbital
angular momentum quantum number l = 0 and spin quantum number s = 0,
meaning that the pairs are structureless [11]. In superfluid 3He, however, the
pairing state is a p-wave (l = 1) spin triplet (s = 1), and thus the pairs have
a more complicated internal structure [11]. To describe the state of a pair, one
needs (2l+ 1)× (2s+ 1) = 9 complex parameters. A convenient way to write the

1



2 CHAPTER 1. INTRODUCTION

state vector |Ψ〉 of the pair is to use the basis states

|b(λ)
1 〉 =

−|λz = 1〉+ |λz = −1〉√
2

, (1.1)

|b(λ)
2 〉 = i

|λz = 1〉+ |λz = −1〉√
2

, (1.2)

|b(λ)
3 〉 = |λz = 0〉 (1.3)

in both the orbital space (λ = “l”) and the spin space (λ = “s”). Here, the states
|λz = 0,±1〉 are the standard eigenstates of the (arbitrarily chosen) z component

of the angular momentum. The tensor product states |b(s)i 〉 ⊗ |b
(l)
j 〉 form a basis

for the state vector, and we can write

|Ψ〉 =

3∑
i=1

3∑
j=1

Aij |b(s)i 〉 ⊗ |b
(l)
j 〉. (1.4)

The coefficients Aij define a 3× 3 matrix A, which is commonly used as an order
parameter in the theory of superfluidity [1]. In contrast to Eq. (1.4), the pair
wave function in a conventional superconductor is simply proportional to the state
|s = 0, sz = 0〉 ⊗ |l = 0, lz = 0〉. From the definition above, one can show that the
tuple (A1j , A2j , A3j)

T , with j = 1, 2, 3, transforms as a vector under rotations in
the spin space. Similarly, the tuple (Ai1, Ai2, Ai3)T , with i = 1, 2, 3, transforms
as a vector under rotations in the orbital space. A more formal definition of A in
the language of quantum field theory can be found, for example, in Refs. [1, 12].
For a detailed discussion on the similarities between superfluid 3He and particle
physics, see Ref. [12].

Due to the nontrivial internal structure of the Cooper pairs, several superfluid
phases may exist in 3He, each with a different order parameter A. In the absence
of external fields, there are two stable phases in bulk 3He, the A phase [13, 14, 15]
and the B phase [16, 15]. Of these two, the B phase is more common; the A phase
is only stable near the superfluid transition temperature Tc at relatively high
pressures (p & 20 bar). For details on the bulk phases and their phase diagram,
see Ref. [1].

In addition to the bulk phases A and B, more phases can be stabilised by means
of an external influence. If a magnetic field is applied, a phase called A1 appears
[17, 18]. Walls change the structure of the order parameter by making it inho-
mogeneous [19, 1, 20]. If the superfluid flows, the order parameter is suppressed
along the flow [21, 22, 23]. Impurities such as aerogel also affect the superfluid
state [24, 25, 26]. Particularly interesting are anisotropic aerogels which stabilise
the polar phase [27, 28, 29, 26]. If the container holding the superfluid is rotated,
an array of quantised vortices is formed [30, 31, 1]. There are five different types of
vortices in the A phase [31]. In the B phase, there are two stable vortex structures
[32, 33, 31]: the axisymmetric A-phase-core vortex, the core of which resembles
the A phase [34], and the non-axisymmetric double-core vortex, the core of which
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is split into two half cores [35]. Of these two, the double-core vortex occupies the
greater part of the T -p phase diagram [31]. In the polar phase, a half-quantum
vortex has been observed [36].

Although our work is purely theoretical, it has been inspired by experiments.
Thus, a few words about experimental methods are in order. Ever since the discov-
ery of the superfluid phase transition in 3He, nuclear magnetic resonance (NMR)
has played an important role in experimental studies of the superfluid phases.
This is due to the fact that the magnetic properties of the various phases differ
not only from those of the normal phase but also from each other. Two meth-
ods are traditionally used. In continuous-wave NMR, one uses a time-dependent
magnetic field to drive the magnetisation of the sample and studies the power
absorption as a function of the drive frequency. Quantities of interest are the
positions and the widths of the resonance peaks, and the amount of absorption.
In pulsed NMR, one uses a time-dependent magnetic field to perturb the mag-
netisation of the sample from the equilibrium, turns the perturbing field off, and
observes the free time evolution of the magnetisation (known as free induction
decay). This provides information on magnetic relaxation phenomena.

Another widely used experimental method is to study motion of various objects
immersed in the liquid. This provides information on hydrodynamic properties of
the liquid, which are directly related to superfluidity. The object can be charged,
such as an ion or an electron, in which case one can move it using an electric field.
In such case, the studied quantity is the mobility of the object, that is, the relation
between the velocity of the object and the applied electric field. The object
can also be electrically neutral. Some examples are vibrating wires, torsional
oscillators, walls, and pendula. Two methods are traditionally used. The object
can either be driven by an external force, in which case one measures the velocity
response of the object to the applied force as a function of the drive frequency (cf.
continuous-wave NMR), or free, in which case one first sets the object in motion,
and then observes damping of the motion (cf. pulsed NMR). For details on the
experimental methods, see Refs. [1, 37, 38, 39] and references therein.

The work reported in this thesis consists of two separate projects. In the first
project, we study magnetic relaxation caused by vortices in 3He-B under uniformly
precessing magnetisation, see Pubs. I and III, and Chap. 2. Experimentally, mag-
netic relaxation measurements at large tipping angles of the magnetisation provide
a more sensitive tool to distinguish between the two vortex core structures than
frequency shift measurements at small tipping angles [40, 41]. Theoretical under-
standing of the effect of vortices on the relaxation has, however, been incomplete.
Our study shows that one needs to take into account a previously neglected re-
laxation mechanism: generation of spin waves. Under precessing magnetisation,
the interaction between the order parameter and the magnetisation leads to os-
cillations of the order parameter near the vortex. These oscillations give rise to
waves of magnetisation, that is, spin waves. The phenomenon is similar to an os-
cillating charge emitting electromagnetic radiation. The generation of spin waves
dissipates energy. We find that the predicted dissipation is in good qualitative
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agreement with experiments. This leads to the conclusion that generation of spin
waves is a significant relaxation mechanism for vortices.

The second project concerns supercritical motion in the B phase at zero tem-
perature, see Pub. II and Chap. 3. Until recently, the prevailing assumption
has been that once an object moving in the superfluid reaches the so-called Lan-
dau velocity vL [42], the force it experiences starts to rise rapidly towards the
normal-state value. In other words, Landau velocity is considered to be the criti-
cal velocity vc for the object, that is, the velocity above which dissipationless (or
low-dissipation if T > 0) motion is not possible. This seems plausible since vL is
the velocity above which the object can create elementary excitations (quasipar-
ticles) that should be able to transfer momentum away from the object. Other
dissipation mechanisms, such as vortex formation, can set in at lower velocities,
decreasing the critical velocity from the Landau velocity, but vL has been thought
to be the upper limit for vc. A recent experiment by Bradley et al. [43] challenges
this view. They observe no sudden onset of drag force at vL for a macroscopic wire
moving at constant velocity in low-temperature 3He-B, only a small, continuous,
gradually increasing force up to velocities ∼ 2.5vL. We find that vL is indeed
the critical velocity for a microscopic object of size much less than the superfluid
coherence length ξ0, but things get more complicated when the object is macro-
scopic, that is, much larger than ξ0. This is because a macroscopic object moving
in the superfluid results in a spatially varying flow field around the object. The
flow field can then shield the object, preventing the created elementary excitations
from leaving the vicinity of the object. This suppresses momentum transfer from
the object to the fluid, and thus increases the critical velocity.

In this thesis, I shall review and supplement the main results of Pubs. I, II,
and III. Chapter 2 concerns spin dynamics of 3He-B in the presence of a single
vortex line. Chapter 3 concerns motion in zero-temperature 3He-B at velocities
of the order of vL. In Chap. 4, a short summary of the results is given.



Chapter 2

Spin dynamics of vortices in
3He-B

In this chapter, we study spin dynamics of the B phase of superfluid 3He in the
presence of a single vortex line. In Sec. 2.1, we recall some static properties of
3He-B and vortices therein. In Sec. 2.2, we introduce the Leggett theory of spin
dynamics in Lagrangian formulation. In Sec. 2.3, we discuss spin dynamics of
bulk 3He-B. In Sec. 2.4, we apply the Leggett theory to study spin dynamics of a
vortex line under uniformly precessing magnetisation. We solve the equations of
spin dynamics in two different approximations, and find that the vortex radiates
spin waves. These waves carry energy, causing dissipation in the system. We
compare the predicted dissipation to experimental observations, and find a good
agreement between the two.

2.1 Static properties of the B phase

Let us first recall some static properties of the B phase. We use the hydrostatic
theory [44], which is valid at all temperatures, but restricted to length scales
much larger than the superfluid coherence length ξ0 ∼ 10 nm, as well as to weak
external fields. This means, among other things, that the detailed structure of
the vortex core cannot be studied within the hydrostatic theory since the core
radius is of the order of ξ0. We can, however, study the structure of the vortex
farther away from the core by using the (numerically) known core structure as a
boundary condition, as we show below.

2.1.1 Hydrostatic theory

The order parameter of the B phase is given by [44, 8, 1]

A = eiφ∆BR(θ), (2.1)

where φ is the phase of the order parameter, ∆B is the magnitude of the superfluid
energy gap, and R(θ) is a rotation matrix which describes a rotation by the angle

5



6 CHAPTER 2. SPIN DYNAMICS OF VORTICES IN 3HE-B

θ = |θ| around the axis θ̂ = θ/θ. The form of the order parameter is determined
by the superfluid condensation energy, which also determines the magnitude of
∆B. The phase φ and the rotation matrix R are, however, not constrained by the
condensation energy. These so-called soft variables are the subjects of study in
the hydrostatic theory. In general, φ and R can depend on position, but the gap
∆B is constant.

The phase φ is related to the superfluid velocity vs by [44]

vs =
~

2m
∇φ, (2.2)

where ~ is the reduced Planck’s constant and m is the mass of a 3He atom. In
the absence of external fields, the mass current density is proportional to vs.
Conservation of mass then implies ∇ · vs = 0, or [44]

∇2φ = 0, (2.3)

meaning that the phase φ can be solved from the Laplace equation. External
fields have only a small effect, which can be neglected in the first approximation.

The rotation matrix R(θ) is affected by a number of energy terms arising from
different sources. Each of the energies is small compared to the condensation
energy, and thus the explicit form (2.1) of the order parameter is not altered, only
θ. The free energy associated with R can be written as

F =

∫
V
d3rf, (2.4)

where f = f(R) is the free energy density and V is the region of interest. The
largest contributions to f are given by the dipole energy [44]

fD = λD(RiiRjj +RijRji) = 4λD cos θ(1 + 2 cos θ), (2.5)

which originates from the dipole-dipole interaction between the 3He atoms, and
the gradient energy [44]

fG = λG1
∂Rki
∂ri

∂Rkj
∂rj

+ λG2
∂Rki
∂rj

∂Rki
∂rj

, (2.6)

which is caused by inhomogeneity of the order parameter. Here, λD is the dipole
coupling parameter, while λG1 and λG2 are the gradient coupling parameters.
They depend on temperature and pressure. In addition, Rij and ri are the com-
ponents of the rotation matrix R and the position vector r, respectively, in some
fixed Cartesian coordinate system. The indices i, j, and k range from 1 to 3, and
summation over repeated indices is implied. In calculating the second equality in
Eq. (2.5), we have used the formula [45]

Rij(θ) = cos θδij + (1− cos θ)θ̂iθ̂j − sin θεijkθ̂k. (2.7)
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Equation (2.5) shows that the dipole energy depends only on the rotation
angle θ, not on the direction θ̂ of the rotation axis. If the system is homogeneous,
θ can be determined by minimising the dipole energy with respect to θ. This
yields θ = θL (or θ = 2π− θL, but this is equivalent to a rotation by θL about the
axis −θ̂), where

θL = arccos(−1/4) ≈ 104◦ (2.8)

is the so-called Leggett angle.

The gradient energy and the dipole energy define a characteristic length scale
of the system, known as the dipole length ξD =

√
λG2/λD ∼ 10 µm. This is

the shortest length scale at which the rotation angle θ can vary in space. More
rapid variations of θ would cost too much gradient energy in relation to the dipole
energy.

In addition to fD and fG, there are a number of smaller contributions to f
stemming from interplay between the order parameter and, for example, external
magnetic field, flow field, and walls immersed in the fluid. These determine how
the rotation axis θ̂ varies in space (known as the texture). There is a character-
istic length scale related to each of these energies. Since the energies are small
compared to the dipole energy, the characteristic lengths are long compared to
ξD. The shortest of these defines the shortest length scale at which θ̂ can vary.

2.1.2 Vortices in the B phase

Let us consider a static vortex line in the B phase. We define a Cartesian coordi-
nate system with basis vectors x̂, ŷ, and ẑ. We assume that the z axis coincides
with the vortex axis. The external magnetic field B fixes the direction of the
x axis (and therefore also the direction of the y axis, since ẑ is already fixed)
by B̂ = cos ηẑ + sin ηx̂. Here, η is the angle between the vortex axis and the
magnetic field. Recall that there are two stable vortex structures in the B phase.
Since the double-core vortex is asymmetric, we need to specify its orientation
in the xy plane. This is done using the anisotropy vector b̂ = cos ζŷ − sin ζx̂,
which points from one of the half cores to the other. The A-phase-core vortex is
symmetric, and thus one cannot distinguish its orientation in the xy plane. The
definitions of the angles η and ζ are shown in Fig. 2.2. We shall also use the
standard cylindrical coordinates (r, ϕ, z), where r measures distance from the z
axis and ϕ is the azimuthal angle in the xy plane, measured anticlockwise from
the x axis. The standard basis vectors in the cylindrical coordinate system are
r̂ = cosϕx̂+ sinϕŷ, ϕ̂ = − sinϕx̂+ cosϕŷ, and ẑ.

The order parameter of a vortex line can be written as [35]

Av = eiϕ∆BR(θB) · Ãv. (2.9)

Here, ∆B is the bulk energy gap of the B phase and R(θB) is a rotation by θB. The
rotation vector θB is determined by the bulk. We can assume that it is spatially
constant: First of all, the dipole energy fixes the magnitude θB to θL in the bulk,
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and a single vortex line cannot change this. Secondly, while the orientation θ̂B
may vary in space due to several different effects, the length scale of this variation
is so large that, at least within a few dipole lengths from the core, θ̂B is essentially
constant.

The matrix Ãv differs significantly from a rotation matrix in the core region of
size ∼ ξ0. This means that we cannot use the hydrostatic theory of the B phase to
study the core. Instead, one has to rely on more complex numerical calculations
using either the Ginzburg-Landau theory [35] or the quasiclassical theory [46, 47].
Moving away from the core, the numerical calculations show that Ãv behaves as
[47]

Ãv = R(θv) +O(r−2), (2.10)

where R(θv) is a small rotation by an angle |θv| ∝ r−1 about an axis θ̂v, with
θ̂v · ẑ = 0. This means that we can approximate the order parameter of the vortex
line in the hydrostatic region r � ξ0 by a B phase order parameter,

Av ≈ eiϕ∆BR(θB)R(θv), (2.11)

and use the numerical solution as a boundary condition for θv. Note that the
total rotation is now a combination of two rotations, one caused by the vortex
and the other by the bulk. Equation (2.11) shows that the superfluid velocity far
from the core is given by vs = (~/2m)∇ϕ = (~/2mr)ϕ̂. Thus, the flow is around
the core, as expected. Near the core, the flow pattern is more complicated due to
the intricate form of Ãv.

In order to determine θv, we need to minimise the hydrostatic free energy
(2.4). As we discussed earlier, the most important contributions to f are the
dipole energy (2.5) and the gradient energy (2.6). Expanded to second order in
small quantities |θv| and |∇θv|, these are given by

fD ≈ −
λD
2

+
15

2
λD(θ̂B · θv)2 (2.12)

and

fG ≈ 2λG2

[
(1 + c)

∂θv,k
∂ri

∂θv,k
∂ri

− c∂θv,k
∂ri

∂θv,i
∂rk

]
. (2.13)

The coefficient

c =
λG1

2λG2
(2.14)

is of the order of unity. In fact, c = 1 if we assume that the antisymmetric Fermi
liquid parameters F a1 and F a3 vanish [44].

Let us first consider the region ξ0 � r � ξD, where the hydrostatic theory
can be used but the distance from the vortex core is still much less than the
dipole length. In this region, the dipole energy cannot affect θv significantly, and
it is therefore sufficient to minimise the gradient energy. This leads to the partial
differential equation

(1 + c)∇2θv − c∇(∇ · θv) = 0. (2.15)
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Based on the numerical structure of the vortex core, we seek a solution of the
form θv(r, ϕ, z) = r−1[θr(ϕ)r̂ + θϕ(ϕ)ϕ̂]. Substituting this ansatz into Eq. (2.15)
yields

θv = r−1
(
A1 +A2 sinϕ cosϕ+A4 sin2 ϕ

)
r̂

+ r−1(1 + c)
(
A3 +A4 sinϕ cosϕ−A2 sin2 ϕ

)
ϕ̂,

(2.16)

where Ai are adjustable parameters. Using symmetries of the vortices, some of
these can be eliminated. The solution for the A-phase-core vortex is given by [48]

θv(r, ϕ) = (C1/r)ϕ̂, (2.17)

where C1 is an adjustable parameter. The double-core vortex is less symmetric.
In this case, the solution is given by [47]

θv(r, ϕ) =
(C1 − C2) sin[2(ϕ− ζ)]

2(1 + c)r
r̂

+
(C1 + C2) + (C1 − C2) cos[2(ϕ− ζ)]

2r
ϕ̂.

(2.18)

Here, C1 and C2 are adjustable parameters. The orientation of the double-core
vortex is determined by the external magnetic field. The preferred orientation in
a tilted magnetic field (η > 0) is ζ = ±π/2 [35]. Note that Eq. (2.17) is a special
case of Eq. (2.18) with C2 = C1. Thus, we can use Eq. (2.18) to discuss both
types of vortices.

The parameters C1 and C2 can be determined by fitting the order parameter
to the numerical solution of the vortex core. As already mentioned, C2 = C1 for
the A-phase-core vortex. In the case of the double-core vortex, C1 � C2. It is
convenient to measure the parameters Ci in units of

R0 = (1 + F s1 /3)ξ0. (2.19)

Here, F s1 is the first symmetric Fermi liquid parameter, related to the effective
mass of the quasiparticle by m∗/m = 1 + F s1 /3. For example, numerical cal-
culations [47] predict that C1 = C2 = 1.33R0 for the A-phase-core vortex and
C1 = 3.00R0, C2 = 0.08R0 for the double-core vortex at T = 0.6Tc, p = 29.3 bar,
and c = 1. Equation (2.18) shows that the magnitude of θv is proportional to
R0/r, which is small if r � ξ0. The bulk order parameter is thus only slightly
modified by the vortex in the hydrostatic region.

Farther away from the core, we need to take into account also the dipole
energy. Minimising the free energy leads to the partial differential equation

(1 + c)∇2θv − c∇(∇ · θv)−
15

4
ξ−2
D θ̂B(θ̂B · θv) = 0. (2.20)

We do not solve this here. We studied a similar problem in Pub. I. Although
the equation there was slightly different, we still expect the solution to behave in
roughly the same manner, that is, |θv| ∼ e−r/(2ξD/

√
15) as r →∞.
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Before moving on to spin dynamics, let us introduce the Fourier transform,
which we shall use later. Since we assume that the vortex is uniform in the z
direction, a two-dimensional transform is sufficient. We use the convention

F{f(r)}(k) = f(k) =

∫∫
d2re−ik·rf(r), (2.21)

F−1{f(k)}(r) = f(r) =
1

(2π)2

∫∫
d2keik·rf(k). (2.22)

Here, f(r) is an arbitrary function of position (and possibly other parameters
not shown explicitly), r = xx̂ + yŷ = r cosϕx̂ + r sinϕŷ, and k = kxx̂ + kyŷ =
k cosϕkx̂+k sinϕkŷ. As an example, the Fourier transform of θv(r) in Eq. (2.18)
is given by

θv(k) =− iπ (C1 − C2) sin[2(ϕk − ζ)]

k
k̂

− iπ (1 + c)(C1 + C2) + (C1 − C2) cos[2(ϕk − ζ)]

(1 + c)k
ϕ̂k.

(2.23)

Here, k̂ = cosϕkx̂ + sinϕkŷ and ϕ̂k = − sinϕkx̂ + cosϕkŷ. The double integral
in Eq. (2.21) was calculated in polar coordinates (r, ϕ).

2.2 Lagrangian formulation of spin dynamics

We base our study of spin dynamics of superfluid 3He on the phenomenological
theory originally developed by Leggett [49]. Good reviews of the theory are given
in Refs. [8, 1]. To keep the discussion simple, we neglect the intrinsic Leggett–
Takagi relaxation mechanism [50]. We estimate its effect in Sec. 2.4.3, where we
compare theory with experiments.

The main insight of the Leggett theory is the so-called adiabatic approxima-
tion. The interesting and nontrivial part of spin dynamics is caused by the dipole
coupling between 3He atoms. However, as we discussed in Sec. 2.1.1, this coupling
is weak compared to the superfluid condensation energy. This means that the time
scale τD ∼ 10 µs associated with the motion generated by the dipole coupling is
long compared to other intrinsic time scales of the system, such as the gap time
τ∆ = ~/∆ ∼ 1 ns (here ∆ is the average value of the superfluid energy gap) or the
quasiparticle relaxation time τQ ∼ 100 ns. One can therefore make an assump-
tion that, if studying the system at time scale τD, all the nonconserved degrees of
freedom have relaxed to their equilibrium configurations. The only variables that
are not relaxed to equilibrium at this time scale are the spin density of the liquid,
S, and the direction of the order parameter in spin space. The latter condition
means that we may write the time dependence of A as

A(t) = R(t) · A(0). (2.24)

Here, R is a rotation matrix satisfying R(0) = I and I is the unit matrix.
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Equation (2.24) shows that the motion of the order parameter is purely rota-
tional. The rate of change of A is therefore completely determined by an angular
velocity vector ω (cf. rigid body dynamics), which is related to the time derivative
of R via [45]

Ṙij = εiklωkRlj . (2.25)

Here, εijk is the Levi-Civita symbol which satisfies ε123 = 1, εijk = −εjik = −εkji.
A dot over a symbol denotes time derivative. The spin density of the liquid is
related to the angular velocity by [1]

S =
1

µ0γ2
0

↔
χ · (ω − ωL), (2.26)

where µ0 is the vacuum permeability, γ0 is the gyromagnetic ratio of 3He, ωL =
−γ0B is the Larmor frequency vector, B is the external magnetic field, and

↔
χ is

the magnetic susceptibility tensor.

The Leggett theory can be formulated in the framework of classical Lagrangian
field theory. This was first done by Maki [51]. The advantage of the Lagrangian
formulation is that it simplifies the use of different parametrisations for R. The
Lagrangian density of the system is [1]

L =
1

2µ0γ2
0

(ω − ωL) ·↔χ · (ω − ωL)− fD − fG. (2.27)

In general, the dipole energy fD, the gradient energy fG, the angular velocity
ω, and the magnetic susceptibility tensor

↔
χ depend on the time-dependent order

parameter (2.24).

2.3 Spin dynamics in the bulk B phase

Let us apply the theory of spin dynamics to the bulk B phase, the order parameter
and the spin density of which are homogeneous. We derive the Leggett equations
of spin dynamics from the Lagrangian density (2.27), and use these to study
homogeneous precession of spin density about an external, static magnetic field.

2.3.1 Derivation of the equations of motion

In the B phase, the magnetic susceptibility is isotropic [1],

↔
χ = χI, (2.28)

and the order parameter is given by Eq. (2.1). Since the order parameter is
already proportional to a rotation matrix, and the product of two rotations is
also a rotation, we can include the time dependence into θ instead of using Eq.
(2.24) directly.
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Simplifying Eq. (2.27), the Lagrangian density is given by

L =
χ

2µ0γ2
0

|ω − ωL|2 − fD, (2.29)

where fD is given by Eq. (2.5). Using Eqs. (2.7) and (2.25), the angular velocity
ω is

ω = M(θ) · θ̇, (2.30)

where the components of the matrix M are given by

Mij = −1

2
εikl

∂Rkm
∂θj

Rlm

=
sin θ

θ
δij +

θ − sin θ

θ
θ̂iθ̂j −

1− cos θ

θ
εijkθ̂k.

(2.31)

There are different possible routes to follow. One way is to study the La-
grangian equations of motion [52]

d

dt

∂L
∂θ̇
− ∂L
∂θ

= 0. (2.32)

Instead, we use the Hamiltonian formalism. The momentum density conjugate to
θ is [52]

π =
∂L
∂θ̇

=
χ

µ0γ2
0

MT · (ω − ωL) , (2.33)

where MT is the transpose of M. Comparing this with Eq. (2.26), we find that π
and S are related by

π = MT · S. (2.34)

By definition, the Hamiltonian density is given by [52]

H = π · θ̇ − L

=
µ0γ

2
0

2χ
|M−T · π|2 + ωL · (M−T · π) + fD

=
µ0γ

2
0

2χ
S2 + ωL · S + fD,

(2.35)

which is the familiar Leggett Hamiltonian density [49, 8, 1]. The Hamiltonian
equations of motion are [52]

θ̇i =
∂H
∂πi

, (2.36)

π̇i = −∂H
∂θi

. (2.37)
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Since S and π are closely related, we can replace the second equation by an equiv-
alent equation for S. This equation can be obtained using the general formula
[52]

dS

dt
= {S,H}+

∂S

∂t
, (2.38)

where the Poisson bracket is defined as

{S,H} =
∂S

∂θi

∂H
∂πi
− ∂S

∂πi

∂H
∂θi

. (2.39)

Straightforward calculation leads to the familiar Leggett equations of spin dynam-
ics [49, 8, 1],

Ṡ = ωL × S + 4λD
sin θ

θ
(1 + 4 cos θ)θ, (2.40)

θ̇ = M−1(θ) ·
(
µ0γ

2
0

χ
S + ωL

)
. (2.41)

2.3.2 Static equilibrium and longitudinal resonance

The simplest solution to the Leggett equations (2.40) and (2.41) is the static
equilibrium, where both S and θ are independent of time, S(t) = Seq and θ(t) =
θeq. In such case, Eq. (2.41) implies that

Seq = − χ

µ0γ2
0

ωL. (2.42)

In addition, Eq. (2.40) requires that either sin θeq = 0 or 1 + 4 cos θeq = 0, that is,
θeq = 0, θeq = π, or θeq = θL (remember that we can restrict the rotation angle
to the interval [0, π], since a rotation by θ about θ̂ is equivalent to a rotation by
2π − θ about −θ̂). The Leggett angle θL is defined in Eq. (2.8). The angles 0
and π are maxima of the dipole energy (2.5), and thus the solutions θeq = 0 and
θeq = π are unstable. The angle θL, on the other hand, is a minimum of the
dipole energy (2.5), and thus the solution θeq = θL is stable. In equilibrium, the
rotation axis is aligned along the external magnetic field, θ̂eq = B̂, since this is
energetically favourable [44].

Let us consider small, harmonic oscillations of S and θ about the equilibrium
solution, that is, S(t) = Seq + δSe−iωt and θ(t) = θeq + δθe−iωt, where δS and
δθ are constant vectors. Substituting these into the Leggett equations (2.40) and
(2.41), keeping only first-order terms in δS and δθ, and eliminating δθ from the
resulting linear system yields

− ω2δS + iωωLB̂ × δS + Ω2B̂(B̂ · δS) = 0, (2.43)

where

Ω =

√
15µ0γ2

0λD
χ

. (2.44)
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Equation (2.43) shows that in 3He-B, there is a longitudinal resonance mode in
which the magnetisation oscillates along the external magnetic field at frequency
ω = Ω [49]. Such a phenomenon does not occur in the normal state.

2.3.3 Brinkman–Smith mode

Let us assume that S(0) is tipped by an angle β from Ŝeq = −B̂. If the dipole
coupling constant λD vanishes, Eq. (2.40) shows that S precesses uniformly about
Ŝeq with Larmor frequency ωL. It is interesting to study whether the uniform
precession is also possible if λD 6= 0. It turns out that it is indeed, as we show
below. This solution is called the Brinkman–Smith mode [53].

Let us look for a solution S(t) = SBS(t), where

SBS(t) = R(ωBSt) · S(0)
BS (2.45)

and ωBS = ωBSB̂. We allow the precession frequency ωBS to differ from the Lar-
mor value ωL, but we assume that the direction of precession remains unchanged,

that is, ωBS > 0. The constant vector S
(0)
BS satisfies Ŝ

(0)
BS · Ŝeq = cosβ, with

0 < β < π. Using the Leggett equations (2.40) and (2.41), one can show (see
App. A) that θ has to be of the same form as S, that is, θ(t) = θBS(t), where

θBS(t) = R(ωBSt) · θ(0)
BS (2.46)

and θ
(0)
BS is a nonzero constant vector. We see that the magnitude of θBS is

constant, θBS = θ
(0)
BS . However, contrary to the case of static equilibrium (see

Sec. 2.1.1), the rotation angle θBS is not necessarily equal to the Leggett angle
θL. Plugging S and θ into Eqs. (2.40) and (2.41) yields (see App. A for details)

(ωBS − ωL)× sBS =
4Ω2

15
sin θBS(1 + 4 cos θBS)θ̂

(0)
BS , (2.47)

0 =
1

2
cot

(
θBS

2

)
sBS +

(sBS
2
− ωBS

)
× θ̂(0)

BS , (2.48)

θ̂
(0)
BS · sBS = 0, (2.49)

where sBS = µ0γ
2
0S

(0)
BS/χ + ωL and Ω is the longitudinal resonance frequency

defined in Eq. (2.44). The unknowns here are ωBS , SBS = S
(0)
BS , θBS = θ

(0)
BS , and

θ̂
(0)
BS .

Consider first the case where the precession frequency is not shifted from the
Larmor frequency, that is, ωBS = ωL. Equation (2.47) shows that either θBS = π
or θBS = θL. Linear stability analysis shows that the solution with θBS = π is
not stable, and we shall not consider it further. Taking the dot product between
Eq. (2.48) and sBS/2 − ωL shows that SBS = χωL/µ0γ

2
0 . Taking the norm on

both sides of Eq. (2.48) gives (B̂ · θ̂(0)
BS)2 = (1 + 4 cosβ)/5. This implies that

0 < β ≤ θL, and so the solution ωBS = ωL is not possible for tipping angles larger
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than θL. The orientation of θ̂
(0)
BS in the plane perpendicular to B̂ depends on the

orientation of Ŝ
(0)
BS , which in turn depends on the zero of time.

Let us proceed to the case ωBS 6= ωL. Equation (2.47) shows that θ̂
(0)
BS points

along the direction of B̂ × ŝBS , which means that B̂ · θ̂(0)
BS = sBS · θ̂(0)

BS = 0, and
thus Eq. (2.49) is satisfied automatically. To determine the remaining unknowns
ωBS , SBS , and θBS , we need three equations. First, we take the norm on both
sides of Eq. (2.47). Second, we calculate the dot product between Eq. (2.48)

and sBS/2 − ωBS . Third, we substitute θ̂
(0)
BS from Eq. (2.47) into Eq. (2.48).

Eliminating SBS and θBS , we are left with an equation for ωBS ,

ωL −
5

4
ωBS −

15

16

ω2
BS

Ω2
(ωBS − ωL) =

cosβ

√
ω2
L +

5

2
ωBS(ωBS − ωL) +

15

8

ω2
BS

Ω2
(ωBS − ωL)2.

(2.50)

Once ωBS is known, we can calculate θBS and SBS using

cos θBS = −1

4
− 15

16

ωBS(ωBS − ωL)

Ω2
, (2.51)

µ0γ
2
0SBS
χ

=
sin θBS
sinβ

ωBS . (2.52)

Linear stability analysis shows that a stable solution exists only for tipping angles
β > θL.

We have therefore seen that there exists a solution with uniformly precessing
magnetisation at all tipping angles β. Figure 2.1 shows the quantities ωBS/ωL,
µ0γ

2
0SBS/χωL, and cos θBS as a function of β for different values of ωL. The

rotation axis θ̂
(0)
BS satisfies

(θ̂
(0)
BS · B̂)2 =

{
(1 + 4 cosβ)/5, 0 < β ≤ θL,
0, θL < β < π.

(2.53)

2.4 A vortex line in the Brinkman–Smith mode

How does a single vortex line affect the Brinkman–Smith mode? We shall use
the same notation as we did in Sec. 2.1.2: the z axis coincides with the vortex
axis, the external magnetic field B points in the direction B̂ = cos ηẑ + sin ηx̂,
the anisotropy vector of the double-core vortex is b̂ = cos ζŷ − sin ζx̂, and the
standard cylindrical coordinates are denoted by (r, ϕ, z). In addition, we denote
the tipping angle of the spin density S from the equilibrium direction −B̂ by β,
as we did in Sec. 2.3.3. Figure 2.2 shows the various definitions in a pictorial form.

For simplicity, we consider here only tipping angles β ≤ θL. This is sufficient
to make comparisons with experiments. The analysis for higher tipping angles is
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Figure 2.1: Important parameters of the Brinkman–Smith mode as a function
of the tipping angle β at four different values of the Larmor frequency ωL. For
β > θL ≈ 0.58π, the curves are obtained from Eqs. (2.50), (2.51), and (2.52).

essentially identical, but more cumbersome due to the more complicated properties
of the Brinkman–Smith mode (see Sec. 2.3.3). The case of β > θL is discussed in
Pub. III.

In the discussion of the properties of a static vortex line in Sec. 2.1.2, we
restricted our attention to the hydrostatic region r � ξ0 and used the detailed
structure of the vortex core only as a boundary condition to determine the asymp-
totic solution (2.18) (valid at ξ0 � r � ξD). It turns out that this is also enough
for us to study spin dynamics of a vortex line in the Brinkman–Smith mode;
we do not need to consider what happens in the core region of the vortex. We
can calculate the energy flux density of spin waves using the asymptotic solution,
and the result thus obtained converges to a finite value even in the limit r → 0,
despite the fact that θv diverges. This is in contrast with the Leggett–Takagi
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Figure 2.2: Definitions of the angles β, ζ, and η. The vortex axis coincides with
the z axis, B is the static external magnetic field, b̂ is the anisotropy vector of
the double-core vortex, pointing from one of the half cores to the other, and S is
the spin density which precesses uniformly about −B with tipping angle β. The
figure was originally published in Pub. III.

relaxation, where we have to introduce a cut-off radius near the core in order to
avoid logarithmic divergence, see Pub. I for details.

Combining the results from the hydrostatic theory of vortices [see Eq. (2.11)]
and from the Leggett theory [see Eq. (2.24)], we can write the order parameter of
the system as

A ≈ eiϕ∆BR(θBS)R(θ)R(θv). (2.54)

Here θBS(t) is the rotation vector of the bulk Brinkman–Smith mode (see Sec.
2.3.3) and θv(r) is the rotation vector of the static vortex line (see Sec. 2.1.2).
Since the Brinkman–Smith mode interacts with the vortex, we need an additional
rotation θ(r, t) to describe the dynamics of the order parameter.

There are two implicit assumptions made when writing the order parameter
in the form (2.54). First, the vortex core is assumed to be stationary, mean-
ing that θv, determined by the core, is constant in time. The second point is
more subtle. Since we assume that θBS is a given function of time, determined
by the Brinkman–Smith mode, we are quietly assuming that there must be an
external agent acting on the system, trying to keep the Brinkman–Smith mode
unchanged. This is a common situation in problems of Lagrangian mechanics,
where one can impose constraints on the system under study by choosing the
coordinates conveniently, and not care how these constraints are actually imple-
mented. An alternative way, which allows to calculate the forces of constraint,
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is to use Lagrange multipliers [52, 45]. We show in Sec. 2.4.3 that in order to
sustain the Brinkman–Smith mode, energy is needed from the environment. Ex-
perimentally, this can be done using time-dependent magnetic fields, but here we
do not have to worry about that, since the formulation of the problem takes it
into account automatically.

We saw in Sec. 2.1.2 that |θv| � 1. Thus, we expect that the effect of the
vortex line on the Brinkman–Smith mode is small, so that |θ| � 1. Based on
this, we shall study linear dynamics of θ. For θv, we can use the solution which
minimises the gradient energy, Eq. (2.18), since it behaves correctly near the core.
The dipole energy is taken into account via θ. As a boundary condition for θ, we
demand that limr→0 θ = 0, so that the order parameter of the static vortex is not
modified near the core.

The equations can be simplified using dimensionless variables. For each vari-
able q, we define a corresponding dimensionless variable q̃ and a unit qu in which
we want to measure q, so that q = q̃qu. We measure time in units of Ω−1 and
length in units of v/Ω. Here, Ω is the longitudinal resonance frequency of the B
phase, defined in Eq. (2.44), and v is a characteristic spin wave velocity, defined
by

v =

√
4µ0γ2

0λG2

χ
. (2.55)

All angular velocities, such as ωL and ωBS , are measured in units of Ω. The
parameters C1 and C2 describing the structure of the vortex [see Eq. (2.18)] are
measured in units of R0 [see Eq. (2.19)]. Energy densities, such as L and fD,
are measured in units of χΩ4R2

0/µ0γ
2
0v

2. Spin density is measured in units of
χΩ2R0/µ0γ

2
0v. Finally, although θ and θv are already dimensionless, we measure

them (but not θBS) in units of R0Ω/v. This is a small quantity ∼ ξ0/ξD, which
we use as an expansion parameter below. Equation (2.18) shows that |θ̃v| ∼ 1,
and we assume that the same is true also for θ̃. For simplicity, we shall drop
the tildes from the dimensionless variables. This should not cause any confusion,
since we shall use the dimensionless variables for the rest of this chapter.

The Lagrangian density of the system can be obtained using Eqs. (2.27), (2.54),
(2.5), (2.6), and (2.25). Expanding the Lagrangian density in powers of ε =
R0Ω/v � 1, we obtain

L = ε−2L−2 + ε−1L−1 + L0 +O(ε). (2.56)

Here,

L−2 =
ω2
L

2
+

1

30
, (2.57)

L−1 = −ωLB̂ · θ̇. (2.58)

Their contribution to the motion of θ vanishes identically, as we show below. The
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first nontrivial term in the Lagrangian density is

L0 =
1

2
|θ̇|2 − ωL

2
B̂ · (θ × θ̇)− 1

2
[θ̂BS · (θ + θv)]

2

− 1 + c

2

∂(θj + θv,j)

∂ri

∂(θj + θv,j)

∂ri
+
c

2

∂(θj + θv,j)

∂ri

∂(θi + θv,i)

∂rj
.

(2.59)

This describes linear motion of θ, since it is quadratic in θ. We shall neglect the
higher order terms, and concentrate on linear dynamics. The equation of motion
for θ can be obtained from the usual Euler–Lagrange equation [52]

∂

∂t

∂L
∂θ̇i

+ ∂j
∂L
∂∂jθi

− ∂L
∂θi

= 0. (2.60)

Plugging in the Lagrangian density (2.56), it is easy to see that neither L−2 nor
L−1 contribute to the dynamics of θ. As a result, we obtain the linearised equation
of motion for θ,

θ̈ − ωLB̂ × θ̇ + θ̂BS(θ̂BS · θ)− (1 + c)∇2θ + c∇ (∇ · θ) = ρ, (2.61)

which looks like a generalisation of the standard wave equation [54]. Indeed, we
show in Secs. 2.4.1 and 2.4.2 that waves constitute a part of the solution. The
function on the right-hand side,

ρ = (1 + c)∇2θv − c∇ (∇ · θv)− θ̂BS(θ̂BS · θv), (2.62)

is the source term which drives θ. Since θv is given by Eq. (2.18), the source
reduces to ρ = −θ̂BS(θ̂BS · θv).

The general solution to Eq. (2.61) seems to be quite difficult to obtain due
to the presence of both θ̂BS θ̂BS (which depends on time) and ∇∇. We have
therefore considered two different approximations. In Sec. 2.4.1, we assume that
c = 0, which means that the term ∇∇ vanishes from Eq. (2.61). In Sec. 2.4.2,
we assume that the external magnetic field is large (ωL � 1). This allows us to
neglect the time dependent coefficient θ̂BS θ̂BS from the equation.

Once θ is known, the spin density can be calculated using Eq. (2.26). We
obtain

S = ε−1S−1 + S0 +O(ε), (2.63)

where

S−1 = −ωLR(θBS) · B̂, (2.64)

S0 = R(θBS) · θ̇. (2.65)

We see that the vortex perturbs the uniformly precessing magnetisation ε−1S−1

of the Brinkman–Smith mode, but the effect is relatively small since ε−1 is large.
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The Hamiltonian density H can be expanded in powers of ε as

H = θ̇ · ∂L
∂θ̇
− L

= ε−2H−2 +H0 +O(ε),

(2.66)

where

H−2 = θ̇ · ∂L−2

∂θ̇
− L−2 = −ω

2
L

2
− 1

30
(2.67)

and

H0 = θ̇ · ∂L0

∂θ̇
− L0

=
1

2
|θ̇|2 +

1

2
[θ̂BS · (θ + θv)]

2 +
1 + c

2

∂(θj + θv,j)

∂ri

∂(θj + θv,j)

∂ri

− c

2

∂(θj + θv,j)

∂ri

∂(θi + θv,i)

∂rj
.

(2.68)

Here, ε−2H−2 is the energy density of the Brinkman–Smith mode, while H0 is the
energy density related to the motion of θ. In general, the Hamiltonian density
obeys the continuity equation [52]

∂H
∂t

+ ∇ ·Σ = −
(
∂L
∂t

)
explicit

. (2.69)

Here, the time derivative of H is calculated after substituting in the solution θ,
while the time derivative of L measures the explicit time dependence of L. The
vector Σ is the energy flux density, defined by

Σi =
∂L

∂(∂θj/∂ri)

∂θj
∂t

. (2.70)

Equation (2.69) is similar to Poynting’s theorem in electromagnetism [55, 56].
The energy stored inside a volume V (which has to exclude the vortex core

according to assumptions made in the beginning of the section) is

E =

∫
V
d3rH. (2.71)

Using the continuity equation (2.69) and the divergence theorem (Gauss’ theorem)
[57], we calculate the rate of change of energy inside V as

dE

dt
= −

∫
∂V

Σ · dA+

∫
V
d3rp, (2.72)

where

Σi = −(1 + c)θ̇j
∂(θj + θv,j)

∂ri
+ cθ̇j

∂(θi + θv,i)

∂rj
(2.73)
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and

p = [θ̂BS · (θ + θv)][
˙̂
θBS · (θ + θv)]. (2.74)

Equation (2.72) states the conservation of energy. The Brinkman–Smith mode
interacts with the vortex, driving θ and thus pumping energy into V . This is
represented by the volume integral of p. The motion of θ then generates a flow of
energy, carrying energy through the surface ∂V of V . This is represented by the
surface integral of Σ. The total change in energy is due to these two contributions.
In steady state, which we are interested in, the time average of dE/dt vanishes.

2.4.1 Isotropic approximation

Let us consider the equation of motion (2.61) in the limit c = 0 [in which case
λG1 = 0, see Eqs. (2.14) and (2.6)]. This means that we neglect the anisotropic
gradient term ∇∇ from Eq. (2.61), and only keep the isotropic Laplacian part
∇2.

The rotation vector of the Brinkman–Smith mode, given by Eq. (2.46), can
be written as

θBS = R(ηŷ)R(ωLtẑ) · θ(00)
BS , (2.75)

where θ
(00)
BS = R(−ηŷ) · θ(0)

BS . Using Eq. (2.53) and choosing the zero of time
appropriately, we obtain

θ̂
(00)
BS =

√
4− 4 cosβ

5
ŷ +

√
1 + 4 cosβ

5
ẑ. (2.76)

Inspired by the form of θBS , we define a new variable α satisfying

θ = R(ηŷ)R(ωLtẑ) ·α. (2.77)

Substituting this into Eq. (2.61) yields

α̈+ ωLẑ × α̇+ θ̂
(00)
BS (θ̂

(00)
BS ·α)−∇2α = ρ̃, (2.78)

where
ρ̃ = R(−ωLtẑ)R(−ηŷ) · ρ. (2.79)

We emphasise that there is no explicit time dependence in the coefficients of α on
the left-hand side of (2.78). This simplifies the subsequent analysis significantly.
The source term ρ̃ can be written as

ρ̃ = <
{
ρ̃0 + e−iωLtρ̃1

}
, (2.80)

where < denotes the real part,

ρ̃0 = −θ̂(00)
BS

[
θ̂

(00)
BS ·M0 · R(−ηŷ) · θv

]
, (2.81)

ρ̃1 = −θ̂(00)
BS

[
θ̂

(00)
BS ·M− · R(−ηŷ) · θv

]
, (2.82)



22 CHAPTER 2. SPIN DYNAMICS OF VORTICES IN 3HE-B

and

M0 =

0 0 0
0 0 0
0 0 1

 , M− =

 1 i 0
−i 1 0
0 0 0

 . (2.83)

We are interested in the steady-state solution, and so we can assume that the
time dependence of α is of the same form as the time dependence of ρ̃, that is,

α = <
{
α0 + e−iωLtα1

}
. (2.84)

Substituting this into Eq. (2.78), we obtain the equations

K0(∇) ·α0 = ρ̃0, (2.85)

K1(∇) ·α1 = ρ̃1, (2.86)

where

K0(∇) = −∇2 + θ̂
(00)
BS θ̂

(00)
BS , (2.87)

K1(∇) = K0(∇)− ω2
LI− iω2

L[ẑ]×, (2.88)

and [ẑ]× denotes the cross product matrix of ẑ, defined by [ẑ]× · v = ẑ× v for an
arbitrary vector v. Since the equations are linear, it is convenient to work in the
Fourier space, see Eqs. (2.21) and (2.22). Under Fourier transform, the gradient
operator transforms as ∇ → ik. Thus, Eqs. (2.85) and (2.86) are transformed
into algebraic equations which are straightforward to solve. We obtain

α0(k) = K−1
0 (ik) · ρ̃0(k) = θv,x(k) sin η

D0

k2 − k2
0

, (2.89)

α1(k) = K−1
1 (ik) · ρ̃1(k) = [θv,y(k)− iθv,x(k) cos η]

3∑
j=1

Dj

k2 − k2
j

. (2.90)

Here,

k0 = i, (2.91)

D0 = −1

5

 0√
(4− 4 cosβ)(1 + 4 cosβ)

1 + 4 cosβ

 . (2.92)

The wave numbers kj , j = 1, 2, 3, depend on ωL and β. They can be obtained by
solving the determinant equation

detK(ik) = k6 − (3ω2
L − 1)k4 + 2ω2

L(ω2
L − 1)k2 + (1− n2

z)ω
4
L = 0. (2.93)

This is a cubic equation for k2. It has three solutions, k2
1 < 0, k2

2 > 0, and k2
3 > 0.

This means that k1 is purely imaginary, while k2 and k3 are real. We choose
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Figure 2.3: The magnitudes of the wave numbers kj appearing in Eqs. (2.90) and
(2.104) as a function of ωL and β. The wave numbers kj are calculated using Eq.
(2.93).

the sign convention k1 = i|k1|, k2 = |k2|, and k3 = |k3|. Figure 2.3 shows the
magnitudes |kj | as a function of ωL and β. The vectors Dj , j = 1, 2, 3, depend
on ωL and β. They can be obtained from

Dj = lim
k→kj

(k2 − k2
j )K
−1
1 (ik) · ρ̃1(k)

θv,y(k)− iθv,x(k) cos η
. (2.94)

Figure 2.4 shows the magnitudes |Dj | as a function of ωL and β.

Since we are interested in the solution in the position space, we take the inverse
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Figure 2.4: The magnitudes of the vectorsDj appearing in Eqs. (2.90) and (2.104)
as a function of ωL and β. The vectors Dj are calculated using Eq. (2.94).

transform of Eqs. (2.89) and (2.90). Using Eq. (2.22), we obtain (for n = 0, 1)

αn(r) =
1

(2π)2

∫∫
d2keik·rαn(k)

=
1

(2π)2

∫ 2π

0
dϕk

∫ ∞
0

kdkeikr cos(ϕ−ϕk)αn(k, ϕk).

(2.95)

To proceed, we use the Jacobi–Anger expansion [58]

eiz cos θ = J0(z) + 2
∞∑
m=1

imJm(z) cos(mθ) (2.96)

for the exponential function. Here, Jm are Bessel functions of the first kind.
Substituting αn(k) from Eqs. (2.89) and (2.90), using the Fourier transform of θv
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from Eq. (2.23), and using the orthogonality of trigonometric functions, we obtain

α0(r) = ϑv,x(ϕ) sin ηD0

∫ ∞
0

dk
J1(kr)

k2 − k2
0

, (2.97)

α1(r) = [ϑv,y(ϕ)− iϑv,x(ϕ) cos η]
3∑
j=1

Dj

∫ ∞
0

dk
J1(kr)

k2 − k2
j

, (2.98)

where ϑv(ϕ) ≡ rθv(r, ϕ).
The only thing left to do is to evaluate the integral

∫∞
0 dkJ1(kr)/(k2 − k2

j ).

If k2
j > 0, there is a simple pole at k = kj . We use the standard trick, and shift

the pole slightly away from the real axis by addwould like to knowing a small
imaginary part to the pole, kj → kj ± iδ, δ > 0. The resulting integral can be
calculated analytically [58], and the result converges to a finite value in the limit
δ → 0. Choosing the positive sign gives∫ ∞

0
dk

J1(kr)

k2 − k2
j

= − 1

k2
j r

+
iπ

2kj
H

(1)
1 (kjr), (2.99)

while choosing the negative sign gives∫ ∞
0

dk
J1(kr)

k2 − k2
j

= − 1

k2
j r
− iπ

2kj
H

(2)
1 (kjr). (2.100)

Here, H
(1,2)
1 are Hankel functions. How do we know whether to choose the former

one or the latter one, or perhaps some linear combination of the two? For this,
we need the asymptotic expansions of the Hankel functions at large r [58],

H
(1)
1 (kjr) ∼

√
2

πkjr
ei(kjr−3π/4), (2.101)

H
(2)
1 (kjr) ∼

√
2

πkjr
e−i(kjr−3π/4). (2.102)

Since the time dependence of α is of the form e−iωLtα1, we see that H
(1)
1 produces

an asymptotic solution ∼ ei(kjr−ωLt), which is a wave propagating away from the

vortex. On the other hand, H
(2)
1 produces an asymptotic solution ∼ e−i(kjr+ωLt),

which is a wave propagating towards the vortex. The latter is unphysical since
the vortex is the source of the waves, not a sink. We therefore choose Eq. (2.99).
If k2

j < 0, no such choice is necessary, since the solution obtained using Eq. (2.99)
is identical to the solution obtained using Eq. (2.100) due to the properties of the
Hankel functions. As a result, we obtain

α0(r) = ϑv,x(ϕ) sin η
D0

k0

[
iπ

2
H

(1)
1 (k0r)−

1

k0r

]
, (2.103)

α1(r) = [ϑv,y(ϕ)− iϑv,x(ϕ) cos η]
3∑
j=1

Dj

kj

[
iπ

2
H

(1)
1 (kjr)−

1

kjr

]
. (2.104)
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Note that both α0(r) and α1(r) are zero at the origin. This means that near the
core (r � 1), the order parameter is that of the static vortex, as we desire.

Using the fact that only k2 and k3 are real, the solution far from the core
(r � 1) is given by

α(r, t) ≈ <

[ϑv,y(ϕ)− iϑv,x(ϕ) cos η]

√
π

2r

3∑
j=2

Dj

k
3/2
j

ei(kjr−ωLt−π/4)

 . (2.105)

We see that the far-field solution consists of waves travelling away from the vor-
tex. Using Eqs. (2.105), (2.77), and (2.65), we can write S0, which measures the
deviation of the spin density from the bulk Brinkman–Smith value, as

S0(r, t) ≈ <
{
− iωL [ϑv,y(ϕ)− iϑv,x(ϕ) cos η]

√
π

2r

× R(ηŷ)R(ωLtẑ)R(θ
(00)
BS ) ·

3∑
j=2

Dj + iB̂ ×Dj

k
3/2
j

ei(kjr−ωLt−π/4)

}
.

(2.106)

We thus see that the vortex radiates spin waves.

In order to gain more insight into the solution, it is instructive to study
eigenmodes of the system. The eigenmodes are vector plane waves of the form
α = aei(k·r−ωt), which satisfy the homogeneous version of Eq. (2.78), that is,

α̈+ ωLẑ × α̇+ θ̂
(00)
BS (θ̂

(00)
BS ·α)−∇2α = 0. (2.107)

Substituting the plane wave ansatz yields

− ω2a− iωωLẑ × a+ θ̂
(00)
BS (θ̂

(00)
BS · a) + k2a = 0, (2.108)

which is a linear algebraic equation for a. While discussing the eigenmodes, one
usually assumes that the wave vector k is given. The unknowns are the dispersion
relation ω(k) and the eigenvector a(k). In order to guarantee the existence of non-
trivial solutions a 6= 0 in Eq. (2.108), the determinant of the matrix multiplying
a has to vanish. This leads to a sixth-order polynomial equation for ω,

(ω2 − k2)2(ω2 − k2 − 1)− ω2
Lω

2

(
ω2 − k2 − 1 + 4 cosβ

5

)
= 0. (2.109)

Since there are six solutions to a sixth-order polynomial equation, there are six
independent eigenmodes. Looking more closely, the determinant equation (2.109)
is actually a third-order equation for ω2, and therefore the eigenfrequencies come
in positive-negative pairs. For real k, the eigenfrequencies are real. We arrange the
modes so that ω1(k), ω2(k), and ω3(k) are non-negative, while ω4(k) = −ω1(k),
ω5(k) = −ω2(k), and ω6(k) = −ω3(k). Note that the eigenfrequencies depend
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Figure 2.5: The positive branches of the dispersion relation of spin waves in
the isotropic approximation for different values of ωL and β, determined by Eq.
(2.109).

only on the magnitude of k, not on the direction. If k = 0, we obtain

ω2
1(0) =

1 + ω2
L

2
+

1

2
√

5

√
5 + 2ω2

L(3− 8 cosβ) + 5ω4
L, (2.110)

ω2
2(0) =

1 + ω2
L

2
− 1

2
√

5

√
5 + 2ω2

L(3− 8 cosβ) + 5ω4
L, (2.111)

ω2
3(0) = 0. (2.112)

These imply that ω2
1(0) ≥ ω2

L, ω2
1(0) ≥ 1, ω2

2(0) ≤ ω2
L, and ω2

2(0) ≤ 1. At large k,
the eigenfrequencies are linear in k, ωi(k) ≈ k + bi, where b1 = ωL/2, b2 = 0, and
b3 = −ωL/2. Figure 2.5 shows ω1(k), ω2(k), and ω3(k) for different values of the
parameters ωL and β.

How are the eigenmodes related to the vortex problem? The source term ρ̃ on
the right-hand side of Eq. (2.78) tries to excite modes with ω(k) = 0 or ω(k) = ωL,
according to Eq. (2.80). Note that in this case it is the frequency that is fixed,
not the wave number. Equation (2.109) can then be used to determine the value
(or rather, values) of k for a given ω. For each of the six modes, a solution exists,
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but it may be complex. A real k corresponds to a propagating wave, while a
complex k corresponds to a wave with exponentially decaying amplitude (in r).
The general solution can be written as a linear combination of the eigenmodes.

In Eq. (2.103), the vector D0 is an eigenvector of mode 2 at ω = 0 and k = k0.
Since k0 is imaginary, the mode is not propagating. All the other modes are absent
from α0 (have zero weight). In Eq. (2.104), the vectors Dj are eigenvectors of
modes j = 1, 2, 3 at ω = ωL and k = kj . The wavenumber k1 is imaginary, while k2

and k3 are real. Thus, the only propagating modes the vortex can excite are modes
2 and 3, whereas mode 1 is decaying (in space). The reason for this is clear from
the dispersion relation. The dispersion curves ω1,2,3(k) are increasing functions
of k (at positive k), so that ωj(k) ≥ ωj(0). We saw that ω1(0) > ωL, while
ω2,3(0) < ωL. This means that there is no real value of k for which ω1(k) = ωL.
On the other hand, there are always real values of k for which ω2,3(k) = ωL. The
modes j = 4, 5, 6 are absent because they correspond to waves travelling towards
the vortex core.

2.4.2 High-field approximation

The equation of motion (2.61) can be solved (semi-)analytically also if the mag-
netic field is high, that is, ωL � 1. In this high-field approximation, c can be
non-zero. Inspired by the asymptotic solution (2.105) in the isotropic approxima-
tion, let us look for a solution where both temporal and spatial variations of θ
occur at scale ∼ ω−1

L . Looking at the left-hand side of Eq. (2.61), we see that the

term θ̂BS(θ̂BS · θ) is by a factor of ω−2
L smaller than the other terms, and can be

neglected. We can thus approximate the equation of motion (2.61) as

θ̈ − ωLB̂ × θ̇ − (1 + c)∇2θ + c∇ (∇ · θ) ≈ ρ. (2.113)

Similar to the isotropic approximation, we have been able to transform the equa-
tion of motion with time-dependent coefficients into a one with time-independent
coefficients. This simplifies the solution procedure significantly.

The source term can be written as

ρ = <
{
ρ0 + e−iωLtρ1 + e−2iωLtρ2

}
. (2.114)

We seek a solution of the same form, and thus write

θ = <
{
θ0 + e−iωLtθ1 + e−2iωLtθ2

}
. (2.115)

Substituting these into Eq. (2.113) yields

−(1 + c)∇2θ0 + c∇ (∇ · θ0) = ρ0, (2.116)

−ω2
Lθ1 + iω2

LB̂ × θ1 − (1 + c)∇2θ1 + c∇ (∇ · θ1) = ρ1, (2.117)

−4ω2
Lθ2 + 2iω2

LB̂ × θ2 − (1 + c)∇2θ2 + c∇ (∇ · θ2) = ρ2. (2.118)
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We neglect θ0 since it is not consistent with our assumption that the temporal
variation occurs at scale ω−1

L . This should not cause any problems since θ0 only
determines the static background for θ, and thus we lose no information about
the dynamics of θ. Both θ1 and θ2 can be solved in the Fourier space. By defining

L1(∇) = −ω2
LI + iω2

L[B̂]× − (1 + c)∇2 + c∇∇, (2.119)

L2(∇) = −4ω2
LI + 2iω2

L[B̂]× − (1 + c)∇2 + c∇∇, (2.120)

we obtain [cf. Eqs. (2.89) and (2.90)]

θn(k) = L−1
n (ik) · ρn(k) =

1

k

3∑
j=1

Dn,j(ϕk)

k2 − k2
n,j(ϕk)

, (2.121)

where n = 1, 2. The factor 1/k comes from θv(k), see Eq. (2.23). The wave
numbers kn,j depend on ϕk, ωL, η, and c, but only the dependence on ϕk is
indicated explicitly, since this is needed in the following discussion. One of the
wave numbers, k1,1, is identically zero. This is an artifact caused by our use of
the approximate equation of motion (2.113). In reality, k1,1 is similar to k1 of
the isotropic approximation, which is purely imaginary and remains bounded at
large ωL, see Fig. 2.3. The remaining kn,j are positive and proportional to ωL.
The vectors Dn,j depend on ϕk, ωL, η, β, and c, as well as on the parameters
characterising the vortex core, that is, C1, C2, and ζ.

In the position space, the spatial variation of each of the terms in Eq. (2.121)
occurs at scale k−1

n,j . This means that the term proportional toD1,1 does not satisfy
our initial assumption, and is therefore neglected. Other terms are consistent with
the assumption.

The next step is to calculate θn(r) by taking the inverse Fourier transform
of Eq. (2.121). In the isotropic approximation, the inverse transforms of α0(k)
and α1(k) were calculated exactly, see Eqs. (2.95)–(2.104). Here, things are more
complicated since the wave numbers kn,j depend on the angle ϕk. We take a
different route, and only calculate the asymptotic solution, that is, the solution
at r � 1. This is done (semi-)analytically. By definition,

θn(r) =
1

(2π)2

∫∫
d2keik·rθn(k)

=
1

(2π)2

∫ 2π

0
dϕk

∫ ∞
0

dkkeikr cos(ϕ−ϕk)θn(k, ϕk)

=
1

(2π)2

∫ 2π

0
dϕk

∫ ∞
0

dkkeikr cosϕkθn(k, ϕk + ϕ)

=
1

(2π)2

∑
j

∫ 2π

0
dϕkDn,j(ϕk + ϕ)

∫ ∞
0

dk
eikr cosϕk

k2 − k2
n,j(ϕk + ϕ)

,

(2.122)

where in the penultimate equality we changed the integration variable from ϕk
to ϕk − ϕ, and used the 2π periodicity of the integrand to change the limits of
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integration back to [0, 2π]. Remember that the term j = 1 is neglected from the
sum for n = 1.

To proceed, we need to calculate the integral
∫∞

0 dkeikr cosϕk/(k2 − k2
n,j) (we

assume that n and j are fixed). We do this by extending the integration to
complex plane. The integration contour we use depends on the sign of cosϕk,
since we want the exponential factor to converge, not diverge. If cosϕk > 0, we
choose the contour C+ = [0, R] ∪ C+

R ∪ [iR, 0], where C+
R = {Reis|s ∈ [0, π/2]}

is an arc of a circle of radius R > 0 in the first quadrant of the complex plane.
Similarly, if cosϕk < 0, we choose the contour C− = [0, R]∪C−R ∪ [−iR, 0], where
C−R = {Reis|s ∈ [0,−π/2]} is an arc of a circle of radius R > 0 in the fourth
quadrant of the complex plane.

Calculation of the integral over C± requires a detailed consideration of the
pole kn,j that lies on the integration contour. We resort again to the standard
trick, and add a small imaginary part to kn,j , so that kn,j → kn,j ± iδ, where
δ > 0. Similar to the isotropic approximation, the choice of sign determines
the direction of propagation of the wave. The positive sign results in a wave
travelling away from the vortex, while the negative sign gives a wave travelling
towards the vortex. The former is the correct physical solution, and we therefore
choose kn,j → k̃n,j = kn,j + iδ.

The integral over C± can be calculated in two ways, either as a sum of integrals
over the different parts of the contour or, since the contour is closed, using the
residue theorem [57]. Let us first assume that cosϕk > 0. Thus,∫

C+

dk
eikr cosϕk

k2 − k̃2
n,j

=

∫ R

0
dk
eikr cosϕk

k2 − k̃2
n,j

+

∫
C+

R

dk
eikr cosϕk

k2 − k̃2
n,j

+

∫ 0

iR
dk
eikr cosϕk

k2 − k̃2
n,j

= 2πiRes

(
eikr cosϕk

k2 − k̃2
n,j

, k̃n,j

)
.

(2.123)

In the limit R → ∞, the integral over C+
R vanishes due to Jordan’s lemma [57].

The integral over [0, R] approaches the integral we want to calculate. In the
integral over [iR, 0], we make a change of variables k → −ik. The pole k̃n,j lies
inside C+, and is of first order. Calculating the residue and taking the limits
R→∞ and δ → 0 leaves us with∫ ∞

0
dk
eikr cosϕk

k2 − k2
n,j

= iπ
eikn,jr cosϕk

kn,j
− i
∫ ∞

0
dk
e−kr cosϕk

k2 + k2
n,j

. (2.124)

A similar calculation for cosϕk < 0 shows that∫ ∞
0

dk
eikr cosϕk

k2 − k2
n,j

= i

∫ ∞
0

dk
ekr cosϕk

k2 + k2
n,j

. (2.125)

Note that there is no contribution from the residue, since we shifted the pole to
the upper half-plane, and therefore there are no poles inside C−.
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Plugging the integrals calculated above into Eq. (2.122) and using the sym-
metries kn,j(ϕk + π) = kn,j(ϕk), Dn,j(ϕk + π) = −Dn,j(ϕk), we obtain

θn(r) =
i

4π

∑
j

∫ π/2

−π/2
dϕk

Dn,j(ϕk + ϕ)

kn,j(ϕk + ϕ)
eikn,j(ϕk+ϕ)r cosϕk

− i

2π2

∑
j

∫ π/2

−π/2
dϕkDn,j(ϕk + ϕ)

∫ ∞
0

dk
e−kr cosϕk

k2 + k2
n,j(ϕk + ϕ)

.

(2.126)

Here, the first term is dominant if r � 1. We show that it behaves as r−1/2. With
some analytic manipulation, one can show that the second term vanishes at least
as fast as r−1. We therefore neglect it and approximate

θn(r) ≈ i

4π

∑
j

∫ π/2

−π/2
dϕk

Dn,j(ϕk + ϕ)

kn,j(ϕk + ϕ)
eikn,j(ϕk+ϕ)r cosϕk . (2.127)

The integral over ϕk is in general impossible to calculate analytically. However,
we can again make use of the fact that r � 1. This allows us to use the method
of stationary phase [59]. It states that∫ π/2

−π/2
dxf(x)eirΨ(x) =

∑
l

√
2π

r|Ψ′′(xl)|
f(xl)e

irΨ(xl)eiπsgn[Ψ′′(xl)]/4 +O(r−1).

(2.128)
Here, xl are the stationary points of the phase Ψ (which is assumed to be twice
continuously differentiable) in the interval [−π/2, π/2]. The stationary points are
the points where the derivative of the phase vanishes, Ψ′(xl) = 0. The second
derivative of Ψ is denoted by Ψ′′, sgn is the sign function, and f is an arbitrary
continuous function. If xl is one of the end points, an extra factor of 1/2 is needed
for the corresponding term in the sum.

Let us denote Ψn,j (ϕk) = kn,j(ϕk+ϕ) cosϕk and the corresponding stationary
points by Φn,j,l, so that Ψ′n,j (Φn,j,l) = 0. Note that the stationary points depend
on ϕ. Using the stationary phase approximation, we obtain

θn(r) ≈ i√
8πr

∑
j,l

exp
[
iΨn,j,lr + iπ4 sgn

(
Ψ′′n,j,l

)]
kn,j,l

√∣∣∣Ψ′′n,j,l∣∣∣ Dn,j,l. (2.129)

Here, Ψn,j,l = Ψn,j(Φn,j,l), kn,j,l = kn,j(ϕ+ Φn,j,l), Dn,j,l = Dn,j(ϕ+ Φn,j,l), and
Ψ′′n,j,l = Ψ′′n,j(Φn,j,l). The solution is of a similar form as the asymptotic solution
in the isotropic approximation in Eq. (2.105), meaning that the vortex radiates
spin waves also in the high-field approximation. Note that the phases Ψn,j,l gen-
erally depend on ϕ, unlike the wave numbers kj in the isotropic approximation.
This stems from the fact that here in the high-field approximation, we have in-
cluded also the anisotropic gradient part ∇∇ into the equation of motion, and
therefore the velocities (both phase and group) of waves depend on the direction
of propagation.
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2.4.3 Comparison with experiments

We have seen that the Leggett theory of spin dynamics predicts that a vortex
line placed in the Brinkman–Smith mode radiates spin waves. This means that
the vortex transfers energy from the Brinkman–Smith mode to the spin waves.
In order to maintain the Brinkman–Smith mode with constant tipping angle β, a
continuous input of energy is needed from the environment. Otherwise, the tipping
angle would relax towards zero, that is, the spin density would relax towards
the equilibrium value (2.42). We would like to compare this prediction with
experimental data [40, 41], which was obtained by studying energy dissipation
caused by an array of vortices under uniformly precessing magnetisation.

The vortex array is formed by rotating the vessel containing the superfluid.
The areal density nv of vortices is related to the angular velocity Ωrot of the vessel
by nv = 2Ωrot/κ0, where κ0 = π~/m is the quantum of circulation. This means
that the average distance between two neighbouring vortices is rv =

√
~/2mΩrot.

In the experiments, the vessel rotates at Ωrot ∼ 1 rad/s, and so the inter-vortex
separation is rv ∼ 100 µm. On the other hand, the natural unit of distance we
have used is v/Ω ≈ 5 µm. The vortices are therefore far apart, and we should be
able to treat the system as multiple isolated vortex lines.

The uniformly precessing magnetisation is achieved using the so-called homo-
geneously precessing domain (HPD) [60, 61]. By introducing a small gradient
(|∇B|/B ∼ 10−3 cm−1) to the magnitude of the external static magnetic field,
two domains are formed in the vessel. In one domain, the spins are aligned along
the magnetic field. In the second domain, the spins precess uniformly about the
external magnetic field with tipping angle β ≈ θL. The precession frequency is
approximately equal to the Larmor frequency. Between the two domains is a
thin domain wall. Due to dissipation, one needs an additional time-dependent
magnetic field to maintain the HPD.

In both experiments, a sample of superfluid is contained inside an NMR cell,
which is a cylinder of radius 3.5 mm and height 7 mm. The vortex array fills the
entire cell, as does the HPD. The experiments of Ref. [41] were done at p = 29.3
bar, B = 14.2 mT, Ωrot = 1.49 rad/s, 0.48 . T/Tc . 0.64, and 0 ≤ η ≤ π/2.
The transition temperature between the two core structures was Tv ≈ 0.60Tc,
with the double-core vortex stable at lower temperatures. The experiments of
Ref. [40] were done at p = 29.3 bar, B ∈ {14.2 mT, 28.4 mT}, Ωrot = 1.0 rad/s,
0.40 . T/Tc . 0.70, and 0 ≤ η ≤ π/2. The transition temperature between the
two core structures was Tv ≈ 0.58Tc, which, for some reason, is slightly less than
in Ref. [41].

For theoretical results, we use the tipping angle β = θL, since this is approx-
imately the value in the HPD. We set c = 1 in the high-field approximation.
We use C2 = C1 for the A-phase-core vortex. Based on the numerical structure
of the vortex core, C2 � C1 for the double-core vortex, and so we set C2 = 0
for simplicity. Finally, we set ζ = π/2, since this is the orientation favoured by
the susceptibility anisotropy of the vortex core. Thus, the only free parameter
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characterising the vortex is C1.

Let us determine the energy dissipation rate due to spin-wave radiation. In
order to do this, we calculate the rate at which the spin waves carry energy
through the surface of a cylinder of radius r centered at the vortex axis. This can
be done by integrating the energy flux density vector Σ [see Eq. (2.73)] over the
surface of the cylinder. Since the system is homogeneous along the vortex axis,
the time-averaged energy flux per vortex length is

P (r) =

∫ 2π

0
dϕr〈Σr(r, ϕ, t)〉t, (2.130)

where Σr = Σ · r̂ and 〈· · · 〉t denotes average over time.

In the isotropic approximation, we solved θ exactly, see Eqs. (2.77), (2.84),
(2.103), and (2.104). If β = θL, the vectors D0 and D2 vanish. The vectors D1

and D3 are given by

D1 =
1

2
√

1 + 4ω4
L

 −2iω2
L

−1−
√

1 + 4ω4
L

0

 , (2.131)

D3 =
1

2
√

1 + 4ω4
L

 2iω2
L

1−
√

1 + 4ω4
L

0

 , (2.132)

while the wave numbers k1, k2, and k3 are given by

k1 = 2−1/2

√
2ω2

L − 1−
√

1 + 4ω4
L, (2.133)

k2 = ωL, (2.134)

k3 = 2−1/2

√
2ω2

L − 1 +
√

1 + 4ω4
L. (2.135)

A straightforward calculation shows that the time-averaged energy flux per vortex
length can be written as

P (r) = P0

[
1 + P̃ (r)

]
. (2.136)

Here, the position-dependent function P̃ is given by

P̃ (r) =
−2ωL

2ω2
L − 1 +

√
1 + 4ω4

L

r [|k1|J1(k3r)K0(|k1|r) + k3J0(k3r)K1(|k1|r)] ,

(2.137)
where Kn is a modified Bessel function of the second kind. Figure 2.6 shows
P/P0 = 1 + P̃ as a function of r at different values of ωL. We see that the ra-
diation is not generated in the core, but in a region of size r ∼ ω−1

L around the
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Figure 2.6: The time-averaged energy flux per vortex length P as a function of
the radius r in the isotropic approximation, see Eq. (2.136).

core. Moving farther away, there are some transient oscillations due to interfer-
ence effects. Finally, P̃ vanishes as e−|k1|r at large r, and thus P approaches P0

exponentially. This means that P0 is the total energy dissipation rate per vortex
length due to spin-wave radiation for an isolated vortex line, which is the quantity
we wanted to determine. It is given by

P0 =
π2

8
ωL

2ω2
L − 1 +

√
1 + 4ω4

L

1 + 4ω4
L

(C2
2 + C2

1 cos2 η). (2.138)

This expression is valid for both the A-phase-core vortex (C2 = C1) and the
double-core vortex (C2 = 0).

The experimental value of ωL at T = 0.5Tc is ωL ≈ 2.2 at B = 14.2 mT and
twice as large at B = 28.4 mT. In both cases, the majority of the transient oscil-
lations of P̃ have decayed at r ≈ 6, while the inter-vortex separation is rv ∼ 20,
depending on Ωrot. This shows that the vortices are far apart from the perspective
of spin-wave radiation, and therefore the assumption that we can approximate the
system as multiple isolated vortices would seem to be a decent one.

A similar calculation can be made also in the high-field approximation. The
difference is that we have the solution only at r � 1. Although we are not able
to study what happens at small r, the asymptotic solution is enough to calculate
the limiting value P0 = limr→∞ P (r), that is, the total energy dissipation rate
per vortex length due to spin-wave radiation. Analytical result for P0 seems to
be hard to obtain for general η. However, at η = 0 we obtain

P0 =
π2

8
ω−1
L

[
13

16

(
C2

1 + C2
2

)
+

3

8
C1C2

]
, (2.139)
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which is again valid for both the A-phase-core vortex and the double-core vor-
tex. A comparison with Eq. (2.138) at ωL � 1 and η = 0 shows that the two
approximations yield equal results for the A-phase-core vortex. For the double-
core vortex, the result of Eq. (2.139) is by a factor of 13/16 smaller than the
corresponding result of Eq. (2.138).

Let us compare P0 with the energy dissipation rates observed in the exper-
iments. We use the expression (2.138) obtained in the isotropic approximation,
since it is valid for all η and it should be more accurate at low magnetic fields.
However, the real value of P0 is probably slightly smaller due to the fact that
c > 0 [compare Eqs. (2.138) and (2.139)].

Let us start by considering the dependence of the energy dissipation rate
on the external magnetic field B, that is, on η and ωL. Figure 2.7 shows the
dependence of P0 on cos2 η. The experimental data is taken from Fig. 2 of Ref.
[41], and contains measurements at two temperatures: T = 0.48Tc, where only the
double-core vortex is stable, and T = Tv = 0.60Tc, where both vortex types are
stable. As is mentioned in Ref. [41], the measurements seem to obey the relation
P0 (η) = a0 + a2 cos2 η, where a0 and a2 are temperature-dependent parameters.
A similar relationship is predicted by Eq. (2.138), which shows that a0 = a2 for
the A-phase-core vortex and a0 = 0 for the double-core vortex. The experimental
values are a2/a0 ≈ 1.02 for the A-phase-core vortex, a2/a0 ≈ 4.87 for the double-
core vortex at T = Tv, and a2/a0 ≈ 10.5 for the double-core vortex at T = 0.48Tc.
We see that the prediction for the A-phase-core vortex is in very good agreement
with the experiments. The prediction for the double-core vortex is decent, the
main difference being that a0, although small compared to a2, is not equal to zero
in the experiments. A possible reason for this anomaly could be the fact that we
assume C2 = c = 0. The theoretical curves shown in Fig. 2.7 are plotted using
the values C1 = 1.66 for the A-phase-core vortex, C1 = 4.20 for the double-core
vortex at T = Tv, and C1 = 5.81 for the double-core vortex at T = 0.48Tc. These
were obtained from a least-squares fit to the data (as a function of cos2 η). The
corresponding values of C1 obtained from the numerical structure of the vortex
core are approximately 1.33, 3.00, and 3.86, respectively. The fitted values are thus
slightly larger than the ones obtained from theory. The temperature dependence of
C1 for the double-core vortex is similar in both cases: the ratio C1(Tv)/C1(0.48Tc)
attains the value 0.72 using the parameters C1 from the theory and 0.78 using the
parameters C1 from the least-squares fit.

The experimental dependence of the energy dissipation rate on ωL can be
obtained from Fig. 1 of Ref. [40]. The figure shows that when the magnetic
field is increased from 14.2 mT to 28.4 mT, the measured dissipation rate de-
creases, which is in agreement with Eq. (2.138). Let us consider the ratio % =
P (28.4mT) /P (14.2mT) near Tv. Theory predicts % = 0.54 for both vortex types,
while the measured value is % = 0.68.

Figure 2.8 shows the dependence of the energy dissipation rate per vortex
length P0 on temperature in the case of the double-core vortex. The experimental
data is taken from Fig. 1 of Ref. [41]. The theoretical curve shown in Fig. 2.8
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Figure 2.7: The predicted energy dissipation rate per vortex length P0 in the
isotropic approximation [see Eq. (2.138)] as a function of cos2 η (lines), to-
gether with the measured energy dissipation rate per vortex length from Ref.
[41] (points). Theoretical lines are plotted using the parameters C1 obtained from
a least-squares fit to the experimental data. As a result, we obtained C1 = 1.66
for the A-phase-core vortex at T = 0.60Tc, C1 = 5.81 for the double-core vortex
at T = 0.48Tc, and C1 = 4.20 for the double-core vortex at T = 0.60Tc. The
figure was originally published in Pub. III.

assumes that C1 depends linearly on temperature in the interval 0.48Tc < T < Tv,
so that C1(T ) = AT/Tc + B. This should be a decent approximation since the
interval is quite narrow. To determine the coefficients A and B, we use the values
C1(0.48Tc) = 5.81 and C1(Tv) = 4.20 that we obtained above. These lead to
A = −13.4 and B = 12.2.

One further thing to mention here, discussed in more detail in Pub. III, is the
effect of twisting of the double-core vortex on the energy dissipation rate. The
precessing magnetisation can rotate the half-cores around each other. At the top
and bottom surfaces of the vessel, however, the core is pinned. This may lead to
a twisted vortex. We have shown in Pub. III that uniform twisting of the core
leads to reduced dissipation. This is in accordance with the experiments of Ref.
[41], which show that the energy dissipation rate decreases for twisted vortices.

So far, we have neglected the intrinsic Leggett–Takagi (LT) relaxation mech-
anism [50] which arises from the conversion of spin between the superfluid com-
ponent and the normal fluid component (which is always present if T > 0) of
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Figure 2.8: The predicted energy dissipation rate per vortex length P0 in the
isotropic approximation [see Eq. (2.138)] as a function of temperature for the
double-core vortex (line), together with the measured energy dissipation rate per
vortex length from Ref. [41] (points). The theoretical curve assumes that the
parameter C1 depends linearly on temperature in the interval [0.48Tc, 0.60Tc],
that is, C1(T ) = AT/Tc + B. The coefficients A = −13.4 and B = 12.2 were
calculated using the values C1(0.48Tc) = 5.81 and C1(0.60Tc) = 4.20 that we
obtained from the least-squares fit as a function of cos2 η, see Fig. 2.7. The figure
was originally published in Pub. III.

the liquid. In order to properly take this mechanism into account, one should
include it into the equations of spin dynamics. One can, however, estimate its
contribution to the energy dissipation rate by using the solution obtained in the
absence of the LT mechanism. We have done this in Pub. I, where we solved
(approximately) the time average of θ, and used that to estimate the rate of dis-
sipation. A similar calculation can be done using the solution we obtained in the
isotropic approximation. The local energy dissipation rate density related to the
LT relaxation can be approximated by [50]

pLT = −τ̃LT |Ṡ − ωL × S|2

= −τ̃LT |θ̈ − ωL × θ̇|2

= −τ̃LT |α̈+ ωL × α̇|2,
(2.140)

where τ̃LT is the effective Leggett–Takagi relaxation time. We neglect the wave

part of α, that is, the part proportional to H
(1)
1 (k3r) in Eq. (2.104). The rationale
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behind this is the following. The wave is generated both with and without the
LT mechanism. If the LT mechanism is not included, the wave is not damped,
and will carry energy to infinity. If the LT mechanism is included, the wave is
damped within some finite radius, and therefore does not carry energy to infinity.
However, an equivalent amount of energy is dissipated via the LT mechanism.
Thus, the additional dissipation comes from the non-wave-like part of the solution.

If we neglect H
(1)
1 (k3r), then α diverges as r−1 near the origin. This means that

we have to introduce a cut-off radius r1 near the core, similar to Pub. I. The
energy dissipation rate per vortex length due to the LT mechanism, PLT , can be
calculated by integrating pLT over the punctured cylinder r > r1. In the leading
order in r1, we obtain

PLT ≈ −
π

4
τ̃LT log(r−1

1 )(C2
2 + C2

1 cos2 η)
4ω4

L

1 + 4ω4
L

. (2.141)

This differs from the result of Pub. I only by the factor 4ω4
L/(1 + 4ω4

L), which is
approximately equal to 1 under the experimental conditions (ωL & 1.7). Thus,
the result obtained here is nearly identical to the one obtained in Pub. I, and so
the discussion can be based on Pub. I.

The magnitude of PLT contains more uncertainty than P0 since one needs to
know both τ̃LT and r1. The dependence of PLT on η and C1 is identical to P0.
The dependence of PLT on both the magnetic field B and the temperature T is,
however, qualitatively different from P0 and the experiments. Both P0 and the
experiments show a clear dependence on B and T , whereas PLT does not. We can
therefore conclude, based on the qualitative behaviour of the energy dissipation
rate, that although the LT mechanism certainly increases the rate of dissipation
(by roughly 1 pW/m for the double-core vortex under the experimental conditions
of Ref. [41]), radiation of spin waves is a more dominant mechanism.



Chapter 3

Moving cylinder in superfluid
3He

In this chapter, we study the drag force exerted on an object moving in superfluid
3He at zero temperature. In particular, the object we consider is a long, circular
cylinder of radius R, moving at constant velocity perpendicular to its axis. In Sec.
3.1, we introduce some important theoretical concepts. In Sec. 3.2, we discuss the
problem at a qualitative level. We find that Landau’s argument on critical velocity
[42] holds true for a microscopic cylinder of radius R � ξ0, but a more careful
analysis is needed in the case of a macroscopic cylinder of radius R� ξ0. In Sec.
3.3, we introduce the theory on a more formal level. In Sec. 3.4, we formulate a
diffuse, mesoscopic boundary condition to describe the effect of the cylinder on
the superfluid. In Sec. 3.5, we apply the boundary condition to calculate the force
exerted on a microscopic cylinder, and find that the critical velocity is indeed the
Landau velocity vL. In Sec. 3.6, we apply the boundary condition to a macroscopic
cylinder assuming that there are no collisions between quasiparticles and that the
energy gap is isotropic, and find that the critical velocity has increased from vL
to 1.12vL. In Sec. 3.7, we study whether quasiparticle collisions could lead to a
simple equilibrium with the cylinder, but find that the answer is negative.

3.1 Background

We base our analysis on the quasiclassical formulation of the theory of super-
fluidity [20]. As we mentioned in the introduction, the Cooper pairs that form
the superfluid condensate comprise Landau quasiparticles (the quasiparticles of
the Fermi liquid theory) near the Fermi surface. In a purely quantum mechan-
ical theory, the characteristic length and time scales of the system are therefore
~/pF ∼ 0.1 nm and ~/εF ∼ 1 ps, respectively, where pF is the Fermi momentum
and εF is the Fermi energy. However, practically all interesting physical phe-
nomena related to superfluidity occur at length and time scales much larger than
these. The quasiclassical theory makes use of this fact, and integrates out the

39
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unnecessary microscopic degrees of freedom.

The characteristic length and time scales of the quasiclassical theory are the
coherence length ξ0 = ~vF /2πkBTc ∼ 10 nm and the gap time τ∆ = ~/∆ ∼ 1 ns.
Here, kB is the Boltzmann constant, vF is the Fermi velocity, Tc is the superfluid
transition temperature, and ∆ ∼ kBTc � εF is the average value of the superfluid
energy gap. For example, compared to the bulk, the components of the order
parameter A are suppressed near a solid wall within a layer of thickness ∼ ξ0,
while τ∆ is the natural time scale related to the collective modes of A.

For our purposes, even the quasiclassical scale is too fine. We focus on phe-
nomena occuring at length and time scales that are long compared to ξ0 and τ∆.
This approximation of long wave lengths and low frequencies is discussed in Sec.
7 of Ref. [20].

3.1.1 Quasiparticles

The superfluid state can be described using a model of two interpenetrating flu-
ids, superfluid and normal fluid. The Cooper pair condensate constitutes the
superfluid part. The normal fluid comprises single-particle excitations known as
Bogoliubov quasiparticles [62], which are created in pairs as a Cooper pair breaks.
They are composite quasiparticles, superpositions of particle-type and hole-type
Landau quasiparticles near the Fermi surface. For the rest of this chapter, the
word quasiparticle refers specifically to Bogoliubov quasiparticles.

Quasiparticles move like classical particles, but their internal structure (mag-
netic character and particle-hole character) must be treated quantum mechani-
cally. There are a total of eight different types of quasiparticles: one nonmag-
netic, particle-like quasiparticle; one nonmagnetic, hole-like quasiparticle; three
magnetic, particle-like quasiparticles; and three magnetic, hole-like quasiparticles
[63]. The magnetic quasiparticles play a central part, for example, in the study of
spin dynamics. However, we neglect these in the following, since we do not study
magnetic effects.

The mass m∗ of a quasiparticle is equal to the mass of a Landau quasiparticle.
It is related to the Fermi momentum pF and the Fermi velocity vF by pF = m∗vF ,
and to the first symmetric Fermi liquid parameter F s1 by m∗/m = 1 + F s1 /3. The
energy of a quasiparticle with momentum p near the Fermi surface is given by
[20]

ε(p) =
√

[ξp + u(p̂)]2 + |∆(p̂)|2 + a(p̂). (3.1)

Here, u and a are the symmetric [u(−p̂) = u(p̂)] and antisymmetric [a(−p̂) =
−a(p̂)] parts of the quasiparticle potential, respectively, |∆| is the magnitude of
the superfluid energy gap [with symmetry |∆(−p̂)| = |∆(p̂)|], and ξp ≈ vF (p−pF ).
The quasiclassical approximation assumes that all the relevant energies are small
compared to the Fermi energy εF = pF vF /2, so that u, a, |∆|, ξp � εF . Figure
3.1 shows a schematic picture of the dispersion relation ε(p) as a function of p at
fixed p̂. We see from Eq. (3.1) that the minimum energy of a quasiparticle in the



3.1. BACKGROUND 41

p

ε(p)

pF

|∆(p̂)|
a(p̂)
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Figure 3.1: A schematic representation of the energy spectrum (3.1) at fixed p̂.
We have denoted ũ(p̂) = u(p̂)/vF . There are two branches in the spectrum.
The quasiparticles from the branch B1 are particle-like, and their group velocities
point along p̂. The quasiparticles from the branch B2 are hole-like, and their
group velocities point along −p̂.

direction p̂ is |∆(p̂)|+ a(p̂). This is attained at the Fermi surface ξp + u(p̂) = 0,
where p = pF (1− u/2εF ) ≈ pF . Note that the symmetric quasiparticle potential
u shifts the Fermi surface slightly from pF . In general, u, a, and |∆| can also
depend on position and time. We discuss how to calculate them in Sec. 3.3.

The motion of a quasiparticle can be determined by treating the energy (3.1)
as an effective Hamiltonian [64]. The equations of motion are then the familiar
Hamiltonian equations [52]

q̇ =
∂ε

∂p
, (3.2)

ṗ = − ∂ε
∂q
, (3.3)

where q denotes the position of the quasiparticle. Equation (3.2) shows that the
quasiparticle moves at group velocity

vG =
∂ε

∂p
≈ vF

ξp + u√
(ξp + u)2 + |∆|2

p̂. (3.4)

Here, we have kept only the leading order terms in small quantities u/εF , a/εF ,
|∆|/εF , and ξp/εF , in the spirit of the quasiclassical approximation. We see that
the magnitude of the group velocity is of the order of the Fermi velocity vF
(assuming that the quasiparticle is not directly at the Fermi surface). Outside
the Fermi surface, ξp + u > 0, the quasiparticles are particle-like. Their group
velocities point along p̂. We say that these belong to branch B1. Inside the Fermi
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surface, ξp + u < 0, the quasiparticles are hole-like, and their group velocities
point in the direction opposite to p̂. We say that these belong to branch B2. The
two branches are also indicated in Fig. 3.1.

How does the momentum of a quasiparticle change as it moves around? This
can be determined from Eq. (3.3). Let us assume that u, a, and |∆| are of the
order of the B phase energy gap ∆B (or any energy of similar magnitude), and that
they vary in space at length scale r (we neglect time dependence for simplicity).
It takes time δt ∼ r/vF for the quasiparticle to travel the distance r. A short
calculation using Eq. (3.3) shows that |ξ̇p| ∼ vF∆B/r and | ˙̂p| ∼ ∆B/pF r. We can
therefore estimate that the quantities ξp and p̂ change by |δξp| ∼ |ξ̇p|δt ∼ ∆B

and |δp̂| ∼ | ˙̂p|δt ∼ ∆B/pF vF � 1, respectively, as the quasiparticle moves.
This shows that the relative change in ξp can be large, but the direction p̂ is
more or less constant. In the absence of explicit time dependence, the energy
of the quasiparticle remains constant during the motion, and so ξp can also be
determined directly from Eq. (3.1).

The spatial dependence of a or |∆| can lead to an interesting phenomenon
known as Andreev reflection [65]. It is possible that a quasiparticle with energy
ε (which is constant in the absence of explicit time dependence) heads towards
a region where |∆| + a > ε. According to Eq. (3.1), however, this condition is
impossible to fulfill, and so the quasiparticle cannot enter such a region. Instead,
it is reflected at the boundary |∆| + a = ε. The reflection is an unusual one.
In an ordinary reflection from a solid boundary, the normal component of the
momentum of the quasiparticle would flip. In an Andreev reflection, however, the
momentum changes only slightly, from one side of the Fermi surface to the other,
so that the branch of the quasiparticle changes from B1 to B2, or vice versa.
Consequently, Eq. (3.4) shows that the group velocity is reversed, and thus the
quasiparticle undergoes a retroreflection, avoiding the restricted region. A good
review on Andreev reflection in superfluid 3He can be found in Ref. [66].

The quasiparticle states in the phase space are occupied according to the
distribution function n(p, r, t). In thermal equilibrium, this is given by the Fermi
distribution [20], n = 1/(1+eε/kBT ), where ε is defined by Eq. (3.1). Instead of the
momentum p, it is often convenient to choose the energy ε and the direction of the
momentum p̂ as the independent variables. The relation between p and ε is given
by Eq. (3.1). We see that (see also Fig. 3.1) for a given energy ε > |∆|+a, there are
two values of p which satisfy the equation, p = p± = pF ±

√
(ε− a)2 − |∆|2/vF −

u/vF . Here, p+ corresponds to the branch B1, while p− corresponds to the branch
B2. This means that we need separate distribution functions for the two branches.
We denote these by nB1(p̂, ε, r, t) and nB2(p̂, ε, r, t). Note that these are physically
meaningful only when ε ≥ a(p̂, r, t) + |∆(p̂, r, t)|. In thermal equilibrium, nBi =
1/(1 + eε/kBT ).
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3.1.2 Semiconductor and excitation pictures

So far, we have described the superfluid state using the so-called quasiparticle
picture, where the reference state is the pure superfluid (no normal fluid present).
A single quasiparticle with momentum p changes the momentum of the system by
p and the energy by ε(p). The change in energy can be either positive or negative:
even though the square root in Eq. (3.1) is always positive, negative a can result
in negative ε.

Another way to describe the superfluid state is to use the so-called semicon-
ductor picture [67]. In the semiconductor picture, for every quasiparticle state S
with momentum p, energy ε, and branch i (= 1, 2), there is a corresponding state
S̃ with momentum −p, energy −ε, and branch 3 − i. If a state S is empty, the
corresponding state S̃ is full, and vice versa. The number of states has therefore
doubled compared to the quasiparticle picture, but the physical information is
still the same. In pure superfluid, the states S̃ are filled, while the states S are
empty. The energy spectrum is given by

ε(p) = ±
√

[ξp + u(p̂)]2 + |∆(p̂)|2 + a(p̂). (3.5)

Here, the branch with the plus sign in front of the square root represents the
states S, while the branch with the minus sign represents the states S̃. Figure 3.2
shows a schematic picture of the spectrum (3.5) as a function of p at fixed p̂. Note
that, in Fig. 3.2, the states B2 (B1) in the lower part of the spectrum are not the
ones corresponding to the states B1 (B2) in the upper part of the spectrum since
both have the same direction of momentum p̂.

Just as in the quasiparticle picture, we introduce distribution functions to
specify how the states are occupied. We denote these (in the energy representa-
tion) by φB1(p̂, ε, r, t) and φB2(p̂, ε, r, t). Equation (3.5) shows that ε ≥ a + |∆|
for states S, while ε ≤ a − |∆| for states S̃. This means that the distribution
functions are physically relevant only when |ε− a(p̂, r, t)| ≥ |∆(p̂, r, t)|. We talk
more about the distribution functions in Sec. 3.3.

In the semiconductor picture, each physical state is taken into account twice,
since saying that a state S is full is equivalent to saying that the corresponding
state S̃ is empty, and vice versa. This problem is avoided in the quasiparticle pic-
ture by considering only the states S. A third way to describe the superfluid state,
also avoiding the double representation, is to use the semiconductor picture, but
to consider only the states with non-negative energies, that is, excitations. This is
called the excitation picture [67]. In the excitation picture, the reference state is
the true zero-temperature ground state. The energy spectrum is still given by Eq.
(3.5), but only the states whose energy is greater than or equal to zero are taken
into account. The distribution functions are the same as in the semiconductor
picture, but restricted to ε ≥ 0. Figure 3.3 shows the difference between the three
pictures. If |a| ≤ |∆|, the quasiparticle picture and the excitation picture are
identical. If |a| > |∆|, all pictures differ from each other.
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Figure 3.2: A schematic representation of the energy spectrum in the semicon-
ductor picture, Eq. (3.5), at fixed p̂. We have denoted ũ(p̂) = u(p̂)/vF .

3.2 Pair breaking by a moving object

We are ready for a qualitative discussion of the problem. We are interested in
the force exerted on an object moving in a zero-temperature superfluid. More
specifically, the object we study is a long, circular cylinder of radius R, moving
at constant velocity perpendicular to its axis. Let us define two frames of ref-
erence. The laboratory frame is the frame in which the superfluid is at rest in
the absence of the moving object. We fix the Cartesian coordinate axes of the
laboratory frame so that ẑ points along the cylinder axis and the velocity of the
cylinder is v = vx̂. The object frame is the rest frame of the cylinder, with the
origin at the centre of the cylinder. We choose the basis vectors of the Cartesian
coordinate system to coincide with those of the laboratory frame. In addition to
the Cartesian coordinate system, we introduce the standard cylindrical coordinate
system (r, ϕ, z) in the object frame. Due to the length of the cylinder, we can
assume that the system is translationally invariant in the z direction, and thus
no physical variables depend on z. In order to simplify the discussion, we assume
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Figure 3.3: A comparison between the energy spectra ε(p) in different pictures
of superfluidity. We plot ε(pp̂) with fixed direction p̂ as a function of p in the
quasiparticle picture [Eq. (3.1)] assuming (a) 0 < a(p̂) < |∆(p̂)| and (d) a(p̂) >
|∆(p̂)|; in the semiconductor picture [Eq. (3.5)] assuming (b) 0 < a(p̂) < |∆(p̂)|
and (e) a(p̂) > |∆(p̂)|; and in the excitation picture [Eq. (3.5), ε ≥ 0] assuming
(c) 0 < a(p̂) < |∆(p̂)| and (f) a(p̂) > |∆(p̂)|.

that the gap is isotropic, |∆(p̂)| = ∆.

What causes the drag on an object as it moves through the superfluid? In
general, the force arises from exchange of momentum between the object and
the fluid. For example, if a quasiparticle with momentum p collides with the
object and as a result scatters to a state with momentum p̃, conservation of
momentum requires that the momentum of the object changes by δP = p − p̃.
If there is, on average, one such collision in a time interval δt, the average force
exerted on the object by the fluid is F = δP /δt. To maintain constant velocity,
one needs to apply an external force −F on the object. In addition to colliding
quasiparticles, momentum is also exhanged if the object breaks Cooper pairs,
thus creating quasiparticles which carry momentum. It is important to note,
however, that creating bound quasiparticles does not contribute to the force, at
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least significantly. A bound quasiparticle does not have enough energy to escape
from the vicinity of the object to the bulk superfluid. Instead, it undergoes an
Andreev reflection at some point along its trajectory. As we discussed in Sec.
3.1.1, Andreev reflection reverses the group velocity of the quasiparticle without
affecting the direction of momentum. The magnitude of the momentum changes
from one side of the Fermi surface to the other, but the amount of change is
minuscule compared to the Fermi momentum pF . After the Andreev reflection,
the quasiparticle returns to the object, giving back the momentum that was lost
at the emission.

Let us first consider a microscopically thin cylinder with radius R� ξ0. The
cylinder acts as a strong perturbing potential for the superfluid, and is able to
break Cooper pairs. The situation here is similar to the case of an ion, see, for
example, Refs. [68, 20, 69]. The gap is suppressed from the bulk value ∆ in
the immediate vicinity of the cylinder (at distances . ξ0). This means that, in
addition to the bulk quasiparticle states, there are also bound quasiparticle states
near the object. We shall neglect the bound states, since they do not contribute
to the force or affect the critical velocity [69].

Let us consider the process of Cooper pair breaking in an inertial frame of
reference initially coinciding with the object frame. As a pair breaks, two quasi-
particles are created with momenta p1 and p2, and energies ε(p1) and ε(p2). If
the process is elastic, both momentum and energy are conserved,

0 = Mδv + p1 + p2, (3.6)

0 =
1

2
Mδv2 + ε(p1) + ε(p2). (3.7)

Here, M is the mass of the cylinder and δv denotes the change in the velocity of
the cylinder. Eliminating δv, we obtain

ε(p1) + ε(p2) = −|p1 + p2|2
2M

. (3.8)

The energies ε(pi) are naturally measured in units of ∆. Let us compare the
magnitude of the right-hand side to ∆. First of all, we can approximate pi ≈ pF ,
and so |p1 + p2|2/2M∆ ∼ p2

F /M∆ = 2(εF /∆)(m∗/M). The ratio of the Fermi
energy to the energy gap is εF /∆ ∼ 103. The ratio m∗/M , on the other hand,
should be many orders of magnitude smaller than unity. For example, assume
that the radius of the cylinder is ∼ 1 nm, the density of the cylinder is ∼ 103

kg/m3, and the length of the cylinder is ∼ 1 cm. Then M ∼ 10−17 kg, and thus
m∗/M ∼ 10−9. In any case, |p1 + p2|2/2M is vanishingly small compared to ∆,
and can be simply neglected. This leads to the condition

ε(p1) + ε(p2) = 0. (3.9)

We find in Sec. 3.3.2 that u = 0 and a = −pFv·p̂ in the object frame, meaning that

ε(p) =
√
ξ2
p + ∆2 − pFv · p̂. The minimum energy of a quasiparticle is therefore
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Figure 3.4: Cooper pair breaking by a moving object in (a) the quasiparticle
picture and (b) the excitation picture, seen from the rest frame of the object.
In the quasiparticle picture, the pair breaking creates two quasiparticles with
opposite energies. In the excitation picture, the pair breaking can be represented
as an elastic scattering of an excitation.

∆−pF v, and it is attained at p = pF , p̂ = v̂. Equation (3.9) can be satisfied only
if this minimum energy is less than or equal to zero. This is the case if v ≥ vL,
where

vL =
∆

pF
(3.10)

is the Landau velocity [42]. At velocities larger than vL, Eq. (3.9) shows that
quasiparticles can be created at energies ∆−pF v ≤ ε ≤ pF v−∆. At fixed energy
ε, quasiparticles can be created in a cone p̂ · v̂ ≥ (∆− ε)/pF v.

In the excitation picture, a filled quasiparticle state S with negative energy −ε
is represented by an empty excitation state S̃ with positive energy ε (with opposite
momentum and branch). This means that pair breaking can be represented as a
simple elastic scattering from a filled, positive-energy state S̃ to an empty state
S with equal energy. Figure 3.4 shows an example pair breaking process in both
the quasiparticle picture and the excitation picture.

Let us consider a macroscopic cylinder with radius R � ξ0. Similar to the
microscopic cylinder, the macroscopic cylinder can break Cooper pairs. The gap is
suppressed within approximately a coherence length from the surface [19, 20, 1].
We call this region the surface layer. Due to the gap suppression, there are
bound quasiparticle states in the surface layer. Unlike the microscopic cylinder,
the macroscopic cylinder also affects the fluid outside the surface layer. If the
cylinder moves, it has to push the fluid from its path. Conservation of mass then
leads to spatial variation of the flow field in a region of size ∼ R around the
cylinder. We call this the near region. At distances r � R, the fluid is unaffected
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Figure 3.5: Flow around a macroscopic cylinder as seen from the rest frame of
the cylinder.

by the cylinder. We call this the far region.

As long as no quasiparticles can escape the surface layer, the superfluid velocity
field outside the surface layer is that of an irrotational, incompressible ideal fluid
(at zero temperature, the only source of quasiparticles is the cylinder). Seen from
the object frame, the flow is static and the superfluid velocity is given by [70, 71]

vs = v cosϕ

(
R2

r2
− 1

)
r̂ + v sinϕ

(
R2

r2
+ 1

)
ϕ̂. (3.11)

The symmetric and antisymmetric quasiparticle potentials for ideal fluid are u = 0
and a = pFvs · p̂, as we show in Sec. 3.3.2. The flow velocity at top and bottom
surfaces (r = R, ϕ = ±π/2) is 2v, and thus the flow remains ideal up to v =
vL/2. At higher velocities, quasiparticles are generated by the cylinder in regions
on the surface where the local flow velocity exceeds the Landau velocity. The
quasiparticles modify the flow field, making it non-ideal although still irrotational.
Furthermore, the form of a becomes more complicated. We shall consider two
approximations to calculate the flow field (by which we mean both vs and a) in
the following sections. The main point here, however, is the fact that the flow
field varies in space in the near region. Figure 3.5 shows an illustration of the flow
field seen form the object frame.

Consider a straight-line trajectory r = r0+sp̂, s ∈ R, where r0 is a point on the
surface of the cylinder. An example trajectory is shown in Fig. 3.5. A quasiparticle
with momentum direction ±p̂ will travel along this trajectory, unless it collides
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Figure 3.6: Possible variation of a + ∆ along the trajectory shown in Fig. 3.5.
The quasiparticle states are divided into different categories, denoted by K, L,
M , and N . Quasiparticles in category M are able to move freely between the
surface of the cylinder and the far region. Quasiparticles in category N cannot
reach the surface of the cylinder. Quasiparticles in category L cannot reach the
far region. Finally, quasiparticles in category K are localised somewhere in the
flow field. They can reach neither the surface of the cylinder nor the far region.

with another quasiparticle. Figure 3.6 shows a possible variation of a + ∆ along
the trajectory. Since a + ∆ is the local minimum energy of a quasiparticle, no
quasiparticle states exist below the curve ε = a+ ∆. The variation of a along the
trajectory divides the quasiparticle states into different categories, denoted by K,
L, M , and N in the figure. This has two important implications.

First of all, the flow field can shield the cylinder from incoming quasiparticles.
If a quasiparticle (of type B2 in Fig. 3.6) from category N approaches the cylinder
from the far region, it is Andreev reflected before it can reach the surface. Only
quasiparticles with high enough energy (category M) are able to collide with the
cylinder. The effect of spatially varying flow field on the damping force due to
thermal quasiparticles has been studied in Refs. [72, 73, 74, 75].

The second consequence, more important to us since there are no thermal
quasiparticles at zero temperature, is that not all quasiparticles created by the
cylinder can escape from the near region, not even if their energy would be suffi-
cient for them to exist in the far region. Consider the example trajectory depicted
in Fig. 3.6. The minimum energy that a quasiparticle created by the surface can
have is ε2. At energies ε2 ≤ ε ≤ ε3 (category L), the quasiparticles are bound to
the near region because they do not have enough energy to overcome the poten-
tial barrier formed by a+ ∆. These do not contribute to the force exerted on the
cylinder. Only at higher energies (ε > ε3, category M) are the quasiparticles able
to escape to the far region, thus transferring momentum away from the cylinder.



50 CHAPTER 3. MOVING CYLINDER IN SUPERFLUID 3HE

Let us denote v0 = vs(r0). As we have already seen before, if the magnitude of
v0 exceeds the Landau velocity, Cooper pair breaking and quasiparticle creation
become energetically possible at energies ∆ − pF v0 ≤ ε ≤ pF v0 −∆ (we use the
ideal fluid value a = pFvs · p̂ for simplicity). It would therefore appear that if
pF v0 − ∆ exceeds ε3, the moving cylinder creates quasiparticles of category M ,
and thus the critical velocity for the cylinder is the smallest velocity at which
ε3 ≤ pF v0 −∆, with all positions r0 and directions p̂ taken into account. There
is, however, a catch. In order to create a quasiparticle with energy ε > 0, one
also has to create a quasiparticle with energy −ε < 0, see Eq. (3.9). Due to their
fermionic nature, two quasiparticles cannot occupy the same state simultaneously
(Pauli exclusion principle). This implies that if all the states with energy −ε are
already full, it is impossible to break a Cooper pair in a manner which produces
a quasiparticle with energy ε. As a consequence, in steady state, the cylinder can
break a Cooper pair only if the created quasiparticles both belong to category M .
If either one would belong to category L, it would be a bound quasiparticle, and
this state would already be filled during the transient phase, preventing further
pair breaking. If both quasiparticles belong to category M , they are able to escape
to the far region, therefore emptying the states, and thus enabling further pair
breaking. This is possible only if ε3 ≤ 0. The true critical velocity for the cylinder
is thus the smallest velocity at which ε3 changes from positive to negative, with
all positions r0 and directions p̂ taken into account.

As an example, let us consider the ideal flow field [a = pFvs · p̂ and vs is
given by Eq. (3.11)]. The energy ε3 is defined as the maximum of a + ∆ along
the trajectory r = r0 + sp̂ (see Fig. 3.6), and thus depends on r0, p̂, and v. For
example, if r0 = Rŷ and p̂ = x̂, then a = pF vR

2(s2 −R2)/(s2 +R2)2 − pF v and
thus ε3 = ∆ − 7pF v/8 (attained at s =

√
3R). The condition ε3 ≤ 0 is satisfied

if v ≥ 8vL/7, and thus the critical velocity for the trajectory with r0 = Rŷ
and p̂ = x̂ is 8vL/7. Similarly, one can calculate the critical velocity for every
trajectory, and the critical velocity vc for the cylinder is the smallest of these. We
find (numerically) that vc ≈ 1.12vL.

We have therefore seen that the Landau velocity is the critical velocity for a
microscopic cylinder with radius R � ξ0, but it is completely possible that the
critical velocity is larger than vL for a macroscopic cylinder with radius R� ξ0.

3.3 Theory

In this section, we introduce the equations which determine the distribution func-
tions φBi, the quasiparticle potentials u and a, the gap |∆|, the superfluid ve-
locity vs, and the force F exerted on an object moving in the superfluid; see
Refs. [20, 63, 76] for details. We apply these equations to the B phase at zero
temperature, and discuss the approximations we use in the studies of the moving
cylinder.
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3.3.1 Equations

In the semiconductor picture, states are occupied according to the distribution
functions φB1(p̂, ε, r, t) and φB2(p̂, ε, r, t). In order to keep the notation simpler,
we do not show the dependence on r and t explicitly. Due to the double rep-
resentation of the physical states, the distribution functions obey the relation
φB2(p̂, ε) = −φB1(−p̂,−ε). The physically relevant region for the distribution
functions is |ε− a(p̂)| ≥ |∆(p̂)|. Since the two branches coincide if |ε− a| = |∆|,
the distribution functions obey the boundary condition φB1(p̂, a(p̂) ± |∆(p̂)|) =
φB2(p̂, a(p̂)±|∆(p̂)|). This condition also takes into account Andreev reflections.
The quasiparticle distribution functions nBi are related to φBi by nBi = φBi+1/2.
If the magnetic degrees of freedom are taken into account, one needs two additional
vector distribution functions φB1(p̂, ε) and φB2(p̂, ε). The equilibrium distribu-
tions at temperature T are φBi = − tanh(ε/2kBT )/2. At zero temperature, these
reduce to φBi = 1/2 − θ(ε), where θ(x) is the unit step function. If we make a
Galilei transformation to a moving frame with velocity v, v � vF , the distribution
functions transform as φBi(p̂, ε) → φBi(p̂, ε + pF p̂ · v). The density of states, in
units of the normal state density of states 2N(0) = m∗pF /π

2~3, is given by [20]

N(p̂, ε) = ν(p̂, ε)Θ(p̂, ε), (3.12)

where we have defined

Θ(p̂, ε) = θ([ε− a(p̂)]2 − |∆(p̂)|2), (3.13)

ν(p̂, ε) =
|ε− a(p̂)|√

[ε− a(p̂)]2 − |∆(p̂)|2
. (3.14)

The distribution functions obey the Boltzmann-like transport equations [20]

∂φB1

∂t
+

(
ν−1∂u

∂t
+
∂a

∂t
+
|∆|
ε− a

∂|∆|
∂t

)
∂φB1

∂ε
+ ν−1vF p̂ ·∇φB1 = IB1, (3.15)

∂φB2

∂t
−
(
ν−1∂u

∂t
− ∂a

∂t
− |∆|
ε− a

∂|∆|
∂t

)
∂φB2

∂ε
− ν−1vF p̂ ·∇φB2 = IB2. (3.16)

Here, IBi = IBi(φB1, φB2) are the collision integrals, the definitions of which can
be found in Ref. [20]. The quasiparticle potentials u and a are symmetric and
antisymmetric, respectively, in p̂, that is, u(−p̂) = u(p̂) and a(−p̂) = −a(p̂). The
energy gap |∆| is symmetric in p̂, that is, |∆(−p̂)| = |∆(p̂)|. It is related to the
order parameter A through [20]

|∆(p̂)|2 = p̂ · A†A · p̂. (3.17)

The quasiparticle potentials u and a, and the order parameter A, obey the self-
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consistency equations [20]

u(p̂) =
U

1 + F s0

+
1

2

∫
dΩ′p
4π

As(p̂ · p̂′)
∫ Ec

−Ec

dεΘ(p̂′, ε)[φB1(p̂′, ε)− φB2(p̂′, ε)], (3.18)

a(p̂) = −vFA · p̂

+
1

2

∫
dΩ′p
4π

As(p̂ · p̂′)
∫ Ec

−Ec

dεN(p̂′, ε)[φB1(p̂′, ε) + φB2(p̂′, ε)], (3.19)

A = −3

2
V1A ·

∫
dΩ′p
4π
p̂′p̂′

∫ Ec

−Ec

dε
N(p̂′, ε)

ε− a(p̂′)
[φB1(p̂′, ε) + φB2(p̂′, ε)]. (3.20)

Here, Ec is the weak-coupling cut-off energy satisfying |a|+ |∆| � Ec � εF . The
parameter V1 describes the strength of the effective attractive interaction between
Landau quasiparticles. The scalar and vector potentials U and A are given by

U = Uext +
~
2
ψ̇, (3.21)

A = Aext −
~
2
∇ψ, (3.22)

where Uext and Aext are the external potentials, and ψ is the phase, related to
the superfluid velocity via

vs =
~

2m
∇ψ. (3.23)

The coefficient As is defined by

As(p̂ · p̂′) =

∞∑
l=0

F sl
1 + F sl /(2l + 1)

Pl(p̂ · p̂′), (3.24)

where Pl(x) are Legendre polynomials and F sl are symmetric Fermi liquid pa-
rameters. Finally,

∫
dΩ′p denotes integration over the unit sphere of directions

p̂′.

The phase ψ is also a dynamical variable, and so we need an additional equa-
tion to determine its motion. This is the continuity equation [20]

ρ̇+ ∇ · j = 0, (3.25)

where ρ is the mass density,

ρ =
mp3

F

3π2~3
− 2mN(0)

1 + F s0
U

+
mN(0)

1 + F s0

∫
dΩp

4π

∫ Ec

−Ec

dεΘ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)],

(3.26)
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and j is the mass current density,

j = mvFN(0)

∫
dΩp

4π
p̂

∫ Ec

−Ec

dεN(p̂, ε)[φB1(p̂, ε) + φB2(p̂, ε)]. (3.27)

Once the distribution functions, the quasiparticle potentials, and the order

parameter are known, one can calculate the stress tensor
↔
Π [76],

↔
Π = vF pFN(0)

∫
dΩp

4π
p̂p̂

∫ Ec

−Ec

dεΘ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)]. (3.28)

The force exerted on a surface A is given by the surface integral

F =

∫
A
dA ·

↔
Π. (3.29)

3.3.2 Application to the B phase

Let us apply the theory to the B phase at zero temperature. The order parameter
of the B phase is given by Eq. (2.1). Consequently, Eq. (3.17) implies that |∆(p̂)| =
∆B. We study steady state, and assume that there are no external potentials
present. Equations (3.21), (3.22), and (3.23) show that U = 0 and A = −mvs.

If the fluid is at rest and in thermal equilibrium, then vs = 0 and φBi =
1/2− θ(ε). The transport equations (3.15) and (3.16) are automatically satisfied,
since the distribution functions are of the local equilibrium form, and therefore
the collision integrals vanish [20]. The self-consistency equations (3.18), (3.19),
and (3.20) are solved by u = a = 0, provided that ∆B satisfies the familiar
zero-temperature, weak-coupling gap equation [1]

V −1
1 = − log

(
∆B

2Ec

)
. (3.30)

Using these, Eqs. (3.26) and (3.27) imply that ρ = mp3
F /3π

2~3 and j = 0, and so
the continuity equation (3.25) is satisfied. Equation (3.28) shows that the stress

tensor vanishes,
↔
Π =

↔
0 .

If this same fluid is observed from a frame of reference moving at velocity v
with respect to the fluid, then vs = −v and φBi = 1/2 − θ(ε + pF p̂ · v). The
transport equations are again automatically satisfied, and the self-consistency
equations are solved by u = 0 and a = −pFv · p̂, provided that ∆B satisfies the
gap equation (3.30). The mass density, the mass current density, and the stress

tensor are given by ρ = mp3
F /3π

2~3, j = −(2/3)mvF pFN(0)v, and
↔
Π =

↔
0 . The

continuity equation is satisfied. Note that by setting v = 0, we obtain the same
results as above.

If, on the other hand, the fluid is in thermal equilibrium in the moving frame,
then vs = −v and φBi = 1/2 − θ(ε). Everything is identical to the previous
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situation provided the velocity is less than the Landau velocity vL. At higher
velocities, Eqs. (3.18), (3.19), and (3.20) have no self-consistent solution if we
assume that the order parameter is of the B phase form (2.1). In this case, the
order parameter is modified so that the gap is suppressed along the flow. Details
can be found in Refs. [22, 23].

Finally, ideal fluid is fluid where there are no quasiparticles present. This
can be modelled by setting φBi = 1/2 − θ(ε − a), since this implies nBi = 0 for
ε ≥ a+∆B. The transport equations (3.15) and (3.16) are automatically satisfied.
The self-consistency equations (3.18), (3.19), and (3.20) are solved by u = 0 and
a = pFvs · p̂ if ∆B satisfies the gap equation (3.30). The mass density and the
mass current density are given by ρ = mp3

F /3π
2~3 and j = (2/3)mvF pFN(0)vs,

and so the continuity equation (3.25) is satisfied if ∇ · vs = 0, or

∇2ψ = 0. (3.31)

The stress tensor vanishes.

3.3.3 Approximations

Solving Eqs. (3.15), (3.16), (3.18), (3.19), (3.20), and (3.25) in the case of the
macroscopic cylinder is necessarily a numerical task. In order to reduce the com-
plexity of the problem, we make several assumptions. First of all, we study static
flow (in the object frame) at zero temperature. We assume that there are no
external potentials, and that the only non-vanishing symmetric Landau param-
eters are F s0 and F s1 . Finally, we assume that there are no collisions between
quasiparticles, IBi = 0, and that the magnitude of the energy gap is constant,
|∆(p̂, r)| = ∆. We return to the effect of collisions briefly in Sec. 3.7, where we
study whether it is possible that quasiparticle collisions could lead to a situation
in which the quasiparticle states in the near region are in thermal equilibrium in
the object frame.

Assuming static flow and no collisions between quasiparticles, the transport
equations (3.15) and (3.16) reduce to

p̂ ·∇φBi = 0. (3.32)

Thus, at fixed ε and p̂, the distribution functions φBi are piecewise constant
along straight-line trajectories r = r0 + sp̂, s ∈ R. The reason they are piecewise
constant, not simply constant, is that there might be some regions along the
trajectory where |ε− a| < |∆|. This is an unphysical region in which φBi are not
well-defined. In Fig. 3.6, this happens at energies just below ε3, where part of
the trajectory is in region L, part of the trajectory is in region N , and there is a
forbidden region between the two.

Since only F s0 and F s1 are non-zero, Eqs. (3.18) and (3.19) imply that the
quasiparticle potentials can be written as u(p̂, r) = u(r) and a(p̂, r) = α(r) · p̂,
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with

u =
1

2

F s0
1 + F s0

∫
dΩp

4π

∫ Ec

−Ec

dεΘ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)], (3.33)

α = mvFvs +
1

2

F s1
1 + F s1 /3

∫
dΩp

4π
p̂

∫ Ec

−Ec

dεN(p̂, ε)[φB1(p̂, ε) + φB2(p̂, ε)]. (3.34)

Equation (3.33) is no longer a self-consistency equation, since the right-hand side
is independent of u due to the simpler form of the transport equation (3.32). It
is therefore not needed for solving the flow field. It is convenient to express Eq.
(3.34) in terms of nBi. Substituting φBi = nBi − 1/2 and simplifying, we obtain

α = pFvs + F s1 I, (3.35)

where

I =

∫
dΩp

4π
p̂

∫ Ec

a(p̂)+∆
dεN(p̂, ε)[nB1(p̂, ε) + nB2(p̂, ε)]. (3.36)

If there are no quasiparticles present, then nBi = 0, and hence I = 0. The
vector field α can be interpreted as the effective velocity field influencing the
quasiparticles.

For static flow, the continuity equation (3.25) reduces to

∇ · j = 0. (3.37)

We can express the mass current density (3.27) in terms of I as

j =
2

3
mvFN(0)(α+ 3I). (3.38)

Thus, mass is carried by both the condensate (α) and by quasiparticles (3I).

3.4 Mesoscopic boundary condition

To study an object moving in superfluid 3He, we need a boundary condition to
describe the effect of the object on the distribution functions φBi. A detailed
model would study the surface layer (or the similar region around a microscopic
cylinder), but this can lead to complicated analysis. The complications generally
arise from the fact that a quasiparticle scattered from the surface of the object
is not necessarily able to escape the surface layer, but can instead be Andreev
reflected back to the surface from the surface layer. This process can occur multi-
ple times in succession. Some examples of such calculations can be found in Refs.
[63, 77, 78, 79, 80, 81].

We are not interested in the details of the complex processes occurring in the
surface layer. Instead, we would like to formulate a boundary condition that cap-
tures the essential features as seen outside the surface layer, that is, at mesoscopic
scale. In this section, we introduce a simple mesoscopic boundary condition that
describes diffuse, elastic scattering of quasiparticles from the surface, satisfies con-
servation of mass and excitation number [76], and takes into account pair breaking
at velocities above the Landau velocity (or, more accurately, when α > ∆).
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3.4.1 Planar wall

Let us first formulate the boundary condition for a piece of planar wall with unit
normal n̂. This could, for example, be a portion of the surface of a macroscopic
cylinder. We work in the rest frame of the wall, and use the excitation picture. The
boundary condition should express the distribution functions φBi of excitations
leaving the the surface layer (scattered excitations, n̂ · p̂ > 0 for excitations of
type B1 and n̂ · p̂ < 0 for excitations of type B2) in terms of the distribution
functions of excitations entering the surface layer (incident excitations, n̂ · p̂ < 0
for excitations of type B1 and n̂ · p̂ > 0 for excitations of type B2).

What properties should the boundary condition satisfy? Conservation of mass
[Eq. (3.37)] tells us that no mass should flow through the wall. Conservation of
excitation number [76] states that no excitations should flow through the wall. If
a quasiparticle with energy ε hits the wall, it should scatter out as a quasiparticle
with equal energy, but with random direction and possibly a different branch.
Finally, once the velocity of the wall with respect to the fluid reaches the Landau
velocity (or, more accurately, when the magnitude of α reaches ∆), the wall should
start to break Cooper pairs. It turns out that these conditions are satisfied if

n̂ · j(ε) = 0, (3.39)

n̂ · je(ε) = 0. (3.40)

Here, j(ε) and je(ε) are the mass current density per unit energy and the excitation
number current density per unit energy, respectively. They are defined as [76]

j(ε) = mvFN(0)

∫
dΩp

4π
p̂N(p̂, ε)[φB1(p̂, ε) + φB2(p̂, ε)], (3.41)

je(ε) = vFN(0)

∫
dΩp

4π
p̂Θ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)]. (3.42)

Note that by integrating j(ε) over energy from −Ec to Ec, one obtains the mass
current density (3.27). The energy integral of je(ε), on the other hand, vanishes
identically due to the identity φB2(p̂, ε) = −φB1(−p̂,−ε). This shows that the
excitation number current density je defined in Eq. (12) of Pub. II is, in fact,
identically zero. This does not, however, affect any results of Pub. II, since we
only used je(ε), not je, in formulating the boundary condition.

Equations (3.39) and (3.40) do not uniquely fix the form of the scattered
distributions, and so there are different possibilities for the boundary condition.
We propose a one where the scattered distributions are given by

φB1(p̂, n̂ · p̂ > 0, ε) = φbcB1(p̂, ε) =
g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
, (3.43)

φB2(p̂, n̂ · p̂ < 0, ε) = φbcB2(p̂, ε) =
g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

]
. (3.44)
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Here, the coefficients A and B are determined by the incident distributions,

A(ε) =

∫
n̂·p̂<0

dΩp|n̂ · p̂|N(p̂, ε)φB1(p̂, ε)−
∫
n̂·p̂>0

dΩp|n̂ · p̂|N(p̂, ε)φB2(p̂, ε),

(3.45)

B(ε) =

∫
n̂·p̂<0

dΩp|n̂ · p̂|Θ(p̂, ε)φB1(p̂, ε) +

∫
n̂·p̂>0

dΩp|n̂ · p̂|Θ(p̂, ε)φB2(p̂, ε),

(3.46)

and g is a normalisation factor,

g−1(ε) =

∫
n̂·p̂>0

dΩpn̂ · p̂Θ(p̂, ε). (3.47)

Equations (3.39) and (3.40) are satisfied if n̂ ·α = 0 and |∆(p̂)| = |∆(p̂)|, where
p̂ = p̂ − 2n̂(n̂ · p̂) is the direction of specular reflection (see App. B for details).
The former condition simply means that there is no superflow through the wall,
as can be seen from Eqs. (3.35) and (3.38). The latter condition restricts the
possible form of the order parameter on the surface, but not too drastically.

Let us study some of the properties of the boundary condition. The incident
distributions enter Eqs. (3.43) and (3.44) only through A and B, where they are
integrated over p̂. This implies diffuse reflection. There can be branch conversion
from B1 to B2 and vice versa. Since the scattered distributions at fixed energy
ε depend on the incident distributions at equal energy, the boundary condition
describes elastic scattering of quasiparticles. Conservation of mass and excitation
number are satisfied, since Eqs. (3.39) and (3.40) hold by construction (see App.
B for details). Consider a situation in which there are no incident quasiparticles
hitting the wall. This can be modelled with distribution functions φBi = 1/2 −
θ(ε − a), since these imply nBi = 0 if ε ≥ a + ∆. Substituting the distributions
into Eqs. (3.45) and (3.46) yields

A(ε) = 0, (3.48)

B(ε) = 2

∫
n̂·p̂>0

dΩp|n̂ · p̂|Θ(p̂, ε)

[
1

2
− θ(ε−α · p̂)

]
. (3.49)

Since A = 0, we find that the scattered distributions (3.43) and (3.44) are equal
and depend only on energy, φbcB1(p̂, ε) = φbcB2(p̂, ε) = φbcBi(ε) = g(ε)B(ε)/2. It is
easy to see that if α ≤ ∆, then φbcBi = 1/2− θ(ε), and there are no quasiparticles
created by the wall. If α > ∆, Cooper pairs start to break. Quasiparticles are
created at energies ∆ − α ≤ ε ≤ α −∆, just as we expect. Figure 3.7 shows the
scattered distributions φbcBi as a function of energy at different values of α.

3.4.2 Microscopic cylinder

In the case of a microscopic cylinder (R � ξ0), we have to modify the boundary
condition slightly due to the small size of the cylinder, just like in the case of the
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Figure 3.7: The scattered distribution functions φbcB1(p̂, ε) = φbcB2(p̂, ε) = φbcBi(ε) =
g(ε)B(ε)/2 for a planar wall as a function of energy, assuming there are no incident
quasiparticles. The distributions are determined by the mesoscopic boundary
condition, Eqs. (3.43) and (3.44)

small object in Pub. II. Instead of requiring n̂ · j(ε) = n̂ · je(ε) = 0 at each point
on the surface of the cylinder, we again require that the conservation laws of mass
and excitation number are satisfied at mesoscopic scale. This can be enforced by
requiring that there is no net flow of mass or excitations through a cylindrical
surface of radius λ ∼ ξ0 � R around the cylinder. Working in the object frame,
this means that ∫

r=λ
dAr̂ · j(ε) = 0, (3.50)∫

r=λ
dAr̂ · je(ε) = 0, (3.51)

where the integrals are over the surface r = λ. Since we assume that the system
is translationally invariant in the z direction, the integration over z produces a
constant, and thus Eqs. (3.50) and (3.51) reduce to∫

r=λ
dsr̂ · j(ε) = 0, (3.52)∫

r=λ
dsr̂ · je(ε) = 0, (3.53)

where the integration is over the circumference of a circle of radius λ. Although λ
is very large compared to R, it is still small compared to the length scale at which
we expect α and A to vary. We therefore assume that α and A are constants on
the circle r = λ.
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p̂⊥

2R

λ

δϕ

Figure 3.8: The two arcs of the circle r = λ under the shaded region indicate the
points where excitations with a fixed direction p̂⊥ travel either towards or away
from a disk of radius R � λ. The angle δϕ = 2 arcsin(R/λ) denotes the angular
diameter of the arcs as seen from the centre of the circle.

The boundary condition should again express the distribution functions of
the excitations created by the cylinder in terms of the incident distributions, but
this time on the surface r = λ. Consider a fixed direction p̂ = p‖ẑ + p⊥, where
p⊥ · ẑ = 0 and p2

‖ + p2
⊥ = 1. The only points on the circle r = λ where p̂ can

be a direction of either a scattered or an incident excitation are shown under the
shaded region in Fig. 3.8. In the limit R/λ→ 0, the region reduces to two points,
r = ±λp̂⊥. We propose a boundary condition

φB1(p̂, ε, λp̂⊥) = φbcB1(p̂, ε) =
g(ε)

2

[
ν−1(p̂, ε)A(ε) +B(ε)

]
, (3.54)

φB2(p̂, ε,−λp̂⊥) = φbcB2(p̂, ε) =
g(ε)

2

[
−ν−1(p̂, ε)A(ε) +B(ε)

]
, (3.55)

where

A(ε) =

∫
dΩpp⊥N(p̂, ε) [φB1(p̂, ε,−λp̂⊥)− φB2(p̂, ε, λp̂⊥)] , (3.56)

B(ε) =

∫
dΩpp⊥Θ(p̂, ε) [φB1(p̂, ε,−λp̂⊥) + φB2(p̂, ε, λp̂⊥)] , (3.57)

g−1(ε) =

∫
dΩpp⊥Θ(p̂, ε), (3.58)

and

p⊥ = p̂− ẑ(ẑ · p̂). (3.59)

This is a straightforward generalisation of the boundary condition of Sec. 3.4.1,
and shares the same properties. More details can be found in App. B.
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Figure 3.9: The scattered distribution functions φbcB1(p̂, ε) = φbcB2(p̂, ε) = φbcBi(ε) =
g(ε)B(ε)/2 for a microscopic cylinder as a function of energy at zero temperature.
The distributions are determined by the mesoscopic boundary condition, Eqs.
(3.54) and (3.55).

3.5 Force exerted on a microscopic cylinder

Let us apply the mesoscopic boundary condition, Eqs. (3.54) and (3.55), to cal-
culate the force exerted on a microscopic cylinder (R � ξ0). Due to its small
size, the cylinder does not affect the flow field at mesoscopic scale. Working in
the object frame, we have vs = −v and α = pFvs. The incident distributions are
φB1(p̂, ε,−λp̂⊥) = φB2(p̂, ε, λp̂⊥) = 1/2− θ(ε+ pFv · p̂). Substituting these into
Eqs. (3.56) and (3.57) yields

A(ε) = 0, (3.60)

B(ε) = 2

∫
dΩpp⊥Θ(p̂, ε)

[
1

2
− θ(ε−α · p̂)

]
. (3.61)

Since A = 0, the scattered distributions (3.54) and (3.55) are equal and depend
only on energy, φbcB1(p̂, ε) = φbcB2(p̂, ε) = φbcBi(ε) = g(ε)B(ε)/2. If v ≤ vL, then
φbcBi = 1/2− θ(ε), and no quasiparticles are created. At higher velocities, Cooper
pairs start to break, and quasiparticles are created at energies ∆ − pF v ≤ ε ≤
pF v − ∆, as expected. Figure 3.9 shows the scattered distributions φbcBi(ε) as a
function of energy at different values of v.

To calculate the force exerted on the cylinder, we integrate the stress tensor
(3.28) over a cylindrical surface of radius λ ∼ ξ0 � R, see App. B for details. The



3.6. FORCE EXERTED ON A MACROSCOPIC CYLINDER 61

force per unit length is given by

f ≈ 2RvF pFN(0)

∫ Ec

−Ec

dε

∫
dΩp

4π
p⊥p̂Θ(p̂, ε)

×
{
− [φB1(p̂, ε,−λp̂⊥) + φB2(p̂, ε, λp̂⊥)]

+ [φB1(p̂, ε, λp̂⊥) + φB2(p̂, ε,−λp̂⊥)]

}
.

(3.62)

Substituting the distributions and simplifying, we obtain

f ≈ 4RvF pFN(0)

∫ Ec

0
dε

∫
dΩp

4π
p⊥p̂Θ(p̂, ε) [g(ε)B(ε)− 1 + 2θ(ε−α · p̂)] .

(3.63)

We find that f = 0 if v ≤ vL. At higher velocities, the force starts to increase.
This shows that the Landau velocity vL is the critical velocity for a microscopic
cylinder. Figure 3.10 shows the force as a function of velocity. The unit of force
used in the figure is

F0 = vF p
2
FN(0)σvL, (3.64)

where σ is the cross section of the object in the plane perpendicular to v (σ = 2Rl
for a cylinder of length l). For the sake of comparison, the figure also shows the
force exerted on a small ion-like object, which we calculated in Sec. IV of Pub.
II. We see that the results are very similar. In both cases, we can calculate
analytically the force in the normal state, Fn, by setting ∆ = 0. As a result, we
obtain

Fn =

{
3π
16 vF p

2
FN(0)σv, Microscopic cylinder,

2
3vF p

2
FN(0)σv, Ion.

(3.65)

An identical result for the ion was also obtained in Ref. [82].

3.6 Force exerted on a macroscopic cylinder

In this section, we study a macroscopic cylinder (R� ξ0). We work in the object
frame. The flow field is determined by the equations of Sec. 3.3.3. Combining
Eqs. (3.35), (3.37), and (3.38), we obtain

α = pFvs + F s1 I, (3.66)

∇2ψ = − 2m

~pF
(3 + F s1 )∇ · I, (3.67)

vs =
~

2m
∇ψ. (3.68)

To calculate I, we need the quasiparticle distribution functions nBi = φBi + 1/2.
Let us consider a point r0 outside the cylinder, and fix a direction p̂. At each
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Figure 3.10: The force exerted on a microscopic cylinder and on an ion as a
function of velocity.

energy ε, the distribution functions are piecewise constants along the straight-line
trajectories r = r0 + sp̂, s ∈ R. This means that the distribution function nBi
at r0 is determined by the origin of quasiparticles along the trajectory. At zero
temperature, the only source of quasiparticles is the cylinder. A quasiparticle
created by the cylinder can arrive to a point r0 either directly or via Andreev
reflection.

As an example, consider a trajectory which intersects the cylinder with p̂
pointing away from the cylinder. Figure 3.6 shows a possible variation of a + ∆
along such a trajectory. In region M , the quasiparticles of type B1 originate from
the cylinder, and thus nB1 = nbcB1 = φbcB1 + 1/2, where φbcB1 is determined by the
mesoscopic boundary condition (3.43). The quasiparticles of type B2, on the other
hand, originate from the far region. Since there are no quasiparticles generated in
the far region, nB2 = 0. In region N , the quasiparticles of type B2 originate from
the far region, and so nB2 = 0. The quasiparticles of type B1 also originate from
the far region, but indirectly. They are initially quasiparticles of type B2 which
travel towards the cylinder from the far region, but are Andreev reflected before
they reach the cylinder. The distribution function nB1 at r0 is therefore equal
to the distribution function nB2 in the far region, that is, nB1 = 0. In region
L, the quasiparticles of type B1 originate from the cylinder, and so nB1 = nbcB1.
The quasiparticles of type B2 originate from the cylinder indirectly via Andreev
reflection, so that nB2 = nbcB1. Finally, there are states in the region K which
are not in contact with either the cylinder or the far region. Instead, they are
localised somewhere in the flow field. Their occupation cannot be determined as
straightforwardly as the occupation of the states we have consider so far. In fact,
the occupation of these states depends on the transient phase, that is, how the
steady state has been achieved. We consider two different models. In model 1,
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the states K are empty with nB1 = nB2 = 0, since after the steady state has
been achieved, these states cannot be filled by the cylinder. However, it could be
possible that the states K are filled, at least to some degree, as the cylinder is
accelerated from rest. This is considered in model 2, where we assume that the
states K are in thermal equilibrium in the object frame, nBi = 1− θ(ε).

The same deduction can be used to determine the distribution functions if p̂
points towards the cylinder. On trajectories which do not intersect the cylinder,
states can only belong to either region N or region K. In region N , there are no
quasiparticles, and so nBi = 0. We assume that the same is true for states K,
since on acceleration, the cylinder can only fill states K if the trajectory intersects
the cylinder.

Substituting the distributions into Eq. (3.36) yields

I =

∫
hit+

dΩp

4π
p̂

[∫ Ec

εmax(p̂)
dε ν(p̂, ε)nbcB1(p̂, ε) + 2

∫ εmax(p̂)

ε2(p̂)
dε ν(p̂, ε)nbcB1(p̂, ε)

]

+

∫
hit−

dΩp

4π
p̂

[∫ Ec

εmax(p̂)
dε ν(p̂, ε)nbcB2(p̂, ε) + 2

∫ εmax(p̂)

ε2(p̂)
dε ν(p̂, ε)nbcB2(p̂, ε)

]

+

∫
hit

dΩp

4π
p̂

[
2

∫ εmin(p̂)

ε0(p̂)
dε ν(p̂, ε)nKBi(p̂, ε)

]
.

(3.69)

Here,
∫

hit+ (
∫

hit−) means integration over trajectories that intersect the cylinder
with n̂ · p̂ > 0 (n̂ · p̂ < 0), n̂ = r̂ is the unit normal to the surface r = R,
and

∫
hit =

∫
hit+ +

∫
hit−. The distribution functions nKBi are the distributions in

region K. The limits of energy integration are defined as ε0(p̂) = a(p̂) + ∆,
ε2(p̂) = amax<(p̂) + ∆, ε3(p̂) = amax>(p̂) + ∆, εmin(p̂) = min{ε2(p̂), ε3(p̂)}, and
εmax(p̂) = max{ε2(p̂), ε3(p̂)}, where amax<(p̂) [amax>(p̂)] is the maximum of a(p̂)
towards (away from) the cylinder along r = r0 + sp̂, and r0 is the point where I
is evaluated.

To proceed, we need to determine the distribution functions nbcBi = φbcBi +
1/2 using the mesoscopic boundary condition of Sec. 3.4.1, see Eqs. (3.43) and
(3.44). To calculate A and B, we need the incident distributions on the surface
of the cylinder. Consider an incident quasiparticle of type B2 with energy ε and
direction p̂ (n̂ · p̂ > 0). A possible situation is again shown in Fig. 3.6. In
region M [ε > ε3(p̂)], the quasiparticle originates from the far region, and thus
nB2 = 0. In region L [ε0(p̂) = ε2(p̂) ≤ ε ≤ ε3(p̂)], the quasiparticle originates
from the cylinder indirectly via Andreev reflection, and so nB2 = nbcB1. These
are quasiparticles bound to the near region. Note that on the surface of the
cylinder, the regions N and K are not relevant. The same argument can be made
for incident quasiparticles of type B1. In this case, nB1 = 0 in region M and
nB1 = nbcB2 in region L.

For the boundary condition, we need to translate the above discussion into the
language of the excitation picture. For every quasiparticle state with energy ε and
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direction p̂, there is a corresponding state with energy −ε and direction −p̂. This
means that the region M satisfies either ε > ε3(p̂) or ε < −ε3(−p̂). We call these
free states. Region L satisfies either ε0(p̂) ≤ ε ≤ ε3(p̂) or −ε3(−p̂) ≤ ε ≤ −ε0(−p̂).
We call these bound states. For free states, the incident distribution functions are
φBi = φ∞Bi = 1/2 − θ(ε + pFv · p̂). For bound states, the incident distribution
functions are φB1 = φbcB2 and φB2 = φbcB1. Substituting the incident distributions
into Eqs. (3.45) and (3.46), and simplifying a bit, we obtain a system of self-
consistency equations for A and B,∫

free
dΩpn̂ · p̂ ν(p̂, ε)φ∞Bi(p̂, ε) =

[∫
free

dΩpn̂ · p̂ ν(p̂, ε)

]
g(ε)B(ε)

2

+

[
−4g−1(ε) +

∫
free

dΩp|n̂ · p̂|
]
g(ε)A(ε)

2
, (3.70)∫

free
dΩp|n̂ · p̂|φ∞Bi(p̂, ε) =

[∫
free

dΩp|n̂ · p̂|
]
g(ε)B(ε)

2

+

[∫
free

dΩpn̂ · p̂ ν−1(p̂, ε)

]
g(ε)A(ε)

2
. (3.71)

We have seen that, at fixed energy ε, the free states can be divided into
two categories, F1 = {p̂ | ε3(p̂) < ε} and F2 = {p̂ | ε3(−p̂) < −ε}. Using the
definition of ε3, these can be written as F1 = {p̂ | amax>(p̂) < ε − ∆} and F2 =
{p̂ | amax>(−p̂) < −ε − ∆} = {p̂ | amin>(p̂) > ε + ∆}. If both F1 and F2 are
empty, then Eq. (3.70) shows that A = 0, but neither (3.70) nor (3.71) fixes the
value of B. Since all states are bound, we make the natural assumption that
gB/2 = 1/2 − θ(ε), so that φbcBi = 1/2 − θ(ε). If either F1 or F2 is empty, it
is straightforward to see that Eqs. (3.70) and (3.71) are satisfied by A = 0 and
gB/2 = 1/2− θ(ε). Let us define

E = −min
p̂
ε3(p̂). (3.72)

We find that if |ε| < E , then neither F1 nor F2 is empty. The solution to Eqs.
(3.70) and (3.71) is no longer trivial, and we need to resort to numerical methods.
Note that if E ≤ 0, the condition |ε| < E cannot be satisfied. In this case, at least
one of F1 and F2 is empty, and so φbcBi = 1/2− θ(ε).

The force exerted on the cylinder can be calculated using Eqs. (3.28) and
(3.29). First of all, Eq. (3.29) shows that the force per unit length is

f =

∫ π

−π
Rdϕn̂ ·

↔
Π. (3.73)

The stress tensor is determined by Eq. (3.28). Substituting the distributions and
simplifying leads to

↔
Π = 2vF pFN(0)θ(E)

∫ E
0
dε

∫
free

dΩp

4π
p̂p̂

{
g(ε)A(ε)

2
ν−1(p̂, ε)

+ sgn(n̂ · p̂)

[
g(ε)B(ε)

2
− φ∞Bi(p̂, ε)

]}
.

(3.74)
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We find that the force vanishes if E ≤ 0 at each point on the surface of the
cylinder, meaning that the critical velocity can be defined as the smallest velocity
at which E > 0 somewhere on the surface. This is identical to the definition
that we proposed in Sec. 3.2. Note that the critical velocity has to be at least
as large as the Landau velocity. To see this, consider the condition E > 0. This
implies minp̂ amax>(p̂) < −∆, and thus there exists a direction p̂0 such that
amax>(p̂0) < −∆. The value of a(p̂0) in the far region is a∞(p̂0) = −pFv · p̂0.
This has to smaller than or equal to amax>(p̂0), and so −pFv · p̂0 < −∆, which
cannot be satisfied if v ≤ vL.

Our main objective is to determine the critical velocity. Below the critical
velocity, E ≤ 0 everywhere on the surface of the cylinder, and therefore the scat-
tered distributions are φbcBi = 1/2 − θ(ε). Above the critical velocity, there are
points on the cylinder where the scattered distributions φbcBi are significantly more
complicated, since they depend on the entire flow field around the cylinder (this
is because A and B depend on the maximum and minimum of a along different
trajectories). In order to simplify calculations, we approximate φbcBi = 1/2− θ(ε)
also at supercritical velocities. This is a reasonable approximation if the velocity
is not too large, since the true scattered distributions deviate from the approxi-
mate ones only in the interval |ε| < E , which is narrow. In this approximation,
the stress tensor (3.74) simplifies to

↔
Π = −2vF pFN(0)

∫
dΩp

4π
p̂p̂ θ[−ε3(p̂)] sgn(n̂ · p̂)ε3(p̂). (3.75)

Substituting φbcBi = 1/2− θ(ε) into Eq. (3.69) yields I = I1 in model 1 and I = I2

in model 2, where

I1 =

∫
hit

dΩp

2π
p̂ θ [−ε2(p̂)]

{√
a(p̂)2 −∆2 −

√
[ε2(p̂)− a(p̂)]2 −∆2

}
−
∫

hit

dΩp

4π
p̂ θ [−εmax(p̂)]

{√
a(p̂)2 −∆2 −

√
[εmax(p̂)− a(p̂)]2 −∆2

}
and

I2 =

∫
hit

dΩp

2π
p̂ θ [−ε0(p̂)]

{√
a(p̂)2 −∆2

}
−
∫

hit

dΩp

2π
p̂ θ [−ε3(p̂)]

{√
a(p̂)2 −∆2 −

√
[ε3(p̂)− a(p̂)]2 −∆2

}
+

∫
hit

dΩp

4π
p̂ θ [−εmax(p̂)]

{√
a(p̂)2 −∆2 −

√
[εmax(p̂)− a(p̂)]2 −∆2

}
.

Using I1 and I2, we can solve the flow field for models 1 and 2 from Eqs. (3.66),
(3.67), and (3.68). These form a set of nonlinear, nonlocal integro-differential
equations, and need to be solved numerically. We have used F s1 = 5.4, which is
the zero-pressure value in 3He. For details on the numerical methods used, see
Sec. VI of Pub. II.
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Figure 3.11: The deviation δvs of the superfluid velocity field from the ideal fluid
velocity field (3.11) at v = 0.8vL in (a) model 1 and (b) model 2. The unit of
velocity is v. The cylinder is represented by the grey segment of a disk of radius R.
The color map represents the magnitude of δvs. Contour lines of constant |δvs| are
shown at intervals 0.01v, and the stream lines indicate the direction of δvs. The
vector field δvs is symmetric under reflection over the x axis and antisymmetric
under reflection over the y axis. The figure was originally published in Pub. II.

Figure 3.11 shows the deviation of the superfluid velocity field from the ideal
fluid velocity field (3.11) for models 1 and 2 at v = 0.8vL. We see that the velocity
fields differ from each other, and from the ideal fluid velocity field, in the region
|x| . R, |y| . 2R. Figure 3.12 shows the vector field α for ideal fluid, model 1,
and model 2 at v = 0.8vL. Again, the fields differ from one another only in the
region |x| . R, |y| . 2R.

To obtain the critical velocity vc, we calculate the maximum of E [see Eq.
(3.72)] on the surface of the cylinder at different values of v using the numerically
calculated vector field α, and determine the velocity at which it crosses zero.
We find that the critical velocities for the ideal fluid, model 1, and model 2
are approximately equal, vc ≈ 1.12vL. This implies that the critical velocity is
predominantly determined by the flow field outside the region where the fields α
differ from one another. To calculate the force exerted on the cylinder at fixed v,
we use Eqs. (3.73) and (3.75) together with the numerically obtained vector field
α. Figure 3.13 shows the force exerted on a macroscopic cylinder as a function of
velocity for ideal fluid, model 1, and model 2. As a comparison, the result for a
microscopic cylinder is also shown. We see that the spatial variation of the flow
field has a significant effect on the force. Models 1 and 2 produce nearly identical
forces, somewhat smaller than the ideal flow field.

It is instructive to compare the force in the superfluid state to the force in the
normal state. The normal-state force is significantly easier to calculate since one
does not need to know the flow field. This follows from the fact that if ∆ = 0, then
Θ(p̂, ε) = N(p̂, ε) = 1. Using Eqs. (3.28) and (3.29) together with the boundary



3.7. EQUILIBRIUM IN THE NEAR REGION 67

condition of Sec. 3.4.1, Eqs. (3.43) and (3.44), we obtain

Fn =
43π

144
vF p

2
FN(0)σv, (3.76)

which is identical to the result calculated in Ref. [82]. In each of the three cases
considered here (ideal fluid, model 1, and model 2), the ratio F/Fn is zero if
v ≤ vc ≈ 1.12vL, is of the order of 10−2 at v = 2vL, and approaches unity as
v →∞.

How do the results obtained here compare with the experimental data by
the Lancaster group [43]? In the experiments, a NbTi wire of radius 50 µm
(� ξ0 ≈ 80 nm) is moved at constant velocity (excluding the brief periods of
initial and final acceleration) through 3He-B at zero pressure and at temperature
∼ 150 µK ≈ 0.15Tc. The force exerted on the wire is deduced from the measured
temperature response. No clear sign of a critical velocity is seen (see Fig. 3(b)
in Ref. [43]). Instead, the force increases gradually as the velocity of the wire is
increased from zero to 2.5vL (since T > 0, there is some additional damping due
to thermal quasiparticles). At v = 2vL, the ratio F/Fn is of the order of 10−5,
which is three orders of magnitude smaller than our model calculations predict.
This discrepancy is likely due to the several approximations introduced in Sec.
3.3.3.

3.7 Equilibrium in the near region

Thus far, we have assumed that there are no collisions between quasiparticles.
In reality, we expect the collisions to play some role, since there are plenty of
quasiparticles present in the near region at high velocities. A proper calculation
would take the collisions into account in the transport equations (3.15) and (3.16),
but this complicates the analysis significantly. Here, we only study whether the
collisions could lead to a steady state where all the quasiparticle states in the
near region are in thermal equilibrium in the object frame, but the far region is
not affected by the cylinder. This could be possible at velocities less than vL.
Contrary to the previous sections, we now allow the gap to become anisotropic
due to the flow.

We work in the object frame. The distribution functions in the near region
are given by φBi = 1/2 − θ(ε). Note that these are also consistent with the
mesoscopic boundary condition of Sec. 3.4.1, Eqs. (3.43) and (3.44). In the far
region, the flow velocity is vs = −v, the gap is isotropic, |∆(p̂)| = ∆(= ∆B),
and α = −pFv. Since we assume that v < vL, we have a + ∆ > 0 always,
and so a quasiparticle with non-positive energy cannot exist in the far region.
Since there are only quasiparticles with negative energies in the near region, these
cannot escape to the far region. This is consistent with our assumption that the
far region is unaffected by the cylinder. We can use the distribution functions
φBi = 1/2− θ(ε) also in the far region, since nBi = 1− θ(ε) = 0 if ε ≥ a+ ∆ > 0,
which is the requirement that there are no quasiparticles present.
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Figure 3.12: The vector field α at v = 0.8vL in (a) ideal fluid, (b) model 1, and (c)
model 2. The unit of α is pF v. The cylinder is represented by the grey segment
of a disk of radius R. The color map represents the magnitude of α. Contour
lines of constant |α| are shown at intervals 0.1v, and the stream lines indicate
the direction of α. The vector field α is symmetric under reflection over the x
axis and antisymmetric under reflection over the y axis. The figure was originally
published in Pub. II.

If φBi = 1/2− θ(ε), Eqs. (3.35) and (3.20) imply that we can write the gap as

|∆(p̂)|2 = ∆2
‖p

2
‖ + ∆2

⊥p
2
⊥, (3.77)

where we have decomposed the momentum as p̂ = p‖α̂+p⊥, with p⊥ · α̂ = 0 and
p2
‖ + p2

⊥ = 1. Substituting the gap and the distribution functions into Eq. (3.36)
yields

I = −1

3
θ(α−∆‖)

(α2 −∆2
‖)

3/2

α2 + ∆2
⊥ −∆2

‖
α̂. (3.78)

Equation (3.35) shows that α and vs point in the same direction,

α = αv̂s. (3.79)
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Figure 3.13: The force exerted on a cylinder moving in zero-temperature superfluid
as a function of velocity. We show results for a microscopic cylinder (micro, see
Sec. 3.5) and for a macroscopic cylinder in three different approximations, ideal
fluid, model 1, and model 2 (see Sec. 3.6).

Consequently, we can write the mass current density (3.38) as

j = ρsvs, (3.80)

where

ρs =
2

3
mvF pFN(0)

[
1 + (3 + F s1 )

I

pF vs

]
. (3.81)

Equations (3.35) and (3.20) determine α, ∆‖, and ∆⊥ as a function of vs. The
solution at general temperatures has been discussed in Refs. [22, 23]. Figure 3.14
(a) shows α, j, ρs, ∆‖, and ∆⊥ as a function of vs. We have used F s1 = 5.4, which
is the zero-pressure value in 3He. As a comparison, Fig. 3.14 (b) shows α, j, and
ρs as a function of vs assuming that the gap is isotropic, ∆‖ = ∆⊥ = ∆.

To determine the flow field, we need to solve the continuity equation (3.37).
Combining this with Eqs. (3.23) and (3.80) leads to

∇ · [ρs(vs)vs] = 0, (3.82)

vs =
~

2m
∇ψ, (3.83)

which have to be solved with the boundary conditions n̂ · vs = 0 at the surface of
the cylinder and vs = −v far away from the cylinder.

If v ≤ vL/2, the velocity field is given by the ideal fluid velocity field (3.11).
This stems from the fact that ρs is constant if vs ≤ vL (see Fig. 3.14). At higher
velocities, one needs to rely on numerical methods (see Publication II for details).
For self-consistent gap, we have not been able to find a solution if v > vL/2. This
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Figure 3.14: The dependence of the variables α, j, and ρs on the superfluid veloc-
ity vs, assuming φBi = 1/2 − θ(ε) and (a) anisotropic, self-consistent gap (3.77),
(b) isotropic gap ∆. In addition, (a) shows the dependence of the components
∆‖ and ∆⊥ of the gap on vs. The units of j and ρs are j0 = (2/3)mvFN(0)∆
and ρ0 = (2/3)mvF pFN(0), respectively. We have used F s1 = 5.4, which is the
zero-pressure value in 3He.

simply means that our initial assumptions have been incorrect. A steady state
in which the quasiparticle states in the near region are in thermal equilibrium in
the object frame is not possible at zero temperature. A more detailed model to
include quasiparticle collisions should be considered. If we assume isotropic gap,
a solution can be found at velocities v . 0.7vL. For further discussion, see Pub.
II.



Chapter 4

Conclusions

The work presented in this thesis comprised two projects related to superfluid 3He.
In the first project (Pubs. I and III, Chap. 2), we studied how an isolated vortex
line affects the spin dynamics of 3He-B. We found that under uniformly precessing
magnetisation, the vortex radiates spin waves. These spin waves, carrying energy
with them, cause magnetic relaxation in the system. We compared the predicted
energy dissipation rate with experimental data, and found an agreement between
the two.

In the second project (Pub. II, Chap. 3), we studied the drag force exerted on
an object moving through zero-temperature superfluid 3He. We found that the
Landau criterion, although correctly predicting the velocity at which Cooper pair
breaking becomes possible, cannot be used as such to predict the critical velocity
for a macroscopic object. This is because the spatially varying flow field around
the object can prevent the quasiparticles created at the surface of the object from
escaping to the far region, thus effectively preventing momentum transfer from
the object to the fluid and therefore suppressing (or even completely eliminating)
the drag.

Plenty of work still remains to be done. In the first project, we solved the
equation of motion (2.61) in two different approximations. Since the coefficients
in Eq. (2.61) are periodic in time, one could search for an exact solution using
Floquet theory [83, 84]. The predicted dissipation could also be compared to
other experiments. Perhaps the most interesting theoretical exercise would be to
include the Leggett–Takagi mechanism directly into the equations of motion. Spin
diffusion could also be taken into account. In the second project, we showed how
the critical velocity can increase from the Landau velocity owing to the spatial
dependence of the flow field. However, the effect observed in the experiment by
the Lancaster group [43] was even more dramatic than the prediction obtained
with our simplified model. This means that, in future, one should relax the various
assumptions we made in Sec. 3.3.3. As a first step, one could include quasiparticle
collisions into the model, and take into account anisotropy of the energy gap.
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Appendix A

Details on the
Brinkman–Smith mode

In this appendix, we study the Leggett equations (2.40) and (2.41) assuming that
the spin density S precesses uniformly about the external, static magnetic field
B with a tipping angle β.

Let us write S(t) = R(ωBSt) · S0, where ωBS = ωBSB̂ and Ŝ0 · Ŝeq = cosβ,
with Ŝeq = −B̂ [see Eq. (2.42)] and 0 < β < π. Due to the form of S(t), it
is convenient to define a new vector ψ(t) which satisfies θ(t) = R(ωBSt) · ψ(t).
We shall show that ψ must be independent of time. Plugging S and θ into Eqs.
(2.40) and (2.41) yields

(ωBS − ωL)× S0 = 4λD
sinψ

ψ
(1 + 4 cosψ)ψ, (A.1)

ψ̇ + ωBS ×ψ =
ψ

2
cot

(
ψ

2

)
s0 +

1

2
s0 ×ψ

+
1− (ψ/2) cot (ψ/2)

ψ2
ψ(ψ · s0), (A.2)

where we have denoted s0 = µ0γ
2
0S0/χ+ωL. We find that the system has a trivial

solution ψ = 0, s0 = 0. From now on, let us assume that ψ is not identically
zero. We can also assume that s0 6= 0, since s0 = 0 would correspond to static
equilibrium with β = 0 [see Eq. (2.42)] .

Let us take the norm on both sides of Eq. (A.1). We obtain

|ωBS − ωL|S0 sinβ = 4λD| sinψ(1 + 4 cosψ)|, (A.3)

which implies that ψ must be independent of time, ψ(t) = ψ0 6= 0. Substituting
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this back into Eqs. (A.1) and (A.2) yields

(ωBS − ωL)× S0 = 4λD sinψ0(1 + 4 cosψ0)ψ̂, (A.4)

ψ0
˙̂
ψ + ψ0ωBS × ψ̂ =

ψ0

2
cot

(
ψ0

2

)
s0 +

ψ0

2
s0 × ψ̂

+

[
1− ψ0

2
cot

(
ψ0

2

)]
ψ̂(ψ̂ · s0). (A.5)

Let us calculate the dot product of Eq. (A.5) with ψ̂. Since ψ̂ is a unit vector,

we must have ψ̂ · ˙̂
ψ = 0, and so we find that

ψ̂ · s0 = 0. (A.6)

Plugging this back into Eqs. (A.4) and (A.5) results in

(ωBS − ωL)× S0 = 4λD sinψ0(1 + 4 cosψ0)ψ̂, (A.7)

˙̂ψ =
1

2
cot

(
ψ0

2

)
s0 +

(s0

2
− ωBS

)
× ψ̂. (A.8)

Equation (A.6) implies
˙̂
ψ · s0 = 0. Taking the dot product between Eq. (A.8)

and s0 shows that

ψ̂ · (s0 × ωBS) =
1

2
cot

(
ψ0

2

)
s2

0. (A.9)

Since 0 < β < π, we must have s0 ∦ ωBS . This means that the vectors
ê1 = ŝ0, ê2 = (s0 × ωBS)/|s0 × ωBS |, and ê3 = ê1 × ê2 form an orthonormal
basis. We can expand ψ̂ in this basis as ψ̂ = a1ê1 + a2ê2 + a3ê3. Equation (A.6)
shows that a1 = 0, while Eq. (A.9) shows that a2 is a constant. Since ψ̂ is a unit

vector, then a3 must also be a constant, and hence ˙̂ψ = 0. We have therefore
shown that ψ is a constant.

Writing ψ = θ0 as in Sec. 2.3.3, the Leggett equations can be written as

(ωBS − ωL)× S0 = 4λD sin θ0(1 + 4 cos θ0)θ̂0, (A.10)

0 =
1

2
cot

(
θ0

2

)
s0 +

(s0

2
− ωBS

)
× θ̂0, (A.11)

θ̂0 · s0 = 0, (A.12)

or

(ωBS − ωL)× s0 =
4Ω2

15
sin θ0(1 + 4 cos θ0)θ̂0, (A.13)

0 =
1

2
cot

(
θ0

2

)
s0 +

(s0

2
− ωBS

)
× θ̂0, (A.14)

θ̂0 · s0 = 0, (A.15)

where Ω is the longitudinal resonance frequency defined in Eq. (2.44).



Appendix B

Details on the mesoscopic
boundary condition

In this appendix, we prove some properties of the mesoscopic boundary condition
introduced in Sec. 3.4.

B.1 Planar wall

Using Eqs. (3.41) and (3.42), the conservation laws (3.39) and (3.40) can be writ-
ten as ∫

dΩp

4π
(n̂ · p̂)N(p̂, ε)[φB1(p̂, ε) + φB2(p̂, ε)] = 0, (B.1)∫

dΩp

4π
(n̂ · p̂)Θ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)] = 0. (B.2)

Let us split the integrals over incoming (incident) excitations (n̂ · p̂ < 0 for
excitations of type B1 and n̂ · p̂ > 0 for excitations of type B2) and outgoing
(scattered) excitations (n̂ · p̂ > 0 for excitations of type B1 and n̂ · p̂ < 0 for
excitations of type B2),

0 =

∫
n̂·p̂<0

dΩp

4π
(n̂ · p̂)N(p̂, ε)φB1(p̂, ε) +

∫
n̂·p̂>0

dΩp

4π
(n̂ · p̂)N(p̂, ε)φB2(p̂, ε)

+

∫
n̂·p̂>0

dΩp

4π
(n̂ · p̂)N(p̂, ε)φB1(p̂, ε) +

∫
n̂·p̂<0

dΩp

4π
(n̂ · p̂)N(p̂, ε)φB2(p̂, ε),

(B.3)

0 =

∫
n̂·p̂<0

dΩp

4π
(n̂ · p̂)Θ(p̂, ε)φB1(p̂, ε)−

∫
n̂·p̂>0

dΩp

4π
(n̂ · p̂)Θ(p̂, ε)φB2(p̂, ε)

+

∫
n̂·p̂>0

dΩp

4π
(n̂ · p̂)Θ(p̂, ε)φB1(p̂, ε)−

∫
n̂·p̂<0

dΩp

4π
(n̂ · p̂)Θ(p̂, ε)φB2(p̂, ε).

(B.4)
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Using the definitions (3.45) and (3.46) of A and B, Eqs. (B.3) and (B.4) can be
written as

A(ε) =

∫
n̂·p̂>0

dΩp(n̂ · p̂)N(p̂, ε)φB1(p̂, ε) +

∫
n̂·p̂<0

dΩp(n̂ · p̂)N(p̂, ε)φB2(p̂, ε),

(B.5)

B(ε) =

∫
n̂·p̂>0

dΩp(n̂ · p̂)Θ(p̂, ε)φB1(p̂, ε)−
∫
n̂·p̂<0

dΩp(n̂ · p̂)Θ(p̂, ε)φB2(p̂, ε).

(B.6)

Substituting the distributions from the boundary condition, Eqs. (3.43) and (3.44),
we obtain

A(ε) =
g(ε)

2
A(ε)

∫
dΩp|n̂ · p̂|Θ(p̂, ε) +

g(ε)

2
B(ε)

∫
dΩp(n̂ · p̂)N(p̂, ε), (B.7)

B(ε) =
g(ε)

2
A(ε)

∫
dΩp(n̂ · p̂)

Θ(p̂, ε)

ν(p̂, ε)
+
g(ε)

2
B(ε)

∫
dΩp|n̂ · p̂|Θ(p̂, ε). (B.8)

Consider the second integral in Eq. (B.7). Let us make a change of variables from
p̂ to p̂ = p̂ − 2n̂(n̂ · p̂). The region of integration stays the same (unit sphere),
n̂ · p̂ = −n̂ · p̂, and dΩp = dΩp. If we assume that n̂ ·α = 0 and |∆(p̂)| = |∆(p̂)|,
then α · p̂ = α · p̂, Θ(p̂, ε) = Θ(p̂, ε), and N(p̂, ε) = N(p̂, ε). This means that

∫
dΩp(n̂ · p̂)N(p̂, ε) = −

∫
dΩp(n̂ · p̂)N(p̂, ε), (B.9)

and so the integral vanishes. The same is true for the first integral in Eq. (B.8).
We are left with

A(ε) =
g(ε)

2
A(ε)

∫
dΩp|n̂ · p̂|Θ(p̂, ε), (B.10)

B(ε) =
g(ε)

2
B(ε)

∫
dΩp|n̂ · p̂|Θ(p̂, ε). (B.11)

Comparing the integrals here with the definition of g in Eq. (3.47) shows that the
integrals are equal to 2g−1, and thus Eqs. (B.10) and (B.11) reduce to

A(ε) = A(ε), (B.12)

B(ε) = B(ε). (B.13)

This shows that the mesoscopic boundary condition, Eqs. (3.43) and (3.44), sat-
isfies the conservation laws (3.39) and (3.40).
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B.2 Microscopic cylinder

B.2.1 Conservation laws

Using Eqs. (3.41) and (3.42), the conservation laws (3.52) and (3.53) can be writ-
ten as ∫

r=λ
ds

∫
dΩp

4π
(r̂ · p̂)N(p̂, ε)[φB1(p̂, ε, r) + φB2(p̂, ε, r)] = 0, (B.14)∫

r=λ
ds

∫
dΩp

4π
(r̂ · p̂)Θ(p̂, ε)[φB1(p̂, ε, r)− φB2(p̂, ε, r)] = 0. (B.15)

Note that N and Θ do not depend on r, since α and A are constants on the circle
r = λ due to the smallness of λ. Changing the order of integration yields

∫
dΩp

4π
N(p̂, ε)

∫
r=λ

ds(r̂ · p̂)[φB1(p̂, ε, r) + φB2(p̂, ε, r)] = 0, (B.16)∫
dΩp

4π
Θ(p̂, ε)

∫
r=λ

ds(r̂ · p̂)[φB1(p̂, ε, r)− φB2(p̂, ε, r)] = 0. (B.17)

Let us fix a direction p̂, and consider the integral

Ii =

∫
r=λ

ds(r̂ · p̂)φBi(p̂, ε, r). (B.18)

We decompose p̂ as p̂ = p‖ẑ+p⊥, where p⊥·ẑ = 0 and p2
‖+p

2
⊥ = 1. If p⊥ = 0, then

r̂ · p̂ = 0, and consequently Ii = 0. If p⊥ 6= 0, we write p̂⊥ = cosϕpx̂+ sinϕpŷ, so
that r̂ ·p̂ = p⊥ cos(ϕ−ϕp). We split the line integral into four parts, corresponding
to the two shaded regions and the two unshaded regions in Fig. 3.8,

Ii = p⊥λ

∫ ϕp+δϕ/2

ϕp−δϕ/2
dϕ cos(ϕ− ϕp)φBi(p̂, ε, λ, ϕ)

+ p⊥λ

∫ ϕp+π+δϕ/2

ϕp+π−δϕ/2
dϕ cos(ϕ− ϕp)φBi(p̂, ε, λ, ϕ)

+ p⊥λ

∫ ϕp+π−δϕ/2

ϕp+δϕ/2
dϕ cos(ϕ− ϕp)φBi(p̂, ε, λ, ϕ)

+ p⊥λ

∫ ϕp+2π−δϕ/2

ϕp+π+δϕ/2
dϕ cos(ϕ− ϕp)φBi(p̂, ε, λ, ϕ).

(B.19)

Shifting the integration variables (ϕ → ϕ̃ = ϕ − ϕp, ϕ → ϕ̃ = ϕ − ϕp − π,
ϕ → ϕ̃ = ϕ − ϕp − π/2, and ϕ → ϕ̃ = ϕ − ϕp + π/2, respectively), this can be
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written as

Ii = p⊥λ

∫ δϕ/2

−δϕ/2
dϕ̃ cos ϕ̃φBi(p̂, ε, λ, ϕp + ϕ̃)

− p⊥λ
∫ δϕ/2

−δϕ/2
dϕ̃ cos ϕ̃φBi(p̂, ε, λ, ϕp + π + ϕ̃)

− p⊥λ
∫ π/2−δϕ/2

−π/2+δϕ/2
dϕ̃ sin ϕ̃φBi(p̂, ε, λ, ϕp +

π

2
+ ϕ̃)

+ p⊥λ

∫ π/2−δϕ/2

−π/2+δϕ/2
dϕ̃ sin ϕ̃φBi(p̂, ε, λ, ϕp −

π

2
+ ϕ̃).

(B.20)

Simplifying slightly, we obtain

Ii = p⊥λ

∫ δϕ/2

−δϕ/2
dϕ̃ cos ϕ̃[φBi(p̂, ε, λ, ϕp + ϕ̃)− φBi(p̂, ε, λ, ϕp + π + ϕ̃)]

− p⊥λ
∫ π/2−δϕ/2

0
dϕ̃ sin ϕ̃

[
φBi(p̂, ε, λ, ϕp +

π

2
+ ϕ̃)

− φBi(p̂, ε, λ, ϕp +
π

2
− ϕ̃)

]
+ p⊥λ

∫ π/2−δϕ/2

0
dϕ̃ sin ϕ̃

[
φBi(p̂, ε, λ, ϕp −

π

2
+ ϕ̃)

− φBi(p̂, ε, λ, ϕp −
π

2
− ϕ̃)

]
.

(B.21)

The points (r = λ, ϕ = ϕp + π
2 + ϕ̃) and (r = λ, ϕ = ϕp + π

2 − ϕ̃) lie on the
same straight line along p⊥, as do the points (r = λ, ϕ = ϕp − π

2 + ϕ̃) and
(r = λ, ϕ = ϕp − π

2 − ϕ̃). Since the distribution functions are constants along
straight-line trajectories [see Eq. (3.32)], the second and third integrals vanish,
and we are left with

Ii = p⊥λ

∫ δϕ/2

−δϕ/2
dϕ̃ cos ϕ̃[φBi(p̂, ε, λ, ϕp + ϕ̃)− φBi(p̂, ε, λ, ϕp + π + ϕ̃)]. (B.22)

Since δϕ is small, we can approximate

Ii ≈ p⊥λδϕ cos(0)[φBi(p̂, ε, λ, ϕp + 0)− φBi(p̂, ε, λ, ϕp + π + 0)]

= p⊥λδϕ[φBi(p̂, ε, λ, ϕp)− φBi(p̂, ε, λ, ϕp + π)].
(B.23)

Based on Fig. 3.8, we have δϕ/2 ≈ sin(δϕ/2) = R/λ, and so

Ii ≈ 2Rp⊥[φBi(p̂, ε, λ, ϕp)− φBi(p̂, ε, λ, ϕp + π)]

= 2Rp⊥[φBi(p̂, ε, λp̂⊥)− φBi(p̂, ε,−λp̂⊥)].
(B.24)
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Using Eqs. (B.18) and (B.24), Eqs. (B.16) and (B.17) can be written as

0 =

∫
dΩp

4π
N(p̂, ε)p⊥[φB1(p̂, ε,−λp̂⊥)− φB2(p̂, ε, λp̂⊥)]

−
∫
dΩp

4π
N(p̂, ε)p⊥[φB1(p̂, ε, λp̂⊥)− φB2(p̂, ε,−λp̂⊥)], (B.25)

0 =

∫
dΩp

4π
Θ(p̂, ε)p⊥[φB1(p̂, ε,−λp̂⊥) + φB2(p̂, ε, λp̂⊥)]

−
∫
dΩp

4π
Θ(p̂, ε)p⊥[φB1(p̂, ε, λp̂⊥) + φB2(p̂, ε,−λp̂⊥)]. (B.26)

In both of the above equations, the first integral involves only incoming exci-
tations, while the second integral involves only outgoing excitations. Using the
definitions (3.56) and (3.57) of A and B, Eqs. (B.25) and (B.26) can be written
as

A(ε) =

∫
dΩpN(p̂, ε)p⊥[φB1(p̂, ε, λp̂⊥)− φB2(p̂, ε,−λp̂⊥)], (B.27)

B(ε) =

∫
dΩpΘ(p̂, ε)p⊥[φB1(p̂, ε, λp̂⊥) + φB2(p̂, ε,−λp̂⊥)]. (B.28)

Substituting the distributions from the boundary condition, Eqs. (3.54) and (3.55),
we obtain

A(ε) = g(ε)A(ε)

∫
dΩpp⊥Θ(p̂, ε), (B.29)

B(ε) = g(ε)B(ε)

∫
dΩpp⊥Θ(p̂, ε). (B.30)

Comparing the integrals here with the definition of g in Eq. (3.58) shows that the
integrals are equal to g−1, and so the equations reduce to

A(ε) = A(ε), (B.31)

B(ε) = B(ε). (B.32)

This shows that the mesoscopic boundary condition, Eqs. (3.54) and (3.55), sat-
isfies the conservation laws (3.52) and (3.53).

B.2.2 Force

Combining Eqs. (3.28) and (3.29), the force F exerted on a cylindrical surface of
radius λ around the cylinder is

F = vF pFN(0)

∫
r=λ

dA

∫
dΩp

4π
(r̂ · p̂)p̂

∫ Ec

−Ec

dεΘ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)].

(B.33)
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Due to the translational invariance in the z direction, the integral over z gives a
constant, and thus the force per unit length is

f = vF pFN(0)

∫
r=λ

ds

∫
dΩp

4π
(r̂ · p̂)p̂

∫ Ec

−Ec

dεΘ(p̂, ε)[φB1(p̂, ε)− φB2(p̂, ε)].

(B.34)
Here, the outermost integral is over the circumference of a circle of radius λ.
Changing the order of integration yields

f = vF pFN(0)

∫ Ec

−Ec

dε

∫
dΩp

4π
p̂Θ(p̂, ε)

∫
r=λ

ds(r̂ · p̂)[φB1(p̂, ε)− φB2(p̂, ε)].

(B.35)
Using Eqs. (B.18) and (B.24), we obtain

f ≈ 2RvF pFN(0)

∫ Ec

−Ec

dε

∫
dΩp

4π
p⊥p̂Θ(p̂, ε)

×
{
− [φB1(p̂, ε,−λp̂⊥) + φB2(p̂, ε, λp̂⊥)]

+ [φB1(p̂, ε, λp̂⊥) + φB2(p̂, ε,−λp̂⊥)]

}
.

(B.36)
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