
A
B
C
D
E
F
G

UNIVERSITY OF OULU  P .O. B  00  F I -90014 UNIVERSITY OF OULU FINLAND

A C T A  U N I V E R S I T A T I S  O U L U E N S I S

S E R I E S  E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0601-1 (Paperback)
ISBN 978-952-62-0602-8 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S  O U L U E N S I SACTA
A

SCIENTIAE RERUM 
NATURALIUM

U N I V E R S I TAT I S  O U L U E N S I SACTA
A

SCIENTIAE RERUM 
NATURALIUM

OULU 2014

A 634

Jarkko Hyysalo

SUPPORTING 
COLLABORATIVE 
DEVELOPMENT
COGNITIVE CHALLENGES AND SOLUTIONS OF 
DEVELOPING EMBEDDED SYSTEMS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING,
DEPARTMENT OF INFORMATION PROCESSING SCIENCE

A
 634

AC
TA

Jarkko H
yysalo





A C T A  U N I V E R S I T A T I S  O U L U E N S I S
A  S c i e n t i a e  R e r u m  N a t u r a l i u m  6 3 4

JARKKO HYYSALO

SUPPORTING COLLABORATIVE 
DEVELOPMENT
Cognitive challenges and solutions of developing 
embedded systems

Academic dissertation to be presented with the assent of
the Doctoral Training Committee of Technology and
Natural Sciences of the University of Oulu for public
defence in the OP auditorium (L10), Linnanmaa, on 12
December 2014, at 12 noon

UNIVERSITY OF OULU, OULU 2014



Copyright © 2014
Acta Univ. Oul. A 634, 2014

Supervised by
Professor Markku Oivo
Doctor Pasi Kuvaja

Reviewed by
Professor Cornelia Boldyreff
Professor Tomi Männistö

ISBN 978-952-62-0601-1 (Paperback)
ISBN 978-952-62-0602-8 (PDF)

ISSN 0355-3191 (Printed)
ISSN 1796-220X (Online)

Cover Design
Raimo Ahonen

JUVENES PRINT
TAMPERE 2014

Opponent
Professor Rini van Solingen



Hyysalo, Jarkko, Supporting collaborative development. Cognitive challenges and
solutions of developing embedded systems
University of Oulu Graduate School; University of Oulu, Faculty of Information Technology
and Electrical Engineering, Department of Information Processing Science
Acta Univ. Oul. A 634, 2014
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

The development of embedded systems is becoming increasingly challenging; it is intellectually
demanding knowledge work that requires collaboration among a wide range of skills. Software
development is a largely cognitive activity, based on the worker’s internal mental processes rather
than on physical labour. Developers face several individual and team cognition-related challenges
in their work, including complex decision-making and problem-solving processes. Therefore, it is
suggested that the software development process should be modelled as a set of problem-solving
activities.

This thesis proposes that supporting the cognitive work of collaborative development requires
addressing the entire system’s life cycle with practical solutions. In this work, the above-
mentioned challenges are addressed in terms of communication and collaboration practices,
knowledge management and coordination, and transparent tools and processes. Moreover, these
solutions are integrated into a workflow that structures and supports the development process.
Finally, a development process is outlined that addresses the decision-oriented nature of software
development in such a manner that the necessary data is provided for decision points that guide
and coordinate the development efforts.

A qualitative research approach has been chosen, and the work is based on interviewing
industrial experts. Several cases were set up to define the state of the practice in industrial
organisations developing embedded systems for different domains. Current challenges were
identified and solutions were developed and validated in case companies.

The main result of the dissertation is a set of solutions integrated into the organisational
workflow to support collaborative development. The main principles are that the necessary
information must be provided and work and its objectives must be justified and put into the correct
context. The industrial cases indicate that utilising the suggested solutions can improve
collaboration among organisations and teams by helping disseminate and use the required
information. Mitigating the cognitive burden speeds up the development work and reduces the
effort required from developers and decision makers. In this manner, organisations may achieve
better results, primarily because the produced data and results will fulfil their purposes better and
provide less waste.

Keywords: cognitive support, collaboration support, collaborative development,
embedded systems, software development





Hyysalo, Jarkko, Yhteistyön tukeminen ohjelmistotuotannossa. Kognitiivisia
haasteita ja ratkaisuja sulautettujen ohjelmistojen tuotannossa
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Tieto- ja sähkötekniikan tiedekunta,
Tietojenkäsittelytieteiden laitos
Acta Univ. Oul. A 634, 2014
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Ohjelmistotuotanto nykymaailmassa muuttuu koko ajan haastavammaksi, kehitysprojektit ovat
monimutkaisia ja hajautettuja sekä vaativat monialaista osaamista. Tiukat aikataulupaineet puo-
lestaan tuovat mukaan oman problematiikkansa. Ohjelmistokehitys on suurelta osin kognitiivis-
ta työtä, jossa tarvitaan erilaisia taitoja ja eri alojen asiantuntijoita. Kognitiivinen työ tarkoittaa
abstraktin tiedon käsittelyä ennemmin kuin fyysistä työtä. Ohjelmistojen kehittäjät törmäävät
useisiin henkilökohtaiseen sekä ryhmätyöhön liittyviin haasteisiin, näistä esimerkkeinä monita-
hoinen tiedon käsittely, päätöksenteko ja ongelmanratkaisu. Onkin ehdotettu, että ohjelmistonke-
hitysprosessit ymmärrettäisiin ongelmanratkaisu- ja päätöspainotteisina prosesseina.

Tässä työssä ehdotetaan, että tukeakseen ohjelmistonkehitysprosessia koko tuotteen tekemi-
sen elinkaari on otettava huomioon ja työntekijöiden roolit ja vastuut on linkitettävä kehityspro-
sesseihin sekä kehitysprosessin eri vaiheisiin. Havaittuihin kognitiivisiin ongelmiin ja tarpeisiin
vastataan yhteistyö- ja kommunikaatiokäytännöin, tiedonhallinnan, läpinäkyvyyden, työnkulun,
ja päätöspainotteisten prosessien kautta.

Tulokset kerättiin käyttäen menetelmänä laadullista tapaustutkimusta, ja työ perustuu usei-
den teollisten asiantuntijoiden haastatteluihin. Tutkimus toteutettiin useassa eri teollisuuden
organisaatiossa. Aluksi määritettiin lähtötilanne organisaatioissa sekä kirjallisuuden perusteella,
kartoitettiin ongelmat, jonka jälkeen kehitettiin tärkeimmiksi havaittuihin ongelmiin ratkaisuja.

Työn tuloksena esitetään joukko ratkaisuja, jotka yhdistetään organisaation työnkulkuun.
Lisäksi esitellään päätöksentekoon painottuva kehitysprosessi, jonka lähtökohtana on havainto,
että vaadittavien tehtävien sekä työn tulosten on vastattava oikeaan tarpeeseen – työlle ja halu-
tuille työn tuloksille on annettava riittävät tiedot, perustelut, päämäärä sekä oikea konteksti.
Tapaustutkimukset osoittavat, että työn tulokset parantavat organisaatioiden välistä yhteistyötä
helpottamalla oikean tiedon keräämistä, saamista ja käyttöä. Lisäksi ylimääräisen kognitiivisen
taakan vähentäminen nopeuttaa kehitystyötä ja keventää kehittäjien ja päätöksentekijöiden työ-
kuormaa. Täten organisaatiot voivat saavuttaa parempia työn tuloksia lähinnä siksi, että tuotettu
tieto ja tulokset vastaavat paremmin tarpeisiin.

Asiasanat: kognitiivinen tuki, ohjelmistotuotanto, sulautetut järjestelmät, yhteistyö,
yhteistyön tukeminen





 

 

To my family  
  



8 

 



9 

Acknowledgements  

I would like to express my gratitude to my supervisors, Professor Markku Oivo 

and Dr Pasi Kuvaja. I am also grateful to Professor Mikko Siponen who got me 

started with work on my thesis. You all gave me very valuable comments relating 

to my doctoral dissertation as well as guidance on article writing. 

It has been a pleasure to work with Pasi on all of his research projects; I am 

grateful for him for all the opportunities he has given me, thus making this thesis 

possible. I also appreciate all the support from my co-workers, especially Sanja 

Aaramaa, Markus Kelanti and Nebojša Taušan, a team that worked closely with 

me and provided valuable feedback and comments. 

Moreover, I would like to thank the company representatives who 

participated in this research, especially Jari Lehto who provided an endless source 

of interesting industrial problems to be solved and with whom I had numerous 

discussions about topics that were relevant for my thesis. 

I would also like to thank the pre-examiners of this dissertation, Professor 

Cornelia Boldyreff of the University of Greenwich and Professor Tomi Männistö 

of the University of Helsinki, for their valuable comments and recommendations. 

Finally, I would like to thank my family, Tiina and Elsa, for their love and 

support.  

 

Oulu, September 2014  Jarkko Hyysalo 
  



10 

 



11 

List of abbreviations  

CSCW Computer Supported Cooperative Work 

DC Decision Criteria 

DfX Design For eXcellence 

DP Decision Point 

ICT Information and Communications Technology 

R&D Research and Development 

RQ Research Question 

SME Small and Medium Enterprise 
 
  



12 

 



13 

List of original publications  

This thesis is based on the following publications, referred to throughout the text by 

their Roman numerals:   

I  Hyysalo J, Parviainen P & Tihinen M (2006) Collaborative embedded systems 
development: Survey of state of the practice. In Proceedings of the 13th Annual IEEE 
International Conference and Workshop on the Engineering of Computer Based 
Systems (ECBS), March 27-30, 2006, Potsdam, Germany: 130–138.  

II  Liukkunen K, Lindberg K, Hyysalo J & Markkula J (2010) Supporting collaboration 
in the geographically distributed work with communication tools in the remote district 
SME's. In Proceedings of the 5th IEEE International Conference on Global Software 
Engineering (ICGSE), Princeton, NJ, USA, August 23-26, 2010: 155–164. 

III  Hyysalo J, Aaramaa S, Similä J, Saukkonen S, Belt P & Lehto J (2009) A new way to 
organize DFX in a large organization. In Proceedings of Profes 2009, 10th 
International Conference on Product Focused Software Development and Process 
Improvement, June 15-17, 2009, Oulu, Finland, Lecture Notes in Business 
Information Processing, Volume 32: 275–189. 

IV  Kelanti M, Hyysalo J, Välimäki A, Kuvaja P & Oivo M (2013) A case study of 
requirements management: Toward transparency in requirements management tools. 
In Proceedings of the 8th International Conference on Software Engineering Advances 
(ICSEA 2013), October 27-31, 2013, Venice, Italy: 597–604. ISSN: 2308-4235. ISBN: 
978-1-61208-304-9. 

V  Hyysalo J, Lehto J, Aaramaa S & Kelanti M (2013). Supporting cognitive work in 
software development workflows. In Proceedings of Profes 2013, 14th International 
Conference on Product-Focused Software Process Improvement. June 12-14, 2013, 
Paphos, Cyprus: 20–34. 

VI  Hyysalo J, Kelanti M, Lehto J, Kuvaja P & Oivo M (2014) Software development as a 
decision-oriented process. In: Software Business. Towards Continuous Value Delivery: 
132–147. 

All of the articles have been published as full papers in conference proceedings, 

with a scientific peer review process. The author of this dissertation was the 

primary author of publications I, III, V, and VI. In those four articles, the 

researcher was responsible for formulating the research problems, developing the 

theoretical bases, formulating the research questions, coordinating the collection 

of empirical material, analysing the material, drawing conclusions, and being the 

primary author. The co-authors supported the work in the roles of reviewers and 

advisors on the structure, logic, and contents, as well as by supporting the data 

collection. The researcher contributed significantly to the writing of all sections of 

articles II and IV, as well as contributing to their research questions and empirical 



14 

work by participating in the design and implementation of the interviews and 

analysing the empirical results. 

  
 



15 

Table of contents  

Abstract 

Tiivistelmä 

Acknowledgements 9 
List of abbreviations 11 
List of original publications 13 
Table of contents 15 
1 Introduction 17 

1.1 Background ............................................................................................. 17 
1.2 Objectives and scope ............................................................................... 19 
1.3 Research approach .................................................................................. 22 
1.4 Research realisation and dissertation structure ....................................... 24 

2 Related work 31 
2.1 Collaborative development ..................................................................... 32 
2.2 Communication ....................................................................................... 33 
2.3 Design for excellence in managing and coordinating knowledge, 

practices, and views ................................................................................ 34 
2.4 Transparency and awareness of processes and tools ............................... 36 
2.5 Cognitive workflow ................................................................................ 38 
2.6 Decision-oriented software development ................................................ 39 

3 Research contribution 41 
3.1 Article I: Collaborative embedded systems development: Survey 

of state-of-the-practice ............................................................................ 41 
3.2 Article II: Supporting collaboration in the geographically 

distributed work with communication tools in the remote district 

SME's ...................................................................................................... 43 
3.3 Article III: A new way to organise DfX in a large organisation .............. 44 
3.4 Article IV: A Case Study of Requirements Management: Toward 

Transparency in Requirements Management Tools ................................ 46 
3.5 Article V: Supporting cognitive work in software development 

workflows ............................................................................................... 49 
3.6 Article VI: Software development as a decision-oriented process .......... 52 

4 Discussion 57 
4.1 Main implications ................................................................................... 57 
4.2 Relevance and validity of the research .................................................... 62 
4.3 Limitations and future research ............................................................... 65 



16 

5 Summary 67 
References 71 
Original publications 79 
 



17 

1 Introduction  

In today’s world, software systems are becoming ever more complex, and as a 

result, their development has become increasingly challenging. This concerns 

especially embedded systems, where software is part of a system that consists of 

both hardware and software. This dissertation studies collaborative development 

of embedded systems, identifies challenges, and proposes solutions to those 

challenges. The main focus is on addressing cognitive challenges and proposing 

solutions to them in order to help software developers in their daily work. 

1.1 Background  

The development of embedded systems is usually a multidisciplinary effort, and 

as noted by Helo (2004), it is often a highly complicated process with tight time-

to-market requirements. As a consequence, successful embedded products are 

typically developed in collaboration among different stakeholders with different 

skills, such as engineers, industrial designers, and marketing personnel (Cooper et 

al. 2004, Gupta et al. 2007).  

Software development involves challenging and intellectually demanding 

knowledge work (Robillard 1999, Bjørnson & Dingsøyr 2008). This knowledge 

work is largely a cognitive activity (Sung 2005) based on the worker’s internal 

mental processes, rather than on physical labour. Noble (2004) stressed that 

cognitive perspectives are fundamental factors for successful collaboration. 

Therefore, knowledge work and cognitive aspects should be supported properly in 

order to provide good results.  

Support for cognitive work is needed when working with abstract knowledge 

in order to meet the various challenges: for example, knowledge is not easily 

transferred, unless it is made explicit; knowledge elements are context-specific; 

and cooperation is needed due to the cognitive limitations of humans—one cannot 

know everything (van Leijen & Baets 2003). Cognitive skills are also required in 

order to respond to changes. Changes and unexpected events require creativity 

and human problem-solving skills to overcome and solve them (van Merriënboer 

1997). 

In this work, the cognitive activities and cognitive processes involved include 

making observations; reasoning; processing information; learning, understanding 

and remembering information content; using information systems; and 

conceptualising. Developers face several individual and team cognition-related 



18 

challenges in their work, such as complex decision making and problem solving, 

handling vast amounts of information, creating a shared understanding, and 

information and knowledge sharing.  

It has even been proposed that the software development process should be 

modelled as a set of problem-solving activities (Wild et al. 1994). Problem 

solving, in turn, can be seen as decision making (Aurum & Wohlin 2003), as 

several stakeholders need to communicate and make numerous decisions during 

the development process.   

One way to structure the processes that are built to ensure that activities in an 

organisation are performed consistently and reliably (Mangan & Sadiq 2002) is to 

develop workflows (WFMC 1999). Workflows can be described as a sequence of 

working steps or logically related tasks, including the use of resources to achieve 

a common goal—transforming a set of inputs into outputs of value to 

stakeholders. However, it is not easy to plan the work in detail beforehand 

(Buckingham Shum 1998), as many of the processes are complicated in nature, 

involving a large number of tasks, performers, and coordination constraints. Real-

life work is more varied and more dynamic than current static workflow models 

can support. In addition, workflows do not handle exceptions well (see e.g. 

Jennings et al. 1996, Kwan & Balasubramanian 1997, Yu & Schmid 1999, Klein 

& Dellarocas 2000, van der Aalst & Basten 2002, Adams et al. 2006, Minor et al. 

2011) and cognitive work and cooperation are not properly supported in current 

workflow models (Zhuge 2003, Wang & Wang 2006). Cognitive cooperation 

occurs when individuals learn from each other, make abstractions, solve 

problems, and use their experience and skills (Gaines 1977, Goel 1997, Zhuge et 

al. 1997, Zhuge 2003).  

In sum, a practical solution is needed for supporting cognitive work in the 

collaborative development of embedded systems. For example, Hyysalo et al. 

(2006) proposed a development process that describes the roles and 

responsibilities of the different stakeholders, mapping them to each development 

phase and activity within the context of the organisation involved in the 

collaboration. 

In this dissertation, comprised of six individual articles and this summary, 

ways to support the process will be defined in order to address the identified 

problems associated with collaborative work. In other words, the developed 

artefact of this work is a set of assets to support the collaborative development of 

embedded systems, especially from a cognitive point of view.  



19 

Requirements engineering is used as an example of one of the phases wherein 

the cognitive issues are easily recognised and support for cognition is especially 

important. Walia et al. (2006) reported that a significant proportion of 

requirements errors are caused by human cognition issues. Thus, two of the 

articles have a strong focus on the requirements engineering phase and promote 

cognitive support through the concept of Design for eXcellence (DfX) (Bralla 

1996), as well as transparency and awareness in requirements management. DfX 

is an approach that can be utilised to understand the different stakeholders and 

their needs and to provide practices, guidelines, and previously tried solutions to 

development problems (Bralla 1996, Möttönen et al. 2009, Lehto et al. 2011). 

Transparency and awareness of the tools and processes available provide an 

understanding of the project and ensure that individual contributions are relevant 

to the overall objectives (Sarma 2005, Jiménez et al. 2009, Omoronyia et al. 

2010). 

 The results of this dissertation will support developers’ cognitive work, 

which is the result of interactions among individuals, artefacts, and resources in 

their environment (Hollan et al. 2000). To support cognitive work, the aim is to 

reduce the cognitive burden—the burden of keeping unnecessary factors in mind, 

such as how to use tools, how to link information between tools, and how to 

search for relevant data. Cognitive support is offered in several ways, as 

suggested by Kuutti (1995): automating routines, supporting communication, 

making things visible, making objects manipulable, supporting transformative and 

manipulative actions, supporting sense-making actions within an activity, and 

supporting learning. 

1.2 Objectives and scope  

The motive for this work arose from the realisation that previous studies 

notwithstanding, there are still problems associated with the collaborative 

development of embedded systems, especially in supporting cognitive work. 

There is a clear need for addressing cognitive activities and processes in software 

development. Thus, the research problem in this dissertation is: 

How to provide cognitive support for the collaborative development of 

embedded systems? 

There are several possible ways to approach the research problem in detail. In this 

work, the research problem is addressed from six complementary viewpoints—



20 

collaboration practices, communication, managing and coordinating knowledge, 

transparency and awareness, cognitive workflows, and a decision-oriented 

development process. The selected perspectives were formulated into subsequent 

research questions (RQ). The primary research question for each paper is 

presented in Table 1.  

Table 1. Overview of research papers 

Article RQ# Title Primary research question 

I RQ1 Collaborative embedded systems 

development: Survey of state of the 

practice 

What are the problems of and solutions 

to collaborative development? 

II RQ2 Supporting collaboration in the 

geographically distributed work with 

communication tools in the remote district 

SME's 

How to support communication in 

distributed development? 

III RQ3 A new way to organize DfX in a large 

organization 

How to manage and coordinate 

knowledge in embedded systems 

development? 

IV RQ4 A Case Study of Requirements 

Management: Toward Transparency in 

Requirements Management Tools 

How does transparency support the 

collaborative work and creation of 

shared understanding? 

V RQ5 Supporting cognitive work in software 

development workflows 

How is cognitive support provided in 

workflows?  

VI RQ6 Software development as a decision-

oriented process 

What type of process guides and 

controls the collaborative development? 

These research questions are related to each other, even if they have different 

focuses. They all complement each other and contribute partially to defining 

cognitive support for collaborative work. The research questions are answered in 

detail in the conference articles of this dissertation and their contributions are 

outlined in this dissertation’s summary. The positioning of the articles is presented 

in Fig. 1.  

 



21 

Fig. 1. Positioning of the articles  

The aim of this dissertation is to provide cognitive support for developers’ daily 

tasks while they work in collaborative settings. Solutions are presented to 

reconcile tools, practices, and ways of working in order to enhance the 

collaborative work. A workflow that structures the development process is 

developed to bring together all the aforementioned elements. 

Article I provides the motivation and creates the basis for the study, while 

articles II through IV examine the different approaches to support the work of 

developers, with cognitive support being the main focus in this work. Article V 

integrates into the workflow the different support tools, methods, and practices 

discussed in the articles, which structure the development activities and processes 

discussed in article VI.  

For practical reasons, the cases reported in articles III and IV focused mostly 

on the requirements engineering phase, to keep the research focus manageable for 

one researcher. Within the limits of a single doctoral dissertation, it is impossible 

to cover extensively the cognitive work of all software development activities. 

Requirements development and engineering were selected as case studies because 

they are representative of very knowledge-intensive work with multiple 

stakeholders, requiring plenty of support for cognitive work. In addition, 

requirements development and engineering were the most critical problem areas 

for the case companies.  



22 

1.3 Research approach 

In this dissertation, an empirical approach (Basili 1993, Wohlin et al. 2012) with a 

qualitative case study method (Runeson & Höst 2009, Runeson et al. 2012) was 

chosen to gain a practical view of the topic. The motivation for selecting the 

approach was that the researcher had access to very experienced industrial experts 

and their views through qualitative interviews. The qualitative approach answers 

the questions of “why” and “how”, which were regarded as critical and practical 

for both the researcher and the industrial case companies. In addition, action 

research intervention was conducted to iteratively develop and evaluate the results 

leading to Article V.  

Semi-structured interviews, following the guidelines by Myers & Newman 

(2007), were used in all of the research papers. With the qualitative approach, the 

researcher was able to encourage the interviewees to express their viewpoints, 

opinions, and experiences freely, as much as possible and without limitations. The 

obtained material was analysed following the recommendations for thematic 

analysis in software engineering put forth by Cruzes & Dybå (2011a), and 

generalising conclusions were drawn based on the analysis. 

Software engineering is a multidisciplinary subject that covers technical, 

language, and social issues. Software engineering is also human-intensive in 

nature—software cannot be manufactured. Software engineering requires human 

ingenuity and creativity. When studied, software engineering should be treated as 

a scientific discipline, which means through the application of scientific methods. 

One must understand and know the methods that are available and best suited for 

the phenomenon being researched. (Basili 1993, Wohlin et al. 2012). 

When using an empirical research approach in software engineering, a model 

is proposed and evaluated through empirical studies. Empirical methods are 

traditionally tied to social sciences, as they are concerned with human behaviour. 

Depending on the purpose and conditions under which the empirical investigation 

is taking place, there are three main strategies: surveys, case studies, and 

experiments. (Basili 1993, Wohlin et al. 2012).  

Survey is a method for collecting qualitative or quantitative information from 

or about people in order to explain, compare, and describe their attitude, 

behaviour, and knowledge. A survey gathers data using interviews and 

questionnaires targeting a phenomenon that occurred in the past. The data is 

analysed and the findings are generalised to fit the population from which the 

samples were selected. (Babbie 1990, Pfleeger 1994, Wohlin et al. 2012). 



23 

Case studies in software engineering are empirical studies that use multiple 

sources to investigate one (or a small number) instance of a phenomenon within a 

real-life context. Case studies focus on projects, activities, and tasks. Data is 

collected throughout the study by different means and from different sources. 

Action research is closely related to case study, but it is focused on and involved 

in the change process, while case study is purely observational. When the effects 

of a change are studied, action research can be classified as a case study method. 

Action research is used if the researcher actively participates in improvements; 

case study guidelines are applicable to the research part of action research. Action 

research is an iterative process in which theory-based diagnosis is followed by 

practical intervention through action planning, action taking, and evaluation. 

Learning from action and evaluation results in change, and the cycle is repeated 

until satisfactory results are obtained. Action research is one way theories are put 

into practice to help an organisation solve concrete problems, while at the same 

time expanding scientific knowledge. (Baskerville & Wood-Harper 1996, 

Runeson & Höst 2009, Runeson et al. 2012, Wohlin et al. 2012). 

In software engineering, an experiment is an empirical study that manipulates 

one variable or factor of the studied setting, keeps other variables constant, and 

measures the effect of manipulation on the dependent variable. Experiments are 

most often conducted in laboratory conditions, guaranteeing a high level of 

control, while the experiment participants are selected from a population using a 

randomisation technique. (Wohlin et al. 2012). 

While surveys and case studies can be qualitative or quantitative, experiments 

are quantitative by nature. Qualitative research gives the researcher a certain 

degree of freedom to plan and execute the research; however, the researcher is not 

completely free of his own values and limitations. Thus, full objectivity cannot be 

reached, as the researcher and the studied phenomena are connected. However, 

truly objective knowledge cannot exist, as all research is subjective in the sense 

that the researcher’s understanding has an influence on the obtained results. 

(Tuomi & Sarajärvi 2006, Hirsjärvi et al. 2008, Eskola & Suoranta 2008, Wohlin 

et al. 2012). 

The goal of qualitative research is to understand the studied phenomenon and 

to clarify its meaning and significance. Typically, data is collected directly from 

the field by interviewing and/or observing. Objects under study may often be 

limited in number; thus, the thoroughness of the study and quality of the input 

material are of utmost importance. The sample size must be high enough, and it 

must cover enough in relation to the intended analysis and interpretation. 



24 

(Hirsjärvi & Huttunen 1995, Eskola & Suoranta 1998, Marshall & Rossmann 

1998, Patton 2002, Siggelkow 2007). 

The aim of qualitative research is to understand a certain phenomenon, to 

describe how it functions, and to provide a theoretically solid interpretation of this 

phenomenon, with a goal of describing real-life realities (Denzin & Lincoln 2005, 

Hirsjärvi et al. 2008, Eskola & Suoranta 2008). The qualitative approach yields a 

rich picture of a respondent’s point of view and in-depth knowledge about the 

subject matter (Denzin & Lincoln 2005).  

Thematic analysis, a theoretically flexible approach for identifying, 

analysing, and reporting themes in qualitative research, is one of the most 

commonly used synthesis methods in software engineering. In thematic analysis, 

the data is organised and described in rich detail and interprets various aspects of 

the research topic. It can be used within various theoretical frameworks to report 

on the experiences, meanings, and realities of the participants. (Braun & Clarke 

2006, Cruzes & Dybå 2011a, Cruzes & Dybå 2011b).  

1.4 Research realisation and dissertation structure 

As mentioned previously, an empirical and qualitative research approach was 

chosen for this work, as it enables data collection directly from the field. The 

empirical material for this dissertation was obtained through interviews, 

questionnaires, and observations. In addition, relevant company materials were 

used when provided. Surveys and case studies were selected as the main research 

methods. Both interviews and questionnaires were used as data collection 

methods in article I. Direct (e.g. interviews) and independent (e.g. document 

analysis) collection methods were used in the case studies reported in articles II–

VI. In addition, in a study reported in article V, a prototype was developed and its 

use was observed through an action research intervention.  

Interviews with over one hundred industrial experts make up the main basis 

of the original publications. The interviews were complemented with literature 

studies and workshops. Observations of the prototype piloting were used in one 

case, reported in article V.  

The researcher participated in the materials collection, and more importantly, 

was responsible for conducting the analysis and drawing conclusions.  

Table 2 presents the number of interviews, questionnaires and observations, 

and the number of companies studied for each article. 



25 

Table 2. Number of interviews, questionnaires and observations in each article  

Article Title Key data collection 

methods 

Number of 

companies 

I Collaborative embedded systems development: Survey of 

state of the practice 

12 interviews and 

7 questionnaires 

6 

II Supporting collaboration in the geographically distributed 

work with communication tools in the remote district 

SME's 

30 interviews 13 

III A new way to organize DfX in a large organization 20 interviews 1 

IV A Case Study of Requirements Management: Toward 

Transparency in Requirements Management Tools 

11 interviews 1 

V Supporting cognitive work in software development 

workflows 

35 interviews and 

36 observations 

1 

VI Software development as a decision-oriented process 46 interviews 2 

The research was conducted in four phases, all of which involved industry 

practitioners and researchers from different organisations. The case companies 

operated in several industrial areas, such as automation, consumer electronics, 

and telecommunications, representing divergent software systems business areas. 

All of the companies produce embedded systems and work in a distributed 

development mode. Small, medium, and large companies were included. The 

interviewees represented different levels in the case companies, from “floor-

level” to upper middle management, such as senior managers, project managers, 

software developers, and testers. Most had several years of experience. Each 

study phase resulted in one or more conference articles. As several different case 

companies and domains are represented in the study, it enables drawing 

conclusions over different domains and contexts. 

An overview of the research strategy and proceeding is presented in Fig. 2. 

 



26 

Fig. 2. Proceeding of the research according to study phases  

Phase 1 – State of the practice 

The original research problem was the starting point. During the first phase, the 

literature was studied in order to understand the key concepts and existing 

theories. Based on this work, further research questions were created and a 

research approach was selected. In addition to conducting interviews, a survey 

was created and sent to the companies. After the completion of the first phase, a 

motivation for further studies emerged, and further research questions were 

identified. The first phase resulted in article I, which presented the state of the 

practice of collaborative work and provided the baseline for follow-up studies. 



27 

The research process is presented in Fig 3. A similar process was used for all 

studies in phases I, II, and IV, producing articles I–IV and VI.  

 

Fig. 3. Research process of articles I–IV and VI 

The chosen topic was first explored through an extensive literature study. When 

the case companies were able to provide materials (such as process descriptions, 

product descriptions, best practices, templates, and tool-related materials), they 

were used as well in order to better understand the case company, its development 

environment, and its challenges. Workshops were held during this phase to 

guarantee a shared understanding between the researchers and case companies 

regarding the study objectives. Based on the understanding obtained, the research 

was focused on the most critical issues. The interview structure and 

questionnaires were then formulated, potential interview candidates were selected 

with the help of company representatives, and the interviews were conducted. 

Different companies were included in the study in order to obtain as broad a 

coverage of the subject matter as possible. All of the interviews followed a semi-

structured approach (Myers & Newman 2007). The interviews were conducted 

informally, in a qualitative manner, allowing the interviewees to explain their 

views and clarify the cases and topics as entities. The interviews were recorded 

and transcribed in order to ensure full utilisation of the views and opinions of the 

industrial experts. The interviews were then thoroughly analysed and compared to 

the literature, when appropriate. The thematic analysis steps suggested by Cruzes 

& Dybå (2011a) were followed. Finally, conclusions were drawn based on the 

analysis.  

Phase 2 – Study of supportive aspects of collaboration 

The second phase consisted of three studies focusing on different supportive 

elements of collaborative and cognitive work. The selection of these elements was 

based on the work of the first phase and its results. These elements were studied 

in individual cases in different organisations. As a result of the second phase, 

three articles were produced that highlighted the importance of the selected 



28 

elements, as well as proposed solutions that can be used to support cognition in a 

collaborative development. 

Phase 3 – Integrating the support to workflow 

The third phase integrated the previously defined cognition-supporting elements 

into a workflow, addressing the cognitive issues hindering the work of software 

developers. In addition, the defined workflow provides structure and information 

flows for the collaborative development process. In this phase, a prototype was 

developed and validated in an action research intervention within a case company 

in order to test the developed supportive elements in a real environment.  

The third phase, which produced article V, followed an action research cycle. 

The research started with a pre-study, wherein the topic was familiarised first, and 

then the initial construct was developed. The case company was studied to 

understand the state of the practice, identifying the current challenges. After the 

pre-study, the action research cycle commenced. Action research was applied in 

order to see the construct in practice, to improve it, and to evaluate the outcome. 

Evaluations were conducted by implementing the construct and applying it in its 

intended settings, thus providing empirical evidence of its use. The use of the 

prototype was observed by one researcher who made observational notes; in 

addition, the sessions were recorded. The researcher also provided guidance when 

needed. The software developers and experts were encouraged to think aloud as 

much as possible, and after each evaluation phase, experiences were discussed in 

the monthly team meeting. Gathered feedback, observed challenges, and 

identified bugs in the prototype were recorded. The researchers, prototype 

developers, and a case company representative held weekly meetings to review 

the results and decide on further actions. These actions provided rich data for 

analysis and for specifying learning. A workshop was then held at the case 

company to report the initial findings and gather feedback, which was 

incorporated into the final findings. More thorough description of action research 

with concrete actions taken and learning specified are presented in article V. 

The action research cycle, shown in Fig. 4, was repeated three times, until the 

results were satisfactory.  

 



29 

Fig. 4. Research process of article V (adapted from Susman & Evered 1978)  

Phase 4 – Elements of the development process 

The fourth phase examined, once again, the data from the previous studies and 

added new insights by cross-analysing the results of earlier studies and by 

analysing the results from a new viewpoint. Two companies were studied, 

representing two different domains: information and communications technology 

(ICT) and the automation industry. Thematic analysis was used on the combined 

data from the earlier studies. The data and results of the different cases were 

analysed and comparisons were made until the final set of topics was defined. The 

understanding obtained was then applied in defining a decision-oriented 

development process and its elements, and it was finally reported in article VI. 

In each article, the research processes and conclusions of the results are 

discussed in more detail. All of the articles are qualitative in nature, utilising the 

principles of empiricism and applying a mainly thematic analysis. In these 

articles, qualitative questionnaires were used for interviewing experienced 

developers and managers. The obtained material was analysed and general 

conclusions were drawn based on the analysis. In addition, action research was 

applied for model development and evaluation, with the aim of solving a specific 

problem through an innovation. Finally, this dissertation thesis summarises the 

work, presents the contributions, and discusses the validity of the research as a 

whole and its results. 
This dissertation consists of six individual articles and this summary. The rest of 
the summary is organised as follows: Chapter 2 studies the related works; Chapter 
3 introduces the six articles and discusses their main results; Chapter 4 discusses 
the research contributions of the individual articles, their study limitations, and 
future work; finally, Chapter 5 summarises the research.  

Diagnosing 
Specifying 
learning 

Action 
planning 

Evaluating 
Action 
taking 

Pre-study 



30 

 

 



31 

2 Related work 

Several cognitive challenges in collaborative software development can be 

addressed with improved collaboration and communication practices, implicit and 

explicit knowledge management, better awareness tools and processes, cognitive 

workflows, and processes supporting coordination and negotiation (see e.g. Kuutti 

1995, Zhuge 2003, Noble 2004, Wang & Wang 2006, Espinosa et al. 2007, Jalote-

Parmar et al. 2010, Treude & Storey 2012). These concepts are used in this work 

to address cognitive support, as shown in Fig. 5. 

Many other concepts can also be seen as relating to cognitive support for 

collaboration, such as distributed work, global software development, decision 

support systems, virtual collaboration tools, learning, and computer-supported 

cooperative work (CSCW). This dissertation does not address all of those areas 

individually, but focuses on viewing the support for collaborative software 

development from a cognitive point of view. However, CSCW deserves a short 

mention, as it has much in common with this work and takes a multidisciplinary 

approach to the study of collaborative work and work practices. This field 

includes various aspects, such as the ethnographic, social, technological, and 

theoretical issues that enable group work (Ahmed & Tripathi 2010). CSCW is 

more user-oriented, while workflows are more process-oriented; however, 

workflow systems are often also CSCW systems (Ahmed & Tripathi 2010).  

 

Fig. 5. Position of the dissertation in relation to theory  



32 

Figure 5 positions this research (grey areas) in the field of related topics (white 

areas), showing some examples of the research areas that could be mentioned or 

applied in this work. Many ways to integrate the approaches exist, and one of 

those is presented in this work. In this work, selected approaches are used 

together to build cognitive support for collaborative software development. The 

aim of this work is to describe how work can be organised and how it can be 

supported through processes and workflows, and how decision points and related 

decision criteria guide, structure, and coordinate the development efforts. As 

cognitive support can be studied from several different viewpoints, it is 

impossible to cover cognitive work extensively from all those viewpoints within 

the limits of a single doctoral dissertation. Thus, some relevant areas have been 

left out for practical reasons, though they might have been considered had the 

scale of this work been wider.  

2.1 Collaborative development 

The current trend is that the development of embedded systems is highly 

complicated, with tight time-to-market requirements (Helo 2004). Consequently, 

the development is conducted in collaboration among various stakeholders (Gupta 

et al. 2007, Omoronyia et al. 2010, Lanubile et al. 2010), such as subcontractors, 

third-party suppliers, and in-house developers. Collaborative development is 

defined as activities involving two or more organisations, departments, or 

customers, combining their competencies and technologies to create new shared 

value and managing their respective costs and risks (Welborn & Kasten 2003). 

Collaborative development offers several advantages, such as potential 

savings in development times and costs and being close to customers (Carmel & 

Agarwal 2001, Herbsleb et al. 2005). However, it comes with a cost—

collaborative development is highly challenging, often emphasising the 

challenges met in single-site development and adding new ones; for example, 

dispersion of the development teams, which alone places high demands on 

communication, teamwork, and work methods (Olson et al. 1998, Herbsleb et al. 

2001, Herbsleb & Moitra 2001, Damian & Zowghi 2003, Herbsleb & Mockus 

2003, Paasivaara & Lassenius 2004, Noll et al. 2010). In addition, different time 

zones and distances increase communication difficulties (Damian & Zowghi 

2003); different sites might use different tools, processes, and practices; and work 

habits and organisational cultures are often different as well (Herbsleb 2007). 



33 

Thus, the development process differs significantly from the single-site 

development process, and it is more challenging. 

Coordination and communication become difficult in collaborative 

development as well, and the creation of awareness suffers, diminishing 

productivity and product quality. To tackle these challenges, proper tools, 

processes, and methods that address the entire product lifecycle are required. 

(Damian & Lanubile 2004, Herbsleb 2007, Jiménez et al. 2009). 

Developing and maintaining a shared understanding is also necessary, and 

achieving a shared understanding requires considerably more effort in distributed 

development than in co-located settings (Omoronyia et al. 2010). Furthermore, 

cognitive perspectives become fundamental factors for successful collaboration 

by supporting multiple aspects of collaboration (Noble 2004). Several tools are 

available to address the various collaboration issues, and the literature offers best 

practices (see e.g. Whitehead et al. 2010). Those supportive assets should be 

available for developers to use to manage their daily tasks, and they should be 

integrated into the development environment in order to guarantee easy and 

seamless use.  

2.2 Communication 

Software development requires a vast amount of communication (Jiménez et al. 

2009), and the distributed nature of development usually means that either the 

experts must travel to other sites to share their knowledge or meetings have to be 

arranged in virtual space. Virtual presence, however require good communication 

connections and tools to support collaboration.  

Communication is a mediating factor in coordinating and controlling the 

collaborative work (Carmel & Agarwal 2001). In fact, communication is often 

deemed the most critical factor in collaboration and must be arranged properly in 

order to have successful collaborative development. In particular, requirements 

engineering is one of the most challenging processes in distributed development, 

as it requires vast amounts of multidisciplinary communication and interaction 

(Cheng & Atlee 2007, Monasor et al. 2010). 

While communication infrastructures are available and current 

communication technology offers tools that enable communication among 

geographically distributed teams, obstacles still exist, such as numerous 

management challenges due to limited interaction opportunities (Grinter et al. 

1999, Herbsleb & Moitra 2001, Pauleen 2003), language barriers (Pauleen & 



34 

Yoong 2001, Sarker & Sahay 2003), and time zone differences (Carmel & 

Agarwal 2001).  

Knowledge is central to collaboration, and it must be distributed among the 

development teams (Noble 2004); hence, there is a need for communication. It 

can be concluded that there is no communication without cognition, as 

communication between “information processing units” includes several concepts 

of cognition. Communication includes concepts such as comprehension, 

reasoning, information processing, learning, and remembering. Furthermore, 

knowledge is a result of cognitive processing (Alavi & Leidner 2001).  

The communication challenges of geographically dispersed enterprises can be 

looked at through existing theories, such as the media richness theory (Daft & 

Lengel 1986), media synchronicity theory (Dennis & Valacich 1999), and social 

presence theory (Short et al. 1976). These theories propose that rich information, 

shared understanding, and awareness information are needed for complex 

knowledge tasks. However, a gap has been identified between software systems 

experts and users of software systems, which, according to Adams et al. (2005), 

results from the realisation that technologies are designed and implemented on the 

basis of assumptions without enough consideration of the users.  

One of the problems is that developers have to rely on various tools and 

formats that do not necessarily follow any communication standards or may not 

provide all the necessary cognitive support, which can lead to misunderstandings. 

When combined with a complex infrastructure, this has been reported to decrease 

both the frequency and quality of communication, and ultimately, productivity. To 

mitigate these issues, tools, processes, and methodologies are required. (Jiménez 

et al. 2009). 

Thus, there is still a need for new ways (tools, processes, methods, etc.) to 

support collaboration and to communicate and disseminate information among 

developers, taking into account the real requirements of the users, developers, 

work, and processes. 

2.3 Design for excellence in managing and coordinating 
knowledge, practices, and views 

The embedded systems sector is currently facing several challenges. Software 

development companies seek more effective and efficient processes to address 

such challenges as yielding high customer satisfaction, changing needs and 

requirements, short development times, and tight schedules (e.g. Weber & 



35 

Weisbrod 2003, Jiao & Chen 2006, Birk & Heller 2007). Fulfilling customers’ 

needs is necessary; however, the needs might be very customer-specific, possibly 

requiring a lot of customisation. While standardised processes and products 

contribute greatly to efficiency and quality, customisation and flexibility are also 

required. This raises the question of how to manage changing requirements and 

customer needs while taking into account the constraints of the design process 

and still bring a desirable, quality product to market—how do we find a balance 

between standardisation and customisation? Another issue is that of determining 

how to design and develop products while recognising and valuing the needs of 

various stakeholders adequately, especially considering the needs of internal and 

external stakeholders equally. 

Efficient requirements engineering and design is a demanding task. DfX 

offers a way to bring together different views and harmonise practices. It is 

important to adequately address the needs of both internal and external 

stakeholders. External customers often bring in revenue directly and are more 

visible, and they are often valued over internal customers (Lee & Billington 

1992). Yet, internal stakeholders have a huge impact on the effectiveness and 

efficiency of the product creation and delivery process. The literature has also 

recognised that addressing the needs of internal customers is a key element for 

successful product development (Cooper et al. 2004, Gupta et al. 2007). 

DfX, which has been utilised in the industry for several years (Möttönen et 

al. 2009), is an approach that brings together different views and harmonises 

practices. DfX is a knowledge-based approach whose aim is to design products in 

a manner that maximises all of the desirable characteristics while at the same time 

minimising lifetime costs, including manufacturing costs (Bralla 1996). Some 

examples of desirable characteristics are quality, environmental friendliness, 

manufacturability, assembly, and testability reliability. To achieve these 

objectives, the product design process itself has to be excellent.  

DfX can be seen as a means of improving product design and development 

processes, and eventually, the final product (Bralla 1996). DfX can also be 

utilised as a communication tool to disseminate information, collect best 

practices, and realise the implementation of best practices (Möttönen et al. 2009, 

Lehto et al. 2011). Utilisation of this type of knowledge can provide considerable 

support. For example, Henninger (1997) suggested that problem solving consists 

of the utilisation of past experience in an analogical situation. Alavi & Leidner 

(2001) recognised that due to the distributed nature of organisational cognition, it 

is important to transfer knowledge to locations where it is needed and can be 



36 

utilised. When DfX is used to collect and disseminate developers’ experiences, it 

can be utilised as a knowledge base to support developers’ tasks.  

As knowledge is a result of cognitive processing, where information is 

converted into knowledge, one significant implication is that the creation of a 

shared understanding requires that individuals must share a certain knowledge 

base. Having shared knowledge also facilitates coordination and developer 

interactions. Shared knowledge about tool processes, products, domains, and team 

members is developed over time, and the utilisation of shared knowledge is 

furthered during development tasks. Shared knowledge helps developers 

understand different perspectives and creates common ground. (Alavi & Leidner 

2001, Herbsleb 2007, Espinosa et al. 2007). 

DfX can also be seen as a tangible way to coordinate and manage different 

views and to achieve functional integration. It also helps to address the desired 

goals of the organisation: effective cost management, delivery, service, 

environment, testing, and quality, to name a few. The main benefit can be 

understood as the ability to put different stakeholders on equal ground, addressing 

their views on even terms. (Möttönen et al. 2009, Lehto et al. 2011). 

The need for practical solutions arises from the difficulty of addressing the 

different stakeholders equally and knowing how to provide the necessary 

requirements and share the obtained knowledge, guidance, and practices with the 

development teams. 

2.4 Transparency and awareness of processes and tools 

The importance of transparency of processes and tools is recognised in the 

literature (e.g. Beaudouin-Lafon & Karsenty 1992, Grinter 1995, Gutwin et al. 

1996, Herbsleb 2007, Berggren & Bernshteyn 2007). Transparency and awareness 

that enables transparency have a great impact on the efficiency of product 

development and the quality of developed artefacts. For example, Jalote-Parmar 

et al. (2010) suggested that situation awareness—comprised of the three main 

elements of cognitive processes: perception, comprehension, and projection of 

action plan—is necessary for decision making. Noble (2004) also suggested that 

awareness is one of the key knowledge enablers. 

Transparency furnishes the tools to provide, for example, information about 

the on-going status of the development process, awareness of the actions of 

others, easy access to relevant information, and a more visible process. Thus, also 

communication, decision making, and information utilisation are facilitated by 



37 

supporting human cognition. On the other hand, if developers have no knowledge 

of what others are doing, misunderstandings regarding communication content 

and motivation can easily result (Hyysalo et al. 2006). A startling realisation was 

that regardless of its importance, transparency is not always taken into account in 

requirements for tools supporting development. For example, the transparency 

aspect is seriously lacking in requirements management tools, and requirements 

engineering, if anything, necessitates a great deal of communication and 

misunderstandings can be costly. 

Awareness is an important concept in transparency, and it has been suggested 

that awareness is the key to transparency (Beaudouin-Lafon & Karsenty 1992). 

Awareness can be defined as an understanding of others’ activities, which also 

provides the context for one’s own activities (Dourish & Bellotti 1992). 

Addressing the awareness requirements (see e.g. Damian et al. 2003, Storey et al. 

2005, Espinosa et al. 2007) can have a positive effect, for example, on the 

following: 

– Openness of communication and information sharing 

– Visibility of and access to data, documents, expertise and resources, and work 

items 

– Visibility of decision making and decisions 

– Visibility of processes and tasks 

– Transparency of collaboration 

– Transparency of tools  

– Coordination  

Awareness is critical to collaboration in software development, as it enables the 

creation and maintenance of a shared, realistic understanding of the project, and it 

ensures that individual contributions are relevant to the overall objectives (Sarma 

2005, Jiménez et al. 2009, Omoronyia et al. 2010). Developers needs all the 

necessary information, such as the history and the status of the projects, who is 

working with what, the roles and expertise of their colleagues, the interactions 

and dependencies in the work system, and the work items (Jiménez et al. 2009, 

Omoronyia et al. 2010). Furthermore, awareness information should be obtained 

in a passive, unobtrusive manner instead of requiring developers to maintain 

awareness actively (Sarma 2005). 

Both processes and tools must support transparency and awareness 

(Omoronyia et al. 2010). However, before that can be achieved, it is necessary to 

identify the transparency and awareness requirements for the tools and processes. 



38 

2.5 Cognitive workflow 

The development of software systems is increasingly challenging and 

intellectually demanding knowledge work (Robillard 1999, Bjørnson & Dingsøyr 

2008) that requires a wide range of skills. Software development is also 

information-intensive knowledge work (Nakakoji et al. 2010), which is a largely 

cognitive activity based on the developer’s internal mental processes, rather than 

physical labour. Understanding software engineering as a developer-centred 

creative knowledge task puts the focus on cognitive and social processes 

(Nakakoji et al. 2010).  

Sung (2005) stated that software development is a cognitive process, and 

Nakokoji et al. (2010) suggested that “software development is about information, 

generating information, and making information artefacts”. In order to carry out 

knowledge-intensive tasks and solve problems, developers must understand both 

the current state and the goal state, and have a way to reach the goal. This 

understanding provides the basis for problem solving and task implementation. In 

addition, team cognition and knowledge (including long-term knowledge and 

awareness) support coordination and improve developer interactions, as 

developers can understand and anticipate what others do (Espinosa et al. 2007). 

However, it is not a trivial task to have and understand all this information. In 

real life, work has many variables, changes and unexpected events occur, vast 

amounts of data must be handled, and innovative solutions are needed (Kwan & 

Balasubramanian 1997, Klein & Dellarocas 2000, Mangan & Sadiq 2002). There 

are substantial demands on developers’ cognitive capabilities (van Merriënboer 

1997), and reducing that cognitive burden—the burden of keeping unnecessary 

things in their minds—is important. 

When a developer-centred approach to software engineering is taken, the 

purpose of collaborative software development environments should be to 

facilitate and nurture developers’ creative knowledge processes (Nakakoji et al. 

2010). Companies implement, for example, workflows to help their developers 

manage processes, transfer the work and data from one to another, and help 

establish a logical order for task implementation. However, traditional workflow 

approaches are static and do not address the changes and unexpected events that 

inevitably occur in demanding knowledge work; moreover, workflow models lack 

cognitive support (Jennings et al. 1996, Klein & Dellarocas 2000, van der Aalst & 

Basten 2002, Zhuge 2003, Minor et al. 2011).  



39 

Information visualisation and situation awareness are needed in workflows 

(Jalote-Parmar et al. 2010). For example, Grambow et al. (2011) discussed lack 

of situation awareness and the importance of connecting the abstract high-level 

processes to developers’ concrete actions and workflows. Suggested solutions 

include providing an awareness of context (Omoronyia et al. 2010) and of others’ 

actions, which makes it possible for developers to structure their interactions and 

cooperative processes and to provide a context for one’s own activities (Dourish 

& Bellotti 1992, Robertson 1997). The context of tasks provides a birds-eye view 

of the work, wherein tasks are put into their place in the whole context, and 

visualises the work and interdependencies of activities (Kulkarni et al. 2012). 

It is crucial to understand the information needs of developers and to address 

those needs. Providing the relevant information for developers helps to reduce the 

cognitive burden, and tools, processes, and practices should support the 

information provision. 

2.6 Decision-oriented software development 

Software development is complex effort that can be modelled as a set of problem-

solving activities (Wild et al. 1994), while problem solving, in turn, is in essence 

decision making (Aurum & Wohlin 2003). Thus, we can understand software 

development as a decision-oriented process. 

Processes are built to guarantee that activities are performed consistently and 

reliably (Mangan & Sadiq 2002), the four primary components are objectives, 

tasks, performers, and constraints (Sadiq & Orlowska 1999). However, design 

problems often result from ill-defined goals and evaluation criteria (Guindon 

1990). Furthermore, defining the process strictly beforehand may be impractical. 

Interaction with the environment, the activities, and the underlying business logic 

sets the order, instead of a predetermined, static process schema (Wang & Wang 

2006).  

The constant changes and unexpected events that are inevitably encountered 

in today’s turbulent world lead to the need for a development process that has the 

ability to adapt to different situations. The changes and unexpected events also 

require creativity and human problem-solving skills to overcome and solve them 

(van Merriënboer 1997). An opportunistic design behaviour is proposed (Guindon 

1990), where processes are modelled at a high level and knowledge-intensive 

tasks are embedded as black boxes, without too much detail (Abecker et al. 

2002).  



40 

In trivial cases, simple problems can be solved with a top-down approach, 

following the predefined process. However, non-trivial problems often cause or 

require deviations from predefined top-down approaches. This has been 

recognised as an inherent and important aspect of solving non-trivial design 

problems. In practice, this means that the development process should not be too 

strictly defined and that there should be room for innovation and problem solving. 

(Guindon 1990, Buckingham Shum 1998). 

Development is typically carried out in collaboration among several 

stakeholders (Cooper et al. 2004, Gupta et al. 2007, Pahl et al. 2007, Zeidler et al. 

2008, Jiménez et al. 2009, Treude & Storey 2012), where each provides his own 

contribution towards the common goal. These contributions must be integrated 

into a single product, and parts must interoperate properly; furthermore, 

production must be synchronised, as there are many dependencies between tasks 

and persons (Espinosa et al. 2007). Therefore, it is paramount that all partners 

understand exactly what is expected of them, and the efforts must be coordinated 

and synchronised. When accurate decision criteria are provided and the results are 

checked against them regularly, the developers can do their work to fulfil their 

part, and various contributions—accomplished concurrently—can be 

synchronised and coordinated.  

Recognising the importance of decision making as a way to guide 

development is a way to address the aforementioned challenges and to provide 

synchronisation and coordination to the development process. A decision-oriented 

approach can provide the decision criteria and degrees of freedom required for 

innovative problem solving.  



41 

3 Research contribution 

This chapter briefly summarises the main results for and contribution of each 

article. The articles present perspectives that support collaborative development 

and reduce the cognitive burden of software developers. 

3.1 Article I: Collaborative embedded systems development: 

Survey of state-of-the-practice 

The first article addresses research question 1: What are the problems of and 

solutions to collaborative development? The article is based on twelve interviews 

and seven questionnaires, administered in six companies. The companies 

represent several divergent embedded software business areas, such as 

telecommunications, IT services, and consumer electronics. The interviews and 

questionnaires were qualitative, and the results were analysed using thematic 

analysis. 

Article I describes the state of the practice in collaborative embedded systems 

development from the perspective of multiple organisations, and it reviews 

current collaborative practices, identifies challenges in collaborative work, and 

proposes solutions to those challenges. The aim of this article was to support 

effective collaboration among organisations by proposing solutions to support 

distributed development. The solutions were mapped to identified challenges in 

order to gain a view of current collaborative practices, in order to determine the 

most problematic or critical issues related to collaborative work, as well as the 

most important areas that should be the focus of research activities. 

The findings of the industrial survey and the experiences gathered from the 

literature provided an insight into the state of the practice in collaborative 

embedded systems development. The study presents problems of and solutions 

for collaborative software development, and reasons for collaboration and 

different collaboration modes are discussed.  

The study revealed that the most common collaboration mode within large 

companies developing embedded systems was subcontracting. Often, the 

organisation was split based on product structure, defined by product 

requirements or architecture. Body-shopping and distributed development was 

also used frequently. The following collaboration activities were identified in the 

study: 



42 

– Joint development agreements, especially among larger organisations 

– Cooperation with domain experts 

– Collaboration of one company with two others wherein the companies 

support each other in specialised expertise areas 

– Participation in domain-specific forums, e.g. influencing standards  

– Outsourcing maintenance 

– Subcontracting hardware development to third parties 

The collaboration mode was selected on a case-by-case basis, without clear rules 

or guidelines for any of the companies. The main reasons for collaboration were: 

1. To reduce development costs  

2. To acquire competence (technology competence or knowledge of a specific 

market) 

3. To avoid investing in the company’s non-core competence areas 

The general risks, regardless of the mode of collaboration, were identified in the 

study as openness of communication among partners, unclear assignments, trust 

among partners, agreeing on intellectual property rights, and the reliability of the 

partners’ development schedule. Further considerations arose from the continuity 

of collaboration, the quality of the acquired product, and competence issues. 

The study identified fluency of co-operation, good understanding among 

partners of each other’s work, mutual benefit from collaboration, and partners 

complementing each other’s expertise as positive factors. 

In most cases, no specific collaborative development tools were used. 

However, the same tools were often used by partners for specific activities, 

especially when specialised tools were required. It is noteworthy that most tools 

did not to support collaborative development. In particular, there was a need for 

better change management tools, and although no specific collaboration tools 

were used much, there was an apparent need for awareness- supporting tools. 

The most critical areas in the collaboration were contracting, change 

management, requirements development, and requirements management. On the 

other hand, the areas most commonly seen as non-critical were software 

implementation, improvement processes, and human resource management. 

The study revealed that the approaches to collaborative work represented by 

the literature and industrial practitioners were different. While the industry’s focus 

was on technical aspects and detailed problems regarding engineering practices, 



43 

the literature focused on solutions to more general issues, such as communication 

and team building.  

The survey identified several solutions, especially for management and 

support practices. On the other hand, the literature analysis found only a few 

solutions to engineering practices. The study concluded that practical solutions 

should be provided wherein the development process is defined by describing the 

roles and responsibilities of the different parties and mapping them to each 

development phase and/or activity within the context of organisations developing 

software in collaboration.   

3.2 Article II: Supporting collaboration in the geographically 
distributed work with communication tools in the remote 

district SME's 

The second article addressed research question 2: How to support communication 

in distributed development? Article II also complemented the large organisations 

view in research question 1 with the small and medium enterprise (SME) 

perspective, while the main focus was on discussing the communication aspects 

more thoroughly in order to address research question 2. The article is based on 

thirty qualitative interviews in thirteen companies operating in the domains of 

software and information systems development, web systems, consulting, and 

education. The data was analysed using thematic analysis.  

Interviews conducted in geographically distributed software development 

companies were analysed against the literature. The analysis showed that the 

results are in line with theories of media richness, media synchronicity, and social 

presence, which propose that the more uncertain and ambiguous a task, the richer 

the media supporting the task implementation should be. 

Issues related to management challenges, technology gap, and 

communication in particular were identified. The lack of constant communication 

stressed the need for good planning and agreed-upon practices. Smaller 

companies seemed to prefer agile ways of working and ad-hoc communication. 

Coordination was also easier in small companies due to flexible management 

styles. 

The study points out that solutions and practices developed for or used in 

large companies do not fit straightforwardly into smaller companies. Smaller 

organisations must adjust their activities to match their own purposes, principles, 

and goals. The study shows that communication practices in smaller companies 



44 

differ from those used in large companies. Mainly due to a lack of resources, tools 

must be easy to use, as there are no resources for hiring support staff or arranging 

training. In fact, the personnel did not recognise the value of this type of training. 

These findings lead to the conclusion that tools, practices, and processes must be 

easily understandable, consistent, and follow the agreed-upon standards and 

guidelines. They must match the users’ expectations and the workflows. 

Recognition was recommended over recall, meaning that the systems must be 

transparent and that users should immediately understand what to do instead of 

needing to remember things, thus reducing the cognitive burden. 

The study presented in article II shows the importance of agreed-upon 

practices, understanding each other, and transparency and awareness in 

distributed collaborative work. The results of this article form a basis for such 

activities as tool development, presented in articles IV and V. The results are also 

recognised as a good guideline for the development of processes and practices, as 

those also must be transparent, easy to understand, and fit the working processes. 

3.3 Article III: A new way to organise DfX in a large organisation 

In order to address research question 3—How to manage and coordinate 

knowledge in embedded systems development?—the article is based on twenty 

qualitative interviews in a single company from the ICT domain. In addition to 

the interviews, the case company also provided archival material, process and 

product descriptions, and other documentation. The results are based on a 

thematic analysis of the gathered material. 

Article III studied the importance of addressing the stakeholders and their 

needs equally and presented the DfX concept as a way to weigh the needs of 

different stakeholders equally. Article III found that more attention is needed to 

appreciate the internal customers.  

Traditionally, DfX is a part of a company’s research and development (R&D) 

organisation and thus, managed by designers. However, it can also be distributed 

to other parts of the organisation, as shown in the industrial case in the article: 

DfX (criteria and guidelines) were managed from operations instead of R&D, 

while DfX managers represented various stakeholders. Management 

responsibilities should reside where they matter most, such as with the 

organisational unit that pays the costs of the development, thus making the 

concept and its improvement more visible and widespread throughout the 



45 

organisation. This offers some remarkable benefits compared to the traditional 

method, including:  

– The development needs of the various organisational units and internal and 

external stakeholders are treated equally. 

– The design criteria and guidelines of all relevant stakeholders are more 

visible and are taken into serious consideration. 

– Requirements that concern multiple programs, product lines, or families are 

more visible to all stakeholders. 

The study also applied a new point of view to development and the concepts of 

problem domain and solution domain. Traditionally, problem domain is the 

environment in which a problem is defined—usually a problem that is to be 

“solved” by the product and the by-products related to it—while solution domain 

is the area in which the solution to the problem is defined. Thus, the solution 

domain provides solutions to solve the challenges of the problem domain 

(Jacobson et al. 1999). Fig. 6 presents the traditional view of problem domain and 

solution domain with the two main groups of stakeholders, customers, and 

developers. 

 

Fig. 6. Traditional relationship of domains and stakeholders  

From the developer’s point of view, the traditional setting can be turned upside 

down, and the situation examined as shown in Fig. 7, with DfX as a solution 

domain issue.  

 

Fig. 7. DfX as a solution domain issue  

Product 
development Customer 

Solution domain Problem domain 

Product 
development Customer 

Solution domain Problem domain 

DFX 
managers 

Internal 
stakeholders 



46 

In this case, the problem domain is the product development organisation of the 

company, and the solution domain is the internal DfX management organisation 

that provides knowledge, guidelines, and instructions. Thus, the original solution 

domain becomes the problem domain. This realisation shows that the concepts of 

problem domain and solution domain may, and in fact should be, applied 

recursively and iteratively when needed. 

As a practical solution to guide and support the developers and their work, 

the DfX approach was applied. Behind each DfX discipline, representing different 

developmental views, is a platform of knowledge and technology. These 

platforms are knowledge bases that cover both the product and the processes, 

where requirements, development guidelines, and know-how are managed. DfX 

disciplines provide solution strategies and best practices for both management and 

production, they gather and disseminate knowledge and experience, and they 

build the core competency of the company. DfX management organisation defines 

and maintains DfX requirements and targets based on agreed-upon platform 

specifications, while R&D platforms develop and maintain basic solutions and 

guidelines to be applied in product programs.  

Article III shows the advantages of using DfX not only used as a product 

development tool, but also for management, as it shapes the common vision and 

harmonises the practices. The article also argued that DfX is useful not only as 

philosophy, but also as a practice that works through principles and tools, and that 

it offers a concrete way to manage and coordinate knowledge. 

3.4 Article IV: A Case Study of Requirements Management: Toward 

Transparency in Requirements Management Tools 

Article IV shows the importance of transparent processes and tools, thus 

answering research question 4: How does transparency support the collaborative 

work and creation of shared understanding? The article is based on eleven 

qualitative interviews in a single company operating in the industrial automation 

domain. Prototyping was used in addition to the interviews, in order to understand 

the practicalities better. The company also provided archival material, process and 

product descriptions, and other related documentation. The results are based on 

thematic analysis and coding.  

While the focus in article IV was on the requirements management phase, the 

results provide general guidelines that can be applied more widely. It is easy to 

see the effect that transparent tools and processes have in other phases as well, as 



47 

shown in the literature (e.g. Damian et al. 2003, Storey et al. 2005, Espinosa et al. 

2007, Jalote-Parmar et al. 2010). Transparency enables the developers to be aware 

of the status of development activities and work items, and it helps to achieve a 

common, shared understanding of the development goals and objectives. 

Transparency also assists in achieving effective and open communication, among 

other desirable effects. Transparency of tools and processes ensures the success of 

product development. 

In the literature discussing the requirements for requirements management, 

tool and transparency requirements were mostly concerned with the awareness of 

process and work item states. For example, the areas of decision making, 

collaboration and communication, and organisation and strategy are often omitted 

or not addressed extensively in requirements management tool literature. Article 

IV presented a synthesis of further transparency concerns that should be 

addressed:  

– Process support. It is important to have awareness regarding the states and 

the histories of tasks as well as the characteristic work activities that describe 

the environment within which they are performed (Omoronyia et al. 2010). 

Transparency and transparent tools enable developers to understand the 

context of their work, which in turn helps them understand their own goals 

and relate them to others’ goals and work. The main concerns are process 

states, progress, histories, and context. 

– Tooling and work items. Awareness support provides information about 

development artefacts. The main concerns are work artefacts, their states and 

changes, results, documents, data, and context. It was also considered 

important to have the ability to link different items to show their 

dependencies and relationships.  

– Decision making. Awareness regarding the decision-making process and 

forums are needed so workers can be aware of the persons who are working 

on a particular decision (Damian et al. 2003). Forums can keep track of 

decisions, their rationale, and their effects on software products (Aurum & 

Wohlin 2003). The main concerns are decision-making forums, rationale, the 

reasoning process, visibility, and documentation. 

– Collaboration and communication. In distributed development, it is important 

to know what others’ roles and responsibilities are and what they are doing, 

as it helps to coordinate the collaborative work and diminishes the problem of 

overlapping work. It is important to understand dependencies of activities and 



48 

work items; that is, to have awareness of the other entities that are connected 

with the one that is being manipulated. This enables individuals to see the 

impact of their work on that of others (Storey et al. 2005). The main concerns 

are visibility of others’ actions, skills and competencies, and information 

access and exchange. 

– Organisation and strategy. Development activities and results should be 

synchronised with portfolios and roadmaps that are based on organisational 

strategy and goals. For example, Berggren & Bernshteyn (2007, p. 411) 

suggest “breaking down the strategy into definitive and meaningful 

components upon which individual employees can act”. The main concerns 

are visions, goals, motives, portfolios, and roadmaps. Having awareness of 

the talent pool was also considered to be useful, especially when planning the 

work and resource usage. 

The transparency requirements presented in article IV are generalised and shown 

in Table 3.  

Table 3. Generalised transparency requirements  

Topic Requirement 

Process support Provide information about the state of the process and tasks 

Show only the task-relevant information 

Have task views that match the actual development tasks 

Provide task guidance 

Provide process guidance 

Tooling and work 

items 

Provide information about development artefacts 

Provide standard information templates for work items 

Support linking 

Maintain link validity 

Enforce linking rules among items 

Support traceability 

Support version control 

Decision making Provide the rationale and reasoning process for decisions 

Provide visibility of decisions and their documentation 

Be able to generate status reports from processes 

Collaboration and 

communication 

Provide awareness of others' actions 

Provide support for information sharing between management and developers 

Enforce a coherent terminology for work items 

Organisation and 

strategy 

Support breaking down the strategy, vision, goals, and motives into work tasks 

Provide information about available resources, skills, and competencies 



49 

Detailed descriptions are in the research article. Implementing these requirements 

helps to address transparency issues, supports human cognition, and enables 

better decision making and information flow in the development processes. 

Article IV also shows that transparency helps the development process and 

improves product quality and development efficiency. 

3.5 Article V: Supporting cognitive work in software development 
workflows 

The fifth article answers research question 5: How is cognitive support provided 

in workflows? Action research was used as a research approach, with three action 

research cycles. During the study, a total of 35 interviews and 36 observations (as 

described in section 1.4) within one ICT company were analysed using thematic 

analysis. In addition to interviews and observations, archival material, process 

and product descriptions, and other relevant documentation were examined. 

Article V suggests that having proper support for cognitive work in software 

development workflows will help developers use available knowledge to come up 

with creative solutions to non-routine situations, thus improving efficiency and 

the results of the product creation process. In order to achieve those benefits, 

cognitive support needs to be integrated into the organisation’s workflow. With 

the ability to provide the necessary information, already identified and tried 

solutions, and support for problem solving, the workflow could help developers 

considerably.  

This article presents a model designed to support cognitive work and 

collaboration in software development workflows, as well as its theoretical basis. 

The model was refined and evaluated in an action research study wherein a tool 

prototype actualising the model was tested in a real environment. The model (see 

Fig 8.) consists of three levels that provide complementary views to software 

development—Why, What, and How—which are the basic questions defining the 

work.  

 



50 

Fig. 8.  Three levels of knowledge—three complementary views of development 

(Hyysalo et al. (2013) Publishing permission by Springer) 

– The WHY level answers the question of why different operations in product 

development are needed, describes the processes and their objectives, sets the 

context for development, and defines the criteria for achieving the purposes. 

The activities in the development process are justified, and the criteria to 

achieve the purposes, values, and priorities are defined at this level.  

– The WHAT level splits the development phases into activities and tasks that 

instantiate the high-level purposes. The order of operations is not strictly 

defined; instead, the activities are synchronised and coordinated by decision 

points (DP in the figure). For all activities, there is a defined input that is 

made available, along with information about tasks, resources, objectives, 

decision criteria (DC in the figure), and the context. After the task 

implementation, the results of activities and tasks are presented for decision 

makers as proposals that are evaluated against decision criteria defined by 

stakeholders. The decision criteria also provide guidelines for task 

implementation and provide a checklist for decision makers. 

W
H

Y 
W

H
AT 

H
O

W
 

State 
identification 

Task 
planning 

Task 1 

Task 2 

Task n 

… 

Decision 
proposal DPn+1 

Decision 
criteria: 
DC 1 … 
DC n 

Checklists Guidelines 

Tasks 

DPn+1 
trigger achieve 

Dependencies 

Supported 

Guidance Collaboration & 
communication 

Design data 
repository 

Backlogs 

DPn 

DP5 DP1 DP2 DP3 DP4 

sources 
information 

DPn 



51 

– The HOW level focuses on the ways in which the tasks can be accomplished 

and provides the information needed for work. Task descriptions and 

guidance for task implementation are provided, as are links to data sources. 

Developers also accumulate information, knowledge, and experiences during 

task implementation, which are recorded to maintain the data, even if the 

member leaves the team.  

Utilising this model improves the creation of shared understanding, awareness, 

and task management, which are aspects that need to be integrated into the 

company’s workflow. Providing an information flow that includes the cognitive 

information created during the cooperation results in a collaborative working 

environment that provides transparent, instant, seamless, and flexible 

collaboration across organisations, teams, and processes. 

Awareness and shared understanding must be created for developers to 

comprehend fully the context and purpose of their work tasks as they relate to the 

whole product development process, as well as its goals and purposes. A common 

goal is thus defined towards which the whole development team can aim.  

Developers must also be supported with seamless information sharing and 

awareness about their colleagues and what they are working with, in order to 

foster an understanding about the situation and the dependencies of their tasks on 

the tasks of others; i.e., coordination of efforts. 

Finally, task management helps developers allocate the resources of the 

workplace to individual tasks and form communities that work with backlog 

items.  

The main contribution of this article was to complement traditional 

workflows by providing cognitive support. This support is designed to help 

developers in their daily tasks, with an emphasis on cognitive work with relevant 

information and solid reasoning regarding the developers’ tasks, awareness 

support, and the provision of concrete work guidance. The empirical evaluations 

showed how cognitive support integrated into the workflow is useful, how it 

improves developers’ abilities to accomplish their work, and how the model can 

even change developers’ thinking to better match the intentions and purposes of 

the processes. The model enhanced the developers’ understanding, and with the 

prototype, the developers were also able to respond to changes and solve practical 

development problems more efficiently. The quality of the work results improved 

with the prototype.  



52 

3.6 Article VI: Software development as a decision-oriented 
process 

Article VI focused on development processes; the main idea was to show how 

requirements from different stakeholders guide the development work via 

decision criteria, thus answering research question 6: What type of process guides 

and controls the collaborative development? This study was based on 46 

qualitative interviews in two large companies, operating in distributed mode, in 

the ICT and automation domains. Both companies also provided archival 

material, process and product descriptions, and other relevant documentation. All 

of the material was examined through thematic analysis.  

Article VI shows that clearly defined acceptance criteria are needed, both 

from a process and a product point of view. These criteria guide decision-making 

activities and define the information content that needs to be created in 

development tasks. Product-related acceptance criteria are derived from the 

requirements describing the minimum effort needed to implement a requested 

artefact. In addition, process-related criteria are a set of predefined rules defining 

the fulfilment criteria for tasks from the development process point of view, such 

as relating to input required for subsequent tasks. 

It is important that the decision making and decision criteria are integrated in 

the development process. In this manner, the decisions and decision criteria define 

the goals for the developers, and the dependencies among goals define the 

dependencies among activities.  

Goals defined by decision criteria are important: for example, Alves & 

Finkelstein (2002) stated that in requirements engineering, goals provide the 

rationale and goal refinement provides suitable abstraction levels that support 

decision makers in evaluating the alternatives. 

The whole product design flow provides a common context for developers 

and managers and supports the creation of shared understanding and transparency 

of development activities and work items during the development process.  

Fig. 9 presents an example of a part of a generic software development 

process divided into various process elements that build up the process.  

Process elements are divided into activities and then further into tasks that 

work towards the completion of the work. Each element, activity, and task 

belongs to a certain context. In turn, the whole process is in a context that is 

affected by the organisation, environment, stakeholders, etc. Situations are reacted 

to via decision criteria that make up one of the controls defining the boundaries of 



53 

acceptable performance. Developers can carry out their tasks within these 

boundaries. 

 

Fig. 9.  Example of process showing the context of process elements, activities, and 

tasks (Hyysalo et al. (2014) Publishing permission by Springer) 

Acceptance criteria are transformed into decision criteria, which guide and drive 

the task planning along with the goal(s). Decision criteria are converted into 

guidelines for both designers and reviewers, and are connected with decision 

points, as shown in Fig. 10.  

Decision proposals are prepared after completing activities consisting of 

tasks; decision proposals are then sent for approval. The approval decision in a 

decision point is the final activity, after which an item is ready for the next 

process element(s).  

 

Fig. 10.  Decision criteria guiding the development work (Hyysalo et al. (2014) 

Publishing permission by Springer) 

In Fig. 11, the arrow on the left points to the input that comes into a process 

element. An element contains activities, which in turn contain a set of tasks that 

Task 
planning 

Task 1 

Task 2 

Task n 

… 

Decision 
proposal DPn+1 

Decision 
criteria 

Checklists Guidelines 

DPn 



54 

must be accomplished to complete a single activity. The process element example 

has three activities that also have defined decision criteria in a related decision 

point. All of the information for activities A, B, and C must be fulfilled in order to 

make a decision and submit the results to other process elements. Therefore, 

activity describes work that is necessary for creating the required information for 

a certain decision criterion.  

 

Fig. 11.  Example of a process element (Hyysalo et al. (2014) Publishing permission by 

Springer) 

The purpose for the links between activities and decision points is to show the 

relation between these items. For example, activity A in Fig. 11 depends on 

incoming information as well as information from activities B and C. The picture, 

however, does not say which activity comes first; it only describes how the 

activities depend on each other and where the information comes from. Inside an 

activity, there is a set of tasks necessary to create the information content for the 

decision criterion. For example, there are three tasks for activity C, and all of their 

information is defined in the decision criteria for that activity.  

Decision points are used to coordinate and synchronise work, and they define 

the information content the process element produces as output for other process 

element(s). A decision point includes a list of decision criteria that needs to be 

fulfilled before the information content produced in the process element can be 

sent to other process elements. These decision points guide what the actual 

information content will be, as well as the information needed to make a decision. 

Decision points not only define what should be achieved, but they also express 

why it is needed, providing the rationale (explanation) and reason (motive) for the 

work. Thus, developers know what they are trying to accomplish and why. 



55 

In sum, article VI discusses the decision-oriented nature of software 

development and presents the process in a way that can be adapted easily to 

different organisations. The aim is to address the identified need for a decision-

oriented process, to support collaboration and communication, and to address the 

decision-making-related issues currently present in development processes. This 

article describes how the development process works at different abstraction 

levels, what type of information is needed, and how the information is processed 

at different levels, and it describes how the information flows. Article VI provides 

a way to generate the required data utilising available tools and enables 

management support for process monitoring, decision making, and up-to-date 

reporting from the process by focusing on the information content and flows.  
  



56 

 



57 

4 Discussion 

In this chapter, the main results and their implications are discussed, as well as the 

validity and limitations of this study, and finally, future research opportunities are 

outlined. 

4.1 Main implications 

The research problem was studied through six research questions discussed in six 

individual articles. The articles contributed toward the overall research problem, 

which was stated as: 

How to provide cognitive support for the collaborative development of 

embedded systems? 

As stated previously, there are several possible ways to approach a research 

problem, and in this work, the research problem is addressed from the following 

six complementary viewpoints: collaboration practices, communication, 

managing and coordinating knowledge, transparency and awareness, cognitive 

support, and development processes. Each article provided new ways to support 

cognitive work in the form of tools, practices, or processes that enable users to 

understand quickly how the process works, how information flows, the roles of 

others, and the purposes of each process element, activity, and task. A summary of 

the main contributions and implications of each article are presented in Table 4. 

  



58 

Table 4. Research questions and implications  

Article Primary research question Main contributions and implications 

I What are the problems of 

and solutions to 

collaborative development? 

Documenting challenges and solutions for collaborative 

development 

Learning from the embedded systems development industry 

(success factors, critical areas for improvement, solutions for 

collaboration)  

II How to support 

communication in 

distributed development? 

Identifying the importance of communication for collaboration 

Identifying the importance of awareness and shared 

understanding for collaboration 

Documenting communication practices to support collaborative 

development 

III How to manage and 

coordinate knowledge in 

embedded systems 

development? 

Proposal for knowledge management and coordination through 

the concept of DfX 

Proposal for harmonisation of different stakeholder views 

Providing better visibility of information for product development 

and management  

Practical example of how to organise DfX in the context of 

requirements engineering 

IV How does transparency 

support the collaborative 

work and creation of shared 

understanding?  

Defining transparency and awareness requirements for tools 

and processes 

Providing support for human cognition and decision making 

through transparency and awareness 

Enabling developers to understand their work and its context in 

order to create shared understanding 

V How is cognitive support 

provided in workflows?  

Providing a model to support cognitive work 

Enabling developers to understand their work and its context in 

order to facilitate common understanding 

Example of how to integrate cognition supporting elements into 

a workflow 

VI What type of process 

guides and controls 

collaborative development? 

Model for decision-oriented software development 

Defining the elements of decision-oriented software 

development 

Defining information flows in software development 

The specific implications of each research article are briefly outlined next.  

RQ1: What are the problems of and solutions to collaborative development? 

Article I studied the challenges in collaborative software development, both from 

a literature and industrial point of view, thus complementing the existing literature 

(see e.g. Olson et al. 1998, Herbsleb et al. 2001, Herbsleb & Moitra 2001, 



59 

Herbsleb & Mockus 2003, Damian & Zowghi 2003, Damian & Lanubile 2004, 

Paasivaara & Lassenius 2004, Jiménez et al. 2009, Noll et al. 2010). The article 

identified the most critical areas for improvement from a practical point of view, 

i.e. the collaboration issues and needs of the embedded systems industry. Several 

of the challenges presented in article I can be addressed through cognitive 

support, which is discussed in articles II–VI included in this dissertation.  

RQ2: How to support communication in distributed development? 

Article II, which was a follow-up study to article I, focused on communication 

issues and solutions in the form of practices and tools. Article II examined 

collaboration and communication through the theories of media richness (Daft & 

Lengel 1986), media synchronicity (Dennis & Valacich 1999), and social 

presence (Short et al. 1976). These theories discussed the importance of 

understanding information, as well as how it depends on the media format. Often, 

the outcome is the centre of the communication. The more uncertain and 

ambiguous the task is, the richer the media should be, including a degree of 

awareness. Team members communicate in order to have a shared understanding, 

and information is exchanged either synchronously or asynchronously. However, 

technology is often needed, for a variety of reasons. Article II suggests that 

awareness is critical to collaboration and necessary for a better understanding of 

the information.  

RQ3: How to manage and coordinate knowledge in embedded systems 

development? 

Article III discussed the importance of understanding different stakeholders and 

their needs. It provided a perspective on knowledge management, with practices 

and guidelines for development through the concept of DfX, and it promoted 

aligning the different developmental aspects, taking into account the different 

stakeholders’ views equally, and harmonising the goals. While theoretical and 

engineering papers discussing DfX are available (see e.g., Bralla 1996, Sheu & 

Chen 2007, Gehin et al. 2008), the new contribution of article III is to outline the 

way to organise DfX within a company. In contrast to conventional thinking, it is 

advisable to organise DfX through the organisation that pays the costs of 

development. Article III also proposes a way to gather, manage, and disseminate 

knowledge. This article discussed how knowledge obtained from stakeholders 

forms guidelines and principles, and how that knowledge can be utilised through 

the use of knowledge bases, at the same time making the different development 



60 

perspectives more visible. Following the recommendations will result in a 

sustainable design, efficient and profitable delivery process, and customer 

satisfaction throughout the whole product lifecycle.  

RQ4: How does transparency support the collaborative work and creation of 

shared understanding? 

Article IV argues that transparency and awareness are among the key knowledge 

enablers. Awareness is also critical for collaboration (Sarma 2005, Jiménez et al. 

2009, Omoronyia et al. 2010). Technology is needed for creating and supporting 

transparency and awareness, and those technologies should be designed to 

support the development work and processes. Transparency and awareness have 

already been discussed in the literature (see e.g. Beaudouin-Lafon & Karsenty 

1992, Grinter 1995, Gutwin et al. 1996, Herbsleb 2007, Berggren & Bernshtey, 

2007). However, this article shows that there are still requirements that remain 

unidentified. To fill this gap, article IV provided a set of requirements that the 

tools and processes must fulfil in order to provide the transparency and awareness 

necessary for the creation of shared understanding, decision making, 

communication, and collaboration in general. Most of the identified requirements 

can be generalised to concern processes, practices, and ways of working as well.  

RQ5: How is cognitive support provided in workflows? 

Article V draws together the results of articles I–IV and integrates cognitive 

support into a workflow that structures the work and development process. 

Workflow is complemented with information flow that also contains cognitive 

information and support. This type of cognitive support enables the creation of 

shared understanding and information and knowledge sharing—all of which are 

requirements for successful collaboration. This work complements traditional 

workflow models (see e.g. Bracchi & Pernici 1984, Jennings et al. 1996, Kwan & 

Balasubramanian 1997, WFMC 1999, Yu & Schmid 1999, Klein & Dellarocas 

2000, van der Aalst & Basten 2002, Adams et al. 2006) by providing cognitive 

support. Article V argues that different supportive assets should be integrated into 

the company’s workflow, thus linking the developers and their tasks to the 

development process, information, knowledge, and tools.  

RQ6: What type of process guides and controls the collaborative 

development? 



61 

Article VI completed the work by defining the elements of a decision-oriented 

development process and showing how a decision-oriented approach guides and 

controls the work and defines why the work is done. It discussed how decision 

points are used to coordinate and synchronise the work and define the information 

content that is created in development tasks. With the decision-oriented approach, 

developers are able to address the dynamic development environment of today’s 

software business and the changes that are inevitable. Different abstraction levels 

of work were identified, and goals and high-level objectives were presented for 

each of them, along with the justification and rationale for decision making. 

In summary, the theoretical implications of this dissertation create new 

knowledge for companies developing embedded systems in a collaborative 

environment. The dissertation identifies current challenges and describes potential 

solutions for providing cognitive support for complex information-intensive 

knowledge work. 

The implications for practice are the experiences and solutions from the 

embedded systems industry that support collaboration, communication, proposals 

for knowledge management and coordination, improved transparency and 

awareness, cognitive support for workflows, and a process model that addresses 

the decision-oriented nature of software development.  

All of the proposed solutions tackle the cognitive challenges discussed in this 

dissertation. The main implication of this work can be summarised as a need to 

understand the work and its different abstraction levels fully. This research, as a 

whole, provides a better understanding for companies developing embedded 

systems in collaboration regarding how to make their product development more 

efficient and effective through cognitive support. In this dissertation, support was 

discussed from different angles; in particular, ways to reduce the cognitive burden 

of developers was investigated. The main result of the dissertation is a set of 

solutions integrated into the organisation’s workflow to support collaborative 

development and to help understand the needs of stakeholders. The main idea is 

that the necessary information is provided, and work and its objectives are 

justified and put into a correct context. In addition, a development process was 

outlined that addresses the decision-oriented nature of software development in a 

way that the necessary data is provided for decision points that guide, coordinate, 

and synchronise the development efforts. Solutions to cognitive challenges were 

defined from six complementary viewpoints, each of which was discussed in an 

individual research article. The common factor in all of these viewpoints is the 

need to offer developers the needed information and the reason for the work.  



62 

4.2 Relevance and validity of the research 

Initially, the challenges to be solved by this research came from the practical 

problems emerging from companies developing software systems in 

collaboration. The problem relevance was checked against the literature, where a 

similar gap was identified. Consequently, it is reasonable to assume that the 

research topics are relevant for the industry, hence increasing their external 

validity.  

The identified issues are relevant for the industry, and the proposals discussed 

in this dissertation clearly address the needs of the industry. The relevance and 

practical utility of the construct have already been assessed through a weak 

market test outlined by Kasanen et al. (1993). In a weak market test, the construct 

is applied by the organisation’s management; in a semi-strong market test, the 

construct has also been widely adopted by other organisations; and in a strong 

market test, the construct can be shown, systematically, to generate better 

financial results. At this point, one of the case organisations has invested in the 

development of a workflow and underlying information systems that implement 

most of the proposals presented in this dissertation, and the results are already 

being deployed in selected parts of the organisation. In addition, a second 

organisation has decided to begin the tool development process, based on case 

study results. Thus, the construct has clearly passed the weak market test, 

although it has not yet met the two stronger market tests. 

The quality of research can be determined by the reliability and validity of the 

results, which were obtained through proper research design and methodology. 

The validity of the research refers to the trustworthiness and the true and unbiased 

nature of the results. It is necessary to address the validity from the very 

beginning of the study. Four tests are proposed to establish the quality of 

empirical research in software engineering: internal and external validity, 

construct validity, and reliability. (Yin 2009, Wohlin et al. 2003, Wohlin et al. 

2012). 

The articles that are the basis of this dissertation underwent a thorough 

review process, and they were subjected to critical assessment by the scientific 

community. The research results were open to scrutiny, first by experts within the 

participating organisations, and then by the profession at large. The validity 

threats are considered to be under control; the four types of validity threats are 

addressed as follows.  



63 

Internal validity 

Internal validity is a concern when causal relations are considered, and the 

possible disturbing factors indicate a causal relationship, although there is none—

whether event A leads to event B, or is there a third factor C that may actually 

have caused B. It is about knowing all the factors. The internal validity is affected 

by such influences as how the subjects were selected and divided into different 

classes, how the subjects were treated and compensated, and whether special 

events occurred during the experiment. (Yin 2009, Wohlin et al. 2012). 

Internal validity regarding cause–effect relations was addressed via multiple 

cases, multiple sources of evidence, and with iterative research gradually building 

the final outcome. Evaluation of utility, quality, and efficacy was done extensively 

with the help of industrial experts and real users of developed constructs. 

Immediate feedback was gathered and the use of prototypes was observed. Based 

on the rich feedback and analysis, further development and corrective actions 

were carried out. At the end of each case, a seminar was held to present the results 

to a wider audience in the case organisations, and feedback from those seminars 

was incorporated into the development. In addition, each individual study was 

reported as a conference article in cooperation with other researchers and 

industrial experts.   

External validity 

External validity is concerned with the extent to which it is possible to generalise 

the findings outside the study settings and the extent to which other people 

beyond the case study find the results interesting. It is affected by the study 

design and the objects and subjects chosen. (Yin 2009, Wohlin et al. 2012). 

Dozens of industrial experts have been involved with the study, providing 

their views, and several organisations, including different types of organisations 

and different domains, were involved, thus increasing the external validity and 

generalizability of the results. However, further studies are needed in order to 

generalise the results further. 

Construct validity 

Construct validity reflects the extent to which the operational measures studied 

represent what the researcher had in mind and what was investigated according to 



64 

the research questions. Construct validity refers to the relationship between theory 

and observation. To meet the construct validity, the researcher must (1) select the 

specific types of issues that are to be studied and (2) demonstrate that the selected 

measures of these issues actually reflect the specific types of issues that were 

selected. (Yin 2009, Wohlin et al. 2012). 

The research problem was viewed from six complementary perspectives, 

using six conference articles. The research problem and each perspective were 

also reflected against the existing literature. The main source of empirical data 

was the industrial experts that were interviewed. The industrial experts had an 

opportunity to provide feedback on the research and the conclusions that were 

made based on the interviews. Furthermore, the research data was collected in 

various ways in order to ensure construct validity. The work was evaluated during 

development through regular workshops that guided the direction of the work and 

addressed the problems that emerged. After the constructs were developed, they 

were evaluated in workshops, or in the case of prototypes, with use in their 

intended settings. The feedback and evaluation results were used to improve the 

constructs. However, had different industrial experts been interviewed when 

defining the research areas to be studied, or had the studied industry been 

different, the results could have been influenced to some degree. A different 

selection of perspectives or themes could also influence the obtained results. 

Reliability 

The objective of reliability is to establish the quality of the research. Reliability is 

concerned with the extent to which the data and analyses are dependent on the 

specific researcher. It deals with the ability to draw correct conclusions. (Yin 

2009, Wohlin et al. 2012). 

As described in section 1.4, the research and development of artefacts in this 

research were conducted according to rigorous, well-defined methodologies and 

processes. The research process and methodology was documented carefully and 

presented in further detail in the individual articles, making it possible to repeat 

the research and compare the findings. Each developed artefact is the result of 

evolution and was extensively verified in its intended setting by several industrial 

experts. Each artefact can be used to support collaborative software development. 

Finally, the compilation part of this dissertation, discussing the overall 

conclusions, was also documented in a careful manner. However, no researcher is 

perfect, and therefore, incorrect conclusions are possible. 



65 

4.3 Limitations and future research 

The main limitation of this study is the long time period, which started in 2005 

and ended in 2014. During this time period, a lot has happened, the knowledge 

base has evolved, and new systems and environments have been developed. This 

has been taken into account in the study and in its results. Basically, the main 

problem has been the same over the years—how to provide cognitive support for 

collaborative software development. This is such a huge problem to be solved that 

only partial improvements could be provided, and there is still a need for further 

work, as well as several topics for future research. 

Another limitation involves the research methodologies. The studies on 

cognition, work, and work practices in this research were not always conducted 

during the actual work situation. For example, the interviews and surveys took 

place after the work situation. Interviews and surveys are not best way to map the 

details of work processes, as details may be forgotten or not consciously 

recognised; observations are a better way to study work processes. However, the 

phases in which interviews and surveys were used were focused on larger 

concepts instead of the small details of the work processes, and the methods were 

used to determine the motivations behind the work. When the actual work 

processes and practices were the focus of the study, observation was also used as 

a research method. However, for practical reasons, videotaping was not always 

possible, and the researchers had to rely on their senses to catch the relevant 

meanings. 

This dissertation thesis and individual articles offer a sound basis for future 

studies including development of tools and development environments following 

the recommendations, and using the parts already provided. The first efforts for 

building tools and a development environment have already been taken in two 

case companies that continued the work with their internal effort. In addition, the 

work to make the development efforts publicly available is being planned in the 

forthcoming AMALTHEA4Public project proposal 1  that continues the 

development of an integrated development environment with the intention to 

launch it for public use. 
  

                                                        

 
1 ITEA3 labelled project, funded by European Commission during 2014-2017. 



66 

 



67 

5 Summary 

The current turbulent world of software products and their development is 

complex, which causes several cognitive challenges, as discussed in this 

dissertation. These challenges, for example, hinder the developers’ ability to 

define common goals, achieve and understand the information, and create a 

shared understanding of the product and the process of developing it. Therefore, 

supporting the cognitive work of developers has a significant effect. The main 

research problem is stated as: 

How to provide cognitive support for the collaborative development of 

embedded systems? 

To address this research problem, six studies were carried out to achieve a 

broad view and understanding regarding the need to support the cognitive work of 

developers in collaborative embedded systems development. The challenges were 

studied in more than twenty different companies, including over one hundred 

interviews. The six articles resulting from the studies formed a logical chain, with 

interrelated research questions. Each article covers an area that complements the 

other articles and contributes towards the overall research problem, see Fig. 12. 

The research questions cover both theoretical and practical levels. 

 

Fig. 12.  Summary of the studies and implications  



68 

This study and its implications highlight the importance of addressing the 

different abstraction levels of work and understanding the information flows and 

needs in order to provide developers clear understanding about what they need to 

do, why they need to do it, and how.  

This dissertation makes an important contribution to software engineering 

research by providing studies on cognitive issues that focus on supporting 

collaborative software development. The contributions of this dissertation can 

benefit both researchers and practitioners by providing a framework that defines a 

set of tools, methods, and practices that are integrated into a workflow, while the 

work of developers is linked to processes, information, and knowledge in a work 

context.  

The solutions proposed in this dissertation focus on the following cognitive 

aspects of collaborative work and processes:  

– Transparency and awareness support for tools and processes 

– Work context and situation awareness; in particular, defining the purposes, 

objectives, and roles of the work systems 

– Providing common goals and criteria to measure how a system can achieve 

its purposes, and defining the functions required to achieve the purposes 

through decision-oriented development  

– Knowledge management aspects, such as acquisition, sharing, and utilisation, 

including also the use of experience and skills 

– Fulfilling developers’ information needs and defining the information flows 

to support communication and information distribution 

– Proposing how activities and tasks can be implemented, as well as what 

resources are needed 

The industrial cases prove that utilising the suggested solutions improves 

collaboration among organisations and teams by helping dissemination and use of 

needed information, especially improving task implementation and decision 

making. Mitigating the cognitive burden will speed up the development work and 

reduce the required effort from developers and decision makers. All together, the 

contributions summarised in this dissertation provide a better understanding of the 

work and its context for developers and decision makers, and the contributions 

help increase communication and coordination in collaborative development. The 

result is better product quality and shorter development times, as the work 

activities fulfil their purpose more effectively and provide less waste. Finally, by 



69 

applying these results, developers can respond to changes and unexpected events, 

and they can solve development problems in an innovative manner. 
  



70 

 



71 

References 

Abecker A, Dioudis S, van Elst L, Houy C, Legal, M, Mentzas G, Müller S & 
Papavassiliou G (2002) Enabling workflow-embedded OM access with the DECOR 
toolkit. Knowledge Management and Organizational Memories: 63–74. 

Adams A, Blandford A & Lunt P (2005) Social empowerment and exclusion: A case study 
on digital libraries. ACM Transactions on Computer-Human Interaction 12(2): 174–
200. 

Adams M, ter Hofstede A, Edmond D & van der Aalst W (2006) Worklets: A service-
oriented implementation of dynamic flexibility in workflows. Proceedings of 
CoopIS’06: 291–308. 

Ahmed T & Tripathi AR (2010) Security policies in distributed CSCW and workflow 
systems. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and 
Humans 40(6): 1220–1231. 

Alavi M & Leidner DE (2001) Review: Knowledge management and knowledge 
management systems: Conceptual foundations and research issues. MIS Quarterly 
25(1): 107–136. 

Alves C & Finkelstein A (2002) Challenges in COTS decision-making: A goal-driven 
requirements engineering perspective. Proceedings of the 14th International 
Conference on Software Engineering and Knowledge Engineering: 789–794. 

Aurum A & Wohlin C (2003) The fundamental nature of requirements engineering 
activities as a decision-making process. Information and Software Technology 45(14): 
945–954. 

Babbie ER (1990) Survey research methods. Belmont, CA, Wadsworth. 
Basili VR (1993) The experimental paradigm in software engineering. Proceedings of the 

International Workshop on Experimental Software Engineering Issues: Critical 
Assessment and Future Directions: 3–12. 

Baskerville R & Wood-Harper AT (1996) A critical perspective on action research as a 
method for information systems research. Journal of Information Technology 11(3): 
235–246. 

Beaudouin-Lafon M & Karsenty A (1992) Transparency and awareness in a real-time 
groupware system. Proceedings ACM Symposium on User Interface Software and 
Technology: 171–181. 

Berggren E & Bernshteyn R (2007) Organizational transparency drives company 
performance. Journal of Management Development 26(5): 411–417. 

Birk A & Heller G (2007) Challenges for requirements engineering and management in 
software product line development. Requirements Engineering: Foundation for 
Software Quality: 300–305. 

Bjørnson FO & Dingsøyr T (2008) Knowledge management in software engineering: A 
systematic review of studied concepts, findings, and research methods used. 
Information and Software Technology 50(11): 1055–1068. 

Bracchi G & Pernici B (1984) The design requirements of office systems. ACM 
Transactions on Information Systems 2(2): 151–170. 



72 

Bralla JG (1996) Design for excellence. New York, McGraw-Hill. 
Braun V & Clarke V (2006) Using thematic analysis in psychology. Qualitative Research 

in Psychology 3(2): 77–101. 
Buckingham Shum S (1998) Negotiating the construction of organizational memories. 

Information Technology for Knowledge Management. Berlin, Springer Verlag: 55–78. 
Carmel E & Agarwal R (2001) Tactical approaches for alleviating distance in global 

software development. IEEE Software 18(2): 22–29.  
Cheng BH & Atlee JM (2007) Research directions in requirements engineering. 2007 

Future of Software Engineering: 285–303. 
Cooper RG, Edgett SJ & Kleinschmidt EJ (2004) Benchmarking best NPD practices – III. 

Research Technology Management 47(6): 43–55. 
Cruzes DS & Dyba T (2011a) Recommended steps for thematic synthesis in software 

engineering. International Symposium on Empirical Software Engineering and 
Measurement (ESEM), 2011: 275–284. 

Cruzes DS & Dybå T (2011b) Research synthesis in software engineering: A tertiary study. 
Information and Software Technology 53(5): 440–455. 

Daft RL & Lengel RH (1986) Organizational information requirements, media richness, 
and structural design. Management Science 32(5): 554–571.  

Damian D, Chisan J, Allen P & Corrie B (2003) Awareness meets requirements 
management: Awareness needs in global software development. Proceedings of the 
International Workshop on Global Software Development, International Conference 
on Software Engineering: 7–11. 

Damian D & Lanubile F (2004) The 3rd international workshop on global software 
development. Proceedings of the 26th International Conference on Software 
Engineering: 756–757. 

Damian DE & Zowghi D (2003) RE challenges in multi-site software development 
organisations. Requirements Engineering 8(3): 149–160. 

Dennis AR & Valacich JS (1999) Rethinking media richness: Towards a theory of media 
synchronicity. Proceedings of the 32nd Annual Hawaii International Conference on 
System Sciences: 1–10. 

Denzin NK & Lincoln YS (2005) Handbook of qualitative research. 3rd Edition. 
Thousands Oaks, Sage Publications. 

Dourish P & Bellotti V (1992) Awareness and coordination in shared workspaces. 
Proceedings of the 1992 ACM Conference on Computer Supported Cooperative Work: 
107–114. 

Eskola J & Suoranta J (1998) Johdatus laadulliseen tutkimukseen. Tampere, Vastapaino. 
Eskola J & Suoranta J (2008) Johdatus laadulliseen tutkimukseen. Tampere, Vastapaino. 
Espinosa JA, Slaughter SA, Kraut RE & Herbsleb JD (2007) Team knowledge and 

coordination in geographically distributed software development. Journal of 
Management Information Systems 24(1): 135–169. 

Gaines BR (1977) Knowledge management in societies of intelligent adaptive agents. 
Journal of Intelligent Information Systems 9(3): 277–298. 



73 

Gehin A, Zwolinski P & Brissaud D (2008) A tool to implement sustainable end-of-life 
strategies in the product development phase. Journal of Cleaner Production 16(5): 
566–576. 

Goel AK (1997) Design, Analogy, and Creativity. IEEE Expert 12(3): 62–70. 
Grambow G, Oberhauser R & Reichert M (2011) Towards automatic process-aware 

coordination in collaborative software engineering. Proceedings of the 6th 
International Conference on Software and Data Technologies: 5–14. 

Grinter RE (1995) Using a configuration management tool to coordinate software 
development. Proceedings of Conference on Organizational Computing Systems: 
168–177. 

Grinter RE, Herbsleb JD & Perry DE (1999) The geography of coordination: Dealing with 
distance in R&D work. Proceedings of the International ACM SIGGROUP 
Conference on Supporting Group Work, 1999: 306–315. 

Guindon R (1990) Designing the design process: Exploiting opportunistic thoughts. 
Human-Computer Interaction 5(2): 304–344. 

Gupta A, Pawara KS & Smart P (2007) New product development in the pharmaceutical 
and telecommunication industries: A comparative study. International Journal of 
Production Economics 106(1): 41–60. 

Gutwin C, Greenberg S & Roseman M (1996) Workspace awareness in real-time 
distributed groupware: Framework, widgets, and evaluation. People and Computers 
XI: Proceedings of HCI’96: 281–298.  

Helo P (2004) Managing agility and productivity in the electronics industry. Industrial 
Management & Data Systems 104(7): 567–577.  

Henninger S (1997) Case-based knowledge management tools for software development. 
Automated Software Engineering 4(3): 319–340. 

Herbsleb JD (2007) Global software engineering: The future of socio-technical 
coordination. Future of Software Engineering, IEEE Computer Society, 2007: 188–
198.  

Herbsleb JD, Mockus A, Finholt T & Grinter R (2001) An empirical study of global 
software development: Distance and speed. Proceedings of the International 
Conference on Software Engineering, 2001: 81–90. 

Herbsleb JD & Mockus A (2003) An empirical study of speed and communication in 
globally distributed software development. IEEE Transactions on Software 
Engineering 29(6): 481–494. 

Herbsleb JD & Moitra D (2001) Global software development. IEEE Software 18(2): 16–
20. 

Herbsleb JD, Paulish DJ & Bass M (2005) Global software development at Siemens: 
Experience from nine projects. Proceedings of the 27th International Conference on 
Software Engineering: 524-533. 

Hirsjärvi S & Huttunen J (1995) Johdatus kasvatustieteeseen. 4th Edition. Helsinki, 
WSOY. 

Hirsjärvi S, Remes P & Sajavaara P (2008) Tutki ja kirjoita. 13th-14th Edition. Helsinki, 
Tammi. 



74 

Hollan J, Hutchins E & Kirsch D (2000) Distributed cognition: Toward a new foundation 
for human-computer interaction research. ACM Transactions on Computer-Human 
Interaction 7(2): 174–196. 

Hyysalo J, Kelanti M, Lehto J, Kuvaja P & Oivo M (2014) Software development as a 
decision-oriented process. Software Business. Towards Continuous Value Delivery: 
132–147. 

Hyysalo J, Lehto J, Aaramaa S & Kelanti M (2013). Supporting cognitive work in software 
development workflows. Proceedings of Profes 2013, 14th International Conference 
on Product-Focused Software Process Improvement: 20–34. 

Hyysalo J, Parviainen P & Tihinen M (2006). Collaborative embedded systems 
development: survey of state of the practice. 13th Annual IEEE International 
Symposium and Workshop on Engineering of Computer Based Systems, 2006: 130–
138. 

Jacobson I, Booch G & Rumbaugh J (1999) The unified software development process. 
Reading, MA, Addison-Wesley. 

Jalote-Parmar A, Badke-Schaub P, Ali W & Samset E (2010). Cognitive processes as 
integrative component for developing expert decision-making systems: A workflow 
centered framework. Journal of Biomedical informatics 43(1): 60–74. 

Jennings NR, Faratin P, Johnson MJ, Norman TJ, O'Brien P & Wiegand ME (1996) 
Agent-based business process management. International Journal of Cooperative 
Information Systems 5(2-3): 105–130. 

Jiao J & Chen CH (2006) Customer requirement management in product development: a 
review of research issues. Concurrent Engineering 14(3): 173–185. 

Jiménez M, Piattini M & Vizcaíno A (2009) Challenges and improvements in distributed 
software development: A systematic review. Advances in Software Engineering 
2009(3).  

Kasanen E, Lukka K & Siitonen A (1993) The constructive approach in management 
accounting research. Journal of Management Accounting Research 5: 243–264. 

Klein M & Dellarocas C (2000) A knowledge-based approach to handling exceptions in 
workflow systems. Computer Supported Cooperative Work 9(3-4): 399–412. 

Kulkarni A, Can M & Hartmann B (2012) Collaboratively crowdsourcing workflows with 
Turkomatic. Proceedings of the ACM 2012 Conference on Computer Supported 
Cooperative Work: 1003–1012. 

Kuutti K (1995) Activity theory as a potential framework for human-computer interaction 
research. Context and Consciousness: Activity Theory and Human Computer 
Interaction: 17–44. 

Kwan MM & Balasubramanian PR (1997) Dynamic workflow management: A framework 
for modeling workflows. Proceedings of the 30th Annual Hawaii International 
Conference on System Sciences: 367–376. 

Lanubile F, Ebert C, Prikladnicki R & Vizcaíno A (2010) Collaboration tools for global 
software engineering. IEEE Software 27(2): 52–55. 

Lee HL & Billington C (1992) Managing supply chain inventory: Pitfalls and opportunities. 
Sloan Management Review 33(3): 65–73. 



75 

Lehto J, Härkönen J, Haapasalo H, Belt P, Möttönen M & Kuvaja P (2011) Benefits of 
DfX in requirements engineering. Technology and Investment, 2(1): 27–37. 

Mangan P & Sadiq S (2002) On building workflow models for flexible processes. 
Australian Computer Science Communications 24(2): 103–109. 

Marshall C & Rossman GB (1998) Designing qualitative research. 3rd edition, Thousand 
Oaks, Sage Publications. 

Minor M, Bergmann R, Gorg S & Walter K (2011) Reasoning on business processes to 
support change reuse. CEC 2011: Proceedings of the 13th Conference on Commerce 
and Enterprise Computing, IEEE: 18–25. 

Monasor MJ, Vizcaino A, Piattini M & Caballero I (2010) Preparing students and 
engineers for global software development: a systematic review. 5th IEEE 
International Conference on Global Software Engineering (ICGSE), 2010: 177–186.  

Myers MD & Newman M (2007) The qualitative interview in IS research: Examining the 
craft. Information and Organization 17(1): 2–26. 

Möttönen M, Härkönen J, Belt P, Haapasalo H & Similä J (2009) Managerial view on 
design for manufacturing. Industrial Management & Data Systems 109(6): 859–872. 

Nakakoji K, Ye Y & Yamamoto Y (2010) Supporting expertise communication in 
developer-centered collaborative software development environments. Collaborative 
Software Engineering. Berlin Heidelberg, Springer: 219–236. 

Noble D (2004) Knowledge foundations of effective collaboration. Proceedings of 9th 
International Command and Control Research and Technology Symposium, 
September 14-16, Copenhagen, Denmark. 

Noll J, Beecham S & Richardson I (2010) Global software development and collaboration: 
barriers and solutions. ACM Inroads 1(3): 66–78. 

Olson JS, Covi L, Rocco E, Miller WJ & Allie P (1998) A room of your own: What would 
it take to help remote groups work as well as collocated groups? CHI 98 Conference 
Summary on Human Factors in Computing Systems: 279–280. 

Omoronyia I, Ferguson J, Roper M & Wood M (2010). A review of awareness in 
distributed collaborative software engineering. Software: Practice and Experience 
40(12): 1107–1133. 

Paasivaara M & Lassenius C (2004) Collaboration practices in global inter‐organizational 
software development projects. Software Process: Improvement and Practice 8(4): 
183–199. 

Pahl G, Beitz W, Feldhusen J, Grote, KH (2007) Engineering design: A systematic 
approach, 3rd ed. London, Springer. 

Patton MQ (2002) Qualitative Research and Evaluation Methods. 3rd edition, Thousand 
Oaks, Sage Publications. 

Pauleen D (2003) Leadership in a global virtual team: An action learning approach. 
Leadership and Organizational Development Journal 24(3): 153–162.  

Pauleen D & Yoong P (2001) Facilitating virtual team relationships via Internet and 
conventional communication channels. Internet Research: Electronic Networking 
Applications and Policies 11(3): 190–202.  



76 

Pfleeger SL (1995) Experimental design and analysis in software engineering. Annals of 
Software Engineering 1(1): 219–253. 

Robertson T (1997) Cooperative work and lived cognition: A taxonomy of embodied 
interaction. Fifth European Conference on Computer-Supported Cooperative Work 
ECSCW '97: 205–220. 

Robillard P (1999) The role of knowledge in software development. Communications of 
the ACM 42(1): 87–92. 

Runeson P & Höst M (2009) Guidelines for conducting and reporting case study research 
in software engineering. Empirical Software Engineering 14(2): 131–164. 

Runeson P, Höst M, Rainer A & Regnell B (2012) Case study research in software 
engineering: guidelines and examples. Hoboken, NJ, John Wiley & Sons, Inc. 

Sadiq W & Orlowska M (1999) On capturing process requirements of workflow based 
information systems. Proceedings of the 3rd International Conference on Business 
Information Systems: 281–294. 

Sarker S & Sahay S (2003) Understanding virtual team development: An interpretive study. 
Journal of the Association for Information Systems 4(1): 1–38. 

Sarma A (2005) A survey of collaborative tools in software development. UCI ISR 
Technical Report, UCI-ISR-05-3. Irvine, University of California, Institute for 
Software Research. 

Sheu DD & Chen DR (2007) Backward design and cross-functional design management. 
Computers & Industrial Engineering, 53(1): 1–16. 

Short J, Williams E, & Christie B (1976) Communication modes and task performance. 
Readings in Groupware and Computer Supported Cooperative Work. San Francisco, 
CA, Morgan Kaufmann Publishers, Inc.: 169–176. 

Siggelkow N (2007) Persuasion with case studies. Academy of Management Journal 50(1): 
20–24. 

Storey MA-D, Cubranic S & German DM (2005) On the use of visualization to support 
awareness of human activities in software development: A survey and a framework. 
Proceedings ACM Symposium on Software Visualization: 193–202. 

Sung JJ (2005) Representation-oriented software development: A cognitive approach to 
software engineering. Proceedings of the 17th Annual Psychology of Programming 
Interest Group Workshop (PPIG’05), Brighton, UK: 173–187. 

Susman G, Evered R (1978) An assessment of the scientific merits of action research. 
Administrative Science Quarterly 23(4): 582–603.  

Treude C & Storey MA (2012) Work item tagging: Communicating concerns in 
collaborative software development. IEEE Transactions on Software Engineering, 
38(1): 19–34. 

Tuomi J & Sarajärvi A (2006) Laadullinen tutkimus ja sisällön analyysi. Helsinki, Tammi. 
van der Aalst WMP & Basten T (2002) Inheritance of workflows: An approach to tackling 

problems related to change. Theoretical Computer Science 270(1-2): 125–203. 
van Leijen H & Baets WRJ (2003) A cognitive framework for reengineering knowledge-

intensive processes. Proceedings of the 36th Annual Hawaii International Conference 
on System Sciences: 97–106. 



77 

van Merriënboer JJG (1997) Training Complex Cognitive Skills. Englewood Cliffs, NJ, 
Educational Technology Publications.. 

Walia GS, Carver J & Philip T (2006) Requirement error abstraction and classification: an 
empirical study. Proceedings of the 2006 ACM/IEEE International Symposium on 
Empirical Software Engineering: 336–345. 

Wang M & Wang H (2006) From process logic to business logic: A cognitive approach to 
business process management. Information and Management 43(2): 179–193. 

Weber M & Weisbrod J (2003) Requirements engineering in automotive development: 
Experiences and challenges. IEEE Software 20(1): 16–24. 

Welborn R & Kasten V (2003) The Jericho principle, how companies use strategic 
collaboration to find new sources of value. Hoboken, NJ, John Wiley & Sons, Inc. 

WFMC (1999) Workflow Management Coalition terminology and glossary, Document 
Number WFMC-TC-1011, Document Status-Issue 3.0. Technical report. Brussels, 
Workflow Management Coalition. 

Whitehead J, Mistrík I, Grundy J & van der Hoek A (2010) Collaborative software 
engineering: concepts and techniques. Collaborative Software Engineering. Berlin 
Heidelberg, Springer: 1–30. 

Wild C, Maly K, Zhang C, Roberts C, Rosca D & Taylor T (1994) Software Engineering 
Life Cycle Support – Decision Based Systems Development. Proceedings of the IEEE 
Region 10’s 9th International Conference on Computer Technology, TENCON’94: 
781–784. 

Wohlin C, Höst M & Henningsson K (2003) Empirical research methods in software 
engineering. Empirical methods and studies in software engineering: Experiences 
from ESERNET: 7–23. 

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B & Wesslén A (2012) 
Experimentation in software engineering. Berlin Heidelberg, Springer. 

Yin RK (2009) Case study research: Design and methods. Los Angeles, Sage publications, 
Inc. 

Yu L & Schmid BF (1999) A conceptual framework for agent-oriented and role-based 
workflow modeling. Proceedings of the 1st International Workshop on Agent-
Oriented Information Systems. 

Zeidler C, Kittl C & Petrovic O (2008) An integrated product development process for 
mobile software. International Journal of Mobile Communications 6(3): 345–356. 

Zhuge H (2003) Workflow- and agent-based cognitive flow management for distributed 
team cooperation. Information and Management 40(5): 419–429. 

Zhuge H, Ma J & Shi XQ (1997) Abstraction and analogy in cognitive space: A software 
process Model. Information and Software Technology 39(7): 463–468.  

 
  



78 

 



79 

Original publications 

I  Hyysalo J, Parviainen P & Tihinen M (2006) Collaborative embedded systems 
development: Survey of state of the practice. In Proceedings of the 13th Annual IEEE 
International Conference and Workshop on the Engineering of Computer Based 
Systems (ECBS), March 27-30, 2006, Potsdam, Germany: 130–138.  

II  Liukkunen K, Lindberg K, Hyysalo J & Markkula J (2010) Supporting collaboration 
in the geographically distributed work with communication tools in the remote district 
SME's. In Proceedings of the 5th IEEE International Conference on Global Software 
Engineering (ICGSE), Princeton, NJ, USA, August 23-26, 2010: 155–164. 

III  Hyysalo J, Aaramaa S, Similä J, Saukkonen S, Belt P & Lehto J (2009) A new way to 
organize DFX in a large organization. In Proceedings of Profes 2009, 10th 
International Conference on Product Focused Software Development and Process 
Improvement, June 15-17, 2009, Oulu, Finland, Lecture Notes in Business 
Information Processing, Volume 32: 275–189. 

IV  Kelanti M, Hyysalo J, Välimäki A, Kuvaja P & Oivo M (2013) A case study of 
requirements management: Toward transparency in requirements management tools. 
In Proceedings of the 8th International Conference on Software Engineering Advances 
(ICSEA 2013), October 27-31, 2013, Venice, Italy: 597–604. ISSN: 2308-4235. ISBN: 
978-1-61208-304-9. 

V  Hyysalo J, Lehto J, Aaramaa S & Kelanti M (2013). Supporting cognitive work in 
software development workflows. In Proceedings of Profes 2013, 14th International 
Conference on Product-Focused Software Process Improvement. June 12-14, 2013, 
Paphos, Cyprus: 20–34. 

VI  Hyysalo J, Kelanti M, Lehto J, Kuvaja P & Oivo M (2014) Software development as a 
decision-oriented process. In: Software Business. Towards Continuous Value Delivery: 
132–147. 

Reprinted, with permission, from IEEE (I, and II), Springer (III, V and VI) and 

IARIA XPS Press (IV).  

Original publications are not included in the electronic version of the dissertation.  

 
  



80 

 



A C T A  U N I V E R S I T A T I S  O U L U E N S I S

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/

S E R I E S  A  S C I E N T I A E  R E R U M  N A T U R A L I U M

617. Aalto, Esa (2013) Genetic analysis of demography and selection in Lyrate
rockcress (Arabidopsis lyrata) populations

618. Rodríguez, Pilar (2013) Combining lean thinking and agile software development :
how do software-intensive companies use them in practice?

619. Vatka, Emma (2014) Boreal populations facing climatic and habitat changes

620. Isomursu, Marja (2014) Host–parasite interactions of boreal forest grouse and
their intestinal helminth parasites

621. Ponnikas, Suvi (2014) Establishing conservation management for avian threatened
species

622. Matusek, Florian (2014) Selective privacy protection for video surveillance

623. Virtanen, Elina (2014) Effects of haulm killing and gibberellic acid on seed potato
(Solanum tuberosum L.) and techniques for micro- and minituber production in
northern latitudes

624. Kopatz, Alexander (2014) Genetic structure of the brown bears (Ursus arctos) in
Northern Europe

625. Loukola, Olli (2014) Information networks among species : adaptations and
counter-adaptations in acquiring and hiding information

626. Langrial, Sitwat (2014) Exploring the influence of persuasive reminders and virtual
rehearsal on the efficacy of health behavior change support system

627. Jaakkonen, Tuomo (2014) Intra- and interspecific social information use in nest
site selection of a cavity-nesting bird community

628. Päätalo, Heli (2014) Stakeholder interactions in cross-functional productization :
the case of mobile software development

629. Koskela, Timo (2014) Interaction in asset-based value creation within innovation
networks : the case of software industry

630. Stibe, Agnis (2014) Socially influencing systems : persuading people to engage with
publicly displayed Twitter-based systems

631. Sutor, Stephan R. (2014) Large-scale high-performance video surveillance

632. Niskanen, Alina (2014) Selection and genetic diversity in the major
histocompatibility complex genes of wolves and dogs

633. Tuomikoski, Sari (2014) Utilisation of gasification carbon residues : activation,
characterisation and use as an adsorbent



A
B
C
D
E
F
G

UNIVERSITY OF OULU  P .O. B  00  F I -90014 UNIVERSITY OF OULU FINLAND

A C T A  U N I V E R S I T A T I S  O U L U E N S I S

S E R I E S  E D I T O R S

SCIENTIAE RERUM NATURALIUM

HUMANIORA

TECHNICA

MEDICA

SCIENTIAE RERUM SOCIALIUM

SCRIPTA ACADEMICA

OECONOMICA

EDITOR IN CHIEF

PUBLICATIONS EDITOR

Professor Esa Hohtola

University Lecturer Santeri Palviainen

Postdoctoral research fellow Sanna Taskila

Professor Olli Vuolteenaho

University Lecturer Veli-Matti Ulvinen

Director Sinikka Eskelinen

Professor Jari Juga

Professor Olli Vuolteenaho

Publications Editor Kirsti Nurkkala

ISBN 978-952-62-0601-1 (Paperback)
ISBN 978-952-62-0602-8 (PDF)
ISSN 0355-3191 (Print)
ISSN 1796-220X (Online)

U N I V E R S I TAT I S  O U L U E N S I SACTA
A

SCIENTIAE RERUM 
NATURALIUM

U N I V E R S I TAT I S  O U L U E N S I SACTA
A

SCIENTIAE RERUM 
NATURALIUM

OULU 2014

A 634

Jarkko Hyysalo

SUPPORTING 
COLLABORATIVE 
DEVELOPMENT
COGNITIVE CHALLENGES AND SOLUTIONS OF 
DEVELOPING EMBEDDED SYSTEMS

UNIVERSITY OF OULU GRADUATE SCHOOL;
UNIVERSITY OF OULU,
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING,
DEPARTMENT OF INFORMATION PROCESSING SCIENCE

A
 634

AC
TA

Jarkko H
yysalo


	Abstract
	Tiivistelmä
	Acknowledgements
	List of abbreviations
	List of original publications
	Table of contents
	1 Introduction
	1.1 Background
	1.2 Objectives and scope
	1.3 Research approach
	1.4 Research realisation and dissertation structure

	2 Related work
	2.1 Collaborative development
	2.2 Communication
	2.3 Design for excellence in managing and coordinatingknowledge, practices, and views
	2.4 Transparency and awareness of processes and tools
	2.5 Cognitive workflow
	2.6 Decision-oriented software development

	3 Research contribution
	3.1 Article I: Collaborative embedded systems development:Survey of state-of-the-practice
	3.2 Article II: Supporting collaboration in the geographicallydistributed work with communication tools in the remotedistrict SME's
	3.3 Article III: A new way to organise DfX in a large organisation
	3.4 Article IV: A Case Study of Requirements Management: TowardTransparency in Requirements Management Tools
	3.5 Article V: Supporting cognitive work in software developmentworkflows
	3.6 Article VI: Software development as a decision-orientedprocess

	4 Discussion
	4.1 Main implications
	4.2 Relevance and validity of the research
	4.3 Limitations and future research

	5 Summary
	References
	Original publications



