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Abstract

In this thesis, the magnetic resonance and magneto-optical rotation parameters are studied
in single-layer carbon systems of two different dimensionalities. Based on electronic
structure calculations, the spectral parameters are predicted for both extended (2D) and
finite, molecular (0D) systems consisting of pure sp2-hybridised pristine graphene (G), as
well as hydrogenated and fluorinated, sp3-hybridised graphene derivatives, graphane (HG)
and fluorographene (FG), respectively.

Nuclear magnetic resonance (NMR) parameters are calculated for G, HG and FG
systems at their large-system limit. For their 0D counterparts, graphene flakes, qualitative
spectral trends are predicted as functions of their size and perimeter type. The last group
of studied carbon systems consists of 2D graphenes containing spin-1/2 paramagnetic
defects. Electron spin resonance (ESR) parameters and paramagnetic NMR shieldings
are predicted for four different paramagnetic systems, including the vacancy-defected
graphane and fluorographene, as well as graphene with hydrogen and fluorine adatoms.
The magneto-optic properties of G and HG flakes are studied in terms of Faraday optical
rotation and nuclear spin optical rotation parameters, to investigate the effects of their finite
size and also the different level of hydrogenation.

All the different investigated parameters displayed characteristic sensitivity to the elec-
tronic and atomic structure of the studied graphenes. The parameters obtained provide an
insight into the physics of these 0D and 2D carbon materials, and encourage experimental
verification.

Keywords: graphene, graphane, fluorographene, nuclear magnetic resonance, electron spin
resonance, Faraday effect, nuclear spin optical rotation, spectral parameters, electronic
structure, density-functional theory
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1 Introduction

1.1 Graphenes

Graphene is a two-dimensional allotrope of carbon, where sp2-hybridised atoms are
covalently bonded to three other carbons, forming a honeycomb lattice with the thickness
of a single atomic layer. Graphene was presumed to be thermodynamically unstable
in its pristine form [1]. Consequently, until the 21st century it was only considered a
prototypic, theoretical [2] building block of the rich polymorphism existed by the various
other sp2-hybridised allotropes of carbon, such as the one-dimensional nanotubes and the
three-dimensional graphite [3–5]. In 2004, Geim and co-workers managed for the first time
to isolate graphene from graphite by mechanical exfoliation [6]. Since then, graphene has
fascinated scientists with its unusual electric, optical and mechanical properties, providing
a versatile platform for both fundamental and applied research.

By chemically functionalising graphene it is possible to produce derivatives that have
different physical properties, such as electrical conductivity and light absorption. The first
kind of derivatives were hydrogenated and fluorinated graphenes, called graphane and
fluorographene, respectively [7–9]. The attachment of these atoms, hydrogen or fluorine,
below and above the sp2-hybridised carbon layer in an alternating manner changes the
hybridisation type to sp3, preserving the 2D hexagonal symmetery. This induces opening
of the vanishing band gap of graphene, resulting these graphene derivatives to be insulators
[10]. The atomic structures and electronic band structures of these systems are illustrated
in Figrure 1.1.

Large polycyclic and aromatic hydrocarbons (PAHs) can be regarded as finite zero-
dimensional graphene flakes. In addition to the fact that they have many of the excellent
characteristics of graphene, PAHs also have size-tunable properties [11–14]. From the
modelling point-of-view, the innermost part of these sp2-hybridised flakes possesses a
graphene-like environment, which can be used to calculate local molecular properties, such
as many magnetic resonance parameters, to extrapolate to the large-system limit.
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Figure 1.1. Hexagonal atomic structures and electronic band structures of 2D graphenes. Planar (a)
sp2-hybridised graphene as well as (b) hydrogenated (graphane) and (c) fluorinated (fluorographene)
sp3-hybridised systems, the latter two in the chair conformation. The transformation from the
sp2-hybridisation to sp3 opens the zero band gap of graphene at the K point, resulting in the graphene
derivatives possessing a minimal direct gap at the Γ point with the value of a couple of eV, indicated
with the blue circles.

1.2 NMR, ESR and pNMR spectroscopies

Most spectroscopic methods are based on the application of the electromagnetic radiation
onto the sample and measuring the scattering or absorption of the radiation after its interac-
tion with matter [15]. These experimental techniques have given access to the electronic
and atomic structure of matter. Spectra with a plethora of details of the interactions oc-
curring in the target, are obtained when matter responds to the applied electromagnetic
perturbation.

Nuclear magnetic resonance (NMR) is a widely used spectroscopic tool not only to
characterise sensitively the molecular structures in chemistry, but it is also used in many
other scientific disciplines, such as medicine, biology, geology and materials science
[16, 17]. The method is based on the NMR-active nuclei, which behave as minuscule
magnets due to the non-zero value of their spin quantum number I . The applied external
magnetic field forces the macroscopic ensamble of these spins to be aligned with the field.
Typically of Nature in a very small scale, the orientation of these nuclei are associated
with certain stationary energy states, which in this case result from the interaction with
the external magnetic field. Photons introduced by means of radio-frequency pulses can
induce transitions between the nuclear spin states. The photons that have exactly the
required excitation energy can give rise to resonance. The magnetisation of the excited
system relaxes with a characteristic time scale by emitting photons that are received
with the detection coil of the NMR instrument. The energy distribution of the photons
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gives information of the local electronic and atomic structure of matter, giving spectra
characteristic to the environment in all states of matter. This specific information is due
to the electronic currents that are induced to the molecule by the applied magnetic field.
Furthermore, these currents depend on the electronic structure near the NMR nucleus of
interest, resulting in a specific strength of the local magnetic field. This, in turn, is seen as
spectral parameters specific to the chemical environmental.

Not only certain nuclei but also the electron cloud of the system can have a magnetic
character, due to unpaired electrons that have a much larger magnetic moment than that
of any nucleus. For instance, the presence of a metal ion or a lattice defect may cause a
paramagnetic center to appear in the material. A spectroscopy method that gives insight to
the atomic and electronic structure of material defects is electron spin resonance (ESR)
[18, 19]. It shares many principles with NMR but, instead of nuclear spins, ESR deals with
the spins of the unpaired electrons. Also the NMR technique can be used to gain structural
and dynamical information from paramagnetic systems with unpaired electrons. The so-
called paramagnetic NMR (pNMR) is used in the development of new magnetic materials
and biomolecular applications, e.g., in the study of metalloproteins [20]. Traditionally
pNMR is used when the information obtained by ESR is scarce [21].

Faraday optical rotation (FOR) is a magneto-optic phenomenon, in which the plane
of polarisation of a linearly polarised light (LPL) beam rotates when it travels through a
material that is exposed to an externally applied magnetic field directed along of the beam
[22]. It is the different indices of refraction for the left- and right-circularly polarised light
components that results in this optical rotation. The phenomenon can also be used for
spectroscopic purposes, because the rotation is dependent on the chemical composition
of the molecules in the medium [23]. Recently this phenomenon has been observed as
caused by, instead of the external magnetic field, the field that arises from an ensemble
of polarised nuclear spins. This effect is dubbed as nuclear spin optical rotation (NSOR)
[24, 25]. It offers a novel way to gain information of, in principle, atomic resolution, due
to the fact that nuclei in different chemical environments have their characteristic NSOR
constants. NSOR has the potential to offer a high-resolution experimental spectroscopic
tool, but the applications of NSOR are still in their early infancy.

This dissertation focuses on spectroscopic investigations of different kinds of graphenes
(finite and extended; pristine and chemically modified) by means of the above-described
magnetic and magneto-optic phenomena. The research has been performed by computa-
tional methods. In general, computational science has emerged as a significant methodology
in many scientific disciplines. In chemistry and physics, atomic-scale modelling provides
valuable insight into the properties of atomic, molecular, and materials systems, in a way
that might be unfeasible for experimental techniques. In the field of spectroscopy, compu-
tations are widely used to interpret experimental spectra, which often are very rich in detail.
The fundamental theory behind these kinds of calculation is quantum mechanics, which
revolutionised physics in the early 20th century. Quantum mechanics describes nature
with astonishing accuracy in the very small scale, covering fields as distinct as elementary
particles to molecules and materials. The present electronic structure calculations belong
to the class of first-principles methods, which rely only on controlled approximations, in
solving the many-body Schrödinger equation.
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1.3 Outline of the dissertation

This dissertation consists of four scientific publications. Papers I and II concern the NMR
properties of diamagnetic, i.e., electronically closed-shell graphene systems. In Paper I,
the NMR parameters are predicted for extended graphenes obtained by two different
computational approaches. Quantum-chemical calculations of concentric, finite models
of graphene, graphane and fluorographene, were used to extrapolate the NMR shielding
and spin-spin coupling parameters to the large-system limit. These values are compared to
the results obtained of solid-state calculations, which deal, due to the periodic boundary
conditions used, directly with infinite systems. Paper II concerns, in turn, specifically
the finite graphene flakes using quantum-chemical methods. It predicts characteristic
carbon-13 NMR chemical shift spectra for increasing-size hexagonal graphene and its
hydrogenated and fluorinated derivatives, with different types of boundary structure. The
combined results of these two papers provide aid for future NMR analysis of both extended
graphenic meterials, as well as different graphene nanoflakes.

Paper III tackles the spin-half paramagnetism that has been predicted and recently
also experimentally verified [26] to occur when an adatom is absorbed onto the graphene
surface. The ESR g-tensor and the hyperfine coupling tensors, as well as the pNMR
shielding tensor obtained by periodic calculations, are reported for the defected, sp2-
hybridised graphene that hosts either hydrogen or fluorine adatoms. Correspondingly,
the sp3-hybridised graphane and fluorographene defected by a hydrogen or a fluorine
vacancy, were subjected to a similar inspection. The vacancy defects in the graphane and
fluorographene systems constitute sp2-centers, where the magnetic resonance parameters
are locally strongly enhanced. In contrast, adatom-induced magnetic resonance parameters
that decay slowly with the distance from the defect, are found in pure graphene, which
illustrates the long-ranged perturbation caused by the defect to the electronic structure.

Paper IV presents a study of the magneto-optic properties, specifically Faraday optical
rotation and nuclear spin optical rotation, for finite graphene flakes. Systems with different
size, perimeter structure and composition are studied in terms of the Verdet and NSOR
constants. It is found that, while FOR is independent of the two types of the studied edge
geometries, this property shows a characteristic transfer of strong enhancement toward
longer wavelengths, as a function of growing system size. Furthermore, FOR is found to
be very sensitive to the degree of the sp2-hybridization, i.e., the fraction of graphene-like
area in mixed, sp3/sp2-hybridised systems. NSOR provides a means of distinguishing
graphene systems of different sizes and different terminations. The study confirms that
strong optical activity of the graphene flakes takes place in the visible spectral range.

In addition to this introduction, the dissertation consists of four parts. Chapter 2
describes the main concepts of the used spectroscopies and the underlying physical phe-
nomena. Chapter 3 begins by describing the basic theory of the electronic structure
calculation methods used. Furthermore, the chapter focuses on the methods of perturbation
theory that enable obtaining the spectroscopy parameters of interest. Chapter 4 reviews the
individual Papers included in the dissertation. A summary presented in Chapter 5 closes
the thesis.



2 Concepts

2.1 Nuclear magnetic resonance

NMR spectroscopy is based on the characteristic transitions between the stationary spin
eigenstates, i.e., Zeeman levels, of nuclei in the presence of an external magnetic field
B0 induced by NMR apparatus [16]. In order to observe these transitions, the sample
has to contain, NMR-active, paramagnetic nuclei that possess the spin quantum number
I ≥ 1/2. Such a nucleus has then a magnetic moment, mK = γK~IK , where γK is
the gyromagnetic ratio that is determined by the specific nuclear structure and IK is
the nuclear spin angular momentum. The details of NMR spectra are determined by
the microscopic interactions of these magnetic moments, determined by the immediate
electronic neighbourhood of the nuclei [16, 17].

An effective nuclear spin Hamiltonian [27] reproduces the observed NMR spectra with
the aid of specific parameters, without the explicit consideration of electrons. In such a
Hamiltonian, all the other degrees of freedom but nuclear spins are embedded into the
spectral parameters, generally expressed as two-index tensors∗, σK , DKL, JKL, and BK .
In frequency units (E/h) the NMR Hamiltonian is expressed as

HNMR =− 1

2π

∑
K

γKIK · (1− σK) ·B0 +
∑
K<L

IK · (DKL + JKL) · IL

+
∑
K

IK ·BK · IK .
(2.1)

The first term in HNMR involves the shielding tensor σK that parametrises the change
to the interaction of the bare nuclear magnetic moment with the external magnetic flux
density, −µK · B0, at the site of the nucleus. This change arises from the electronic
environment and its modifications by the magnetic field, which create a secondary, induced
magnetic field Bind

K at the nuclear site. According to Lenz’s law [29] this field (most often)

∗A two-index tensor can be represented as a 3 × 3 matrix, which can be decomposed as a sum of three
contributions of tensorial ranks 0, 1 and 2. Rank-0 corresponds to a scalar, rank-1 to an antisymmetric tensor
containing three distinct components, and rank-2 to a symmetric tensor having five independent components with
zero trace [28].
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opposes the external field, as parametrised by the shielding tensor:

Bind
K = −σK ·B0. (2.2)

The shielding tensor is not directly observed in experiments, instead it appears through the
chemical shift, δK , defined as

δK = −(σK − σK,ref). (2.3)

Here, σK is the nuclear magnetic shielding constant, which is normally of concern in
high-resolution liquid- or gas-phase NMR, where molecules are free to rotate. As a result
of the rotational averaging, the shielding constant equals the trace of the corresponding
shielding tensor:

σK =
1

3

∑
ε=x,y,z

σK,εε. (2.4)

Furthermore, σK,ref is the corresponding shielding constant in a well-characterised ref-
erence material. The Zeeman and hyperfine interactions between nuclei and electrons,
which give rise to shielding constants, are exceedingly small and, thus, σK and δK are
measured in ppm. In the solid state, the directional dependence of these interactions
becomes observable and, e.g., gives rise to the so-called chemical shift anisotropy (CSA)
[16, 17, 30]. The shielding anisotropy with respect to the z-direction (selected normal to
the material plane in the studied systems), is defined as

∆σK = σK,zz −
1

2
(σK,xx + σK,yy), (2.5)

where x- and y-directions are in the molecular plane.
The rest of the terms in HNMR contribute to the fine structure of the NMR spectrum.

In the second term, the nuclear magnetic dipole moments of two different nuclei (K and
L) are coupled with two different types of interaction mechanisms [16, 17, 27]. These
are (1) the through-space classical dipole-dipole interaction expressed as DKL and (2)
the indirect mechanism occurring via the electrons, expressed as JKL [31]. The last term
in HNMR, which appears in the presence of nuclei with IK ≥ 1, includes the quadrupole
coupling BK . Its magnitude can be written as [27]

BK =
CK

2IK(2IK − 1)
, (2.6)

where CK is the nuclear quadrupole coupling constant. This is an observable resulting
from the interaction of the non-spherical nuclear charge distribution and the electric field
gradient (EFG) at the nuclear site. It can be expanded as the product of the so-called
electric quadrupole moment eQK of nucleus K and the largest principal value† of the EFG

†A symmetric 2-index tensor can be represented in the coordinate frame called the principal axis system
(PAS) where the tensor is fully diagonal. Principal values refer to the diagonal components in this frame,

V PAS =

V11 0 0

0 V22 0

0 0 V33

 [28].
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tensor, V33, as

CK =
eQKV33

h
. (2.7)

In a high-resolution spectrum, the indirect spin-spin couplings average to the isotropic
coupling constants, JKL, and are measured in Hz. In contrast, the direct and quadrupole
couplings average to zero in isotropic liquid and gas samples.

DKL can be calculated from the positions of nuclei K and L using classical electro-
magnetism. All the other NMR parameters are intrinsically linked with the electronic
ground state, modified by the different, weak perturbations [28, 32]. Therefore, in order
to calculate NMR parameters, the electronic degrees of freedom are necessarily included
explicitly. One needs to determine the dependence of the electronic energy on the magnetic
field B0 and on the nuclear magnetic moments µK . For this purpose, an approximate elec-
tronic wavefunction of the system must be provided by reasonably accurate first-principles
quantum-mechanical calculations.

The magnetic and Zeeman interactions are small compared to the interactions involved
in chemical bonding. Hence, perturbation theory is justifiedly applied in calculating the
NMR parameters from the electronic wavefunction [31]. The electronic energy expression
can be expanded in the static perturbations introduced by the external magnetic field and
nuclear magnetic moments in the form

E(B0, {IK}) =E0 + EB0 ·B0 +
∑
K

EIK · IK +
1

2
B0 ·EB0,B0 ·B0

+
∑
K

IK ·EIK ,B0 ·B0 +
1

2

∑
K,L

IK ·EIK ,IL · IL,
(2.8)

when retaining up to second-order terms. Higher-order terms give small perturbations
and can be neglected to the accuracy of ordinary NMR. Therefore, the comparison of the
expansion (2.8) with HNMR (2.1) leads to the definition of the NMR spectral parameters as
the following derivatives of the perturbed energy:

σK =
1

γK~
∂2E(IK ,B0)

∂IK∂B0

∣∣∣∣
µK=0,B0=0

+ 1 (2.9)

JKL =
1

h

∂2E(IK , IL)

∂IK∂IL

∣∣∣∣
IK=0,IL=0

−DKL (2.10)

BK =
1

h

∂E(IK)

∂IKIK

∣∣∣∣
IK=0

. (2.11)

In the expansion (2.8), the first-order terms vanish for closed-shell systems. Furthermore,
the term EB0,B0

corresponds to the magnetisability tensor that does not enter HNMR. In the
expression (2.9), 1 is the 3x3 unit matrix representing the bare-nucleus Zeeman interaction,
present also in the absence of electrons.

In the practical computations of these and other molecular properties in this thesis,
the material systems are treated as quantum-mechanical objects but the perturbations
as classical electromagnetic fields. In particular, the magnetic resonance parameters
introduced here and in the following sections, are calculated via time-independent and
-dependent perturbations to the ground-state wavefunction.
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2.2 Electron spin resonance

ESR is an analytical spectroscopic technique for systems with unpaired electrons [15, 31].
It gives local information of the atomic and electronic structure of, e.g., material defects
[18, 19]. The most important ESR spectral parameter is the g-tensor, which parametrises
the Zeeman interaction of the magnetic moment of the unpaired electrons(s) with the
externally applied magnetic field. Such a magnetic moment is defined as me = µBg · S,
where µB = e~/2me is the Bohr magneton and S the so-called effective spin. S combines
the magnetic moments of the electron, having their origin in the spin (with the spin
quantum number s = 1/2), and orbital motion. The Zeeman interactions in ESR are
sensitive to the local geometric and electronic structure, because (similarly to the nuclear
shielding in NMR) the g-shift tensor in ESR can be associated with the changes in the
local magnetic field, induced by electronic currents [31]. The g-shift is defined as the
difference ∆g = g − ge1 from the isotropic free-electron g-factor, ge = 2.002319304
[33]. Somewhat analogous to the spin-spin coupling in NMR, the coupling of the magnetic
moment of the unpaired electrons with those of nuclei gives rise to the hyperfine coupling
(HFC) tensor, AK . At the nonrelativistic limit, AK consists of the isotropic contact and
anisotropic dipolar coupling and contributes to the fine structure of the ESR spectrum.

The experimental ESR spectrum of the spin-1/2‡ material defect can be interpreted in
terms of the Hamiltonian (in energy units)

HESR = µBB0 · g · S +
∑
K

S ·AK · IK , (2.12)

where the Zeeman interaction term is bilinear in the effective electron spin and the applied
magnetic field B0, and the hyperfine interaction term with S and the nuclear spins IK .

A consideration of the ESR spin Hamiltonian and the second term in the energy expres-
sion (2.8), in the presence of an “internal” perturbation S, formally defines the g-tensor as
a derivative of the perturbed energy

g =
1

µB

∂2E(B,S)

∂B∂S

∣∣∣∣
B=0,S=0

. (2.13)

Correspondingly, consideration of HESR with the third term in the expression (2.8) leads to
the definition of the hyperfine coupling tensor as

AK =
∂2E(IK ,S)

∂IK∂S

∣∣∣∣
IK=0,S=0

. (2.14)

2.3 Paramagnetic nuclear magnetic resonance

As compared to the standard NMR of closed-shell substances, in pNMR the chemical shifts
are greatly enhanced, providing a kind of “magnifying glass” for paramagnetic systems.

‡In spin-1/2 paramagnetic centers, me arises from one unpaired electron. For systems involving more than
one unpaired electron, a third interaction term enters HESR, the so-called zero-field splitting [18].
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This enhancement arises from the interaction of the nuclear spins with the comparatively
large magnetic moment of the unpaired electron(s) [21]. In pNMR, an ensemble of 2S+1
thermally populated states need to be considered. Besides the orbital contributions to
the shielding tensor of nucleus K, σσσorb

K , analogous to the shielding tensor of diamagnetic
systems [34], one has to consider the explicitly temperature-dependent hyperfine shielding,
which arises from the spin-dependent Fermi contact (FC) and spin-dipole (SD) hyperfine
interactions [18]. The total shielding tensor in the case of a spin-half paramagnetic system
can be written as [35]

σσσK = σσσorb
K −

1

γK~
µB

kT

S(S + 1)

3
g ·AK , (2.15)

where the ESR parameters g and AK appear. These two tensors may be analysed in terms
of relativistic corrections, primarily for the present light-atom systems arising from the
spin-orbit (SO) interaction. The correction terms arise in up to fourth order, O(α4) of
the fine structure constant α [35, 36]. The SO-induced deviation of the g-tensor from the
isotropic ge-factor, appears explicitly in

g = (ge + ∆giso)1 + ∆g̃, (2.16)

where ∆giso is the isotropic and ∆g̃ the anisotropic part of the g-shift term. By this, first-
principles calculation of the so-called pseudocontact and anisotropic contact contributions
to the pNMR shielding tensor, were formalised in the spin-1/2 case [35]. A further
extension was made in Ref. [36] by also including the SO-contributions to the HFC tensor,
which resulted in the following expansion

A = Acon1 + Adip + ASO

= (Acon +APC)1 + Adip + Adip,2 + Aas.
(2.17)

Here, the relativistic, O(α4) terms contain the isotropic spin-orbit correction APC, the
anisotropic but symmetric (rank-2) spin-dipole term Adip,2, and the anisotropic and anti-
symmetric term, Aas.

The hyperfine shielding terms arising from the product g ·AK in equation (2.15), read
as follows:

g ·AK =geAcon1 + geAdip

+ geAPC1 + geAdip,2 + geAas

+ ∆gisoAcon1 + ∆gisoAdip

+ ∆g̃Acon + ∆g̃ ·Adip.

(2.18)

In the former expansion, a total of four terms contain a tensorial rank-0 part (the terms
involving 1 and the ∆g̃ ·Adip term) in the S = 1/2 case, and thus contribute to the isotropic
chemical shift. Three of them, geAcon, geAPC, and ∆gisoAcon, have similar transformation
properties and constitute together the contact shift [37]. When the paramagnetic system
consists only of light atoms, a major contribution to the chemical shift comes from the first
term. ∆g̃ ·Adip is the term that determines the experimentally important pseudocontact
shift. It arises from the long-range dipolar interaction of the nuclear and electronic spins,
mediated by the anisotropic part of the g-tensor. The latter can be empirically related
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Table 2.1. The hyperfine shielding terms resulting from the product g · AK in equa-
tion (2.15), arranged in the appropriate order in the fine structure constant α and the
tensorial rank, in a spin-1/2 paramagnetic system.

Product g ·Aa
K Nature of the term Order in α Tensorial rankb

geAcon Nonrelativistic contact α2 0
geAdip Nonrelativistic dipolar α2 2
geAPC Contact from SO to A α2 0
geAdip,2 Dipolar from SO to A α4 2
geAas Antisymmetric from SO to A α4 1
∆gisoAcon Contact from SO to g α4 0
∆gisoAdip Dipolar from SO to g α4 2
∆g̃Acon Anisotropic contact α4 2
∆g̃ ·Adip Pseudocontact α4 0,2

a ge is the free electron g-factor, Acon and Adip the isotropic and dipolar hyperfine couplings, and ∆giso and ∆g̃
are the isotropic and anisotropic parts of the g-shift tensor. The spin-orbit correction to A (lines 3-5), contains
the isotropic APC term as well as the symmetric Adip,2 and antisymmetric Aas anisotropic terms. In Paper III,
these three terms are omitted due to their very small contributions for the studied systems containing only light H,
C, and F atoms [36, 38]. b The rank-0 contribution corresponds to the isotropic shielding constant, as well as the
rank-1 and 2 contributions to the antisymmetric and symmetric parts of the anisotropic shielding, respectively.

to the magnetisability (susceptibility) of the system [20]. In the study presented in this
thesis, the HFC tensor is calculated at the NR limit and hence the terms including APC,
Adip,2, and Aas, which arise from the SO-corrections to A, are omitted. This is not a severe
approximation in the present case of light-element systems [36, 38]. Hence, the isotropic
hyperfine shielding terms considered presently are geAcon, ∆gisoAcon, and ∆g̃ · Adip.
Correspondingly, five terms in equation (2.18) have tensorial rank-2 parts. After excluding
one of them, Adip,2, the anisotropic terms contained in the present calculations are geAdip,
∆gisoAdip, ∆g̃Acon, and ∆g̃ ·Adip. Table 2.1 summarises the hyperfine shielding terms.

2.4 Faraday magneto-optic rotation

In optically active media, the polarisation plane of linearly polarised light (LPL) rotates
when it impinges into the transparent regions of the sample [22, 23, 31]. The rotation
results due to the difference of the refractive indices n− for left- and n+ for right-circular
components of LPL, ∆n = n− − n+. An isotropic medium of chiral molecules as well
as a solid possessing enantiomorphism in its crystal structure (e.g., quartz) [39], exhibit
this circular birefringence without an external magnetic field, in a phenomenon known
as natural optical activity [31]. In the presence of an external magnetic field the rotation
occurs for any type of matter [40]. Depending on the geometrical setup and polarisation
status, which can be linear, circular or elliptic, many different types of field-induced
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magneto-optic effects have been observed [22]. In the Faraday rotation experiment, a static
magnetic field is applied parallel with the direction of the LPL beam [23].

The Faraday optical rotation (FOR) arises thus from circular birefringence due to
the differential interaction of the medium with the left- and right-circularly polarised
components of the LPL. The interaction involves two oscillating, mutually perpendicular
dipole moments. The rotation angle θ can be obtained as

θ =
πl

λ
∆n, (2.19)

where λ is the wavelength of light and l is the optical path length in the medium. Generally,
the index of refraction is a two-index tensor that is related to the polarisability tensor αετ
as [41]

nετ = δετ +
N
2ε0
〈αετ 〉, (2.20)

when n ≈ 1 (in low-density medium). Here, N is the number density of molecules and
〈αετ 〉 is the averaged polarisability due to molecular tumbling in the medium.

In the presence of a magnetic interaction, the wavefunction that describes the electron
cloud becomes complex and furthermore the complex polarisability contains both symmet-
ric rank-2 and antisymmetric rank-1 parts. It is the antisymmetric part, α′ετ , that gives rise
to the rotation and, due to the smallness of magnetic perturbations, can be expanded as a
power series in terms of the external magnetic field B0 and the nuclear spin IK , retaining
only the first order terms [25, 40–42]

α′ετ (ω) =
∑
ν

α′(B0)
ετ,ν B0,ν +

∑
ν

α′(IK)
ετ,ν IK,ν +O(B3

0 , I
3
K). (2.21)

Here, ω is the angular frequency of the light and ετν are the Cartesian xyz coordinates
in the molecule-fixed frame. In this expression, the terms involving the α′(B0) and α′(IK)

coefficients give rise to FOR and NSOR, respectively. The isotropic rotational average
of the antisymmetric polarisability in the laboratory frame, in the case of FOR with the
magnetic field in the Z direction of the light beam, is obtained from the expression

〈α′XY 〉 =
1

6
B0

∑
ετν

εετνα
′(B0)
ετ,ν =

B0

3

[
α′(B0)
xy,z + α′(B0)

yz,x + α′(B0)
zx,y

]
, (2.22)

where εετν is the Levi-Civita symbol. The corresponding expression for NSOR can be
obtained by replacing α′(B0)

ετ,ν by α′(IK)
ετ,ν and the amplitude of the field, B0, by the average

spin polarisation 〈IK,Z〉 in the direction of the propagation of the beam.
In the case of FOR, the rotation angle is parameterised as

ΦFOR = V (ω)B0l, (2.23)

where V is the Verdet constant [22], which is obtained from the frequency-dependent
α′XY . On the other hand, in NSOR, α′XY is activated by the magnetisation of nuclei
and, therefore, the rotation angle is parameterised by the nucleus-specific NSOR constant,
VK(ω) [43, 44], instead of the system-specific Verdet constant of FOR. In general, this
type of nuclear spin-induced magneto-optic effects offer a new and growing family of
proposed spectroscopies to investigate materials with a resolution that is, in principle,
limited by the diffraction limit of the probe light.



3 Methods

3.1 Electronic structure calculations

In order to predict the spectral parameters or any electronic properties, a good approxim-
ation for the electronic wavefunction has to be known. This many-body problem is an
impossible task to solve exactly even for the simplest molecular system. Thus, in every
practical quantum-chemical investigation, accurate approximations are used [31, 45]. The
very first simplification is the decoupling of the dynamics of the electrons and nuclei. This
is known as the Born-Oppenheimer approximation [46], where the large difference of the
nuclear and electron masses justifies treating only the dynamics of electrons quantum-
mechanically, with the nuclei constituting a fixed framework. This allows expressing the
collective behaviour of the electrons via the time-independent Schrödinger equation

Hψ = Eψ, (3.1)

where E is the energy of the system and ψ is the wavefunction. H is the Hamiltonian,
an operator in which the electronic kinetic energy as well as the electron-nucleus and
electron-electron interactions are included. Another essential source of relief from the
complexity of the task, in the case of light-atom systems, is the possibility of nonrelativistic
(NR) treatment of electrons. Then,

H = − ~2

2me

Ne∑
i

∇2
i −

e2

4πε0

Ne∑
i

Nn∑
K

ZK
riK

+
1

2

e2

4πε0

Ne∑
i 6=j

1

rij
, (3.2)

where the summations run over the all Ne electrons and Nn nuclei. The motions of
electrons are still correlated with each other, preserving the problems of many-body
interactions. The nature of the electron-electron interaction includes both Coulombic
repulsion of the charges and the purely quantum-mechanical exchange interaction, arising
from the fermionic character of the electrons [31]. The latter aspect implies that the
Pauli exclusion principle has to be obeyed, setting the antisymmetry requirement for
the many-electron wavefunction under the exchange of any two electrons of the system.
This requirement enforces a spatial separation between electrons of the same spin, which
reduces the energy of the system by the so-called exchange energy. Electron correlation
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leads in principal to the treatment of 3Ne coordinates for an Ne-electron system, and
an insurmountable complexity of the problem. Practical solutions to the many-body
problems such as this, are based on methods in which the Coulomb interactions are treated
approximately [31, 45].

Hierarchic improvements in a series of approximations can be based on the variational
principle, which states the upper limit of the true ground-state energy as resulting from
an approximate wavefunction [31, 45, 47]. In quantum chemistry, the fundamental first
step in such a series of ab initio theories rests on the Hartree-Fock (HF) approach [48, 49],
where the exchange interaction is accurately included, because the wavefunction consists
of an antisymmetrised product of independent-electron wavefunctions, orbitals. The HF
wavefunction is a Slater determinant which includes all possible permutations of pairs of
electrons [31, 47]. Hence, the HF method contains the exchange but does not include the
instantaneous Coulomb interactions, only their average. Sophisticated approximations to
treat those interactions more completely, are constituded by post-HF methods [47, 50],
which reduce the Coulomb energy as compared to HF. This energy difference is called the
correlation energy.

In the HF method, the computational cost of the calculations increases as the fourth
power of the number of basis functions∗, O(N4) [50]. An inclusion of the correlation
energy even in a relatively coarse manner scales up the cost tremendously. Therefore, an
alternative way to treat correlation has been developed. Density-functional theory (DFT)
[51] is the most popular electronic structure method especially for large molecules and
solids. Similarly to HF, DFT is an effective one-electron theory and the two methods share
also many other similarities. The reason for the popularity of DFT relies in its inclusion of
electron correlation in effectively the same computational cost as that of a corresponding
HF calculation. The downside of DFT is in the approximate treatment of both exchange
and correlation energies, which renders the systematic improvement of the calculations
difficult†. For that reason, calculations by the contemporary DFT methods should be
calibrated against the results of more accurate post-HF methods, or experimental results.

3.1.1 Density-functional theory

In DFT, the total energy, including exchange and correlation contributions, is calculated
from the knowledge of the electronic charge density ρ at all locations in the system [51].
Therefore, the 3Ne degrees of freedom of the many-body wavefunction are reduced to only
three dimensions (x, y, z) of the density and the spin coordinate, regardless how many
electrons the system has [31].

In the Kohn-Sham (KS) formulation [55] of DFT, the ground-state density ρ(r) is
defined in terms of the hypothetical noninteracting KS reference state, described by a
∗A linear combination of basis functions constitute the representations for single-electron states and, therefore,

are involved in the solution of the electronic structure, vide infra.
†In HF the exchange potential is nonlocal while in DFT it must be local. There are attempts at systematic

improvement of DFT by the construction of exact and, at the same time, local exchange, e.g., in the optimised
effective potential (OEP) [52] and localised Hartree-Fock (LHF) [53] methods. So far these methods have not
been implemented in widely available codes capable of molecular property calculations. The issue is still in
progress [54].
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single Slater determinant consisting of one-electron KS orbitals ψi. The reference system
has the same density as the real interacting system,

ρ(r) =

Ne∑
i=1

|ψi|2 . (3.3)

By varying the KS orbitals, the minimum value of the total energy functional corresponds
to the approximate ground-state energy of the system.

In the KS formalism, the interacting many-electron system is, hence, mapped onto a
system of fictitious noninteracting electrons that move in an effective KS potential, veff,
arising due to the nuclei and electrons. This mapping leads to a set of Ne single-particle
Schrödinger-like equations, called KS equations [51, 56],

− ~2

2me
∇2ψi(r) + veff(r)ψi(r) = εiψi(r), (3.4)

where εi are the orbital energies. The KS potential is defined as

veff(r) = Vion(r) + VH(r) + Vxc(r), (3.5)

where Vion is the nuclei-electron Coulomb potential and VH is the Hartree potential from
the average density of the electrons, defined as

VH(r) =
e2

4πε0

∫
ρ(r′)

|r + r′|
dr′. (3.6)

The exchange-correlation potential Vxc is given as the functional derivative of the exchange-
correlation energy, which contains also a contribution due to the difference of the kinetic
energy between the true and noninteracting systems

Vxc(r) =
δExc[ρ(r)]

δρ(r)
. (3.7)

The fact that the KS potential depends on the electron charge density, which is built from
KS orbitals, sets the requirement that the KS equations need to be solved in a self-consistent
manner. The procedure starts from an initial guess of ρ that, e.g., can be constructed by
superimposing atomic densities [45] or using the Hückel approximation [31]. This density
is used for the computation of VH and Vxc, which are furthermore used for the construction
of veff(r). After the first iteration, KS-orbitals allow defining an improved density from the
expression (3.3). The process is repeated until self-consistency of the solutions is obtained,
within the chosen numerical precision [31, 56]. The total energy can be determined from
the converged density, which is a function of position, through [51]

E =

Ne∑
i=1

εi −
1

2

1

4πε0

∫∫
ρ(r)ρ(r′)

|r + r′|
drdr′ + Exc[ρ(r)]−

∫
Vxc [ρ(r)] ρ(r)dr. (3.8)

What still remains a fundamental problem in DFT, is the fact that the exact form of
the functional Exc[ρ(r)] is unknown and needs to be estimated approximately. The local
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density approximation (LDA) [55] provides the simplest useful model for Exc[ρ(r)] and
is used successfully mainly in solid-state studies [56]. In LDA, the exchange-correlation
energy at a given point r is taken to be the same as in a uniform electron gas with the same
charge density. Due to this, LDA can be thought to work well for systems with slowly
varying electron density. Therefore, for molecules and solids with rapidly varying electron
density, as well as many spectroscopic properties, LDA provides only a poor description.
Generalised gradient approximation (GGA) [31] constitutes a great improvement in the
sense that the energy depends not only on the local uniform density, but also its gradient,
EGGA

xc = Exc[ρ(r),∇ρ(r)]. Compared to LDA, GGA gives better results for molecular
geometries and properties [57]‡.

Numerous different GGA functionals have been proposed, varying in the parameters of
the exchange and correlation contributions [58]. The parameters that ultimately determine
the difference between the functionals, can be obtained from theoretical or semi-empirical
constraints. The GGA functional by Perdew, Burke, and Ernzerhof (PBE) [60] gives
reasonably accurate bond lengths and is, hence, one of the most popular GGAs for geometry
optimisation. Similarly to most GGAs, PBE underestimates the energy gap between the
occupied and unoccupied states. Despite this fundamental difficulty, PBE has been used
successfully for many molecular and solid-state properties, also for the computation of
magnetic resonance. In the NMR chemical shift, the success of PBE is partially based
on error cancellation with the chemical shift reference system, resulting in some cases
from the electronic similarities of the reference and studied systems. Another source of
error cancellation is operative in the inner atomic shells of the systems that remain similar
regardless the chemical environment.

Hybrid functionals tune the exchange energy by including a fraction of the exact Hartree-
Fock exchange, calculated from the Slater determinant of the KS orbitals [45]. In the case
of NMR, the exact exchange improves results for nuclear shieldings due to the dependence
of this property on the occupied-unoccupied energy differences [57]. The hybrid functional
means extra computational work but is feasible in quantum-chemical calculations based
on localised orbital basis sets. In contrast, in solid-state systems with periodic boundary
conditions and extended basis, the hybrid functionals require a large computational effort
and have not been applied for the NMR properties, yet [61]. Because the optimum amount
of exact exchange is not universal, there are many families of hybrid functionals available,
including some in which the correlation part remains the same but the proportion of
the HF exchange is gradually increased. Particularly popular is the family that uses the
correlation part by Lee, Yang, and Parr (LYP) [62] and exchange parts with 0% (in the
BLYP functional) [62, 63], 20% (B3LYP) [62, 64, 65], and 50% (BHandHLYP) [62, 64]
admixture of the exchange functional by Becke [63, 64] and the exact HF exchange.

All studies done in this thesis are based on the DFT framework. The PBE functional
was used for all geometry optimisations. It provided the exchange and correlation for
the NMR properties in Paper I as well as for the ESR and pNMR properties in Paper III.
In contrast, the B3LYP hybrid functional was used in Papers II and IV, where the 13C
NMR spectral patterns as well as the Faraday rotation and NSOR constants were predicted,
respectively.

‡Functionals based on higher derivatives, beyond GGAs, and also on the derivative of kinetic energy density,
are collectively termed as meta-GGAs [58]. One of the most successful such attempts is the TPSS functional
[59]. So far, meta-GGAs are not widely used for magnetic properties [57].
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3.1.2 Molecular representation

In order to solve numerically the single-electron eigenvalue problems of the previous
section, the KS orbitals have to be represented in terms of a basis set that has to, for the
purpose of practical computations, be of finite size. In a molecular quantum chemistry
calculation, the molecular orbitals ψ are constructed from a set of atom-centered basis
functions χµ as [31, 45, 47, 66, 67]

ψ =
∑
µ

cµiχµ, (3.9)

which is the so-called linear combination of atomic orbitals (LCAO). Here, the ci are
the expansion coefficients that become variationally optimised during the self-consistent
field (SCF) calculation. In the SCF procedure, the KS equations are written as the matrix
equation [66, 67]

FKSC = SCε, (3.10)

where S is the overlap matrix defined as Sµν = 〈χµ|χν〉. FKS is the KS matrix containing
individual interaction terms of Eq. (3.4). It depends on the solutions included in the orbital
coefficient matrix C. ε is the diagonal orbital energy matrix.

Gaussian functions constitute the most common choice for the atomic orbitals, defined
as [68]

χµ(r, θ, φ) = Ylm (θ, φ) rle−ζr
2

, (3.11)

where r is the distance from the particular nucleus, Ylm (θ, φ) are the spherical harmonics
for certain angular momentum (l) and magnetic (m) quantum numbers, and ζ is the so-
called exponent of the basis function. The success and popularity of Gaussian-type orbitals
(GTOs), despite the fact that the Gaussian functions cannot exactly reproduce the nuclear
cusp or the asymptotic behaviour of the wavefunction at large distances [47, 69], stems
from the Gaussian product theorem [31]. The theorem speeds up the calculation of the
two-electron integrals that are needed to describe the Coulomb and exchange interactions
of electrons. According to the theorem, a product of two Gaussians can be replaced
by a single Gaussian centred at an intermediate position. In practical calculation, the
inner orbitals, being largely independent of the chemical environment, are described by
contracted GTOs. They are linear combinations of several individual, so-called primitive
GTOs (3.11), having coefficients based on atomic calculations. Thus the use of contracted
GTOs reduces the number of cµi coefficients and computational work. To overcome the
physical insufficiency of GTOs, many GTOs or contracted GTOs are used [69]. Also
numerical and Slater-type of functions are used in molecular electronic structure theory
[45]. The latter deviate from the Gaussian form in their exponential factor, e−ζr. Actually,
Slater-type orbitals were the first to be used due to the benefit of their correct short- and
long-distance atomic description [31, 45, 47]. Contrary to GTOs, STOs are incapable of
representing two-electron integrals efficiently, limiting the utility of STOs in molecular
systems [50].

Traditionally basis sets are optimised using atomic energy as the criterion. Molecular
hyperfine properties present rather high demands to the quality of the basis. The involved
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perturbation operators in the case of NMR contain high inverse powers of the distance
between electrons and nuclei, presenting severe requirements for the proper description
of electron density not only in the valence region but also close to nuclei. Hence, for
computations of NMR parameters, the basis set has to contain so-called diffuse basis
functions with small exponents ζ for the valence, as well as tight functions with large
exponents for the inner region [69]. Therefore, performing calculations on large systems
including hundreds of atoms, with these kinds of demands on the basis-set flexibility,
becomes extremely heavy, sometimes impossible on the available computational resources.
The completeness optimisation (co) method [70] offers a way to generate Gaussian basis
sets that are both compact and enable nearly basis-set converged calculations for large
molecules. The co paradigm is based on the idea that the sufficient ranges of exponents
are first found and subsequently represented by a small number of functions, which are
optimised systematically toward the basis-set limit.

In molecular calculations carried out in this thesis, only GTO basis sets have been used.
All geometry optimisations have been performed with the def2-TZVP [71] basis, which is
commonly used for that purpose giving good geometries at the DFT level. Both the NMR
and Faraday rotation calculations, in Papers I, II and IV, were performed for relatively large
graphenic systems. In these calculations we used the co basis sets, which were generated
for such purposes, and which enabled predictions of the spectral parameters within close
proximity to the basis-set limit.

3.1.3 Solid-state representation

Any solid material consists of a macroscopic number of electrons and nuclei. For a DFT
calculation this means a practically infinite number of non-interacting electrons moving
in the effective KS potential. This implies also an infinite number of orbitals extending
all over the solid. This problem is solved by using the periodic boundary conditions and
the Bloch theorem, which make use of the periodic potential underlying the concept of
electronic band structure [56, 72]. The Bloch theorem allows representing the electronic
states as so-called Bloch states and considering only one unit cell in the reciprocal space,
i.e., the first Brillouin zone. Due to the periodic boundary conditions, the effective one-
electron KS Hamiltonian is translationally invariant, veff(r) = veff(r + R), for all lattice
vectors R of the crystal and, furthermore, the one-electron wavefunctions can be expressed
as a linear combination of plane waves

ψn,k(r) =
∑
G

cn,k+Ge
i(k+G)·r, (3.12)

where the sum is over all reciprocal lattice vectors G, defined by G · R = 2πm. The
cn,k+G are the coefficients of the KS one-electron states (vide infra). The electronic states
are labelled by their crystal wave vector k and band index n.

According to the above expression, the Bloch theorem converts a calculation of an
infinite number of electrons to the calculation of a finite number of bands at an, in principle,
infinite number of k-points. The practical calculations are based on the approximation
that the wavefunctions at adjacent k-points are almost identical and over a region of the
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k-space can be represented by the wavefunction at a single k-point. Therefore, the occupied
electronic states, which determine the electronic potential, total energy and other ground-
state properties, are only required at a finite set of k-points. In systems with finite energy
gap between the occupied and unoccupied states, i.e., insulators and semiconductors,
only a relatively small number of k-points may be needed to define the Fermi surface.
In contrast, gapless systems, i.e., metals and semimetals, require a much denser sets of
k-points and, hence, demand more computational work. To reduce the number of the
required k-points for such demanding systems, smearing methods have been developed
[73, 74]. A great reduction of the computational load is provided by symmetry operations
allowed by the system, e.g., rotations and reflections, which reduce the problem to only the
k-points of the symmetry-independent region of the Brillouin zone. In the studies of this
thesis, the commonly used method consisting of an equidistant mesh of k-points, proposed
by Monkhorst and Pack [75], is employed.

There are a number of different approaches to solve the KS equations. One important
way by which they differ, is in the choice of the basis-set expansion. For periodic systems
the most obvious choice is the plane-wave approach (3.12) [56, 61, 76], but also atomic
orbitals are used with various function types [77, 78]. The advantage of the plane-wave
basis is their simple form and the fact that they naturally extend through the entire space,
compatibility with the periodic boundary conditions and, therefore, the representation
being equivalent to a Fourier series [45]. Then, the KS equations can be expessed in the
following form [56]

∑
G′

[
~2

2me
|k + G|2δGG′ + Vion(G−G′) + VH(G−G′)

+ Vxc(G−G′)

]
cn,k+G′ = εn,kcn,k+G′ ,

(3.13)

where the summation is over the reciprocal lattice vectors G′. The first, kinetic energy
term is diagonal in the plane-wave basis, hence the Kronecker symbol δGG′ , and the
coefficients cn,k+G′ are determined during the SCF procedure. The size of the Hamiltonian
matrix, which sets the computational cost, is determined by the maximum value of the
kinetic energy component. The choice of the cutoff energy Ecut, truncates the plane-wave
expansion to a finite size, as

~2

2me
|k + G|2 ≤ Ecut. (3.14)

Similarly to the case of localised basis functions (such as GTOs), employing a finite
basis set requires one to perform an appropriate basis-set convergence test to find desired
computational accuracy for the property of interest. This is easily done in the plane-wave
basis, where the completeness is controlled by a single parameter, Ecut. Additionally, the
adequacy of the used k-sampling needs to be tested in a periodic calculation.

In order to maintain orthogonality with the core-states in the so-called all-electron
calculations, the valence wavefunction is forced to undergo rapid oscillations, which
necessitates using a very large plane-wave cut-off energy. This would lead to a prohibitive
size of the KS Hamiltonian matrix, defined in equation (3.13). In practical solid-state
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calculations, this issue is surmounted by the pseudopotential method [79], in which the core-
valence interactions are covered by an effective potential. The core electrons are absorbed
into the pseudopotential and only the valence electrons are explicitly considered. The use of
pseudopotentials enables representing the valence wavefunctions by nodeless and smooth
pseudo-wavefunctions, ψ̃n, which can be to constructed from a drastically smaller-size
basis-set expansion than the corresponding all-electron wavefunctions. Outside of the
core region, the parameters of the pseudopotentials are adjusted to reproduce the angular
momentum-dependent all-electron wavefunctions. In the core region, the pseudo-valence
electron density ñPS(r) has a non-physical form and is unsuitable for, e.g., calculations of
nucleus-specific spectral parameters.

The projector-augmented wave (PAW) method [80] introduced by Blöchl can be used
to reconstruct from the pseudowavefunction the all-electron density nAE

c (r) in the region
close to the nucleus. This provides the theoretical basis for core-electron specific cal-
culations. In the PAW scheme, a linear transformation operator T that uses predefined
projectors to certain atomic states, is used to map the valence pseudowavefunctions onto
the corresponding, atom-centered all-electron wavefunctions.

3.2 Magnetic perturbations

The calculation of magnetic resonance parameters in the quantum-chemical scene is tradi-
tionally based on the interaction terms of the molecular electronic Breit-Pauli Hamiltonian,
HBP [28, 32]. HBP is the two-component, limiting form of the relativistic Dirac-Coulomb-
Breit Hamiltonian [81], in the presence of electromagnetic field. Staying within the
Born-Oppenheimer approximation, the atomic nuclei are treated as stationary sources of
fields. In the NR limit for the NMR and ESR spectral parameters, the necessary HBP terms
include the O(α0) orbital Zeeman interaction with the external magnetic field, O(α2)
hyperfine interactions with nuclear spins and, for the ESR g-tensor, the O(α2) spin-orbit
interaction. In the absence of relativistic corrections the resulting spectroscopic parameters
are considered up to O(α2) (NMR shielding, ESR HFC), or O(α4) (NMR J-coupling,
pNMR shielding).

The vector potential Atot determines the magnetic field that is experienced at the location
r, as Btot(r) = ∇ ×Atot(r). For NMR shielding, the vector potential has two sources
[28, 69]. First, a term associated with the external magnetic field, A0(r), is defined as

A0(ri) =
1

2
B0 × riO, (3.15)

where rO = r−O specifies the location of the electron with respect to the gauge origin
O. The second source arises from the nuclear magnetic moment, expressed as

AK(r) =
µ0

4π

mK × rK
r3
K

, (3.16)

where rK = r−RK defines the position from the nucleus K. In HBP, magnetic operators
that arise from B0, are influenced by the choice of the gauge origin of the vector potential.
To be free of the spurious gauge-origin dependence, i.e., in order for the calculated
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properties to be translationally invariant, the calculations would require an infinitely large
LCAO basis in molecular quantum chemistry [69] or, respectively, an infinite number of
projectors in PAW-based solid-state calculations [61].

Specific techniques have been developed to surmount the gauge-origin problem. In
the LCAO framework, the gauge-including atomic orbital (GIAO) [82, 83] method is a
standard way to ensure the gauge independence of the results. The GIAO method attaches
a field-dependent phase factor to the basis functions centered at atomic nuclei, by which it
effectively transfers the local gauge origin to the natural location, the nucleus in question.

In solid-state calculation the form of the vector potential (3.15) is, in principle, incompat-
ible, because the position operator does not have the periodicity of the lattice. A magnetic
field can, however, be introduced by making it periodic but with a long wavelength, and
by calculating the magnetic response of the electron system by density-functional per-
turbation theory (DFPT) [84]. In the limit of infinite wavelength, the B0-field is uniform,
and one can use plane waves (Eq. 3.12) as the basis set. For solids, the calculation of
gauge-dependent properties became possible when Pickard and Mauri [85] introduced
a GIAO-like field-dependent transformation operator TB that, within the PAW scheme,
imposes the translational invariance exactly. The method is known as the gauge-including
projector augmented wave (GIPAW) approach.

3.2.1 Computation of response

The response function theory [86] provides a convenient way to reformulate time-dependent
perturbation theory for quantum-chemical calculations in the molecular framework. The
method allows to calculate the expectation value of an observable A when the system is
subject to time-dependent perturbing field(s), expressed as operators V ω at frequency ω, as

〈0(t)|A|0(t)〉 =〈0|A|0〉+

∫ ∞
−∞

dω1e
−iω1t〈〈A;V ω1〉〉ω1

+
1

2

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2e
−i(ω1+ω2)t〈〈A;V ω1 , V ω2〉〉ω1ω2

+ · · · ,
(3.17)

where |0(t)〉 denotes the time-dependent wavefunction and |0〉 the unperturbed wavefunc-
tion. 〈〈A;V ω1〉〉ω1 is a linear response function (LRF) that collects the terms to the first
order in the perturbation. 〈〈A;V ω1 , V ω2〉〉ω1ω2 is, correspondingly, the quadratic response
function that includes the second-order terms. Higher-order responses follow in analogous
manner. Response functions can be expressed in terms of spectral representations that
show the connection to normal time-dependent perturbation theory [87]. For the LRF, this
reads [69]

〈〈A;V ω1〉〉ω1
=
∑
n 6=0

{
〈0|A|n〉〈n|V ω1 |0〉
~ω1 + E0 − En

− 〈0|V
ω1 |n〉〈n|A|0〉

−~ω1 + E0 − En

}
, (3.18)

which in the case of static perturbation, ω = 0, such as in normal NMR parameters and the
ESR g-tensor, reduces to the sum-over-states (SOS) expression for the second-order energy
correction. In general, the spectral representations of the above kind are only valid for
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exact wavefunctions. In practice, approximate methods are used and the response functions
are calculated by solving matrix-formed equations [87]. In the case of LRF, the response
vector is calculated. It corresponds to the first-order wavefunction with respect to one of
the two involved perturbation operators [69].

In the solid-state GIPAW approach, the response of the electron system to the applied
static magnetic field is formulated in terms of the first-order induced current density j(1)(r).
This quantity is calculated via a decomposition of the individually gauge-origin-dependent
diamagnetic j

(1)
d (r) and paramagnetic j

(1)
p (r) parts [85, 88], the first and second terms in

j(1)(r) = − e2

me
ρ(0)(r)A0(r)− e

2me

∑
o

〈ψ(0)
o |(p|r〉〈r|+ |r〉〈r|p)|ψ(1)

o 〉, (3.19)

where the summation in the second term is over all the occupied states o. The sum of the
two terms above is an observable quantity that satisfies gauge invariance. Moreover, j

(1)
d (r)

depends only on the unperturbed charge density ρ(0)(r). In contrast, j
(1)
p (r) involves the

first-order states |ψ(1)
o 〉, corrected by the magnetic-field perturbation H(1) = e

me
A0 · p,

and calculated by a Green’s function method [84].

3.3 Electron spin and nuclear magnetic resonance parameters

3.3.1 Molecular calculations

In molecular quantum-chemical calculations, second-order magnetic parameters, e.g., σ
and J are obtained by substituting the interaction operators into the standard second-order
perturbation theory expression, cast in the form of a LRF [86]

E
(2)
0 = H

(2)
00 +

1

2
〈〈H(1);H(1)〉〉ω=0. (3.20)

The shielding tensor expressed via Rayleigh-Schrödinger perturbation theory, valid for
closed-shell molecules, was first derived by Ramsey [89]. It consists of two parts

σK = σdK + σpK , (3.21)

where the first term refers to the diamagnetic and the second to the paramagnetic contribu-
tion. The diamagnetic term involves only the unperturbed ground state,

σdK =
e2

2me

µ0

4π

〈
0

∣∣∣∣∣∑
i

1(riO · riK)− riOriK
r3
iK

∣∣∣∣∣ 0
〉
. (3.22)

The paramagnetic term involves perturbations that couple the ground-state to singlet excited
states, nS . It can be expressed as a LRF with singlet transitions

σpK =
1

γK~
〈〈hPSO

K ; hOZ
B0
〉〉ω=0. (3.23)
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Here, hOZ
B0

is the orbital Zeeman term that is linear in the external field

hOZ
B0

=
e

2me

∑
i

liO. (3.24)

hPSO
K is the paramagnetic nuclear spin-electron orbit term, which is one of three terms that

arise from the interaction of the electrons with the nuclear magnetic moments

hPSO
K =

e~
me

µ0

4π
γK
∑
i

liK
r3
iK

hSD
K =

e~2

2me

µ0

4π
geγK

∑
i

r2
iKsi − 3(si · riKriK)

r5
iK

hFC
K =

4π

3

e~2

2me

µ0

4π
geγK

∑
i

δ(riK)si.

(3.25)

Here, the other two terms hFC
K and hSD

K are the electron spin-dependent Fermi contact (FC)
and spin-dipolar (SD) terms, where si denotes the spin operator of the electron i. All of
these three terms contribute to the spin-spin coupling. In the expressions above, γK refers
to the gyromagnetic ratio of nucleus K and liO/K = −i~(ri−RO/K)×∇i to the angular
momentum of electron i with respect to either the gauge origin, RO or the location RK of
nucleus K.

Five physically distinct contributions appear in Ramsey’s expression of the indirect
spin-spin coupling tensor; JKL = JDSO

KL + JPSO
KL + JSD

KL + JFC
KL1 + JSD/FC

KL [90]. Here, the
first four terms contribute to the isotropic spin-spin coupling constant J and all but JFC1
to the anisotropic coupling. The first is the diamagnetic nuclear spin-electron orbit (DSO)
term bilinear in the nuclear spins of K and L, obtained as a ground-state expectation value
of the DSO operator:

JDSO
KL =

1

h
〈0|hDSO

KL |0〉, (3.26)

where

hDSO
KL =

e2~
2me

(µ0

4π

)2

γKγL
∑
i

(riK · riL)1− riLriK
r3
iKr

3
iL

. (3.27)

The second term, JPSO
KL, is a second-order contribution that involves perturbations that

couple to singlet excited states. In contrast, the last three terms include triplet perturbations,
the isotropic FC term and the SD term, as well as the anisotropic SD/FC cross-term of the
two [28, 91]. All these contributions can be calculated from the linear response functions

JPSO
KL =

1

h
〈〈0|hPSO

K ; hPSO
L |0〉〉ω=0, (3.28)

JSD
KL =

1

h
〈〈0|hSD

K ; hSD
L |0〉〉ω=0, (3.29)

JFC
KL =

1

h
〈〈0|hFC

K ; hFC
L |0〉〉ω=0, (3.30)

JSD/FC
KL =

1

h

[
〈〈0|hSD

K ; hFC
L |0〉〉ω=0 + 〈〈0|hFC

K ; hSD
L |0〉〉ω=0

]
, (3.31)
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in which the PSO, FC, and SD operators are given in (3.25).
The EFG tensor is a ground-state property. It is sensitive to the electron density near the

nucleus and is defined as a sum of the nuclear contribution and an expectation value:

VK =
e

4πε0

∑
K 6=L

ZL
3RKLRKL − 1R2

KL

R5
KL

− 〈0|
∑
i

3riKriK − 1r2
iK

r5
iK

|0〉

 . (3.32)

3.3.2 Solid-state calculations

The solid-state magnetic property calculations presented in this thesis are carried out by
the GIPAW approach [85]. The GIPAW shielding calculation is based on the fact that
the contributions arising from the core electrons are largely independent of the chemical
environment [92]. The GIPAW shielding tensor is formulated as the sum [93]

σ = σcore1 + σ∆d + σ∆p + σbare, (3.33)

where the first term σcore is the isotropic, system-independent, core contribution. It can
be obtained from the Lamb formula [31, 94] by setting the gauge origin to the nucleus
[61]. The three latter terms arise from the current response. Inside the GIPAW core region,
the differences of the all-electron and pseudo-valence currents, j∆p and j∆d, induce the
paramagnetic and diamagnetic correction fields B∆p and B∆d, which can be obtained
separately from the linear Biot-Savart law

Bind(rK) =
µ0

4π

∫
j(1)(r)× rK − r

|rK − r|3
dr, (3.34)

where the induced current density is decomposed into three parts, j(1)(r) = j
(1)
∆p+j

(1)
∆d+j

(1)
bare.

Outside the core region, the all-electron and pseudo-partial waves are identical, and these
corrections vanish. Therefore, the contribution of the induced field from outside of the core
region can be calculated from the current resulting from the perturbed pseudo-wavefunction,
j
(1)
bare. The resulting field, Bbare, is unphysical on its own, but together with the corrections,

the induced field corresponding to the all-electron situation is obtained. Furthermore, the
corresponding shielding contributions are obtained from (2.2) giving, together with the
core contribution, the all-electron shielding tensor [85].

In the plane-wave-pseudopotential approach, the components of the EFG tensor, VK ,
can be calculated from the total charge density n(r) [61]

VK,ετ =

∫
n(r)

|r−RK |3

[
δετ − 3

(rε −RK,ε)(rτ −RK,τ )

|r−RK |2

]
dr, (3.35)

where n(r) consists of a sum of three terms arising from ionic charges, pseudised valence
charge density, and the PAW correction that takes into account the deviation of the pseudo-
and all-electron charge densities at the atomic site. Hence, there are three distinct corres-
ponding contributions to EFG [95].
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Based on the GIPAW ansatz [85], an expression for the g-tensor due to the induced
electronic currents within the formalism of spin-polarised DFT§, was provided by Pickard
and Mauri [96]. They formulated the g-tensor as

g = ge1 + ∆gZ-KE + ∆gSO + ∆gSOO. (3.36)

Here the corrections to the free-electron g-factor, ge, arise from the energy terms that are
bilinear in the electron spin and the external magnetic field B0, according to equation (2.13)
[18, 19]. ∆gZ-KE is the Zeeman kinetic energy correction arising from a bilinear operator
in these two variables. ∆gSO is the second-order spin-orbit (SO) term, where the spin of
the unpaired electron interacts with its own orbital motion affected, in turn, also by the
orbital Zeeman interaction with B0. Respectively, ∆gSOO is the 2-electron spin-other-orbit
(SOO) term that describes the relative motion of the other electron with respect to the
nuclear frame. The largest correction comes from the gSO-term that, in turn, depends on the
Kohn-Sham potential and electronic currents induced by B0 onto the majority and minority
spin channels. The role of the GIPAW approach is to obtain an accurate description of the
all-electron currents in the core regions, where the KS-potential diverges at the nucleus
site. In a manner similar to that described above for the GIPAW shielding tensor, the
SO-contribution to the g-tensor is calculated in three different parts: ∆gbare

SO , ∆g∆d
SO , and

∆g∆p
SO . The first two, so-called pseudo-valence and diamagnetic terms can be evaluated

from the PAW-corrected ground-state pseudo-wavefunctions. In contrast, the paramagnetic
correction term is more involved and requires first-order linear response wavefunctions.
The ∆gZ-KE correction depends only on the kinetic energies of the majority and minority
spin channels. It can be determined straightforwardly from the PAW-corrected ground-state
wavefunction. As compared to the SO-term, only a small contribution arises from the
SOO-term, which depends on the induced field and the spin density of the channels. Since
neither of these quantities diverge at the nucleus and the obtained corrections are minor, no
large error is made when the SOO-correction is obtained by evaluating the induced field
arising due to the j

(1)
bare and the pseudo-valence spin density alone [96].

Magnetic hyperfine parameters arise from the interaction of the nuclear magnetic mo-
ment and electron spin density. The isotropic HFC component arises from the expectation
value of the FC interaction (3.25) [18], which is only sensitive to the s-electron density
located at the nucleus. Instead, the anisotropic component is expectation value of the SD
term (3.25), having sensitivity particularly to the p-electron contribution to the density in
the close vicinity to the nucleus. A pseudopotential-plane-wave calculation method for
HFC was introduced by Van de Walle and Blöchl [97, 98], based on the pure PAW spin
density. What is excluded from the, otherwise highly accurate frozen-core PAW wave-
function, is the effect of the spin polarisation of the core states [99, 100]. This effect may
contribute significantly to the s-type density at the nucleus. Furthermore, spin polarisation
contributes mainly in systems where the unpaired spin populates other than s-type atomic
orbitals. While the effect only has a small influence on the dipolar part, the incorrect spin
density at the nucleus leads to unreliable contact values.

In the studies of point-defected paramagnetic graphenes included in the thesis, HFCs are
§Spin-polarised DFT deals with systems containing unpaired electrons, and concerns the KS equations

separately for spin-up and spin-down electrons, which are sometimes referred as spin channels. Hence, both
the electron density and the spin density are fundamental quantities. The total charge density is the sum of the
spin-up and spin-down electron densities, n↑ + n↓, the net spin density being their difference n↑ - n↓ [45].
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reported for the first-row carbon atom. In this case, the spin-polarisation effect originates
from the 1s core shell. In the present study this has been included by the perturbative core-
level polarisation (PCLP) [100] method. First, the frozen-core all-electron wavefunction
in the core region is obtained by the PAW approach. Secondly, the local spin density and
charge potential are evaluated from the reconstructed all-electron wavefunction. Finally,
the potential is used to estimate the spin-polarised core levels by means of first-order
perturbation theory.

3.4 Faraday optical rotation parameters

The magneto-optic rotation angle Φ, per unit of optical path length l, can be written as
[40, 41]

Φ

l
=

1

2
ωNµ0c Im〈α′XY 〉, (3.37)

when the magnetic field is in the direction (Z) of the beam. Here, N refers to the
number density either of the molecules in the case of FOR, or to that of the nuclei K
in the NSOR case. The conventional dynamic polarisability can be expressed as a LRF
α(ω) = −〈〈µ;µ〉〉ω, which is modified, in the case of FOR and NSOR, by the static
perturbation caused by B0 or IK , respectively. In other words, the Verdet constant V is
proportional to the derivative of antisymmetric polarisability α′(B0)(ω) with respect to
B0 and, respectively, the constant VK is proportional to the derivative of α′(K)(ω) with
respect to IK . Hence, both magneto-optical rotation constants can be calculated, in the
case of closed-shell molecules, by third-order time-dependent perturbation theory as the
quadratic response functions [86, 101]

V (ω) ∝ ωεετν
〈〈
µε;µτ , h

OZ
B0

〉〉
ω,0

VK(ω) ∝ ωεετν
〈〈
µε;µτ , h

PSO
K,ν

〉〉
ω,0

, (3.38)

where µε and µτ are the components of the electric dipole moment. The third interaction
is a static magnetic operator that characterises the OZ-interaction (equation 3.24) with the
external field or the orbital hyperfine (PSO) interaction (equation 3.25). With the definition
of the FOR angle (equation 2.23) the Verdet constant can be expressed as

V = −1

2
ωNµ0c

e3

2me

1

6

∑
ετν

εετνIm〈〈rε; rτ , lO,ν〉〉ω,0, (3.39)

in the unit of rad/(T m) [25]. Denoting the degree of nuclear spin polarisation along the
beam as PK = 〈IK,Z〉/IK , the NSOR angle Φ

(K)
NSOR per unit of optical path length, spin

polarisation, and molar concentration nK = N/NA (NA is Avogadro’s constant) of the
polarised nuclei K, becomes [43]

VK =
Φ

(K)
NSOR

lPKnK
= −1

2
ωNAcIK

e3~
me

µ2
0

4π
γK

1

6

∑
ετν

εετνIm
〈〈

rε; rτ ,
lK,ν
r3
K

〉〉
ω,0

. (3.40)
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The experimentally convenient unit for VK is 10−6 rad/(M cm). The expressions (3.39)
and (3.40) lend themselves to quantum-chemical calculation of the components of the
polarisability derivatives α′ετ,ν in the molecule-fixed frame.



4 Review of papers

4.1 NMR: Large-system limit and spectral patterns of finite
fragments

For the characterisation of large 2D-crystals of graphene and their derivatives, NMR
spectroscopy may provide hitherto unused potential. NMR can provide information of
the local structure and composition, which may be difficult to obtain otherwise [102,
103]. Paper I tackles this issue by providing predictions of NMR parameters for large
graphene systems, as well as the hydrogenated and fluorinated derivatives, graphane and
fluorographene, respectively. The total organic synthesis from precursors is one way of
manufacturing uniform graphenes. Actually, large benzene-based macromolecules have
been produced for some time already [11, 12, 104]. Due to their structural similarities
with graphene, they have many of the characteristics of 2D graphene sheets [11, 12]. In
addition, they feature both edge and quantum confinement effects and are, thus, also
called graphene quantum dots (GQDs) [13]. GQDs are at the center of significant research
effort due to their size-tunable properties such as fluorescence [14] and plasmon effects
[105–107]. Hence, GQDs and their chemical derivatives are candidate device materials
for future electronic and optical applications [11, 12, 106]. In this context, NMR could
provide useful additional information. Therefore, theoretical investigations of the NMR
spectral patterns can be of use in confirming the experimental findings on the synthesised
structures, e.g. concerning their specific size and composition. Motivated by the lack
of both theoretical and experimental NMR data on sp2-hybridised hydrocarbon flakes,
we carried out a theoretical investigation of the characteristic spectral patterns, of these
specifically finite-size systems in Paper II.

In Paper I, two different DFT methods were applied. The quantum-chemical cluster
approach was exploited for hexagonal graphene flakes of growing size. This was done to
extrapolate the NMR parameters for the innermost part of system to the large-system limit,
which is the representative situation for the innermost region of large graphene flakes. The
results turned out to rapidly converge to limiting values. These values were compared to
the results obtained by solid-state calculations, which dealt, due to the periodic boundary
conditions used, directly with extended systems.

Two different finite quantum-chemical models of increasing size were used, referred
to as ’relaxed’ and ’fixed’, respectively. In the fixed models, the structure of the flakes
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Figure 4.1. Increasing-size graphane flakes and part of the extended graphane layer (bottom) are
illustrated. On the right, quantum-chemical (PBE/co-r) and periodic results for the innermost CC
bond length (Å) and band gap (eV) for finite graphene (Gn), graphane (HGn) and fluorographene
(FGn) models with increasing number n of concentric hexagonal rings.

consisting of concentric hexagons with zigzag perimeter corresponded to the optimised
periodic structure. In the relaxed models, the molecular structures were independently
optimised for each specific system size. In both model types, the perimeter carbon atoms
were hydrogen-terminated with optimised positions. Figure 4.1 illustrates increasing-size
graphane flakes. The figure also reveals the convergence of the geometry of the innermost
part of the relaxed models toward the periodic situation, although the energy gap between
the HOMO and LUMO orbitals is not even nearly settled at these system sizes. For both
the first- (χ2H) and second-order (σ, J ) NMR properties the convergence was nevertheless
obtained due to the local nature of the magnetic perturbations involved. This can be
understood as being due to the trends in the decreasing excitation energy denominators
in the second-order properties becoming overcompensated by the trends in the matrix
elements of the local perturbation operators, present in the nominators of the second-order
expressions.

The comparison of NMR parameters obtained by solid-state and quantum-chemical
approaches is only feasible when the basis sets used are of comparable accuracy and,
furthermore, the same DFT functional should be used. For that reason all the presently
investigated periodic systems were carefully tested against computational choices such as
the adequacy of k-sampling and cut-off energy. The corresponding task for the quantum-
chemical NMR calculations of increasing-size clusters is demanding, as the basis set should
remain of feasible size for properties in systems of very different sizes. This issue was
solved by using completeness-optimised (co) basis sets [70], developed for this purpose
in Paper I, and named as co-NMR-r. Also the locally dense basis set method [108] was
used, where the innermost region of the clusters (for which the NMR parameters were
calculated) was represented by a well-saturated basis, whereas a lower-level basis covered
the remaining part. The PBE functional was used in both approaches.

The main result that all studied systems (G, HG and FG) share, is the 13C chemical shift
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Figure 4.2. Innermost 13C NMR chemical shifts (δ) and one-bond 13C13C indirect spin-spin
coupling constants (J) for finite models of (ab) graphene (Gn), (cd) graphane (HGn), and (ef)
fluorographene (FGn), as functions of the number n of concentric hexagonal rings. For HG and FG,
also the periodic δ results are given.

δC (illustrated in Figure 4.2), which in the three types of environment obtains distinct values.
In the case of periodic calculations of G it was impossible to apply perturbation theory to
obtain converged results for σC, due to the vanishing band gap. Thus, the cluster method
offered presently the only way to obtain converged first-principles NMR predictions for G.
σ was calculated for the Gn models up to G5. The relaxed geometry of the innermost ring
converges to the periodic structure at G4. At that model size, the δC results appropriate
to both the relaxed and fixed geometries converge to the same value. The shielding and
coupling anisotropies are also consistent at both geometries (Paper I).

In contrast, the sp3-hybridised HG and FG systems have a clear, finite band gap, which
offers the possibility to compare δC results with those obtained in the finite, quantum-
chemically calculated flakes. In the case of HG, both δC and ∆σC values for the flakes, both
in their relaxed and fixed geometries, converge from HG3 onward to practically the same
periodic result. In the case of FG, δC corresponding to the fixed-geometry clusters stabilises
already at the model size FG2. In the optimised clusters, structural relaxation in the core
region occurs slowly as a function of n (Figure 4.1) and the fixed-geometry result is only
reached at FG4. Notably, the converged quantum-chemical results for both carbon and
fluorine (shown in Paper I) converge to values ca. 2 ppm below the corresponding periodic
shifts. A similar difference was obtained also for δF; the periodic result equals 114 ppm
while 110 ppm was obtained for the converged fixed-geometry in size FG3. In HG, the δH
value is small, as 0.5 ppm was obtained in both the periodic and cluster approaches. CH4

was the reference compound for δC and δH, while CH3F was used for δF. The deuterium
2H quadrupole coupling in graphane clusters converged to 168 kHz at the G2 size for fixed
models, while 167 kHz was obtained for relaxed models at size G3 onward. In contrast
to these values, 172 kHz was obtained in the solid-state calculation. These calculations
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showed that the property requires flexibility from the basis set. The reason for the existing
difference between values obtained by the present two computational approaches remains
unclear, however.

Figure 4.2 illustrates also the convergence of the one-bond JCC coupling constant
between 13C nuclei in the innermost hexagonal ring of the flakes. In general, the fixed-
geometry cluster results for J converge at n = 2, faster than for δ. Hence, fixed-geometry
cluster calculations can be used to predict J with moderately small model sizes. Comparing
the three different systems, 1JCC changes between G (sp2) and HG (sp3) qualitatively
similarly to the situation in small hydrocarbons [109], with the FG result in-between. The
two-bond JCC coupling constants are small, close to zero in all systems. In contrast, the
three-bond coupling constant converges to the value of 6 Hz for G systems while for FG
and HG, corresponding limits are 2 and 1 Hz, respectively.

Disregarding the systematic errors due to the use of DFT, the predicted chemical shifts
for experimental purposes are (in ppm), δC = 132 (G), 63 (HG), and 112 (FG), as well as
δH = 1 (HG) and δF = 120 (FG). The experimental 13C shifts of G sheets, converted to the
methane reference, are in the range 122.6–127.6 ppm [110–113] . DFT has the tendency of
systematic deshielding (i.e., overestimating shift) as compared to accurate ab initio results
[91], which was observed also in the DFT calibration tests carried out in the present study.
Comparing with typical 13C shift in graphite compounds [114] the predicted shifts for G
and HG indeed fall into the region of graphitic carbon. In contrast, the carbon nucleus is
less shielded in FG than in the fluorinated 3D graphite [114, 115]. The spin-spin coupling
predictions are (in Hz) for G, HG, and FG in this order: 1JCC = 59, 34, and 44, 2JCC = 0,
−1, and 0, 3JCC = 6, 1, and 2, 1JCH = 127 and 3/4JHH = 12/0 (HG), 1JCF = 325, as
well as 3/4JFF = −10/31 (FG). Due to the large error expected for 1JCF by DFT [116],
that particular value is given for completeness only. In conclusion, the predictions of the
NMR parameters presented in Paper I concern the G, HG and FG systems in their bulk-
and large-system limit. Therefore, the focus of the cluster calculations was restricted only
to the centermost nuclei of the flakes, corresponding to that desired condition.

The results obtained with the two different geometry types, relaxed and fixed, converged
to practically the same limiting values. Hence, as a methodological prospect, one can use
the fixed-geometry cluster approach for obtaining the NMR parameters of extended 2D
systems with moderately small model size. The present work illustrates that this approach
is plausible and it, in particular, enables obtaining the parameter values of extended 2D
systems with a vanishing band gap.

In Paper II, carbon-13 NMR chemical shifts were calculated particularly for the finite
flakes. We focused on the qualitative trends of the spectral patterns predicted for increasing-
size fragments of graphene, but also its graphane and fluorographene counterparts. Both
crenelated (armchair boundary) and concentric hexagon-shaped (zigzag) fragments were
investigated, to gain information of the effect of different types of flake boundaries. Con-
tinuous spectral lines were obtained from the calculated chemical shifts by applying a
Lorentzian broadening. The B3LYP variant of DFT was used and the requirement of
converged basis set for chemical shifts was fullfilled by using the co basis (Paper I) to
cover whole flake in each case.

In Figures 4.3 and 4.4, the calculated 13C NMR chemical shift stick spectra of increasing-
size crenelated and concentric fragments of the sp2-hybridised graphene, are shown. The
perimeter nuclei of the two systems have apparently different chemical shifts. The spectra
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Figure 4.3. Calculated (B3LYP/co-NMR-r) carbon-13 NMR chemical shift stick spectra for finite
crenelated graphene fragments of increasing size with armchair boundary (mcrenG, m = 2−4). Each
signal is given with its own unique colour, line style, and label as presented in the inset. The "new"
lines denote the result of adding the outermost atomic layer, whereas the "old" lines arise from nuclei
that reside in the inner hexagonal shells. The structural fragments in the top right corner serve to
identify the lines with color encoding. The zero of the chemical shift scale has been chosen at the
signal of G1 (benzene).

in Figure 4.3, are for the increasing-size armchair fragments, acronymed here as mcrenG
where m indicates the system size. The spectra feature an almost constant characteristic
spread with increasing m. In contrast, the spectra of zigzag fragments in Figure 4.4,
acronymed as Gn, show a widening chemical shift range with increasing n. In both
kinds of systems, carbon-13 signals coming from the inner part of the fragment move
systematically to the right-hand side of the spectrum, i.e., they become more shielded
when a new concentric ring is added. The widening of the spectra in the case of Gn system
arises from the perimeter nuclei that become less and less shielded with increasing system
size, forming a sparse high-shift spectral region. In contrast, in the mcrenG systems, the
signals introduced by the most recently added carbon layers appear both to the left and to
the right (bigger and smaller shifts, respectively) from the broad band of signals arising
from the nuclei in the inner region. Moreover, in the Gn systems, these inner nuclei form a
denser and more intense band than in the mcrenG systems. This apparently results from
the larger, uniform graphene-like chemical environment appearing in Gn, as compared to
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Figure 4.4. As Figure 4.3, but for the graphene fragments of increasing size with zigzag boundary
(Gn, n = 1−6).

systems of corresponding size with armchair boundary.
The corresponding spectra for hydrogenated graphene fragments, HGn with zigzag

boundary and mcrenHG (armchair) (Figures 6-7 in Paper II), collectively differ from those
of the pure sp2-systems. Signals arising from the interior part of these sp3-hybridised
fragments are now packing to the left-hand side of the spectrum, at large shift values. Their
behaviour is, hence, totally the opposite to that of the graphenic fragments. Additionally,
these interior signals are roughly 80 ppm less shielded in the hydrogenated systems. The
spectra of the graphane flakes are mutually overall similar, possessing a fairly stable
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characteristic band of “old” signals in systems of increasing size. The only remarkable
difference comes from the signals of the perimeter nuclei. In the HGn systems these “new”
signals have the smallest shift values and appear to the right of the interior signals. In the
mcrenHG flakes, however, some perimeter nuclei give the highest shifts, and appear to the
left of the interior signals. A similar behaviour to that described here for the hydrogenated
graphene fragments, occurs also in the other studied sp3-systems, fluorographene flakes.
Their calculated spectra are illustrated in Figures 8-9 of Paper II.

The reasons for nuclei in some systems becoming less and in the others more shielded,
was rationalised in Paper II with the aid of the paramagnetic shielding expression (Eq. 3.23)
that, jointly with the diamagnetic contribution, constitute the total observable shielding.
This kind of division is in principle arbitrary (it depends on the chosen gauge for the vector
potential) and indeed the sum was directly obtained by the GIAO technique in the present
production calculations. In practice, the separated paramagnetic term offers an analysis
tool for the chemical shift trends. That is because the diamagnetic term, with a reasonable
choice of the gauge origin, contains only information of the electron density close to the
nucleus due to the ground-state nature of this term. It is the paramagnetic part that is
mainly responsible for the chemical shift trends between different systems. To be precise,
this analysis is based both the inverse dependence of σp on the excitation energies and the
direct dependence on the magnetic matrix elements of the operators (shown in equation 3
of Paper II). Thus, in order for a nucleus to be less shielded than others, the “short-sighted”,
localised PSO (orbital hyperfine) operator requires a bigger amplitude of the excited state
at precisely that nuclear site.

Figure 4.5 illustrates the localisation and the amplitude of the excitation via the differ-
ence density between the second (first) excited state and the ground state of the G2 (HG2)
fragment. The symmetry species of these states correspond to the in-plane component of
the shielding tensor. The figure exemplifies the findings on the trends in the chemical shifts

Figure 4.5. Calculated difference density a) between the second excited state and the ground state
in the E1g irrep (irreducible representation of the D6h point group, in which hPSO

x and hPSO
y operate)

for G2 and b) between the first excited state and the ground state in the Eg irrep (where hPSO
x , and

hPSO
y operate in the D3d point group) for HG2.
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of the studied graphene flakes. An efficient coupling of the electronic ground state to the
accessible excited states by (particularly) the localised hyperfine operator, causes a bigger
(more negative) paramagnetic contribution and, consequently, a smaller shielding. In the
present graphene systems, this coupling becomes progressively smaller for the inner atoms
of the fragments upon increasing the system size. Instead, the symmetry-allowed, low-
lying excitations occur at the perimeter of graphene flakes as illustrated in Figure 4.5(a).
In contrast, as Figure 4.5(b) depicts, a strong coupling to the excited states persists for
the inner carbon sites of the chemically functionalised graphenes, which causes a smaller
shielding and, thus, a bigger chemical shift in the inner regions of the sp3-hybridised
graphene flakes. The packing of the peaks to the right (left) of the chemical shift spectrum
for graphene flakes (graphane and fluorographene) results due to the localisation of the
excitations, relevant for the shielding in these systems.

In general, the findings presented in Paper I should encourage NMR measurements for
graphenes, by issuing starting values of the spectral parameters in the large-system limit.
The calculations that were carried out in Paper II can help to understand how the properties
depend on the finite size of the graphene fragments as well as their boundary structure and
chemical composition. Characteristic trends were found in the 13C NMR spectra. The
observed spectral features do not only apply for GQDs, but should be extendable also to
other types of finite-size carbon nanosystems. From the experimental point of view, the
results give hope for their individual characterisation.

4.2 ESR and pNMR: Spin-1/2 defected systems

Into a uniform 2D-crystal of graphene, which is diamagnetic in its pristine form, it is
possible to create local magnetic moments arising from unpaired electrons. These moments
can be induced by adatoms or lattice imperfections, such as vacancies or moieties of
adsorbed atoms [117, 118]. This is intensively studied both theoretically [119–126] as
well as experimentally [26, 127–132] due to the technologically interesting possibility
of nonmetallic magnetism. In particular, Ref. [26] reported spin-1/2 paramagnetism in a
graphene sample containing fluorine adatoms. The ESR and pNMR spectroscopic methods
are commonly used for structural characterisation in the development of magnetic materials.
So far these methods have not been widely applied in the research on graphene magnetism,
despite the fact that they have the potential to give directly measurable information of the
paramagnetic defects. The purpose of Paper III was to study these spin-1/2 paramagnetic
centers in graphenes in terms of ESR spectral parameters, i.e., the g- and A-tensors, as
well as the pNMR nuclear shielding. These parameters can be used to quantitatively
monitor the efficiency by which the unpaired spin density in conveyed to the material from
the defect.

Four different defects were studied, all of which create spin-1/2 centers into the system.
Two vacancy-type defects were studied in the sp3-hybridised graphane and fluorographene
systems, acronymed here as VH@HG and VF@FG. In these two models, a hydrogen
or fluorine atom is missing, respectively. Furthermore, two defects were studied in the
sp2-hybridised graphene, consisting of hydrogen and fluorine adatoms, denoted H@G
and F@G. The calculations were based on periodic boundary conditions with supercells
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Figure 4.6. (a) Optimised structure of an H adatom-induced defect in a 6 × 6 unit cell of graphene.
The supercell is shown with full lines and the corresponding Voronoi cell by the dashed lines.
Symmetry-independent 13C sites are labelled with numbers increasing from the carbon site with
the adatom (C0). ESR hyperfine couplings and pNMR shieldings are reported for the nuclei Ci

along the solid green bonding path. The inset (b) highlights the region with H or F adatom in the
sp2-hybridised graphene sheet (H@G and F@G), whereas in the inset (c), the vacancy-type defect in
hydrogenated/fluorinated sp3-hybridised graphene (VH@HG and VF@FG), is illustrated.

containing one defect center. Specifically n×n supercell sizes were used, with n = 3, 6, 9,
and 12. n stands for the number of complete carbon hexagons confined in the supercell.
The supercells of different sizes enabled considering the convergence of the ESR and
pNMR parameters with the system size. Figure 4.6 illustrates the supercell of the size of
6× 6.

In the sp3-hybridised systems VF@FG and VH@HG, the defect is very localised and
hosts spin density only at the closest atoms, as shown in Figure 4.7(a). These systems
possess a large majority spin density at the sp2-hybridised carbon C0 of the vacancy, while
the next-neighbour atom (C1) houses some minority spin density. Due to this reason,
both systems have enhanced ESR parameters and, consequently, also pNMR shielding
values, only in the vicinity of the defect. In the case of VH@HG, the g-values as well as
the isotropic and anisotropic HFC contributions (the Fermi contact and dipolar hyperfine
coupling) converge to values independent of the supercell size already at the smallest 3× 3
system, implying non-interacting paramagnetic centers at the corresponding separation
of defects. A remarkable high value of 160 MHz was obtained for the isotropic HFC
at C0, with a decay to zero value within 3 CC bonds from the defect center. For the
VF@FG system, largely the same was observed, apart from the fact that convergence was
reached at the larger 6 × 6 system size, illustrated in Figure 4.8. Both systems feature
monotonically decaying dipolar contribution, with a value of 150 MHz only at the C0 atom.



50

(a) (b)

Figure 4.7. Spin densities of models for (a) fluorine vacancy in fluorographene (VF@FG) and
(b) hydrogen adatom on graphene (H@G). The arrows indicate the location of the defect. The
majority (minority) spin density component is shown in red (blue) with the isosurface value of 0.02
(-0.02) e/Å

3
.

This illustrates that almost all the p-character of the spin density is localised there.
Converged isotropic g-values (shown in Figure 3 of Paper III) of 2.00262 and 2.00253

for VH@HG and VF@FG, respectively, are possible to obtain by a computationally feasible
k-point sampling in the sp3-hybridised systems. In the case of VF@FG, a large drop occurs
in the g-value from the 3× 3 model to the converged situation at the bigger system sizes.
Similarly, the Fermi contact coupling of the 3 × 3 system deviates from the converged
value that is obtained at both the two larger VF@FG system sizes. This indicates that
the 3 × 3 model is too small to present non-interacting vacancies. Figure 4.8 illustrates
also that the 13C pNMR shielding constant is greatly magnified for the C0 and C1 nuclei.
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Figure 4.8. Hyperfine coupling tensor and pNMR shielding for carbon-13 nuclei as a function of the
distance (number of CC-bonds) from the defect site in VF@FG. Panel (a) depicts the anisotropic
HFC constant (in MHz), i.e., the dipolar coupling. It is defined as the unique principal value
(ASD

33 = ASD
⊥ , the component perpendicular to the material plane). The inset depicts the isotropic

Fermi contact contribution. In (b), the isotropic part of the pNMR shielding (in ppm) is given. The
n× n configuration in the main panels refers to the different supercell sizes used.
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Figure 4.9. As Figure 4.8 but for the graphene model H@G hosting a single hydrogen adatom.

Similar findings, albeit with enhanced parameters ranging one CC bond further away from
the defect, were observed for the VH@HG system, as illustrated in Figure 6 of Paper III.

In contrast to the vacancy-defected systems discussed above, a long-ranged spin po-
larisation occurs in the adatom-defected, sp2-hybridised graphene systems H@G and
F@G, Figure 4.7(b). Therein distinct, alternating minority and majority spin densities are
seen between the even- and odd-indexed nearest-neighbour atomic sites, respectively, as
calculated from the defect. This phenomenon reflects the bipartite lattice, which consists
of two interpenetrating hexagonal carbon sublattices, α and β and, furthermore, the fact
that the defect states at the Fermi level are only formed from the pz-orbitals on one of them
[119]. In addition, in both adatom-defected graphene systems, the band gap decreases with
the supercell size, approaching the situation of the zero-gap graphene. This entails diffi-
culties to the computation of the g-tensor as a second-order property. Only for the smallest
3× 3-system it was possible to obtain converged g-values, which required an extremely
dense k-sampling. In contrast, the ground-state property A was possible to calculate for
all the system sizes. Figure 4.9 shows that the defect center shows up emphasised in the
Fermi contact hyperfine coupling and 13C pNMR shielding, and there is a slow decay with
the number of CC-bonds. Furthermore, despite the unavailability of entirely converged
g-shift tensors, it was observed that the only significant contribution to the isotropic pNMR
shielding constant arises from the product of the free-electron ge factor and the isotropic
Fermi contact HFC (i.e., the first term in Table 2.18). The other terms contributed less than
1 ppm giving, hence, at least a partial justification for dropping off the O(α4) terms in the
case of the two adatom systems. From Figure 4.9 it can be seen that the pNMR shielding is
greatly enhanced not only in the vicinity the defect, but also further away from it, implying
chances of the NMR detection.

The present study shows that a missing hydrogen and fluorine atom in graphane and
fluorographene, respectively, create a spin-1/2 paramagnetic defect that has locally greatly
enhanced ESR and pNMR parameters. In contrast, in graphene, the hydrogen and fluorine
adatoms induce slowly decaying magnetic resonance parameters with the distance from
the defect. The direct connection of these spectral parameters to the electronic structure
should encourage experimental verification.
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4.3 Magneto-optic rotation: Size, perimeter type and
functionalisation

Ref. [133] reported an unexpectedly high Faraday optical rotation for a single layer of
graphene. The rotation of the linearly polarised light in the infrared (IR) spectral region by
up to 6◦ at 7 T external magnetic field was reported; a massive rotation to be caused by a
single-atom thick material. Such a rotation holds promise of the capability of graphene as
a material for fast, tunable, and ultrathin magneto-optic devices. In graphenic quantum
dots, due to the quantum confinement effect, the optical transitions occur in the visible,
rather than the infrared part of the electromagnetic spectrum [134, 135]. It is a well-known
fact that the electronic structure of GQD systems depends crucially on the geometry of
the edge region [106, 136–139], resulting in rather well-known photophysical properties
[12]. Nevertheless, the Faraday rotation properties of GQDs have not been explored.
In Paper IV, finite graphene flakes are studied, to reveal the dependence of FOR on the
size, functionalisation by hydrogen, and perimeter structures. The possibility to gain
nucleus-specific NSOR information from these systems, is also demonstrated.

The necessary quadratic response functions for V and VK (equation 3.38) were calcu-
lated at the hybrid B3LYP [64, 65] DFT level, which has pointed out to be overall suitable
for the magneto-optic properties of small carbon nanosystems [25, 140, 141]. Also in
this study, the co basis-set concept [70] was used due to the rather large system sizes
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Figure 4.10. The atomic structures of the inspected finite graphene systems and their Verdet constants
(V ) as well as the NSOR constants VC that arise from their innermost carbon nuclei. At the top, the
atomic structures are illustrated for systems with zigzag (Gn, n = 1 − 5) and armchair (mcrenG,
m = 2, 3) perimeter. In panel (a), the isotropic V constants [in rad/(T m)] are plotted as functions of
the light wavelength (nm) for the Gn and mcrenG systems of increasing size. Respectively, in (b),
the isotropic NSOR constants VC [in µrad/(M cm)] are given for the innermost carbon nuclei.
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Figure 4.11. As Figure 4.10 but for graphane systems with zigzag (HGn, n = 1 − 4) and armchair
(mcrenHG, m = 2 − 3) perimeter.

and the particular challenges that arise from the perturbation operators of both valence
and core-like character, of relevance to the present properties. As a technical note, the
generated co2-MOR set, applied throughout the study features a less than 5% deviation
from the basis-set limit for the V , VC, and VH constants.

The Verdet constant V parameterises the Faraday optical rotation (equation 2.23), and
plays a similar role as the constant VK for the NSOR phenomenon. Figures 4.10 and 4.11
illustrate the dispersion curves of these constants for the studied graphene and graphane
molecules, respectively. The figures reveal a strong enhancement for both the FOR and
NSOR phenomena in the vicinity of the optical excitation. The clearly diverging behaviour
in these dispersion curves is partially due to the inadequacy of perturbation theory in
close proximity of the excitation energies. However, the strong enhancement of the
dispersion curves was recently observed also with a response technique that is convergent
at resonances [44]. There are striking differences between these sp2- and sp3-hybridised
systems. In the case of FOR at a given wavelength, V is about an order of magnitude larger
in G than in the corresponding HG systems. For the G systems, the dispersion curves of V
are redshifted with increasing system size, while such a shift hardly occurs at all for the
HG systems. These differences arise most importantly from the delocalised character of
the electronic structure of the G systems, including their decreasing excitation energies
with the system size.

The dependence of FOR on the degree of partial hydrogenation was studied for the
system size G4, by varying individually the hybridisation of its concentric rings, demon-
strated in Figure 4.12. All these mixed systems possess individual dispersion curves; The
characteristic redshift of the location of the onset of strongest dispersion again follows the
decrease of the excitation energies of the systems.
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Figure 4.12. Atomic structures of the systems with different levels of partial hydrogenation, i.e.,
mixed sp2/sp3-systems, in the size G4, and their different (a) isotropic Verdet constants (V ). In
panels (b) and (c), the isotropic NSOR constants VC [10−6 rad/(M cm)] for the four nuclei from the
centre to the perimeter in HG1G4 and G3HG4 systems are shown, respectively. Moreover, in (b) and
(c), the strong excitation to singlet excited state with the transition dipole moment in the direction
of the molecular plane (with large oscillator strength) is indicated with a dashed vertical line. The
sp2-hybridised carbon atoms are marked with red.

The study of the two different types of edge structure reveals that FOR is incapable of
distinguishing between the zigzag and armchair perimeters. It appears that the dispersion
curves of V , their form and magnitude, are determined solely by the excitation energy.
This is due to the global character of the orbital Zeeman operator (3.24) by which the
molecular wavefunction is coupled to the magnetic field. In contrast, in NSOR the optical
activity is caused by the magnetisation of polarised nuclear spins. NSOR was found in
Paper IV to have the potential to distinguish between the two different perimeters, Figure
4.13. This is due to the nucleus-specific resolution of NSOR that arises from the involved
PSO hyperfine operator (3.25). This interaction is proportional to the inverse cube of
the distance between the electron and the nucleus. Hence, NSOR probes the electronic
structure locally, similarly to the nuclear shielding in conventional NMR.

The NSOR results in Figures 4.10 and 4.11 are represented as the dispersion curves
of VC for the innermost carbon nuclei with opposite directions of rotation, for G and HG,
exemplifying the sensitivity of NSOR for the electronic structure. The 13C and 1H NSOR
constants (Figure 5 of Paper IV) of the HG systems are nearly independent of the system
size. This because the excitation energies of these HG systems are very similar. In contrast,
in the sp2-hybridised G systems, the VC curves are redshifted similarly as in the case of
FOR.

In Figure 4.13 it is demonstrated that different VC dispersion curves arise from the
different nuclear positions. It is observed that, from the size G4 onward, the innermost
nuclei of the zigzag perimeter graphene flakes start to have mutually similar VC dispersion
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Figure 4.13. Nuclear spin optical rotation (NSOR) constants VK for the largest studied graphene
flakes. VC [10−6 rad/(M cm)] for different nuclei in zigzag-perimeter systems: (a) G4, (b) G5,
and armchair-perimeter systems: (c) 2crenG and (d) 3crenG. Two lowest excitation wavelengths to
singlet excited states with the transition dipole moment in the direction of the molecular plane (with
large oscillator strength) are indicated with dashed vertical lines.

curves, reflecting their identical electronic environment. Also noteworthy in these zigzag
systems is the opposite sign of VC for the apex nuclei, as compared to the NSOR constants
resulting from the inner nuclei of G4 and G5 flakes. In the armchair-edged, 5crenG
system, the curves of the inner nuclei fall into two distinguishable groups, instead. The
clear difference between the perimeter types of these sp2-systems is consistent with the
fact that the cyclic sp2-systems with zigzag boundaries (superbenzenes) have a relatively
homogeneous graphene-like environment in the center region of the molecule, featuring
delocalized π-electrons. Instead, the systems with full armchair perimeter possess more
localised areas of π-electrons [136, 139, 142]. A corresponding behaviour is also seen in
the 13C chemical shift spectra of these systems, in Paper II.

Similarly to the case of the NMR spectra of HG systems (Paper II), VC arising from
the different nuclear positions of these systems, are notably different from each other only
at the perimeter, as illustrated in Figures 7 and S12 of Paper IV. NSOR was also studied
for two mixed sp2/sp3-systems at the model size G4. In these systems, named as G3HG4
and HG1G4, hydrogenation was applied either at the perimeter or at the center of the
molecule, respectively. These two models have clearly different VC curves, illustrated in
Figure 4.12(bc). The largest sensitivity of NSOR is seen for the differently hybridised,
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adjacent carbon nuclei. They feature opposite signs in their VC dispersion curves, a feature
observed for the mixed systems of both kinds.

To summarise, the present study demonstrates the characteristics of the Faraday rotation
effects for finite graphene and graphane systems. What was found in the case of FOR was
the independence of this property of the two studied perimeter types. In case of NSOR, the
capability to sensitively characterise the local structure was clearly demonstrated. Paper IV
should encourage experimentalists to both FOR measurements on graphene quantum dots,
as well as to the eventual nuclear site-specific optical investigations of nuclear environments
by NSOR, a field that is still at its very beginning.



5 Conclusions

The high abundance and versatile possibilities to form organic compounds of carbon
constitute the basis of all known life. The tetravalent electronic structure of carbon enables
many kinds of allotropes, exhibiting each possible dimensionality. Physical properties vary
strongly between these forms. For instance, diamond is extremely hard and transparent,
whereas graphite is soft and opaque [143]. Graphene is a sp2-hybridised form of carbon
with an extended honeycomb network, which enabled it to redefine the accessible limits
of many material properties, e.g., electric and thermal conductivity as well as mechanical
strength. These and many other unusual properties have positioned graphene to a central
role in nanoscience and -technology [4, 5]. The aim of the present work was to study
the magnetic resonance and magneto-optic properties of different kinds of graphenes,
including the pure, sp2-hybridised graphene as well as the sp3-hybridised graphane and
fluorographene derivatives, both in their extended as well as finite-dimensional forms.
This was motivated by the uncommon usage of magnetic resonance spectroscopies [18,
20, 27] in their structural characterisation. Additionally, we wanted to demonstrate the
characterisation capability of spectroscopies based on magneto-optical rotation [43], which
may provide a new way to study molecules and materials.

The theoretical framework for the work was provided by density-functional theory and
specific perturbation techniques for the spectroscopic parameters. Throughout the work,
the numerical quality of the computations was maintained as high as practically possible,
to obtain parameters of predictive quality that may help in and encourage experimental
work. Due to the different dimensionalities of the investigated systems, both molecular
quantum chemistry and solid-state methods, were used. The properties involved and the
size of the systems together constituted demanding computational challenges.

Magnetic resonance parameters for graphenes were investigated in Papers I-III. Paper I
concerned the NMR parameters for G, HG and FG systems both in the bulk and at the
limit of large finite systems. The limiting values were obtained by extrapolating the NMR
properties of the innermost part of increasing-size graphene flakes, which converged to
situation representative of large 2D graphene crystallites. The converged results in the
case of finite band-gap HG and FG materials were compared to the obtained solid-state
chemical shifts. The predictions of chemical shifts in these three types of environment
throw light on the potential of NMR in the structural characterisation of these materials.
Their spin-spin couplings, as well as the deuterium quadrupole coupling in HG, were also
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calculated. Small 0D graphene flakes share many similarities with the 2D graphene but
have also unique properties depending on the flake size and perimeter structure [11, 12].
Paper II focused on investigating the characteristic 13C chemical shift spectral patterns
of the finite flakes; the role of the size, composition and perimeter type. The findings in
the qualitative spectral trends can help to understand and interpret experimental spectra
that certainly will have a plethora of peaks [104]. It was observed that the innermost
carbon sites of the sp2-hybridised graphene flakes have a tendency to move towards smaller
chemical shift values when the system size increases. In the case of the largest inspected
graphene flakes, these interior nuclei produced a tightly-packed band of peaks. In contrast,
the corresponding sites of sp3-hybridised carbons in HG and FG fragments showed the
opposite behaviour; they became less shielded with growing system size. In addition, the
type of the perimeter structure caused in own specific characteristics. The main spectral
behaviours were rationalised qualitatively by an analysis of the coupling of the electronic
ground state of the systems to the excited states that are relevant for the NMR shielding
tensor.

A particularly important verification of carbon-based magnetism was reported in
Ref. [26], where spin-1/2 paramagnetism was observed in a graphene sample containing flu-
orine adatoms. ESR and pNMR spectroscopies are widely used for obtaining information
of paramagnetic defects. Their capability to obtain structural information is demonstrated
in Paper III. Therein, we predicted the ESR g- and A-tensors, as well as the pNMR shield-
ing constants and anisotropies for 2D graphenes with increasing separation of spin-1/2
point-defects. A remarkably high, local enhancement in the values of hyperfine coupling as
well as pNMR shielding constants was observed in the vacancy-defected HG and FG sys-
tems. The defects created by hydrogen and fluorine adatoms in the sp2-hybridised graphene
also showed an enhancement in their corresponding parameters. Due to the delocalised
electron structure, these parameters have a long-range character in these narrow band-gap
systems. The g-tensor as a second-order property requires an energy gap, and, hence, failed
to converge in these adatom-defected systems. In contrast, the vacancy-defected systems
have finite band gaps and for them well-defined g-values can be obtained.

Being the thinnest and transparent conductive material, graphene has recently fascinated
also with its unusually high Faraday rotation capability [133]. In Paper IV, we demonstrated
the FOR properties of graphene flakes, focusing on the dependence on the size, perimeter
structure and the level of hydrogenation of the systems. In addition, we studied the
capability of the NSOR technique for nuclear site-specific optical investigations of these
flakes. FOR occurs in the visible range in the finite graphene flakes, while the reported
rotation of the 2D graphene was demonstrated to be in the infrared-range. We observed
that FOR is similar for the zigzag- and armchair-edged graphene fragments, but it is greatly
enhanced in the vicinity of the optical excitation energies of these flakes. These energies
decrease for the G systems with their size and, therefore, the differently sized graphene
systems have strong dispersion of the Verdet constant at different positions in the spectrum.
Furthermore, FOR was observed to be sensitive to the degree of partial sp2-hybridisation,
which was inspected in differently hydrogenated, mixed sp3/sp2-hybridised flakes. In the
case of NSOR, we observed clearly different dispersion curves of the NSOR constants for
differently edged sp2-hybridised flakes. Moreover we observed that, in the HG flakes, the
nuclei caused the optical rotation to occur to the opposite direction, resulting in oppositely
signed NSOR constants, than in the sp2-hybridised flakes.



59

These studies of graphene systems support the potential of the magnetic and magneto-
optic spectroscopic methods to be used in their characterisation. The sensitivity of the
spectral parameters was demonstrated, giving insight to the electronic and atomic structure
of these systems. In that regard the aims of the work have been fulfilled. The predictions
should encourage experimental investigations also in other topical graphene derivatives
[10] and carbon allotropes [144, 145].



References

[1] L. Landau, Physikalische Zeitschrift der Sowjetunion 1, 26 (1937).

[2] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[3] A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).

[4] A. K. Geim, Science 324, 1530 (2009).

[5] L. E. F. Foa Torres, S. Roche, and J.-C. Charlier, Introduction to Graphene-Based Nanomater-
ials: From Electronic Structure to Quantum Transport, Cambridge University Press, New
York, 2014.

[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, Science 306, 666 (2004).

[7] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C.
Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science 323,
610 (2009).

[8] R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S.
Mayorov, S. Yuan, M. I. Katsnelson, H.-M. Cheng, W. Strupinski, L. G. Bulusheva, A. V.
Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov, and A. K. Geim, Small 6, 2877
(2010).
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[28] T. Helgaker, M. Jaszuński, and K. Ruud, Chem. Rev. 99, 293 (1999).

[29] H. D. Young, R. A. Freedman, and A. L. Ford, University Physics with Modern Physics,
Addison-Wesley, Essex, 13th edition, 2012.

[30] M. J. Duer, Introduction to Solid-State NMR spectroscopy, Blakwell Publishing Ltd, Oxford,
2014.

[31] P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, Oxford University Press,
New York, 5th edition, 2011.

[32] T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, and K. Ruud, Chem. Rev. 112,
543 (2012).

[33] National Institute of Standards and Technology.
CODATA, http://physics.nist.gov/cuu/Constants/index.html.

[34] Z. Rinkevicius, J. Vaara, L. Telyatnyk, and O. Vahtras, J. Chem. Phys. 118 (2003).

[35] S. Moon and S. Patchkovskii, First-principles calculations of paramagnetic nmr shifts, in
Calculation of NMR and EPR Parameters: Theory and Applications, edited by M. Kaupp,
M. Bühl, and V. G. Malkin, pages 325–338, Wiley, 2004.

[36] T. O. Pennanen and J. Vaara, J. Chem. Phys. 123, 174102 (2005).



62

[37] M. Kaupp and F. H. Köhler, Coord. Chem. Rev. 253, 2376 (2009).

[38] T. O. Pennanen and J. Vaara, Phys. Rev. Lett. 100, 133002 (2008).

[39] E. Hecht, Optics, Addison-Wesley, Essex, 4th edition, 2001.

[40] A. D. Buckingham and P. J. Stephens, Ann. Rev. Phys. Chem. 17, 399 (1966).

[41] A. D. Buckingham and D. A. Long, Phil. Trans. R. Soc. A 293, 239 (1979).

[42] T.-t. Lu, M. He, D.-m. Chen, T.-j. He, and F.-c. Liu, Chem. Phys. Lett. 479, 14 (2009).

[43] J. Shi, S. Ikäläinen, J. Vaara, and M. V. Romalis, J. Phys. Chem. Lett. 4, 437 (2013).

[44] J. Vaara, A. Rizzo, J. Kauczor, P. Norman, and S. Coriani, J. Chem. Phys. 140, 134103 (2014).

[45] A. Leach, Molecular Modelling: Principles and Applications, Pearson Education Ltd., Essex,
2nd edition, 1999.

[46] M. Born and R. Oppenheimer, Ann. Phys. 389, 457 (1927).

[47] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Electronic-Structure Theory, John Wiley
Sons, Ltd., West Sussex, 2004.

[48] D. R. Hartree, Proc. Cambr. Phil. Soc. 24, 328 (1928).

[49] V. A. Fock, Z. Phys. 15, 126 (1930).

[50] C. J. Cramer, Essentials of Computatioal Chemistry, John Wiley & Sons, Ltd, West Sussex,
2003.

[51] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford
University Press, Oxford, 1989.

[52] S. Kümmel and J. P. Perdew, Phys. Rev. B 68, 035103 (2003).

[53] F. Della Sala and A. Görling, J. Chem. Phys. 115 (2001).

[54] C. J. Cramer and D. G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009).

[55] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[56] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys.
64, 1045 (1992).

[57] D. J. Tozer, Density functional theory: the exchange-correlation energy, in European
Summerschool in Quantum Chemistry 2011, Book II, edited by P.-O. Widmark, page 473,
Department of Theoretical Chemistry Chemical Centre, 7th edition, 2011.

[58] F. Neese, Coord. Chem. Rev. 253, 526 (2009).

[59] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuseria, and G. I. Csonka, J.
Chem. Phys. 123, (2005).

[60] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996); Phys. Rev. Lett.,
78, 1396 (1997) (erratum).

[61] J. R. Yates and C. J. Pickard, Computations of magnetic resonance parameters for crystalline
systems: Principles, in Encyclopedia of Magnetic Resonance, edited by R. K. Harris, John
Wiley & Sons, Ltd, 2007.



63

[62] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B. 37, 785 (1988).

[63] A. D. Becke, Phys. Rev. A. 38, 3098 (1988).

[64] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

[65] P. J. Stephens, F. J. Devlin, C. F. Chabalowski, and M. J. Frisch, J. Phys. Chem. 98, 11623
(1994).

[66] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

[67] G. G. Hall, Proc. R. Soc. Lond. A 205, 541 (1951).

[68] S. F. Boys, Proc. Roy. Soc. A 200, 542 (1950).

[69] S. P. A. Sauer, Molecular Electromagnetism, Oxford University Press, New York, 2011.

[70] P. Manninen and J. Vaara, J. Comput. Chem. 27, 434 (2006).

[71] F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

[72] N. W. Ashcroft and D. Mermin, Solid State Physics, Saunders College, Philadelphia, 1976.

[73] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

[74] N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, Phys. Rev. Lett. 82, 3296 (1999).

[75] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

[76] P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009).

[77] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio,
M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat, and B. Kirtman, Int.
J. Quantum Chem. 114, 1287 (2014).

[78] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal,
J. Phys: Condens. Matter 14, 2745 (2002).

[79] J. C. Phillips, Phys. Rev. 112, 685 (1958).

[80] P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

[81] K. G. Dyall and K. J. Fægri, Introduction to Relativistic Quantum Chemistry, Oxford
University Press, New York, 2007.

[82] K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

[83] T. Helgaker and P. Jørgensen, J. Chem. Phys. 95, 2595 (1991).

[84] S. Baroni, P. Giannozzi, and A. Testa, Phys. Rev. Lett. 58, 1861 (1987).

[85] C. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001).

[86] J. Olsen and P. Jørgensen, J. Chem. Phys. 82, 3235 (1985).

[87] A. Rizzo, S. Coriani, and K. Ruud, Response function theory computational approaches
to linear and nonlinear optical spectroscopy, in Computational Strategies for Spectroscopy,
edited by J. Barone, pages 77–135, John Wiley & Sons, 2011.

[88] L. Truflandier, M. Paris, and F. Boucher, Phys. Rev. B 76, 035102 (2007).

[89] N. F. Ramsey, Phys. Rev. 78, 695 (1950).



64

[90] N. F. Ramsey, Phys. Rev. 91, 303 (1953).

[91] J. Vaara, Phys. Chem. Chem. Phys. 9, 5399 (2007).

[92] T. Gregor, F. Mauri, and R. Car, J. Chem. Phys. 111, 1815 (1999).

[93] T. Charpentier, Solid State Nucl. Magn. Res. 40, 1 (2011).

[94] W. E. Lamb, Phys. Rev. 60, 817 (1941).

[95] M. Profeta, F. Mauri, and C. J. Pickard, J. Am. Chem. Soc. 125, 541 (2003).

[96] C. J. Pickard and F. Mauri, Phys. Rev. Lett. 88, 086403 (2002).

[97] C. G. Van de Walle and P. E. Blöchl, Phys. Rev. B 47, 4244 (1993).

[98] P. E. Blöchl, Phys. Rev. B 62, 6158 (2000).

[99] O. V. Yazyev, I. Tavernelli, L. Helm, and U. Röthlisberger, Phys. Rev. B 71, 115110 (2005).

[100] M. S. Bahramy, M. H. F. Sluiter, and Y. Kawazoe, Phys. Rev. B 76, 035124 (2007).

[101] M. Jaszuński and A. Rizzo, Mol. Phys. 96, 855 (1999).

[102] M. J. Allen, V. C. Tung, and R. B. Kaner, Chem. Rev. 110, 132 (2010).

[103] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, Nature
490, 192 (2012).

[104] C. D. Simpson, J. D. Brand, A. J. Berresheim, L. Przybilla, H. J. Rader, and K. Müllen, Chem.
Eur. J. 8, 1424 (2002).

[105] S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, ACS Nano 6, 1766 (2012).

[106] A. Manjavacas, F. Marchesin, S. Thongrattanasiri, P. Koval, P. Nordlander, D. Sánchez-Portal,
and F. J. García de Abajo, ACS Nano 7, 3635 (2013).

[107] S. Bernadotte, F. Evers, and C. R. Jacob, J. Phys. Chem. C 117, 1863 (2013).

[108] D. B. Chesnut and K. D. Moore, J. Comput. Chem. 10, 648 (1989).

[109] J. Kaski, P. Lantto, J. Vaara, and J. Jokisaari, J. Am. Chem. Soc. 120, 3993 (1998).

[110] Y. Si and E. T. Samulski, Nano Letters 8, 1679 (2008).

[111] W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, Nature Chem. 1, 403 (2009).

[112] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany,
W. Lu, and J. M. Tour, ACS Nano 4, 4806 (2010).

[113] A. M. Panich, A. I. Shames, A. E. Aleksenskii, and A. Dideikin, Solid State Commun. 152,
466 (2012).

[114] A. Panich, Synt. Met. 100, 169 (1999).

[115] K. Guérin, J. P. Pinheiro, M. Dubois, Z. Fawal, F. Masin, R. Yazami, and A. Hamwi, Chem.
Mater. 16, 1786 (2004).

[116] P. Lantto, J. Kaski, J. Vaara, and J. Jokisaari, Chem. Eur. J. 6, 1395 (2000).

[117] O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).



65

[118] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, ACS Nano 5, 26 (2011).

[119] O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).

[120] D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. B 77, 035427 (2008).
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