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Pietilä, Heidi, Development of analytical methods for ultra-trace determination of
total mercury and methyl mercury in natural water and peat soil samples for
environmental monitoring. 
University of Oulu Graduate School; University of Oulu, Faculty of Science, Department of
Physics and Chemistry; Finnish Forest Research Institute
Acta Univ. Oul. A 637, 2014
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Mercury is a global pollutant that accumulates easily in forest soils, even in remote areas. Mercury
accumulated in soils can be subsequently released into surface waters causing an increased eco-
toxicological and human health risk. The most toxic form of mercury to humans and wildlife is
methyl mercury (MeHg), which can be formed in the environment via methylation processes. In
freshwaters, MeHg is readily accumulated in fish, which are the main source of human exposure
to MeHg. The determination of both total mercury and MeHg concentrations in environmental
samples, such as natural waters and soils, is important in environmental risk assessment. This
study involved the development of analytical methods for the determination of ultra-trace total
mercury and MeHg concentrations in humic-rich natural water and peat soil samples. Each
developed method was carefully optimized and validated by using real natural water and peat soil
samples, certified reference materials and/or reference methods. The cold vapor inductively
coupled plasma mass spectrometry (CV-ICP-MS) method developed during this study was found
to be a reliable method for the determination of total ultra-trace mercury concentrations in natural
freshwaters. Purge and trap gas chromatography, coupled to an ICP-MS, was used in mercury
speciation analysis. Together with species-specific isotope dilution this technique proved to be a
reliable method in MeHg determinations. Prior to instrumental determination, MeHg was
successfully isolated from humic-rich water and peat soil samples using N2-assisted distillation.
The analytical methods developed in this study were successfully applied to an investigation of
the effects of forest harvesting practices on the mobilization of mercury in boreal forest
catchments.

Keywords: CV-ICP-MS, environmental monitoring, mercury, methyl mercury, N2-
assisted distillation, natural waters, peat soils, purge and trap GC-ICP-MS, species-
specific isotope dilution





Pietilä, Heidi, Elohopean analyysimenetelmien kehittäminen ympäristön seurantaa
varten: pienten kokonaiselohopea- ja metyylielohopeapitoisuuksien määrittäminen
luonnonvesistä ja turvemaista. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Luonnontieteellinen tiedekunta, Fysiikan ja
kemian laitos; Metsäntutkimuslaitos
Acta Univ. Oul. A 637, 2014
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Elohopeaa pääsee ilmakehään sekä luonnollisista lähteistä (mm. tulivuorenpurkaukset ja kiviai-
neksen rapautuminen), että ihmisen toiminnan kautta. Elohopean viipymäaika ilmakehässä on
hyvin pitkä, minkä vuoksi se voi kulkeutua kauas päästölähteestä ennen päätymistään maape-
rään ja vesistöihin. Ympäristössä olevasta epäorgaanisesta elohopeasta voi muodostua erittäin
myrkyllistä metyylielohopeaa, joka rikastuu helposti ravintoketjussa. Metyylielohopean muo-
dostuminen on merkittävä osa elohopean biogeokemiallista kiertoa, minkä vuoksi metyylieloho-
pean määrittäminen näytteen kokonaiselohopeapitoisuuden ohella antaa tärkeää tietoa elohope-
an käyttäytymisestä ympäristössä. Tutkimuksessa kehitettiin analyysimenetelmät, joilla määri-
tettiin ultrapieniä kokonaiselohopea- ja metyylielohopeapitoisuuksia humuspitoisista luonnonve-
sistä ja turvemaanäytteistä. Tutkimuksessa käytetyt näytteet oli kerätty turvemaametsien valu-
ma-alueilta Sotkamosta. Luonnonvesinäytteiden kokonaiselohopeapitoisuuksien määrityksessä
käytettiin kylmähöyrymenetelmää (CV) yhdistettynä induktiiviplasma-massaspektrometriaan
(ICP-MS). Vesi- ja turvenäytteiden metyylielohopeapitoisuuksien määrityksessä elohopeaspe-
siekset erotettiin kaasukromatografisesti (GC) ja määritettiin isotooppilaimennus-ICP-MS:lla.
Ennen GC-ICP-MS -määritystä näytteet esikäsiteltiin typpiavusteisella tislausmenetelmällä ja
esikonsentroitiin ’purge and trap’ -tekniikalla. CV-ICP-MS ja ’purge and trap’ GC-ICP-MS -
menetelmät optimoitiin huolellisesti sekä laiteparametrien, että reagenssimäärien suhteen. Mene-
telmillä saatavien tulosten oikeellisuus varmistettiin vertailumateriaalien ja/tai vertailumenetel-
mien avulla. Kehitettyjä analyysimenetelmiä hyödynnettiin tutkimuksessa, jossa seurattiin met-
sähakkuiden mahdollisia vaikutuksia elohopean huuhtoutumiseen ja metyloitumiseen ojitetuilla
turvemailla.

Asiasanat: elohopea, isotooppilaimennus, kaasukromatografi-ICP-MS, kylmähöyry
ICP-MS, luonnonvesi, metyylielohopea, turve, typpiavusteinen tislaus, ympäristön
seuranta
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Abbreviations 

e.g. exempli gratia 

AFS Atomic fluorescence spectrometry 

BRL Brooks Rand Labs 

CV Cold vapor 

DOC Dissolved organic carbon 

EC External calibration 

EQS Environmental quality standard 

Et2Hg Diethyl mercury 

EU European Union 

FIAS Flow injection analysis system 

FLPE Fluorinated polyethylene 

GC Gas chromatography 

HDPE High-density polyethylene 

HPLC High-performance liquid chromatography 

ICP-MS Inductively coupled plasma mass spectrometry 

ID Isotope dilution 

IDL Instrumental detection limit 

IS Internal standardization 

ISO International Organization for Standardization 

MDL Method detection limit 

MeEtHg Methyl ethyl mercury 

MeHg Methyl mercury 

Me2Hg Dimethyl mercury 

OM Organic matter 

PTFE Polytetrafluoroethylene 

RF Radio frequency 

RIA Randomized intervention analysis 

RSD Relative standard deviation 

SD Standard deviation 

SOH Stem-only harvesting 

SRB Sulfate reducing bacteria 

SSID Species-specific isotope dilution 

THg Total mercury 

US-EPA U.S. Environmental Protection Agency 

UV Ultraviolet 
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WTH Whole-tree harvesting 
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1 Introduction 

Mercury (Hg) is a highly toxic element and known as a global pollutant. [1, 2] The 

toxicity, bioavailability and mobility of mercury in the environment are highly 

dependent on its chemical form. Due to their neurotoxic, lipophilic and 

bioaccumulative nature, organic mercury compounds, such as monomethyl mercury 

(CH3Hg+ = MeHg) and dimethyl mercury ((CH3)2 Hg = Me2Hg), are the most toxic 

forms of mercury for humans and wildlife. [3, 4] Through atmospheric deposition and 

because of a strong affinity with organic matter, mercury accumulates easily in the 

environment. One third of Finland’s land area is covered by peat and mire, which can 

act as sinks for atmospheric Hg deposition. [5–7] Hg retained in the soils can be 

subsequently released into surface waters, resulting in increased eco-toxicological and 

human health risks.  

1.1 Mercury in the environment 

In the environment, the major chemical species of mercury are elemental mercury 

(Hg0), inorganic mercury (Hg2+) and methyl mercury (MeHg). In natural waters and 

soils, the dominant form of mercury is Hg2+, mainly existing as complexes. [8] 

Mercury (Hg+, Hg2+) is a soft Lewis acid which tends to associate with soft bases such 

as sulfur, less electronegative halides, and nitrogen. [9, 10] In soils and freshwaters, 

mercury is mainly bound to natural organic matter containing reduced sulfur groups 

(SH˗, S2˗). [11–14] Thus, soil organic matter plays an important role in the 

mobilization and transportation of mercury in ecosystems. [15–18]  

In the environment, mercury can be converted into toxic MeHg through 

biogeochemical transformations. Mercury methylation rate is influenced by a number 

of environmental factors, such as pH, redox-potential, bacterial community, and 

organic matter content. [19] Although biological methylation due to sulfate- and iron-

reducing bacteria are often considered the main source of MeHg in soils and 

freshwaters [20–22], abiotic methylation also occurs [23–25]. Biological methylation 

is favored by anaerobic conditions, which are easily formed in wetland areas, e.g. peat 

soils. [26–28] Due to methylation and demethylation processes taking place in the 

environment, MeHg concentrations are seldom related to the total mercury load.[29] 

Another important transformation process affecting the biogeochemical cycle of 

mercury is the reduction of Hg2+ to Hg0 e.g. due to direct photolysis and abiotic 

processes. [30–32]  Through reduction, Hg0 can be released from the soil into the 

atmosphere and deposited in surface waters, where it can be further methylated and 
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accumulated in the aquatic food chain. The biogeochemical cycle of mercury in the 

environment involves the circulation of mercury between air, water, sediment, soil 

and living organisms (Fig. 1).  

  

Fig. 1. Mercury cycling in the environment. (HgII = divalent reactive gaseous mercury, 

HgP = particle bound mercury, Hg-OM = mercury bound to organic matter, HgS = 

mercuric sulfide) 

Mercury concentrations in uncontaminated freshwaters are at ultra-trace (ng/L) 

level and the proportion of MeHg is typically less than 10% of the total Hg 

concentration. [33] However, due to bioaccumulation, mercury concentrations in 

fish can be up to a million times higher than in ambient water and over 95% of 

accumulated mercury can be in the form of MeHg. [34] It has been shown that 

MeHg concentrations in fish respond rapidly to the Hg2+ added directly to the 

surface waters. [35, 36] Thus, a fall in mercury emissions and subsequent 

decrease in mercury depositions may have a significant effect on mercury 

contamination in fish.    

1.2 Mercury sources and pollution control 

Mercury is emitted into the atmosphere from both natural and anthropogenic sources. 

Globally, the main anthropogenic sources of mercury emissions are the burning of 

fossil fuels, primarily coal, and artisanal and small-scale gold mining. Other 
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anthropogenic sources include emissions from mercury-containing industrial 

processes and products, the incineration of waste, mining operations and metal 

production. [37] In terms of natural processes, mercury can be released into the 

atmosphere by volcanic and geological activity. Natural sources of mercury also 

include the re-emission of previously deposited mercury from top soil, vegetation and 

surface waters, and biomass burning due to wild fires and agricultural purposes. [38, 

39]  

In the atmosphere, the main mercury species are elemental mercury (Hg0 ~95%), 

divalent reactive gaseous mercury (HgII, e.g. Hg(OH)2 and HgCl2) and particle bound 

mercury (HgP).[40, 41] HgII and HgP are more soluble in water compared to Hg0 and 

are therefore most likely to be deposited on a local and regional scale. [42] Due to the 

long atmospheric residence time of Hg0, it can be widely distributed and deposited in 

remote and pristine areas. [43] Deposited mercury is easily accumulated in soils; it 

has been estimated that over 90% of annual mercury deposition is retained within 

soils. [44] In freshwaters, mercury can originate from direct atmospheric deposition 

and runoff from soils. [45–47] 

Inventories created for the estimation of global mercury emissions from both 

anthropogenic and natural sources have become increasingly important to controlling 

mercury pollution. [48] During recent decades, great efforts have been made to reduce 

mercury pollution by implementing laws and regulations on the uses and emissions of 

mercury. For example, mercury in electrical and electronic equipment has been 

restricted by the RoHS directive in Europe (RoHS directive 2002/95/EC). [49] In 

2005, the European Union (EU) launched the mercury strategy, whose aim is to 

reduce mercury levels in the environment and to lower the exposure of humans and 

wildlife to mercury within the EU and globally. [50] The most recent global 

agreement on the prevention of mercury emissions and releases is the Minamata 
Convention on Mercury, named after the mercury poisoning tragedy which occurred 

in Minamata, Japan, in the 1950s. The Minamata Convention on Mercury was agreed 

at the fifth session of the Intergovernmental Negotiating Committee in Geneva, 

Switzerland, in January 2013 and was opened for signatures at the diplomatic 

conference held in Minamata in October 2013. By October 2014, this convention had 

been signed by 122 countries, including Finland. [51] 
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1.3 Why are mercury and methyl mercury in the environment 
monitored? 

Large-scale mercury poisoning in Minamata, Japan, in the 1950s increased the 

attention drawn to mercury as an environmental and health concern. In Minamata, 

people were exposed to large amounts of MeHg by eating seafood contaminated with 

MeHg, which had been discharged into the water by a local acetaldehyde factory.[52] 

Another large-scale tragedy related to mercury occurred in Iraq in the 1970s, when 

people were exposed to high levels of MeHg by eating bread made from grain treated 

with an alkylmercury fungicide.  [53]   

MeHg is a neurotoxin that readily concentrates in the aquatic food chain, which is 

the dominant pathway for human MeHg exposure. [54] MeHg poisoning causes 

neurological damage and can have serious effects on fetal neurodevelopment. [55, 56]  

Thus, guidelines on fish consumption, especially for children and during pregnancy, 

have been proposed by several organizations such as the Finnish Food Safety 

Authority Evira.  

Elevated mercury concentrations in fish have been observed despite the fact that 

mercury emissions and depositions have decreased in Finland and throughout Europe. 

[36, 57, 58] In Finland, mercury concentrations in predatory fish can exceed the EU’s 

lower threshold limit of 0.5 mg/kg (EC 1881/2006). [59] One reason for this may be 

the disturbance of forest soil by forestry practices, e.g. harvesting, which increases the 

leaching of mercury into surface waters as a consequence of increased leaching of soil 

organic matter. [60–62] The EU’s Water Framework Directive (2000/60/EG), which 

defines the requirements for the achievement of good ecological status among water 

bodies, classifies mercury as a priority hazardous substance whose presence in aquatic 

ecosystems must be monitored. [63] As set by the Priority Substances Directive 

(2008/105/EC), the environmental quality standard (EQS) threshold value for 

mercury in fish tissue is 0.02 mg/kg. [64]  

The development of reliable analytical methods for mercury determination in 

environmental samples is an important part of environmental risk assessment. In 

addition to the total mercury, the determination of MeHg in freshwaters and soils is 

important to understanding the fate of mercury in ecosystems and estimating the 

aquatic food chain’s potential exposure to mercury. Due to ultra-trace concentration 

levels of mercury in unpolluted environments (0.5–20 ng/L in freshwaters) [33, 65], 

sensitive analytical methods are required for the accurate determination and 

speciation of mercury.   
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1.4 Determination of ultra-trace amounts of mercury in 
environmental samples 

Ultra-trace [66] mercury analysis requires a highly sensitive and element-specific 

detection technique, such as atomic fluorescence spectrometry (AFS) [67–70] or 

inductively coupled plasma mass spectrometry (ICP-MS) [71, 72]. Both AFS and 

ICP-MS are widely applied in mercury determination and speciation. AFS has also 

been adopted in standard methods of quantifying mercury in waters, published by the 

International Organization for Standardization (SFS-EN ISO 17852) and the U.S. 

Environmental Protection Agency (US-EPA). [73–76]  

The advantages of ICP-MS in trace metal analysis include its multi-element 

analysis and isotope ratio measurement capabilities. In addition to external calibration 

and standard addition methods, these features enable the use of internal 

standardization (IS) and isotope dilution (ID) methods for accurate quantification. 

[77–79] IS with (a) carefully selected internal standard(s) is often used to correct 

signal instabilities and drift during ICP-MS measurements, e.g. those due to matrix 

effects and variations in the sample uptake rate. [80–82] Using the IS method, internal 

standard is added to both samples and calibration standards to enable accurate 

quantitative measurements. In the case of ID method, samples are spiked with known 

amounts of an isotopically enriched analyte. Since the method is based on isotope 

ratio measurements, no calibration standards are required in order to obtain 

quantitative analytical results. [83–85]    

In addition to a highly sensitive analytical method, the selection of suitable 

sampling and sample pretreatment protocols are crucial in ultra-trace mercury 

analysis. [86] 

1.4.1 Sampling and sample pre-treatment 

The entire analytical chain, from sampling to instrumental determination, should be 

performed carefully in order to avoid contamination and analyte losses and, in the 

case of speciation analyses, in order to eliminate inter-species conversion. When 

ultra-trace mercury concentrations are determined, rigorous cleaning of sampling 

bottles and all laboratory ware is necessary in order to eliminate possible sources of 

contamination. [87] Analyte losses due to the volatilization and adsorption of mercury 

onto surfaces should be minimized, as should contamination from the surrounding 

atmosphere, by selecting the proper container materials.  
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The recommended sampling and storage materials for natural water samples in 

ultra-trace mercury analysis are Teflon (polytetrafluoroethylene, PTFE) and 

borosilicate glass. [88, 89] However, due to the high price of Teflon and 

impracticality of glass bottles in the field, alternative materials, such as fluorinated 

high-density polyethylene (FLPE), have been suggested. FLPE is much cheaper than 

Teflon and has lower permeability than an ordinary high-density polyethylene 

(HDPE). [90] 

After sampling, the preservation of natural water samples is crucial to minimizing 

biological activity in the sample and reducing the volatility and adsorption effects of 

mercury.[91] Possible preservation methods in the case of water samples include acid 

addition and freezing. [92, 93] When total mercury concentrations are determined in 

natural freshwaters, acidic bromine chloride (BrCl) has proven to be an excellent 

reagent for oxidizing and stabilizing mercury. [88, 94–96] BrCl oxidation is 

particularly used when total mercury is determined using a cold vapor technique. [74] 

Water samples analyzed for MeHg are preserved e.g. with hydrochloric acid (HCl) or 

by freezing. [86] MeHg has been found to be extremely stable in water samples 

preserved with 0.4% (v/v) HCl and stored under cool and dark conditions. [89, 97] 

Use of 0.4% HCl is especially necessary when the distillation method is used to 

isolate MeHg from the freshwater sample matrix prior to instrumental determination. 

[75, 98] 

When MeHg is determined in soil samples, the samples must be prevented from 

oxidizing immediately after sampling, in order to minimize potential mercury species 

transformations. After sampling, soil samples should be processed as soon as possible 

(preferably under inert gas) and stored in the freezer if they are not analyzed 

immediately. If samples are dried prior to analyses, freeze-drying should be used 

rather than oven drying in order to avoid possible losses of MeHg.   

1.4.2 Determination of total mercury using CV-ICP-MS 

Liquid nebulization using a pneumatic nebulizer/spray chamber is the most frequently 

used method for sample introduction in ICP-MS. However, this system includes 

several drawbacks, such as low analyte transport efficiency (1–5%) and matrix and 

memory effects. [99] Due to these drawbacks, the detection limits achieved with 

conventional liquid nebulization are insufficient for determining ultra-trace mercury 

concentrations in natural freshwaters.  

Gaseous sample introduction using a cold vapor (CV) system coupled to an ICP-

MS is a highly sensitive technique for ultra-trace mercury analyses. [100–103] The 
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use of CV in sample introduction enables the separation of mercury from the sample 

matrix, resulting in reduced spectral interferences and high analyte transport 

efficiency, which subsequently lowers the detection limits. CV is based on the 

reduction of mercury to elemental mercury Hg0 (mercury vapor, termed as “cold 

vapor”) which is then transported to the detector. The reduction of mercury in an 

aqueous solution is usually performed based on chemical reduction, using stannous 

chloride (SnCl2) [74] or sodium borohydride (NaBH4). [104] However, an electrolytic 

[105, 106] and photo-induced [107, 108] reduction methods have also been used.  

Determination of total Hg concentrations in freshwater samples with CV-ICP-MS 

requires an oxidation step to release all Hg compounds from the sample matrix and to 

convert Hg species, such as organomercury compounds, into divalent “reducible” 

inorganic mercury (Hg2+). BrCl is the oxidizing agent most commonly used for this 

purpose and is also recommended as part of SFS-EN ISO 17852 and US-EPA 1631 

standard methods. [73, 74, 94] When natural water samples containing high amounts 

of organic matter are analyzed, the oxidation step requires particular care since an 

insufficient amount of BrCl added can result in low mercury recoveries.[95, 96] On 

the other hand, too high BrCl concentration in samples may cause high blank levels 

due to mercury impurities in the reagents, resulting in elevated detection limits. The 

efficiency of BrCl oxidation can be improved using an elevated temperature or 

ultraviolet (UV) photo-oxidation.  [96, 109] BrCl oxidation has also been applied in 

online mode, using a flow injection analysis system (FIAS). [67, 110, 111]  

As an alternative to chemical oxidation, a “reagent-free method” using UV 

irradiation to decompose organic matter and nano-gold collectors to pre-concentrate 

mercury species has been successfully applied to the determination of ultra-trace 

mercury concentrations in natural water samples. [112, 113] Although this method 

has significant advantages, such as the avoidance of harmful chemicals, it may be 

inadequate for freshwater samples containing high amounts of organic matter. 

1.4.3 Determination of methyl mercury using GC-ICP-MS  

The most commonly used instrumental technique in mercury speciation analysis is 

based on chromatographic separation, such as gas chromatography (GC) [114–116] or 

high-performance liquid chromatography (HPLC) [117–119], coupled to an element 

specific detector. However, in the case of HPLC-ICP-MS methods, the detection 

limits obtained are usually higher than when using GC-ICP-MS methods. [120] GC-

ICP-MS coupling was first reported in the mid-80’s, since when it has been 

increasingly applied to trace metal speciation. [121, 122] GC is connected to an ICP-
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MS with a transfer-line which can be at the ambient temperature, partially heated or 

fully heated depending on the detected species. [123] 

Prior to GC separation, ionic mercury species in an aqueous sample are converted 

into volatile derivatives. This is most commonly performed using an aqueous phase 

ethylation with sodium tetraethylborate (NaBEt4). [124] However, propylation and 

phenylation have also been applied. [125, 126] When ultra-trace mercury speciation is 

performed, a pre-concentration technique, most commonly purge and trap, is used 

combined with an aqueous phase derivatization step. In the case of the purge and trap 

technique, mercury derivatives are purged from the aqueous sample solution with an 

inert gas and trapped in an adsorbent material (e.g. Tenax). [127] Volatile mercury 

species are released from the trap by heating and are introduced to the GC column for 

subsequent separation. Separated mercury species are detected using ICP-MS and 

identified based on their retention times. 

When ICP-MS is used in speciation analyses, a species-specific isotope dilution 

(SSID) method can be applied to the quantification and correction of incomplete 

analyte recoveries. [128–130] SSID also enables the investigation and correction of 

possible species transformations during the analytical procedure. [131, 132] 

Furthermore, SSID can be used to study environmental methylation processes e.g. to 

understand which factors in the ecosystem control the transformation of inorganic 

mercury species into the more toxic MeHg. [133, 134]   

1.4.4 Isolation of methyl mercury from environmental samples 

The determination of MeHg in soil and sediment samples using a purge and trap GC-

ICP-MS requires the isolation of MeHg from the sample matrix prior to instrumental 

determination. Isolation of MeHg is also required in the case of organic-rich 

freshwaters, since the MeHg complexed by organic matter may not be reactive in the 

derivatization phase leading to incomplete recovery. In addition, high amounts of 

other matrix constituents, such as sulfide and chloride, may interfere with the 

derivatization step, subsequently decreasing the method’s sensitivity. [135, 136] If the 

water sample matrix does not excessively interfere with the derivatization step, the 

SSID method may be used to correct incomplete recoveries during the analysis. [128]  

The most widely used methods of isolating MeHg from both water and 

soil/sediment samples are nitrogen (N2) -assisted distillation and acid treatment with 

solvent extraction followed by back-extraction into water. [75, 98, 137–140] In the 

case of solid samples, acid treatment with microwave and sonic extraction techniques 

have also been used for the isolation of MeHg. [141–144] Although, many studies 
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have been performed on the isolation of MeHg from environmental solid samples, but 

few of them deal with soil samples. 

One of the major concerns in MeHg analysis is the methylation of inorganic 

mercury during isolation [145–149], derivatization [150, 151] and/or GC separation 

steps [152] leading to erroneous results. N2-assisted distillation was previously the 

most commonly used method of MeHg isolation due to significant advantages such as 

high recoveries and the capability to eliminate interferences during the derivatization 

step. However, it was shown that N2-distillation is more prone to artificial MeHg 

formation compared to other isolation methods. [148] Methylation particularly occurs 

when organic-rich environmental samples containing high amounts of inorganic 

mercury, such as sediments, are distilled. [145, 146] Solvent extraction method using 

acidic KBr/CuSO4 and methylene chloride has proven to be less prone to artificial 

MeHg formation compared to N2-distillation. [145, 153, 154] 

It should be noted that the sediment reference materials used in many studies 

contain much higher amounts of inorganic mercury than those found in natural 

unpolluted freshwaters and soils. The possible error associated with artifact formation 

depends on the sample type and amount of inorganic mercury present in the samples. 

[155] N2-distillation can therefore be considered an isolation method if the potential 

methylation of inorganic Hg does not affect the accuracy of the results. N2-assisted 

distillation is also used for water samples in the case of the US-EPA standard method 

1630. [75] The investigation of possible methylation during the analytical procedure 

is possible using the SSID-ICP-MS method, in which the sample is spiked with an 

isotopically-enriched inorganic mercury in order to reveal the possible formation of 

MeHg artifact. [129, 148, 150, 156] 
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2 Aims of the research  

The main objective of this research was to develop reliable analytical methods for the 

determination of ultra-trace total mercury (THg) and methyl mercury (MeHg) 

concentrations in natural water and peat soil samples. The precision and accuracy of 

the analytical results were improved by applying internal standardization and isotope 

dilution techniques as part of the developed method. Using the methods developed in 

this study, important information can be obtained on the mercury biogeochemical 

cycle and accumulation in the environment. The key aims of this research were: 

 

1. To develop and optimize a cold vapor ICP-MS method for the determination 

of ultra-trace THg concentrations in humic-rich natural water samples. [I] 

2. To study the potential of a dual mode sample introduction system with 

internal standardization, in order to improve the accuracy and precision of 

results in the determination of ultra-trace THg concentrations by cold vapor 

ICP-MS. [II] 

3. To develop a reliable method for the determination of ultra-trace MeHg 

concentrations in humic-rich natural water samples, using N2-assisted 

distillation with isotope dilution and purge and trap preconcentration GC-

ICP-MS. [III] 

4. To compare distillation and solvent extraction methods for the determination 

of MeHg concentrations in peat soil samples. [IV] 

5. To apply the developed methods to the investigation of the possible 

consequences of forest harvesting practices on mercury mobilization in 

boreal forest catchments. [V]   
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3 Materials and methods 

3.1 Sample types, sampling and sample pre-treatment 

The natural water and peat soil samples analyzed in this study were collected from 

eight drained peatland forest catchments located in Sotkamo, eastern Finland (Fig. 2). 

Six of the catchments were clear-cut either using conventional stem-only harvesting 

or whole-tree harvesting (tree tops, branches and stumps also removed). Two of the 

catchments were left unharvested to serve as control plots. More information on the 

sampling sites is given in the original paper V. 

Natural water samples were collected from drainage ditches in each area, and in 

the case of whole-tree harvesting sites samples were also taken from the standing 

water pools formed after stump lifting. Samples for THg and MeHg analyses were 

collected in carefully cleaned 250 mL fluorinated polyethylene (FLPE) bottles, in 

accordance with the ultraclean sampling protocols. [157] MeHg samples were 

preserved in the field by adding 1 mL of concentrated HCl to the FLPE bottles prior 

to field sampling. Collected samples were transported to the Trace Element 

Laboratory (University of Oulu) and were handled under clean room conditions. All 

samples were stored at 4 °C in the dark prior to analyses. Field blanks (ultrapure 

water) were included in each sampling batch and treated similarly to the samples 

throughout the analytical procedures.   

Natural water samples analyzed for dissolved organic carbon (DOC) were 

collected in 500 mL polyethylene bottles and transported to the laboratory of the 

Finnish Forest Research Institute (Vantaa unit). Samples were filtered using a glass 

filter (pore size < 1µm) prior to analyses.  

Peat soil samples were taken from three sampling points in each catchment area. 

Samples were collected in double plastic zip-lock bags and the excess of air was 

removed before sealing the bags. In the lab, samples were handled in a glove-box 

filled with N2. Samples for THg analyses were stored under cool (4 °C) conditions, 

while samples for MeHg analyses were kept in a freezer and thawed just prior to 

analysis. A more detailed description of the sampling and pre-treatment of peat soil 

samples is given in the original papers IV and V.  
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Fig. 2. Location of sampling sites in Sotkamo, Finland.  

3.2 Sample preparation 

3.2.1 Reagents and standards 

All chemicals used in this study were of at least analytical grade, and reagents and 

standard solutions were prepared using ultrapure water (Millipore Gradient water 

purification system, Millipore Corp.). Working standard solutions of Hg2+ and 

CH3Hg+ with a natural isotopic composition were prepared daily through the 

appropriate dilution of HgCl2 and CH3HgCl stock solutions (1000 mg/L). 

Isotopically-enriched spike solutions (201Hg2+ and CH3
201Hg+) were prepared from 

stock solutions (10 µg/g) purchased from Applied Isotope Technologies (Sunnyvale, 

CA, USA).  

3.2.2 Pretreatment of water samples prior to THg analyses 

Mercury can be present in several chemical forms in natural water samples (organic 

and inorganic) and can also be associated with organic matter. Mercury compounds 

present in natural water samples were released and converted into inorganic mercury 

(Hg2+) using an acidic BrCl solution. The samples used in this study were not filtered 

prior to the analyses. Due to the high concentrations of DOC present in the samples, 

the amount of BrCl was carefully optimized. 3 mM was found to be a sufficient BrCl 

concentration for natural water samples containing DOC > 70 mg/L. [I] An optimized 
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amount of BrCl reagent was added directly to the sampling bottles as soon as possible 

after field sampling. The BrCl was allowed to react at least overnight and any excess 

reagent was eliminated using hydroxylamine hydrochloride (NH2OH·HCl) just prior 

to the analyses. 

3.2.3 Isolation of MeHg from natural water and peat soil samples 

using N2-assisted distillation 

An N2-assisted distillation method was used to separate MeHg in natural water and 

peat soil samples from the sample matrix. For this purpose, an in-house made 

distillation system, which enabled the simultaneous distillation of 20 samples, was 

used.  

Distillation of natural water samples was performed by distilling a 50 g aliquot of 

the unfiltered sample at 145 ºC under an N2 gas flow. The distillation was stopped 

when 70–90% of the distillate had been collected, which corresponded to a distillation 

time of 2–3 hours. Distilled samples were stored in the fridge until the analyses, 

which were usually performed on the next day.  

When MeHg was isolated from peat soil samples, 2–4 g of wet peat soil was 

mixed with 20 mL of ultrapure water. Aliquots of H2SO4 and KCl reagents were 

added to the sample suspensions just before distillation and samples were transferred 

to the distillation vessels with ultrapure water (the final volume of sample was 60–80 

mL). Samples were distilled until 20–30 mL of the distillate was collected within 1–3 

hours. Collected distillates were diluted to around 50 mL with ultrapure water and 

stored in a fridge until analyses.  

Distillation of organic-rich environmental samples can cause the formation of 

MeHg artifact from the inorganic mercury present in the sample. Thus, the potential 

methylation of inorganic mercury during the distillation of natural water and peat soil 

samples was studied using an enriched stable isotope tracer of inorganic mercury to 

reveal the possible formation of MeHg artifact (further discussed in section 3.4).  

A more detailed description of the distillation system and the methods used are 

given in papers III and IV. 

3.2.4 Isolation of MeHg from peat soil samples using solvent 

extraction 

When using the solvent extraction method, a 5–10 g wet peat soil sample was 

weighted into a 50 mL centrifuge tube and leached with 20 mL of a 
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CuSO4/KBr/H2SO4 solution by shaking the samples for 2 hours in a rotary shaker. 

After that, 10 mL of CH2Cl2 was added and the samples were shaken for an hour to 

extract MeHg into the organic phase. Samples were centrifuged for 30 min at 3000 

rpm and a subsample of the organic layer was transferred into a clean centrifuge tube. 

45 mL of ultrapure water was added and the organic solvent was removed by purging 

the sample with argon gas, leaving the extracted MeHg in the aqueous phase. 

3.2.5 Digestion of peat soil samples for total mercury analysis 

Prior to the THg analysis, wet peat soil samples were dried in an oven at 35 °C and 

homogenized by grinding. The samples were then digested in a microwave oven 

(MDS-2000, CEM Corporation) using a 500 mg sample mass and mixture of HNO3 

(5 mL) and H2O2 (3 mL). [158] These digested samples were diluted in ultrapure 

water and analyzed as soon as possible. 

3.3 Instrumentation 

Determination of THg in water samples was performed using a Thermo Elemental X7 

quadrupole ICP-MS equipped with a CETAC HGX-200 cold vapor sample 

introduction system and CETAC ASX-500 autosampler. In CV system, mercury 

(Hg2+) was reduced to volatile Hg0 by a SnCl2 solution and mercury vapor was 

transported into the ICP by an argon carrier gas. Data was collected by monitoring 
200Hg and 202Hg isotopes at a dwell time of 50 ms per isotope. When internal 

standardization was used in Hg cold vapor analyses, ICP-MS was equipped with a 

unique dual mode X series sample introduction system, which enabled the 

simultaneous introduction of gaseous and liquid samples.  

During speciation analysis, the ICP-MS instrument was equipped with a Tekmar 

LSC-2000 Purge and Trap concentrator and a HP 5890 gas chromatography. GC was 

connected to ICP-MS with a simple non-heated in-house-made interface (Fig. 3). 

Ionic mercury species in an aqueous sample solution were converted into volatile 

derivatives by ethylation and preconcentrated on a Tenax adsorbent. The maximum 

sample volume that could be introduced into the glass sparger of the purge and trap 

instrument was 20 mL. Ethylated Hg species (MeEtHg, Et2Hg) were separated in a 

capillary GC column and identified according to their retention times (Fig. 4). GC-

ICP-MS parameters were optimized in order to obtain a narrow and good shaped peak 

profile for ethylated MeHg, to enable accurate and precise isotope ratio measurements 

based on the peak area (further discussed in section 3.4). More detailed information 
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on the instrumental conditions and optimized measurement parameters used with each 

instrumental configuration are given in papers I–IV.    

Total mercury concentrations in peat soil samples were determined using a cold 

vapor atomic fluorescence spectrometry (CV-AFS, Merlin PSA). DOC concentrations 

in water samples were determined according to the SFS-EN 1484:1997 standard, 

using a Shimadzu TOC-VCPH/CPN analyzer. [159]     

 

Fig. 3. The GC-ICP-MS coupling. [III] 

Fig. 4. A typical chromatogram for ethylated Hg species obtained with a purge and 

trap GC-ICP-MS after the distillation step. The MeHg concentration in a natural water 

sample spiked with CH3
201Hg+ was 0.82 ng/L.   
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3.4 Calibration methods 

In most cases, quantitative results for THg with CV-ICP-MS were obtained by 

external calibration. Other calibration methods used with the CV-ICP-MS were based 

on isotope dilution (ID) and internal standardization. In the case of the ID method, a 

10 g aliquot of BrCl-oxidized water sample was accurately weighted into a 15 mL 

polypropylene centrifuge tube and spiked with a known amount of 201Hg2+ solution. 

After a few hours of equilibration time, the sample was measured using CV-ICP-MS 

to detect the 201Hg/202Hg ratio. When internal standardization was applied, aqueous 

internal standards (195Pt, 205Tl and 209Bi) were used for drift correction in Hg cold 

vapor analysis with the dual mode sample introduction system. 

Quantitative MeHg results in water and soil samples were obtained using a 

species-specific isotope dilution (SSID) technique which enables the correction of 

incomplete analyte recoveries during analysis. Using the SSID method, an accurately 

weighted amount of an isotopically enriched methylmercury solution (CH3
201Hg+) 

was added to a weighted amount of sample and allowed to equilibrate for about 20 

hours prior to the isolation step. Following the isolation of MeHg, transient isotope 

signals were determined with the purge and trap GC-ICP-MS and 201Hg/202Hg ratios 

based on the peak areas were calculated using ThermoElement PlasmaLab software 

(Fig. 4).  

When ID and SSID methods were used, the quantitative results were calculated 

using an isotope dilution equation: 
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where Rm is the mass-biased 201Hg/202Hg ratio in the isotope-diluted sample, which is 

the only variable that needs to be measured. [160] In this equation, cs and csp are the 

concentrations of Hg/MeHg in the sample and spike, ms and msp are the masses of the 

sample and spike, Ms and Msp are the atomic weights of Hg in the sample and spike, As 

and Asp are the abundances of 202Hg in the sample and spike, and Rs and Rsp are the 
201Hg/202Hg ratios in the sample and spike. 

When the potential methylation of inorganic Hg was studied, the sample was 

spiked with 201Hg2+. The measured 201Hg/202Hg ratio of MeHg peak was compared to 

the natural ratio (0.44) in order to reveal the formation of MeHg artifact. [161]  
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3.5 Quality control 

The reliability of the methods developed in this study was verified by performing 

replicate analyses of field samples, analyzing certified reference materials and using 

reference methods. Groundwater reference material, ERM-CA615, was used to 

estimate the accuracy of the CV-ICP-MS method. The certified Hg concentration with 

expanded uncertainty at a 95% confidence level in ERM-CA615 was 37 ± 4 ng/L.  

Sediment reference material, ERM-CC580, was used to evaluate the accuracy of 

the solvent extraction and distillation methods in the determination of MeHg in peat 

soil samples. The certified MeHg and THg concentrations in ERM-CC580 with 

expanded uncertainty at a 95% confidence level were 75 ± 4 µg/kg and 132 ± 3 

mg/kg, respectively. The amount of ERM-CC580 used in the MeHg analysis was 250 

mg.      

When the methods for the determination of THg and MeHg in natural water 

samples were developed, the reliability of the methods was studied by analyzing 

parallel samples with the reference methods in Brooks Rand Labs (BRL, Seattle, 

U.S.). The reference methods used were based on the US-EPA standards 1630 and 

1631. [74, 75] Parallel samples were collected in separate bottles during field 

sampling and shipped to the BRL for analyses.  
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4 Results and discussion 

4.1 Determination of THg in natural water samples [I] 

CV-ICP-MS method was developed and optimized for the determination of ultra-trace 

THg concentrations in unfiltered humic-rich natural water samples. Prior to analyzing 

field samples, the most important instrumental parameters of the CV-ICP-MS system 

were carefully optimized using statistical experimental design software (Modde 7.0, 

Umetrics AB). The instrumental parameters assumed to have the most significant 

effects on the Hg response were the sample and reagent (SnCl2) uptake rates, the 

carrier and additional gas flow rates of the CV system and the plasma radio frequency 

(RF) power. Optimization was performed using a 10 ng/L Hg standard solution and 

monitoring of 200Hg and 202Hg count rates.  

A screening experiment with a full two-level factorial design (24) showed that the 

RF power and both gas flow rates were the most significant variables affecting the Hg 

response. Since the sum of both gas flow rates had a greater effect than the individual 

gas flow rates, the sum of both gas flow rates was used as a variable in further studies. 

More precise optimization of the plasma RF power and the gas flow rate (carrier + 

additional gas) was performed using a response surface methodology (Fig. 5). 

Optimal conditions for mercury determination were obtained based on an RF power 

of 1250 W and a gas flow rate of 0.86 L/min. 
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Fig. 5. Response contour plot for 200Hg (10 ng/L). The model was fitted on the basis of 

the central composite (CCC) design. [I] 

After the careful optimization of the instrumental parameters, the method was 

validated for the most common performance parameters, such as instrumental 

detection limit (IDL), method detection limit (MDL), precision and accuracy. IDL 

and MDL were calculated based on their correspondence to three times the 

standard deviation (3ơ) of replicate blanks. The IDL obtained by analyzing the 

reagent blank solution (n = 11) on the same day was found to be 0.2 ng/L when 

using external calibration. A slightly lower IDL (0.09 ng/L) was achieved if the 

ID method was applied. The MDL was determined by analyzing an artificial peat 

water sample containing THg < 2 ng/L and DOC 15 mg/L. An artificial peat water 

sample was prepared to be similar to the water samples collected from peatland 

forest catchments and could be used to determine a more realistic detection limit 

than that obtained using a reagent blank. MDL determined using the artificial peat 

water sample as a blank was found to be 0.7 ng/L (n = 10). The detection limits 

obtained using the developed CV-ICP-MS method are similar to those reported in 

the US-EPA method 1631. 

The accuracy and precision of the method were evaluated by analyzing ERM-

CA615 reference material and performing replicate measurements of Hg standard 
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solution (10 ng/L). Replicate analyses of ERM-CA615 on different days gave a mean 

value of 39.5 ± 0.7 ng/L (n = 6), which is in a good agreement with the certified value 

(37 ± 4 ng/L). The precision (relative standard deviation, RSD) obtained for the 

replicate measurements of Hg standard solution was 2.6% (n = 6).   

Finally, THg concentrations in 36 field samples were determined using the 

optimized CV-ICP-MS method and the results were compared to those obtained with 

the reference method. THg concentrations in these field samples varied from 3.3 to 

43.1 ng/L (obtained with the CV-ICP-MS method) and DOC concentrations from 16 

to 134 mg/L. THg concentrations obtained using the CV-ICP-MS method and the 

reference method (CV-AFS) were generally in good agreement with each other (Fig. 

6). When the results for two samples (18.1; 3.7 and 9.4; 4.5 ng/L) were rejected as 

outliers, no statistically significant difference (p = 0.05) was observed between the 

results obtained using the two methods.  

Based on the results obtained in this study, the developed and optimized CV-ICP-

MS was shown to be a sensitive and reliable method for the determination of ultra-

trace THg concentrations in unfiltered humic-rich natural water samples.  

Fig. 6. The relationship between the THg results obtained using the developed CV-ICP-

MS and the reference CV-AFS methods. [I]  = result was excluded in the regression 

analysis as an outlier. 
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4.1.1 Internal standardization [II] 

Although ICP-MS is a powerful detection technique, it is known to be susceptible to 

instrumental drift, which may affect its analytical performance. Signal instability can 

usually be corrected by using a carefully selected internal standard(s). However, with 

the CV-ICP-MS method it is not possible to use internal standardization in the 

common way since basically only mercury is vaporized by SnCl2 and transported to 

the plasma. Thus, a dual mode sample introduction system for the simultaneous 

introduction of liquid sample and Hg vapor was studied in order to apply aqueous 

internal standards to drift correction in Hg cold vapor analysis. 

Thallium (205Tl) and bismuth (209Bi) were used as internal standards for Hg, since 

the masses of these isotopes are very close to the mass of the most abundant Hg 

isotope (202Hg). However, the first ionization potentials of Tl and Bi (6.11 and 7.29, 

respectively) are quite low compared to that of Hg (10.44 eV). Thus, platinum was 

also selected as an internal standard, since its first ionization potential (9.00 eV) and 

the mass of the most abundant isotope (195Pt) are quite close to those of Hg.  

The suitability of the selected internal standards (Pt, Tl and Bi) for drift 

correction in the cold vapor determination of mercury was studied by changing the 

plasma conditions to induce changes in the Hg intensity. Usually, the most important 

ICP-MS parameters affecting the analyte response are the plasma RF power, the 

nebulizer gas flow rate, and the sampling depth (distance from the sampling orifice to 

the end of the load coil). [99] However, with the dual mode sample introduction 

system, the nebulizer and cold vapor gas flow rates were dependent on each other and 

were therefore kept constant. Thus, the variables studied were the plasma RF power, 

auxiliary gas flow rate and sampling depth. The results showed that changes in the 

levels of these variables had a similar effect on both Hg and internal standard signals, 

indicating that 195Pt, 205Tl or 209Bi can be considered a single internal standard for the 

correction of Hg signal instabilities during CV-ICP-MS measurements. The effect of 

plasma RF power on the 202Hg, 195Pt, 205Tl and 209Bi intensities is shown in Fig. 7. 
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Fig. 7. The effect of plasma RF power on 202Hg, 195Pt, 205Tl and 209Bi signal intensities 

(normalized to the first measurement at 1100 W).  

The use of internal standardization in the determination of ultra-trace THg 

concentrations in natural water samples was studied by analyzing 6 field samples. 

THg concentrations obtained with the internal standardization (IS) were 

compared to those obtained with the external calibration (EC) and isotope dilution 

(ID) methods (Table 2). The results obtained using the IS method agreed with the 

ID results (considered as a reference method), particularly when 205Tl was used as 

an internal standard. However, the standard deviations of replicate measurements 

(n = 5) obtained with a single internal standard correction were somewhat higher 

than those obtained with EC and ID methods. Thus, no improvement in short-

term precision was achieved when internal standardization was used. In addition, 

IDLs (3σ, n = 11) obtained using an internal standard correction (195Pt, 205Tl or 
209Bi) were slightly higher (0.4, 0.5 and 0.4 ng/L, respectively) than those 

obtained using EC and ID methods (0.2 and 0.09 ng/L, respectively). These 

observations are most probably due to decreased mercury sensitivity and the 

instability of liquid sample introduction when using the dual mode system. 
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Table 2. Results of THg concentrations in natural water samples (ng/L ± sd, n = 5)a 

obtained using a single internal standard correction, external calibration and isotope 

dilution method. 

Sample Internal standardizationb External calibrationc Isotope dilutionc 

 195Pt 205Tl 209Bi   

Sample 1 2.4 ± 0.41 2.4 ± 0.37 2.4 ± 0.35 3.0 ± 0.24 2.4 ± 0.08 

Sample 2 4.6 ± 0.40 4.2 ± 0.44 4.3 ± 0.21 5.1 ± 0.13 4.2 ± 0.17 

Sample 3 4.1 ± 0.24 3.7 ± 0.24 4.1 ± 0.23 5.4 ± 0.13 3.7 ± 0.07 

Sample 4 10.4 ± 0.43 9.6 ± 0.33 10.1 ± 0.27 9.6 ± 0.29 9.3 ± 0.14 

Sample 5 2.0 ± 0.38 1.3 ± 0.38 2.0 ± 0.40 1.9 ± 0.11 1.3 ± 0.07 

Sample 6 2.3 ± 0.24 1.8 ± 0.23 2.2 ± 0.18 2.0 ± 0.08 1.9 ± 0.04 
a n = replicate measurements 
b Measurements were performed using a dual mode sample introduction 
c Measurements were performed using a conventional CV-ICP-MS 

To study the effect of internal standardization on the long-term precision of CV-

ICP-MS determination using dual mode sample introduction, a mercury standard 

solution (10 ng/L) was measured 5 times during a two-hour analysis period. In the 

case of external calibration, the RSD value of 5 measurements was 11% whereas 

for internal standardization using 195Pt, 205Tl or 209Bi for correction, the RSD 

values were < 5%. Thus, some improvement in long-term precision was observed 

when the single internal standard correction was used. 

By using internal standardization in mercury cold vapor analysis, the accuracy 

and long-term precision of measurements were slightly improved. However, since no 

major advantages were observed over conventional CV-ICP-MS with external 

calibration, the dual mode system was not applied as a routine method for the 

determination of THg in natural water samples. 

4.2 Determination of MeHg in natural water samples [III] 

A method for the determination of ultra-trace MeHg concentrations in humic-rich 

non-filtered natural water samples was developed next. MeHg was isolated from the 

water sample by N2-assisted distillation and determined using purge and trap SSID-

GC-ICP-MS. The potential methylation of inorganic Hg during the distillation of 

humic-rich natural water samples was studied based on three field samples containing 

different amounts of DOC (20, 35 and 50 mg/L). No significant formation of MeHg 

artifact was observed when the field samples were distilled (Fig. 8, measured 
201Hg/202Hg ratio of 0.45 corresponds to the theoretical isotope ratio of 0.44), 
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indicating that the N2-assisted distillation can be used to separate MeHg from the 

interfering sample matrix prior to instrumental determination.  

Fig. 8. Chromatogram of a natural water sample (DOC 35 mg/L) spiked with 10 ng/L of 
201Hg2+ prior to the distillation step.  

The validity of the developed method for the determination of MeHg in natural 

water samples was studied by determining the MDL, precision and accuracy. The 

MDL was obtained by analyzing reagent blank on different days (n = 6) and was 

found to be 0.05 ng/L (3σ) for the 20 mL sample volume used in the instrumental 

determination. The MDL obtained is similar to those reported in the US-EPA 

method 1630. 

The precision of the method was evaluated by analyzing six field samples 

containing different concentrations of MeHg (0.4 – 3.9 ng/L) with three replicates on 

the same day. The RSD values were found to be better than 10% for each sample, 

showing good repeatability of the method. The precision of the method was estimated 

by analyzing the same sample with two replicates on four different days. One way-

analysis of variance showed that the between days variance (n = 4) did not differ 

significantly from the ‘within day’ variance (n = 2), indicating good reproducibility of 

the method. 

The accuracy of the method was verified by using the developed SSID-GC-ICP-

MS method to analyze natural water samples and by comparing the results with those 

obtained with a reference method (GC-CV-AFS).[75] The MeHg concentrations in 

the 26 field samples varied from 0.05 to 1.0 ng/L (obtained using the SSID-GC-ICP-

MS method). The results obtained with the two methods were generally in good 

agreement with each other (Fig. 9), with no statistically significant difference being 

observed (n = 26, p = 0.05). 
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Fig. 9. The relationship between the MeHg results obtained for natural water samples 

with SSID-GC-ICP-MS and GC-CV-AFS methods.  = result was excluded from the 

regression analysis as an outlier. 

4.3 Determination of methyl mercury in peat soil samples [IV] 

N2-assisted distillation and the acidic KBr/CuSO4 solvent extraction methods were 

applied to isolate MeHg from wet peat soil samples. Acidic solvent extraction has 

been recommended as an isolation method for MeHg by many authors and was 

therefore considered as a reference method for N2-assisted distillation. Compared to 

solvent extraction, the distillation method used in this study was less time-consuming 

and not as labor-intensive, and did not require the use of a toxic organic solvent. 

Although, compared to solvent extraction, N2-assisted distillation is known to be 

more prone to artifact formation of MeHg, no significant methylation of inorganic Hg 

was observed when natural peat soil samples were distilled. When the MeHg 

concentrations – obtained using purge and trap SSID-GC-ICP-MS after the 

application of the two isolation methods – were compared, no significant difference 

was observed (p = 0.05) between the results (Table 3). Furthermore, the standard 
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deviation values for the replicate determinations were satisfactory, even though wet 

peat soil samples were used in the analyses.  

Table 3. MeHg and THg concentrations (dry weight)a in peat soil samples. MeHg 

concentrations were obtained using purge and trap GC-ICP-MS after distillation and 

solvent extraction methods. 

Sample MeHg (µg/kg) THg (µg/kg) 

 Distillation Solvent extraction  

Peat 1 0.8 0.9 69 

Peat 2 3.4 3.6 94 

Peat 3 2.2 ± 0.4 (n = 3)b 2.4 ± 0.2 (n = 2) 100 

Peat 4 3.2 ± 0.3 (n = 3) 3.0 ± 0.3 (n = 3) 63 

Peat 5 18.1 ± 3.3 (n = 3) 14.5 ± 1.6 (n = 3) 198 

Peat 6 13.6 ± 1.9 (n = 3) 14.5 ± 1.6 (n = 3) 134 

Peat 7 5.7 ± 1.3 (n = 3) 4.8 ± 0.7 (n = 3) 49 
a Dry matter content varied from 15 to 20% of the total matter content. 
b Standard deviation and number of replicates.  

Compared to the solvent extraction method, fewer and smaller amounts of 

reagents are needed with the distillation method. A typical blank value obtained 

by N2-assisted distillation was therefore approximately ten times lower than that 

obtained using solvent extraction. The MDL of the distillation with the purge and 

trap SSID-GC-ICP-MS method was found to be 0.02 µg/kg (n = 4) for a 20 mL 

sample volume used in instrumental determination. MeHg concentrations in wet 

peat soil samples analyzed during this study were usually >0.1 µg/kg.  

The sediment reference material (ERM-CC580) was used to evaluate the 

accuracy of both isolation methods, since no proper certified reference material is 

available for low-level MeHg in soil. The MeHg concentration in ERM-CC580 

obtained by solvent extraction was 76 ± 2 µg/kg (n = 3), which was very close to the 

certified value (75 ± 4 µg/kg). However, when N2-assisted distillation was used as an 

isolation method, the MeHg concentration obtained was significantly higher (117 ± 9 

µg/kg, n = 3) than the certified value. The most probable reason for the 

overestimation of MeHg concentration is the methylation of inorganic Hg present in 

the ERM-CC580 during the distillation step. It should be noted that the THg 

concentration in ERM-CC580 is extremely high, around 500 to 3000 times higher 

than that typically found in unpolluted peat soils. Furthermore, the ratio of 

MeHg/THg in ERM-CC580 is very low. Thus, although only a minor amount of 
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inorganic Hg (~0.03%) was methylated during the distillation step, the measured 

MeHg concentration was significantly biased.  

Since some degree of artifact MeHg was formed during the distillation of the 

ERM-CC580, the potential methylation of inorganic Hg during the distillation of peat 

soil sample was studied by spiking the peat soil with increasing amounts of Hg2+. The 

linear increase in the measured MeHg concentration as a function of THg 

concentration (ambient + added Hg2+) after distillation was observed, revealing that 

methylation of inorganic Hg occurred during the distillation of a peat soil sample. 

(Fig. 10)  The average methylation yield in the Hg2+ spiked peat soil sample was 

0.08%, which was fairly similar to that of ERM-CC580. However, the proportion of 

MeHg of the THg concentration in natural unpolluted peat soil samples is typically 

over 1% and the observed methylation yield should not therefore affect the reliability 

of the MeHg results. 

Fig. 10. MeHg concentrations (n = 2) for peat soil samples as a function of THg 

(ambient + added Hg2+), obtained after distillation and SSID-GC-ICP-MS. 

MeHg concentrations determined in 26 peat soil samples with SSID-GC-ICP-MS 

after distillation varied from 0.8 to 18 µg/kg (dry weight). THg concentrations in 

these samples varied from 35 to 235 µg/kg. Based on measured THg 

concentrations and the proportion of MeHg of the THg concentration found in the 
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analyzed samples (1.2–12%), distillation using SSID-GC-ICP-MS can be applied 

to the determination of trace MeHg concentrations in unpolluted peat soil 

samples. 

4.4 Application of methods developed for investigating the 
mobilization of mercury in boreal forest catchments [I, IV, V] 

The methods developed in the previous studies [I–IV] were applied to monitoring 

THg and MeHg concentrations in natural water and peat soil samples, in order to 

investigate the potential effects of forest harvesting practices on the leaching and 

mobilization of mercury in boreal forest ecosystems. [162] According to the current 

Finnish energy policy, whole-tree harvesting (WTH), which includes the harvesting 

of logging residues (tree tops, branches and sometimes stumps) should be favored in 

addition to the traditional stem-only harvesting (SOH) method, in order to meet 

bioenergy production targets. [163, 164] In Finland, 4.9 Mha of peatland forests have 

been drained for forestry purposes and much of the related harvesting will be 

performed within 10 to 30 years, providing a major source of bioenergy.  

The real impacts of WTH on the mobilization of mercury and other heavy metals 

in drained peatland forests are largely unknown. The disturbance associated with 

WTH can perhaps be expected to be greater than in the case of SOH, resulting in 

increased leaching of mercury and other heavy metals into surface waters. An 

investigation has therefore been performed on the potential consequences of both 

SOH and WTH on mercury mobilization in drained peatland forest catchments 

underlain by black schist or felsic bedrock. Because mercury and other heavy metal 

concentrations may be higher in areas underlain by black schist, note was taken of the 

bedrock type when interpreting the results. [165] 

In total, 41 THg and 37 MeHg ditch water samples were taken per catchment 

during April 2008–October 2012. Peat soil samples were collected twice in 2012 and 

once in 2013. More information on sampling sites and collected samples is given in 

paper V. Natural water samples were analyzed for MeHg and THg in BRL (Seattle, 

U.S.), using methods based on the US-EPA 1630 and 1631 standards. However, since 

2011 THg concentrations in water samples have been determined using the CV-ICP-

MS method developed in this study.[I] All results for MeHg in the water samples 

presented in paper V were obtained in BRL, because the SSID-GC-ICP-MS method 

developed was not routinely used for natural water samples until 2013. MeHg 

concentrations in peat soil samples were determined using the developed SSID-GC-

ICP-MS, either based on solvent extraction (samples collected in 2012) or N2-assisted 
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distillation (samples collected in 2013). The methods developed in previous studies 

[I–IV] can be applied to freshwater and soil samples of all kinds and have also been 

used in other environmental monitoring and risk assessment-related study. 

THg concentrations in ditch water samples collected during the years 2008–2012 

varied from 1.5 to 53 ng/L and MeHg concentrations from 0.05 to 23 ng/L. THg 

concentrations in peat soil samples varied from 35 to 242 µg/kg (dry weight), and 

MeHg concentrations from 0.5 to 19 µg/kg (dry weight). These observed 

concentrations were on a similar level to those reported in the other boreal catchment 

studies. [26, 65, 166, 167] THg and MeHg concentrations in ditch water and peat soil 

samples were generally higher at the sites underlain by black schist bedrock compared 

to those underlain by felsic bedrock. This observation is in accordance with the fact 

that the bedrock type has an effect on soil, stream and lake water quality. The positive 

correlation (r = 0.56, p < 0.05) between THg and DOC concentrations in water 

samples indicated that THg is mainly associated with organic matter in the studied 

freshwater systems. MeHg concentrations in ditch water were typically higher at the 

end of the summer and the abundance of sulfate reducing bacteria (SRB) was usually 

highest at sites with high MeHg concentrations, suggesting mercury methylation by 

SRB. 

In general, annual THg and MeHg concentrations in ditch water were increased 

during the first year of harvesting (Fig. 11). However, clear increases in annual MeHg 

concentrations were seen at WTH sites only. THg concentrations continued to 

increase at both WTH and SOH sites throughout the second and third year after 

harvesting, and decreased after that. A randomized intervention analysis (RIA) was 

used to determine whether the difference in the mean values between the control and 

harvested plots was significant. [168] Although the annual average THg and MeHg 

concentrations in the ditch water increased one or two years after harvesting, the RIA 

analysis revealed that there was no significant difference in the THg or MeHg 

concentrations as a response to the forest harvest treatment (SOH or WTH), with the 

exception of sites KV22 and ML10. During the calibration year, 2008, THg and 

MeHg concentrations were determined only four times, which may have reduced the 

power of RIA analyses and subsequently caused low significances.   
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Fig. 11. THg and MeHg concentrations in ditch water during the years 2008–2012. [V]  

Since an increase was evident in the annual THg and MeHg concentrations in 

ditch water samples after both harvesting methods, simple ‘treatment effect ratios’ 

were calculated in addition to the RIA analyses. These treatment effect ratios were 

determined by dividing THg and MeHg concentrations from the treated sites by 

the respective THg and MeHg concentrations from the control sites. It was 

assumed that, in the absence of a treatment effect, the treatment/control ratios 

would remain the same before and after harvesting. Based on the simple treatment 
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effect ratio calculation, THg and MeHg concentrations in ditch water increased 

regardless of the harvesting method used (WTH/SOH). 

By monitoring THg and MeHg concentrations in ditch water samples during a 5-

year period, the potential effects of forest harvesting practices on mercury 

mobilization could be evaluated. Although the RIA analysis gave only a weak 

indication of the harvest-induced mobilization of mercury, the ‘treatment effect ratio’ 

suggested that forest harvesting had a stronger effect on the THg and MeHg leaching 

from soil into recipient ditches. This also provided an indication that the effect of 

forest harvesting on mercury leaching was more pronounced at the sites underlain 

by black schist bedrock. When the effects of WTH and SOH on mercury leaching 

were compared, no clear difference could be discerned between the two harvesting 

methods, since the difference was almost significant only in the case of MeHg. 

However, higher MeHg concentrations at WTH sites than in the case of SOH 

constitute a slight indication that soil disturbance may create conditions which favor 

methylation. A more extensive and detailed discussion of the results related to this 

environmental monitoring study are given in paper V. 
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5 Conclusions 

A CV-ICP-MS method was developed for the determination of ultra-trace THg 

concentrations in unfiltered humic-rich natural water samples. The instrumental 

parameters were carefully optimized and the amount of BrCl, used as an oxidizing 

agent prior to cold vapor analyses, was adjusted to be sufficient for water samples 

containing high amounts of DOC (> 70 mg/L). The IDL and MDL obtained with an 

optimized CV-ICP-MS based on an external calibration were found to be 0.2 ng/L 

and 0.7 ng/L, respectively. The CV-ICP-MS method showed good accuracy and 

precision and was successfully applied to determining ultra-trace THg concentrations 

in humic-rich natural water samples. 

A dual mode sample introduction system was applied with the CV-ICP-MS 

method, in order to study the potential of internal standardization (195Pt, 205Tl and 
209Bi in aqueous solution) for drift correction in 202Hg cold vapor measurements. 

When real natural water samples were analyzed, THg concentrations obtained based 

on a single internal standard correction were in agreement with those obtained using 

the isotope dilution method suggesting good accuracy. In addition, long-term 

precision was slightly improved when internal standardization was used for drift 

correction in CV-ICP-MS measurements. However, no improvement was observed in 

short-term precision or in IDLs when the results were compared to those obtained 

using the external calibration method. Since no major advantages were achieved over 

the external calibration method, the internal standardization based on dual mode 

sample introduction in CV-ICP-MS was not used as a routine method for ultra-trace 

THg determination. 

Purge and trap GC-ICP-MS with SSID quantification was developed for the 

determination of ultra-trace MeHg concentrations in humic-rich natural water and wet 

peat soil samples. N2-distillation was successfully applied to isolating MeHg from the 

water and soil matrix prior to instrumental determination, and no significant 

methylation of inorganic Hg was observed during the distillation step. The distillation 

method developed in this study is fast, easy to perform and has a high sample 

throughput capacity. In addition, since no toxic solvents are required the method is 

safe and environmentally friendly. When N2-distillation with SSID-GC-ICP-MS was 

used for the analysis of water samples, an MDL of 0.05 ng/L was obtained and the 

method showed good accuracy and precision when analyzing real humic-rich natural 

water samples. 

In the case of peat soil samples, the reliability of N2-assisted distillation was 

evaluated by using solvent extraction as a reference method. When sediment 
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reference material containing a high amount of inorganic mercury was analyzed using 

both methods, the MeHg concentration obtained with solvent extraction was in good 

agreement with the certified value, whereas the result obtained using distillation was 

significantly higher. Overestimation of the MeHg concentration was caused by the 

methylation of inorganic mercury during the distillation step, which is an 

acknowledged problem associated with the N2-assisted distillation method. 

Methylation of inorganic mercury was also observed when the peat soil sample was 

spiked with increasing amounts of inorganic Hg. However, the methylation yields 

observed for the certified reference material and spiked peat soil sample were very 

low (< 0.1%). Hence, in practice the slight artificial methylation of inorganic mercury 

has no effect on the reliability of the final MeHg result when unpolluted peat soils, 

such those used in this study, are analyzed. This was confirmed by the strong 

correlation between the results obtained for peat soil samples with N2-assisted 

distillation and solvent extraction methods. In addition, the precision of replicate 

determinations was good even though wet peat soil samples were used in the analyses. 

Thus, N2-assisted distillation with SSID-GC-ICP-MS can be considered a convenient 

method when MeHg is determined in unpolluted peat soil samples. 

The analytical methods developed in this study were applied to the research 

project, whose aim was to investigate the consequences of forest harvesting practices 

(WTH and SOH) on the mobilization of mercury in boreal forest catchments. THg 

and MeHg concentrations were determined in water and peat soil samples collected 

from eight peatland forest catchments located in Sotkamo, Finland. The determined 

concentrations were on a similar level to those reported in other boreal catchment 

studies carried out in Finland, Sweden and Norway. Based on the results obtained 

during the 5-year monitoring period, a weak indication could be seen of the harvest-

induced mobilization of mercury. In addition, the higher MeHg concentrations 

observed at WTH sites than SOH sites may be related to increased methylation caused 

by greater disturbance of the forest floor.  

During this research work, sensitive and reliable analytical methods were 

developed for the determination of ultra-trace THg and MeHg concentrations in 

natural water and soil samples. These methods were successfully applied to 

determining THg and MeHg concentrations in real humic-rich natural water and peat 

soil samples. The methods developed in this study can be applied to natural 

freshwater and soils of all kinds and can also be used to study mercury methylation 

processes in order to achieve a better understanding of the biogeochemical cycle of 

mercury in the environment.  
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