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Abstract: In this research a fuzzy model is developed for a rotary dryer. It is applied 
to the pilot plant rotary dryer located in the Control Engineering Laboratory at Oulu 
University. 
 
Firstly, a literature review looking at the current situation of fuzzy modelling and 
comparison of different methods is done. One modelling method is then applied to the 
building of the model from data. The rule parameters are determined on the basis of 
clusters created by Kohonen learning rule method and the initial model is optimised 
by the trial and error method. The resulting model behaviour is examined with 
simulation and, the results achieved are compared with other models.  
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1 INTRODUCTION 

In the synthesis of a controller, it is very important to design a good model for a 
system as the aim to achieve good control. Better controller tuning and performance 
can be achieved from the good model of the system as opposed to the poor one. The 
objective of this work is to analyse and to compare different fuzzy modelling methods 
and to apply some selected method to the modelling of a rotary dryer. 



2 MODELLING OF A ROTARY DRYER 

The fuzzy modelling of a rotary dryer is a part of the larger project, which concerns 
with modelling and control going on in Control Engineering Laboratory. Different 
control strategies developed for the rotary dryer have been tested both with 
simulations and control experiments with a pilot plant dryer. 
 
A dynamic mathematical model has been developed for the pilot plant rotary dryer. 
This model is based on simultaneous heat and transfer equations includes partial 
differential equations, which are complex and difficult to handle and to understand 
[1]. Furthermore, some parameters in the model are difficult to determine. Fuzzy 
models are less complex and easily understood because they are represented in the 
linguistic form. Fuzzy models are also easier to handle and they can be developed 
directly from available process data. 

2.1 Description of the pilot plant rotary dryer 

In the pilot plant rotary dryer the material to be dried is calcite. The material is fed to 
the dryer from a silo with a screw conveyor where it is watered. The length of the 
drier is 3 m and the diameter is 0.5 m. Drying air is supplied with a blower and it is 
heated by burning gases from a burning chamber. Propane gas is used as fuel. The 
dried product is fed back to the silo with a belt conveyor. 
 
The detailed description of the pilot plant dryer is presented in the paper by Juuso et 
al. [16]. 
 
 

 
 

Figure 1. Structure of the pilot plant rotary dryer. 



3 INTRODUCTION TO THE FUZZY MODELLING 

Fuzzy modelling methods are attractive, because they can be developed from real 
process data with or without expert knowledge. The non-linearity can be handled 
efficiently, and the results presented as fuzzy rules are informative. Many methods 
can be found from the literature for the identification of a fuzzy model. The most 
common methods are fuzzy clustering methods, neuro-fuzzy method and linguistic 
equation (LE) method.  
 
To construct a new fuzzy model for a given system engineers usually face the 
following questions [9]: 
 

1. How to define membership functions? How to describe a given variable by 
linguistic terms? How to define each linguistic term within its universe of 
discourse and membership function, and how to determine the best shape for 
each of these functions? 

2. How to obtain the fuzzy rule base? In modelling many engineering problems, 
usually, nobody has sufficient experience to provide a comprehensive 
knowledge base for a complex system that cannot be modelled physically, and 
where experimental observations are insufficient for statistical modelling. 
Moreover, human experience is debatable and almost impossible to be verified 
absolutely. 

3. What are the best expressions for performing union and intersection 
operations? In other words, which particular function of the t-norms and s-
norms should be used for a particular inference. 

4. What is the best defuzzification technique for a given problem? 
5. How to reduce the computational effort in operating with fuzzy sets, which are 

normally much slower than operating with crisp numbers? 
6. How to improve computational accuracy of the model? Being fuzzy does not 

necessarily mean inaccurate. At least, accuracy should be acceptable by the 
nature of the engineering problem. 



4 FUZZY MODELLING METHODS 

4.1 Neuro -Fuzzy Method 

The neuro-fuzzy methods [2] combine advantages from neural networks and fuzzy 
logic. The advantages of the neural networks are e.g. learning and generalisation. The 
advantages of fuzzy logic are e.g. human way of thinking (IF – THEN rules) and 
handling of uncertainty.  
 
The structure of the ANFIS network (Adaptive Neuro Fuzzy Inference System) 
presented in Figure 2 has two inputs, one output and two rules.  
 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2. The structure of the ANFIS network [2]. 
 
 
Layer 1. In this layer the inputs are fuzzified with bell shaped membership 

functions. The parameters of the membership functions are premise 
parameters. 

 
Layer 2. Nodes in this layer are calculated as the product of all incoming signals. 

The output at the node corresponds to the firing strength (wi) of rule i. 
 
Layer 3. Nodes in this layer calculate the ratio of a rule to the sum of all rules 

firing strengths. 
 
Layer 4. In this layer the output value (yi) of each node is calculated. The 

parameters of the function are consequent parameters. 
 
Layer 5. The output of the network is calculated by summing the incoming 

signals. 
 
Tuning is based on input-output data. In the tuning the incoming signals move from 
the first layer, where the parameters of the linear functions are estimated by the least 
squares techniques. After passing the network the error between the calculated output 
and real data output is calculated. In the backward-pass the parameters of the nodes 
(parameters of the membership functions) in the first layer are optimised by the 

A11

A21

A12

A22

1-layer 2-layer 3-layer 4-layer 5-layer

X1 X2

W1

W2
W2

W1

y
X2X1

W2 Y2

W1Y1
X1

X2



gradient descent algorithm. Initial rules and membership functions are developed from 
the expert knowledge or by using some simple fuzzy clustering algorithm. 

4.2 Fuzzy clustering method  

In clustering, a data set Z = (z1, z2,….zN) of objects are portioned into natural subsets 
or clusters. The objects have properties or features, which distinguish them from the 
members of the other clusters [19]. In the fuzzy clustering these subsets are fuzzy sets. 
Centres of the clusters ν i. are identified by the fuzzy clustering algorithms. Each data 
point belongs to a cluster with some membership degree µik. The purpose of many 
fuzzy algorithms is to minimise some objective with respect to the fuzzy memberships 
µik and cluster centres νi. 
 
The most common algorithm is fuzzy c-means algorithm [20]. The purpose of this 
algorithm is to minimise the objective function Jm: 
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where the measure of dissimilarity Dik =zk – ν idenotes the distance (Euclidean 
distance) between the data point z and the cluster centre vi, m(>1) is fuzziness 
parameter and c is the number of the clusters. 
 
In the beginning of the algorithm the memberships µik are initialised with random 
number [0,1] so that the following condition holds 
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Algorithm iterates (l=1,2...) as follows(c=> 2): 
 
1. The cluster centres are updated by                      2. The memberships are updated by              
    the equation                                                             the equation 
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3. If D l+1 - Dl  < ε , then stop, else go back to the stage 1.  

 
The algorithm proceeds to the local minimum, so the υi:s may differ when repeated. 
By using the Euclidean distance norm, the geometrical shape of the clusters is 
spherical (Figure 3a). However, this shape is not practical in real data sets. For 
example, in the real process data sets the shapes of the clusters are more like 
ellipsoidal, linear, etc. (Figure 3b). Also in the same data set Z, the shape of different 



clusters may have different variations in the clusters shape. In the fuzzy c-means 
algorithm this can be handled by using adaptive distance norm. 
 

 
Figure 3a. Spherical cluster [2]                           Figure 3b. Example of shapes in real 

datasets [2]. 
 
The centre point ν i. of the cluster represents the centre of a fuzzy rule. So the number 
of the rules is the same as the number of the clusters c. The common choice for the 
rule is Takagi-Sugeno type, where the consequent parts of the rules are linear 
functions. Their parameters are estimated by the least squares techniques. Antecedent 
membership functions of the rules can be extracted from the µik:s for example by 
projection (Figure 4)  
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Figure 4. The idea of the fuzzy clustering [2]. 

4.3 Linguistic Equation (LE) method 

In fuzzy linguistic system models, the traditional equation-based input-output 
relationship is replaced by a set of logical IF-THEN rules with vague predicates [3]. 
IF-THEN rules of a fuzzy model describe the linguistic values of the process-output 
for given linguistic values of the process-input and process–state variable. Fuzzy 
models are used mainly in fields concerned with fuzzy control. It seems natural to use 
models in problems handled with fuzzy logic because of the overall “inexact” nature 
of those problems. 
 



The modelling procedure is connected with expert knowledge. The structure 
identification (determination of input and output variables, number of rules in the rule 
base, partitioning into fuzzy sets,…) is claimed to be more an art than a science and 
therefore automatic methods do not seem to be useful. 
 
The main steps of the fuzzy modelling are: 
 

1. Selection of the input, state, and output variables 
2. Determination of the universe of discourse 
3. Determination of the linguistic labels (reference fuzzy sets) into which these 

variables are partitioned  
4. Formation of the set of linguistic rules that represent the relationships 

between the system variables 
5. Selection of the appropriate reasoning mechanism for the formalisation of the 

fuzzy model 
6. Evaluation of the model adequacy. 

 
The above steps can be found in almost every case, but the overall importance of an 
individual step may vary from case to case. For example, efforts needed to form the 
rule base (step 4) depend on the overall difficulty in understanding the behaviour of a 
process, and on the necessity and possibility to use different knowledge sources. 
 
Automatic tuning or identification has in many cases proven to be useful. However 
the installation of an automatic identification method can be a difficult task. The 
stability of such method can be impossible to prove, which may result in difficulties 
when critical processes are controlled. 

4.4 Takagi-Sugeno fuzzy model 

Fuzzy models can be divided into two classes. In the first class of fuzzy models the 
rules have fuzzy antecedent part and fuzzy consequence part as follows 
 
Ri : IF z1 is A1

i  AND….AND zn is An
i  

    THEN y is Ci.  , 
 
where Ri  denotes the ith fuzzy rule, An

i  and Ci are fuzzy sets, zn  is an input variable 
and y is an output variable. 
 
In the second class of fuzzy models the rules have fuzzy antecedent part and 
consequence parts are mathematical functions of inputs as follows 
 
Ri  :  IF z1 is A1

i  AND…..AND zn  is An
i  THEN  yi  = a0

i + a1
i z1+….+ ani zn , 

 
where yi   is an output of the ith rule and an is a consequent parameter. Models of these 
types are called Takagi-Sugeno models. 



5 LITERATURE REVIEW FROM CONSTRAINED 
PARAMETER ESTIMATION  

Babuska et al. [4] describe an algorithm for incorporation of a priori knowledge into a 
data-driven identification for dynamic fuzzy models of the Takagi-Sugeno type. 
Knowledge about the modelled process such as its stability, minimal or maximal static 
gain, or the settling time of its step response can be translated into inequality 
constrains on the consequent parameters. By using input-output data, optimal 
parameter values are then found by means of the quadratic programming. The 
proposed approach was successfully applied to the identification of a laboratory liquid 
level process. 
 
In the paper written by Setnes et al. [5] a Takagi-Sugeno fuzzy model with linear 
consequents is used to model the algae growth in lakes. Both the membership 
functions in the premise and the consequent parameters are estimated from 
measurement of relevant quantities by means of the product-space fuzzy clustering. 
To enhance the interpretability of the model, similarity analysis is applied and similar 
fuzzy sets and rules are combined, giving a transparent and compact model without 
notably altering the accuracy. 
 
This paper describes the modelling of the chlorophyll concentration in lake 
ecosystems in the Netherlands using the TS fuzzy model with linear consequents. The 
identification is based on fuzzy clustering in the product space of inputs and outputs, 
and the identification data consist of measurements taken from nine different lakes. 
The advantage of this approach is that it provides a complete description of the system 
in term of its local characteristic behaviour in region of the data identified by 
clustering. Each such region defines a fuzzy if-then rule in the rule base. 
 
Correct specification of the number of clusters is of importance. Too many clusters 
result in an unnecessarily complicated rule base, while too few clusters result in a 
poor prediction performance. Cluster validity can give an indication about the 
goodness of the obtained fuzzy partition. However, for complex system, identification 
by means of clustering are typically results in a rule base weak semantic properties. 
To overcome this problem, the rule base is simplified and reduced by means of 
similarity analysis of the antecedent fuzzy sets. Similar fuzzy sets and rules are 
combined, providing a semantically more tractable rule base, making it easier to 
assign qualitatively meaningful linguistic terms to the fuzzy sets.  
 
In the paper written by Salehfar et al. [6] linguistic fuzzy modelling is addressed, and 
they propose a new systematic and simple algorithm to build and tune models directly 
from the input-output data. The new algorithm is called the Linguistic Fuzzy 
Inference (LFI) model. Like ANFIS (adaptive neuro-fuzzy inference system) the new 
algorithm takes advantages of neural network training techniques and it uses 
projection methods to build the fuzzy rules. The new algorithm consists of two 
procedures. The first one is for fuzzy structure identification, in which the inputs, 
membership functions and fuzzy rules are determined. The second one is for fuzzy 
parameter identification, in which training algorithms are used to tune the parameters 
of the membership functions. 
 



To illustrate the validity of the proposed algorithm, three functions are tested. Due to 
its highly variable characteristics, the Sinc function is a typical benchmark for 
identification. The second test function is a two-dimensional non-linear static map. 
The third one is the Machey-Glass chaotic time series generated by an underlying 
non-linear dynamic system. 
 
A new algorithm to build linguistic fuzzy models directly from input-output data is 
introduced. The proposed method is simple because of its pure linguistic nature. It 
uses symmetric triangular membership functions and a simplified fuzzy reasoning 
method. This algorithm can achieve either the same or better level of accuracy 
compared to ANFIS. 
 
Sinc function, the proposed LFI model proved superior to the three different ANFIS 
algorithms. Although the Takagi-Sugeno model is generally more descriptive than the 
pure linguistic model, sometimes it seems that it indulges into the insignificant details 
of the system while the LFI model always retrieves the most important characteristics 
of the systems. Compared with the methods presented by Emami [17] & Sugeno [18] 
as the aim to build pure linguistic models, the LFI model is much simpler both in 
computation and in form. 
 
Castillo and Melin [7] describe a new method for modelling complex dynamical 
system based on the use of a new fuzzy inference system for differential equations. It 
is well known that formulating a unique sufficiently accurate mathematical model for 
a complex dynamical system (over a whole region of discourse) may be very difficult 
or even impossible in some cases. The new fuzzy inference system uses differential 
equations as consequents in the rules, instead of simple polynomials. The new fuzzy 
inference system can be considered as a generalisation of Sugeno’s original inference 
system, because the authors are modelling a particular problem by using the 
appropriate differential equation for each region of the domain. A typical rule in this 
case has the form 
 
If x is A and y is B then dz/dt = f(x,y) 
 
where A and B are fuzzy sets in due antecedent, while dz/dt = f(x,y) is a crisp 
differential equation in the consequent. Usually f(x,y) is a non-linear function of the 
input variables x and y, and this means that we have a non-linear differential equation 
in the consequent. This new fuzzy inference system reduces to the standard Sugeno 
system only when the differential equations have closed from solution in the form of 
polynomials. However, the solutions of the differential equations can be more 
complicated analytic functions or in most cases the solutions are so complex that can 
only be approximated by numerical methods. The advantage of this generalisation of 
Sugeno’s original method is that, in general, we can represent more complicated 
dynamic behaviours and also because of this fact, the number of the rules needed to 
represent a given dynamical system is smaller.  
 
Hwang [ 8] presents an approach to automatic design of the optimal fuzzy rule base 
for modelling and control using evolutionary programming. Evolutionary 
programming simultaneously evolves the structure and the parameter of the fuzzy rule 
base. Since they are codependent, simultaneous evolution with no predefined 
assumption about rule base structure can result in a more appropriate rule base for a 



given task. In the design of a fuzzy model and fuzzy controller, a major difficulty is 
encountered in the identification of the optimal fuzzy rule base. This study has 
presented an approach to evolutionary design of fuzzy rule base structure in order to 
eliminate the difficulty.  
 
Ali and Zhang [9] present a systematic approach to the modelling of engineering 
systems using a fuzzy formulation that is independent of human knowledge. The 
algorithm presented in the paper can be viewed on one hand as an extension and 
improvement on the fine-tuning approaches in others works. On the other hand, it can 
be viewed as a surface-fitting technique, where huge computational power is used to 
fit experimental data over a very complex hyperspace of very large dimension. It can 
also be viewed as an explicit formulation of what is otherwise implicit in the 
adaptation process of a back-propagation neural network. However, the main 
objectives of the algorithm are: 
 

1. Automatic generation of fuzzy rules that are not biased by human factors or 
context-dependent experience  

2. Provision of clear physical meaning of each linguistic term or fuzzy set 
without any a priori knowledge about the system. 

3. Establishment of clear systematic procedure for constructing a fuzzy model, 
where trial and error is minimised. 

  
The algorithm described in this paper was developed in two versions. The first 
version was implemented using Turbo Pascal for Windows and runs on a PC. For a 
Pentium 166 MHz processor with 8Mbytes free RAM, this program is capable of 
optimising models with up to nine variables, and up to five linguistic terms for each 
variable. The second version was implemented on a Connection Machine CM5 
computer, and was written in C* - a data-parallel dialect of standard C. 
 
Vachkov and Fukuda [10] present a concept of multilevel fuzzy modelling. In their 
paper the problem of fuzzy models learning and accuracy is viewed in another way 
i.e. by the specially proposed multilevel composite fuzzy model CFM. It is an additive 
structure of one main fuzzy model and a number of correction models that try to 
gradually decrease the total approximation inference error. It is also shown that such a 
strategy is able to update the model when a new data set is available still keeping the 
former relationships.  
 
The proposed multilevel fuzzy modelling approach is performed as a sequence of  
(k+1) identification procedures of one main fuzzy model and k correction fuzzy 
models. The final accuracy of this modelling approach depends on the particular 
identification accuracy of each submodel used. 
 
The multilevel fuzzy modelling could be used as one possible approach to decreasing 
the total number of parameters of the fuzzy model by its decomposition of a series of 
simpler fuzzy models. 
 
The main characteristics (features) of the multilevel composite fuzzy model CFM can 
be expressed as follows: 



1. If one data set D is only used for fuzzy modelling the CFM is able to 
gradually improve the modelling accuracy by adding another level model, 
namely the correction model. 

2. If different data sets D, D1, D2 … are available at different time the concept 
of CFM can be used for updating (evolving) the previous available fuzzy 
model by adding another correction model, but the new data set. This 
strategy gives a general possibility to update the overall model behaviour 
according to the new process information while still keeping the behaviour 
learn by the previous data set. 

3. Finally the multilevel structure of the proposed model as shown in Figures 5 
and 6, could be utilised even with different types of models, not necessarily 
only fuzzy models. This could be the case when the basic level model is a 
kind of analytical or stochastic model and the other (correction) level models 
are fuzzy models learnt from the next available data sets.  

 
 
 
 
 
 
 
 
 
 
 
Figure 5.Calculation scheme of the multilevel   Figure 6. Identification scheme of the    
               composite fuzzy model.                                        multilevel fuzzy model. 

 

Linkens and Chen [11] present a simple and effective method for selecting significant 
input variables and determining optimal number of fuzzy rules when building a fuzzy 
model from data. In contrast to the existing clustering-based methods, in this approach 
both input selecting and partition validating are determined on the basis of a class of 
sub-clusters created by a self-organising network instead of on the data. The important 
input variables, which independently and significantly influence the system output can 
be extracted by a fuzzy neural network. On the other hand, the optimal number of 
fuzzy rules can be determined separately via the fuzzy c-means algorithm with a 
modified fuzzy entropy as the criterion of cluster validation. The simulation results 
show that the proposed method can provide good model structures for fuzzy 
modelling and has high computing efficiency. 

 

Park et al. [12] present an approach, which is useful for the identification of a fuzzy 
model. The identification of a fuzzy model using input-output data consists of two 
parts: structure identification and parameter identification. In this paper, algorithms to 
identify those parameters and structures are suggested to solve the problems of 
conventional methods. Given a set of input-output data, the consequent parameters are 
identified by the Hough transform and clustering method, which considers the 
linearity and continuity, respectively. For the premise part identification, the input 
space is partitioned by a clustering method. The gradient descent algorithm is used to 
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fine-tune parameters of a fuzzy model. Finally, it is shown that this method is useful 
for the identification of a fuzzy model by simulation. 

 

Huang and Chi Chu [13] propose to exploit both gray relational analysis and data 
transformation techniques to simplify the modelling procedures. The transformation 
method allows us to map the original data to other domains such that there is no need 
to adjust the membership functions and the fuzzification process is simply taking 
place on the fixed ones. Since too many system variables involved may complicate 
the fuzzy modelling, the gray relational method is exploited to select the crucial 
variables from a finite set of candidates. Based on the calculated relational degrees 
between the output and the prospective input variables, we can decide which are the 
important premise variables. The proposed methods have definite effects on the 
model's performance; therefore, the way to systematically adjust the transformation 
functions is also investigated. Ease in selecting the premise variables and minimal 
effort needed to adjust system parameters are the merits of the proposed work. 
Simulation results from two different examples are presented to demonstrate the 
superiority of the proposed model to the conventional methodologies.  

 
 



6 APPLICATIONS  

6.1 Combined cycle power plant 

Sáez and Cipriano [14] present a new identification method using a sensitivity 
analysis to determine the relevant input variables of a fuzzy model. As an example, 
fuzzy models for a combined cycle power plant are developed from real time data. 
Considering the growing importance of thermal power plants, this work proposes, as a 
first step to improve the efficiency of power plant boilers, to develop models of these 
equipments in order to design automatic control algorithms that reduce their 
operational costs. 
 
Due to the highly non-linear behaviour of thermal power plants boilers, non-linear 
models are necessary to represent the process operation. In this case, fuzzy non-linear 
models are used. As further work, these models will be used to design an economical 
optimal control strategy based on minimisation of thermal power plant operation 
costs. 
 
The main steps of a model identification procedure on fuzzy logic are presented in 
Figure 7. First, it is necessary to select real date coming from the process. The data 
include enough information to represent the different normal operation conditions of 
the process. Next, the premises and consequences parameters of fuzzy models are 
determined using fuzzy clustering and least squares. Then the relevant input variables 
of the fuzzy models are selected. After that, the premises and consequence parameters 
of the obtained fuzzy model using only relevant input variables are calculated again. 
Finally, the fuzzy model is validated.  
 
                                   
                                                    Data Selection 
 
 
 
                                         Premises and consequences 
                                                  Parameters Identification 
 
 
                                                   
  
                                               Selection of Input Variables  
 
 
 
 

                                                 Model Validation 
 
 
 

Figure 7. Flow diagram of the model identification procedure. 
 



 
The fuzzy model is evaluated using a validation set. Then in the adjusted model 
evaluation is appropriate, the model identification procedure finishes, otherwise it is 
convenient to review the relevant variable selection to find if any important variable is 
not included. 

6.2 Predictive control based on fuzzy model 

In recent years, the predictive control has become a very important area of research. It 
is based on the prediction of the output signal at each sampling instant. The prediction 
is obtained implicitly and explicitly according to the model of the controlled process. 
Using the actual predictive control law, the control signal is calculated which forces 
the predicted process output signal to follow to the reference signal in way to 
minimise the difference between the reference and the output signal in the area 
between certain time horizons. 
 
Skrjanc and Matko [15] present a new method for predictive control. This approach 
combines a well-know method of predictive functional control together with fuzzy 
model of the process. The prediction is based on a global linear model, which includes 
the fuzzy model given in the form of Takagi-Sugeno.  
 
The controllers on the prediction strategy also exhibit remarkable robustness with 
respect to model mismatch and unmodelled dynamics. The proposed fuzzy predictive 
control has been evaluated by implementation on heat exchanger plant, which 
exhibits a strong non-linear behaviour. 
 
The development of a new fuzzy predictive scheme was motivated by the 
unsatisfactory results obtained by using conventional techniques. Regarding to the 
real time experiments realised on the heat exchanger plant, it can be seen that the 
novel algorithm introduces a great robustness and satisfactory performance also in the 
presence of model parameters mismatch, which was obtained by change of the outlet 
flow. The proposed approach offers some advantages in the case of non-linear system 
with simple dynamics. 
 
Rauma [3] presents the construction of a simple fuzzy model for a chemical process. 
The fuzzy model is used in a model-based fuzzy control system to produce a 
prediction of the behaviour of a gas purification process. 
 
Sulphur dioxide gas is purified in two-stage purification process. In the first stage the 
gas is cooled to about 200°C. In the second stage the gas is then purified with 
sulphuric acid. 
 
The main temperatures of the gas purification process were modelled to acquire 
knowledge about the process. Four temperatures were modelled, and these included 
temperatures of gas, sulphuric acid and water. Each temperature was modelled 
separately. So the overall fuzzy process model consists of many partial fuzzy 
modules.  
 



 
Figure 8. Gas purification process. 

 
 
The basic fuzzy control system was adapted with a model-based part to achieve better 
control results than with the basic one. The main idea was to add a predictive feature 
to inference performed by the existing fuzzy control system to take several minutes 
delay into account. 
 
The fuzzy model was set to predict the behaviour of the temperature of the gas. The 
output of the model was connected to a fuzzy controller similar to that installed 
before. After installing the model based part of the control system, two similar fuzzy 
logic controllers; one using the measured change in the temperature and the other 
using the estimated change in the temperature. The conventional and the model-based 
controller were set to work in parallel, and their control outputs were summed. The 
final structure of the control system is presented in Figure 9. 
 
In this case the advantage of the structure used is that it enabled building the control 
system piece by piece. The basic controller was tuned manually earlier and the new 
part of the system did not affect the basic controller’s function. 
 
The results shown in Figure 10 present the behaviour of the temperature of the gas 
before installing the basic fuzzy control system and the same measurement after 
installing and tuning the basic fuzzy control system. The sample rate results of the 
normal fuzzy control system show that the temperature is controlled extremely well 
with the basic fuzzy logic control system   

 
 

 

 
 
 
 
 
 
 
 
 

Figure 9. General structure of the control system to control the amount of sulphuric 
acid. 
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Figure 10. Temperature of the gas before installing the control system (on the left) 

and after installing the basic control system (on the right). 

6.3 Model for residual stresses induced by grinding 

Ali and Zhang [9] present an example about the modelling of a grinding process. 
Grinding is one of the most complex manufacturing engineering problems, which 
involves a large number of variables and physical processes that are non-linear and 
interdependent. Quality grinding still depends to a great extent on skilled machine 
operators who use rules-of-thumb based on many years of trial-and-error experience. 
However, modern complex surface requirements, such as induced residual stresses, 
are beyond everyday experience of skilled operators. Then, there is a need to generate 
fuzzy rules from experimental observation alone. Therefore, grinding is a process that 
can benefit greatly from fuzzy modelling.  
 
The process can be modelled in the implicit form 
 
S = f ( T, W, D )                                                      (5) 
 
where T is table speed, W is wheel speed, and D is the depth of the cut. They are the 
major independent variables affecting the output S, residual stresses. 
 
The author’s algorithm accepts a text file as an input, see Figure 11 [9]. Each line 
marked with “**” defines a variable in terms of its name, the universe of discourse, 
and the number of linguistic terms used in describing this variable. Each variable is 
followed by the definition of its linguistic terms, marked with “*”. Each term is 
defined by its text label, the supporting subset, and the five parameters defining the 
shape of its membership functions. This simple file format describes to the program 
the initial N parameters defining the various linguistic terms. It also provides the 
database from which an initial rule base is constructed. The program keeps searching 
for a better set of (N+1) parameters.  
 
The superiority of the optimised model is clearly demonstrated by a great reduction in 
the inference error as well as the specific entropy of the rule base. The product of the 
model is a true representation of membership functions, for each linguistic term, and 
the most robust and accurate set of fuzzy rules.  
 



7 DESIGN PROCEDURE 

The above literature review shows several methods for fuzzy modelling. Our work 
presents an application of these methods to the pilot plant rotary dryer located in 
Control Engineering Laboratory at Oulu University. 
 
The models were developed using MATLAB’s Neural Network Toolbox, Fuzzy 
Toolbox and Simulink (appendix 1). The whole database contained 1899 
observations, training data consisted of 1227 (data pairs) and testing data consisted of 
671 data pairs. The data includes following variables: 
 

1. Fuel rate [g/min] 
2. Input moisture of solids Xs,in [m-%] 
3. Output moisture of solids (t-1), Xs,out(t-1) [m-%] 
4. Output moisture of solids (t), Xs,out(t) [m-%] 
5. Output temperature of solids (t-1), Ts,out(t-1) [°C] 
6. Output temperature of solids (t), Ts,out(t) [°C] 
 

Figure 11 presents the test data collected from the real process and Figure 12 presents 
the train data collected from the real process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Testing data. 

7.1 Model structures 

We used two different structures, one consisted of two MISO models (Multiple Inputs 
and Single Output) and is shown in Figure 13a and second one consisted of only one 
MISO model and is shown in Figure 13b. In the first case we had a model with three 
inputs and two outputs, in the second case we had only one model for only one output. 
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The latter was done in order to reduce and simplify the model and hence improve 
performance. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Time [min] 
 

Figure 12. Training data. 
 
 
 
 
 
 
 
 
  
 
        Figure 13a.  Structure 1.                                       Figure 13b. Structure 2. 

7.2 Extracting the initial fuzzy model 

Our method for extracting the fuzzy model from the obtained data is based on using a 
self-organising network. Such networks can learn to detect regularities and 
correlations in their input and adapt their future responses to that input accordingly. 
The neurons of competitive networks learn to recognise groups of similar input 
vectors. 
 
The competitive transfer function accepts a net input vector for a layer and returns 
neuron output of 0 for all neurons except for the winner, the neuron whose weight 
vector is closest to the input vector.  
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The weights of the winning neuron are adjusted with the Kohonen learning rule. 
Supposing that the i.th neuron wins, the element of the i.th row of the input weight 
matrix are adjusted as shown below. 
 

iIW
1,1(q) = iIW1,1(q-1) + α  (p(q) – iIW1,1(q-1))                           (6)  

The Kohonen rule allows the weights of a neuron to learn an input vector, and 
because of this it is useful in recognition applications. Thus, the neuron whose weight 
vector was closest to the input vector is updated to be even closer. The result is that 
the winning neuron is more likely to win the competition the next time a similar 
vector is presented and less likely to win when a very different input vector is 
presented. As more and more inputs are presented, each neuron in the layer closest to 
a group of inputs vectors soon adjusts its weight vector toward those input vectors. 
Eventually, if there are enough neurons, every cluster of similar input vectors will 
have a neuron that outputs 1 when a vector in the cluster is presented, while 
outputting a 0 at all other times. Thus, the competitive network learns to categorise 
the input vectors it sees. 

The clustering produced p units can be viewed as p data clusters centred at W = { w1, 

w2, w3,  w4.}.  Each cluster centre wi = (wi1, wi2,  wi3,  wi4) is in essence a prototypical 
data point that exemplifies a characteristic input/output behaviour of the our system. 
Hence each cluster centre can be used as the basis of a rule that describes the system 
behaviour. 

Consider a set of p cluster centres { w1, w2,  w3,  w4} in 4-dimensional space. In the 
case of MISO system, each vector wi can be decomposed into two component vector 
x*

i.  And y* i. . The cluster centre vector can be denoted as: 

Ci = [x*
i.   y

*
 ], where 

x*
i.  = (x*

i1,  x*
i2,  x*

i3 ) = (wi1, wi2, wi3), 

y*
  = w4. 

We consider each cluster centre ci = (x* i.   y*) as a fuzzy rule that describes the system 
local behaviour. Intuitively, cluster centre ci represents the rule “if input is around x*

i.  
Then output is around y* “.  

We clustered our data with several cluster parameters and for each cluster we 
extracted one fuzzy model with the following form: 

Ri : if  x1 is Ai1  and  x2 is Ai2  . . . and  xm is Aim    Then  y is Bi 

Here  Ri denotes the ith rule, i.= 1,2,…,p; j = 1, 2, …,m, Aij  is a gaussian membership 
function in the ith rule associated with the jth input and Bi is a singleton in the ith rule 
associated with the jth output. For the ith rule, which is represented by cluster centre 
ci, A ij  and Bi are given by  
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7.3 Initial model validation 

In order to extract the initial model, several clusterings have been done. We chose 
four different numbers of clusters (5, 10, 15, 20) and two different values of α. These 
initial models are compared with respect to the performance index: 
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                            (7) 

 
Where y*

i. is the model’s output, yi is the real output, and N is the number of data 
points. 
 
 
Table 1. Results of the structure 1. 
 

     Linear model  
0.1318 

 
0.1222 

 
 
The models are also compared with the linear model: 
 
Xs,out = 1.0052 – 0.0028 * Fuel + 0.1833 * Xs,in – 0.0189 * Ts,out                  (12) 
 
 

Description RMSE 

Clusters α Training Testing 

5 0.1 0.1690 0.1590 

5 0.8 0.1738 0.1447 

10 0.1 0.1909 0.1682 

10 0.8 0.1809 0.1561 

15 0.1 0.1600 0.1311 

15 0.8 0.1419 0.1073 

20 0.1 0.1720 0.1600 

20 0.8 0.1432 0.1354 



Table 1 shows the results for the structure 1 and table 2 shows the results for the 
structure 2. 
 
 
Table 2. Results of the structure 2. 
 

 

7.4 Parameter optimisation 

As mentioned, we have already completed the structure identification and obtained 
the initial model parameters. With these parameters, we can build the fuzzy model 
with the c rules. To obtain satisfactory modelling accuracy, it is better to optimise the 
model parameters under the performance index. There are several methods for 
parameter optimisation. If the membership functions in the antecedent are fixed, the 
consequent parameters can be optimised simply by the least squares estimation. The 
antecedent parameters can be optimised by applying a gradient descent method.  
 
Here, we adopt the trial and error approach, to optimise the parameter σij under the 
performance index RMSE and we added further rules to improve the model locally. 

Description RMSE 

Clusters α  Training Testing 

Ts,out 1.5383 1.0473 10 0.1 

Xs,out 0.1516 0.1780 

Ts,out 1.7837 1.3057 10 0.8 

Xs,out 0.1538 0.1775 

Ts,out 1.4943 0.9981 15 0.1 

Xs,out 0.1417 0.1795 

Ts,out 1.4915 1.2924 15 0.8 

Xs,out 0.1517 0.1510 

Ts,out 1.2489 1.3215 20 0.1 

Xs,out 0.1556 0.1532 

Ts,out 1.2113 1.2543 20 0.8 

Xs,out 0.1455 0.1439 



We executed this procedure only for the “winner” model (see Table 1) and after 
several trial and error loops we obtained using the following results:  
 
 
 
 
 
 
 
 
 
 
 
  
 

Figure 14. Initial model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15. Optimised model. 
 
Figure 14 shows the results for the initial model and Figure 15 shows the results for 
the first optimised model (15 rules), after we added other four rules to this model in 
order to correct the behaviour in some zones. The results are shown in Figure 16 and 
the RMSE values in Table 3. The parameters of the final model and the four rules 
added are presented in the appendix 3. 
 
 
 
 
 
 
 
 
 
 
 

Figure 16. Final model. 
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Table 3. RMSE values for the new model. 
 

RMSE 

Model Training Testing 

Optimised model 0.0912 0.1364 

Final model 0.0818 0.1116 

 
 
For the second structure we proceeded in the same way, but we used larger number 
for the trial and error loops. The Figures 17 and 18 show the comparison between 
initial model output (see Table 2) and the test data. The Figures 19 and 20 show the 
comparison between final model output and the test data after the parameter 
optimisation and with one more rule. The RMSE results are present in Table 3. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17. The model 1 output vs. data output. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. The model 2 output vs. data output. 
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Figure 19. The final model 1 vs. data output. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20. The final model 2 vs. data output. 
 
 
Table 3. RMSE values for the final model. 
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8 CONCLUSION AND FURTHER DEVELOPMENTS 

We created a simple and effective fuzzy model of the rotary dryer. Firstly a 
comprehensive literature review has been presented and then the model is proposed. 
Two different structures are presented, the first structure achieved better results then 
the second, but had only one output. Ulterior optimisation loops can be done, and of 
course other optimisation methods can be applied.  
 
In the future we will examine possibilities of improving the model by adopting the 
backpropagation-based approach, proposed by Wang and Mendel [21], to optimise the 
parameters α ij  and σij. 

 

This methodology can be used in conjunction with different criteria for model 
structure selection. It is also a fast method for generating fuzzy models based on 
neural network and fuzzy clustering techniques. Since this method focuses on model 
simplicity and computing efficiency for a satisfactory modelling accuracy, the 
produced model structure may not be optimal, but sub-optimal instead. 
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