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Abstract

The dissertation consists of three articles in which irrationality measures for some values
of certain special cases of the Gauss hypergeometric function are considered in both
archimedean and non-archimedean metrics.

The first presents a general result and a divisibility criterion for certain products of
binomial coefficients upon which the sharpenings of the general result in special cases rely.
The paper also provides an improvement concerning the values of the logarithmic function.
The second paper includes two other special cases, the first of which gives irrationality
measures for some values of the arctan function, for example, and the second concerns
values of the binomial function. All the results of the first two papers are effective, but no
computation of the constants for explicit presentation is carried out. This task is fulfilled
in the third article for logarithmic and binomial cases. The results of the latter case are
applied to some Diophantine equations.
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1. Introduction

The Gauss hypergeometric function is defined by the series

(@) (B)n
Z) =2 (n)y(i)i o W

n=0

b
F(z)2F1<a;

where a,b,¢ # 0,—1,—2,... are parameters, and (a)o =1, (a)p = ala+1)...(a+
n—1),n=1,2,.... For the general properties of F(z), we refer the reader to [17].

There are several important special cases of this function. With the parameters
a=1>b=1, ¢ =2 we obtain the Maclaurin series of the function log(1 —z)/z and the
parameters a = ¢ = 1, b = 1/k give the binomial series, i.e. the series expansion of
(1 —2)7Y% 1In the case a = 1, b = 1/k, ¢ = 1 + 1/k the values of the series are
closely related to the definite integrals

l/z dt

These numbers are in many cases representable using arctan, logarithm and square
root functions. The case k = 2 in particular enables us to consider the properties
of some values of the arctan function. We shall refer these cases in the following
as the logarithmic case, the binomial case and the arctan case, respectively.

We denote by | |, a valuation of @, where p is either oo, corresponding to the
usual absolute value, or a prime corresponding to the p-adic valuation normalized
by |p| = p~'. We shall denote by @, the p-adic completion of ®. In particular
Q. = R. Let ¥ € Q, be an irrational number, the irrationality of which is usually
measured by determining lower bounds

|9 — M/N|, > 1/H™")+* (2)

which hold for all ¢ > 0 and H > Hp(e), where H = N, if p = oo, and
H = max{|N|,|M|}, if p is a prime. The number m(9) is called an (asymptotic)
irrationality measure of ¥ and is denoted by Masymp(¥). A result of this kind is
called effective if the dependence of Hp on £ can (at least in principle) be calculated.
Alternatively, an effective irrationality measure can be given in the form
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|9 — M/N|, > ¢/H™) (3)

for all H > Hy, where ¢ and Hy are explicitly given constants. If the dependences
and constants of an irrationality measure result are explicitly given, we say that it
is in effective form.

It follows from the Dirichlet box principle that the theoretically smallest possible
value for Mmagymp(?) is 2. This measure is obtained in some cases, for example
Masymp(€) = 2, and is effective (see [7], pp. 107). On the other hand, for Liouville
numbers (2) is not true for any finite number m(¥). As examples of measures for
transcendental numbers obtained so far we may select Mmasymp (1) < 8.0161 [20] and
Masymp (¢(3)) < 8.831 [18].

Liouville proved in 1844 that the irrationality measure of an algebraic number
of degree k is < k, a result that allows explicit effectivization. In the following
we shall term an effective irrationality measure of an algebraic number smaller
than Liouville’s bound non-trivial. It is well-known that these non-trivial irra-
tionality measures correspond to the algorithmic solvability of certain Diophantine
equations. Thue, Siegel and Roth in turn improved the result of Liouville until
Masymp (V) = 2 was obtained for every algebraic number ¥, but all these improve-
ments were substantially ineffective (see [7], pp. 66).

The main method used to prove irrationality results is based on finding sequences
of rational approximations for numbers such that the sequences converge to these
numbers sufficiently fast. More exactly, if we are considering the irrationality of a
number 9, we try to find a rational approximation sequence (p,/¢n) such that we
have an upper bound for p, and ¢, that does not grow too fast. We should also
have a decreasing upper bound for the non-zero remainder term r, = |g,9 — pp|.
With these tools we can prove the irrationality of a number and also determine an
irrationality measure for it.

Most irrationality considerations nowadays handle classes of values of functions
represented by power series. In this case the approximation sequences are usually
found using rational approximations for these functions. The classical Padé approx-
imation is found by determining a polynomial of degree n such that the product of
the series and the polynomial includes a gap of length n, i.e. the coefficients of n
successive powers are zero. If we have an approximation with a gap of length <n
we speak about Padé type approximation.

In the papers presented here the main idea is to generalize the classical Padé
approximation of the function F' in an appropriate way to obtain ”arithmetically”
better approximations. This means that we try to find a rational approximation
with coefficients such that they could be multiplied to integers with as small a
multiplier as possible. The improvement obtained in this way is based on the fact
that for an appropriate choice of parameters of the generalization the coefficients
of the approximation polynomials have a non-trivial common factor. This often
involves an ”analytical” weaking of the approximation, which means that the an-
alytical bounds for the approximations increase. Thus, this procedure leads to an
optimization problem. On account of the complexity of the situation, this is done
for each value numerically with a computer.
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2. Summary of the original articles
2.1. Notation and the general result

All the papers presented here consider the problem of computing irrationality mea-
sures for the values of the function

the method being based on the Padé type approximation

Qumn(2)F(2) = Pim.n(2) = Rimn(2)

of the function F' derived from the following generalization of classical Jacobi poly-
nomials:

l
Auman2) = = oy () (7@ = e,

In paper I we first considered the function F' in general terms. We now gather
together the basic assumptions and notation needed to state our theorems.

We assume that ¢ > b > 0, b = a/f, ¢ = g/h, where a, f,g,h are natural
numbers such that (a, f) = (¢,h) = 1. Let us denote B =b—-1 = E/F, C =
c—b—-1=G/Hwith E,GeZ, F{HcZ., (E,F)=(G,H) = 1. Further, let
L =1lcm.(F, H), and let H* denote the denominator of h/H (therefore H* | H).
We also use the notations

h
/LF:Hpﬁ’ :L Z l
p|F d) (1;1_ ’

Our general theorem in the complex case reads as follows:



14

Theorem 1. Ifr/s € (—1,1) is a non-zero rational number satisfying

(r,s) =1, LH*ppum-e" (Vs — /s — T’)2 <1,

then

r 2In (Vs+ /s —r) + A(h) + In(LH* i pop+)
Masymp (F (—)) <1- - .
2In|/s— s =7+ A(h) + W(LH*pippie)

S

2.2. Sharpening in the logarithmic and arctan cases
based on a divisibility criterion

Theorem 1 is sharpened in the special cases referred to in the Introduction using a
technical lemma concerning primes dividing the numbers

<n“%B> ("HC), i=0,1,...,1.
) l—1

With this tool and an appropriate choice of the parameters [, m and n we are able to
find cases where the ”arithmetic improvement” obtained overcomes the ”analytic
decline”. We are also able to present explicit formulae for the asymptotics of
the common factors of the coefficients of the approximation polynomials @ m.n
and P ., in all three cases. We shall later refer to this technical lemma as the
Divisibility Criterion and to the factors described above simply as common factors.
The binomial case has some particular features of its own and thus we devote a
separate section to it.
In order to present these results, we define for 5 > «

<<p+ l2])(p + || = g))
o

Ala, B,2) = min
0<p<|z|+3(1—sgn z)
forall z>1or z <0,
t(1—1)?
G(t) =G(a, B, 2,t) = ———
() (a7/[7z’ ) (1—21;)&7

where 0 <t <1and |z] <1orz=-1, and

R(a, 8,2) = max G(a, 3, z,1).

0<t<1

We rephrase our result for the logarithmic function by first choosing n = m
and ! = [an], where 0 < a < 1, @ = u/v, (u,v) = 1 is a rational optimization
parameter. We denote by D, («) a common factor of all the numbers

(7:) <[fm?—7:>’ i=0,...,[an].

Using our Divisibility Criterion we are able in paper I to determine such a common
factor with an asymptotic D, (a) ~ e"™(®) where 71 () has an explicit formula.
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Theorem 2. If

Q(a) = 2o T@|p2—a y (oz, 1, i) . R(a) = o m@)|p2soR (oz, 1, f) :
r S

s 11 1)) < {1~ ).

where inf* means that for a given non-zero rational r/s € [—1,1) the infimum is
«

then

taken over all rationals « € (0, 1] satisfying R(«) < 1.

The result is effective in principle and is worked it out in an explicitly effective
form in paper III, i.e in the form (3). The main point is to use effective knowledge
of the prime number functions

O(x)= > logp, (x)= Y logp.
pk <z
p prime p prime

p<z

The transforming of a result of type (2) to one of type (3) corresponds to a fixed
choice of £ in (2) and the determination of the corresponding constant and the
lower bound for the denominator N involved in (3). In practice not all the choices
of ¢ are possible, for we do not at this moment have effective results on distribution
of primes to cover very small epsilons. Effective results concerning distribution of
primes are given in [28], [30], [31] and [33].

Now let 0 < top <1 be such that R(«, 1,2) = G(a, 1, z,t9). With this notation,
let

Rs(a,z) = min G(to £ 6).

We denote by L, a sequence of integers such that the coefficients of the approxi-
mation polynomials multiplied by L, are integers, and we show in paper III that
L,, can be chosen such that

Ll(aano)n S Ln S LQ((%”O)”

for all n > ng, where n is of the form vi + v and L;(«, ng) correspond to the
effectivization of the term e2=*~7(®) in Theorem 2, thus involving the common
factor and the behaviour of the prime number functions 6 and 1. We set

Q(Z.a,mo) = La(a,no)lr* 4 (a,1,2) |
s r

R (C,a,no) = Lo(a,ng)|r|*s R (a, 1, Z) .
s s

Theorem 3. Let a rational number 0 < o <1 be chosen and let L, and ny € ZZ,
be chosen as described above. Suppose that R (g, a, no) < 1 and that for r/s it is

possible to choose the numbers 0 < g1 and 0 < § < min{tg,1 — to} such that

Ly (a,mo)|r|*s *Rs (m ;) > (R (g,a,no))1+51 .



16

Then

Meft (;bg (1— g)) — 1_%_’_51’

and the corresponding constants ¢ and Ny are explicitly determined.

We also determine the numbers L;(«, ng) in paper III and show that with certain
choices of a and ng we obtain improvements of previous effective results for rationals
with large denominators. In particular, we observe that meg(log2) < 4.01. The
corresponding constant in this case is ¢ = 1072% and the bound for the denominator
is NO — 104100000.

Paper II considers the arctan case and the binomial case. In the arctan case we
choose n = [ and m = [n], where 3 > 1 is a rational optimization parameter. We
then have b = 1/k, ¢ = 1+ 1/k, where k > 2 is a natural number. For a given

rational /s, (r, s) = 1, we denote the denominators of (s—r)/k and (s—r)/(k ] p)
plk
by k* and k**, respectively. Denote

w1(f) = kp min <?> , <kltk> ePrE)—o(Bk)

QUB.K) = wn(B)rPA (1,8,2) BB, k) = an(B) s R (1,6, ).

where o (3, k) corresponds to the common factor of the coefficients of the approxi-
mation polynomials, as given in paper II, formula (19).

Theorem 4. Let r/s € (—1,1) be a rational number satisfying (r,s) = 1. Then

Lod [\ oo ), QB k
Masymp <2Fl<l—|—]i :)) Sl%f {1_W}’
m S / ?

where i%f * means that for a given r/s the infimum is taken over all rationals 3 > 1

satjsfyiﬁg R(B3,k) < 1.

In order to compare the results and methods we must review to the history of
these cases. The numbers log2 and 7/v/3 have become established as standards
for comparison, and follow this tradition. The first results for the logarithm were
obtained by Morduchai-Boltowskoj (1923), while Mahler (1932) gave more accurate
general results regarding the approximation of logarithms of algebraic numbers by
means of algebraic numbers (see [4]). The first explicit irrationality measures for
the values of the logarithmic function was obtained by Baker [4], who observed
that meg(log2) < 12.5 with an explicit constant ¢ = 10~1°". Danilov [13] improved
the result to Mmasymp(log2) < 6.58 using Laplace transforms, and also found that
7nasymp(7r/\/§) < 9.35.

Alladi and Robinson [1] used Legendre polynomials to obtain results for all three
cases. In particular, they achieved the results

Masymp (10g2) < 4.63 and 7nasymp(7r/\/§) < 8.31.
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They also give all their results in effective form, from which we select meg(log2) <
4.871 with the constant ¢ = (2000)~'. Nikigin [27] showed that all the previous
considerations could be gathered together and the proofs reduce to a consideration
of approximations obtained from Jacobi polynomials.

Huttner [22] considered the arctan case and obtained a general asymptotic result,
and also explicitly effective results for some numbers. In particular, he gave new
results for some numbers with k = 3 and k = 4.

Chudnovsky gave several improvements for both cases by generalizing the ap-
proximation polynomials. His main idea was to allow a certain degree of freedom
for the approximation and then optimize numerically in the cases considered. All
the later sharpenings have essentially been variations on this idea. He announced
in [11] that magymp(log?2) < 4.135, while his asymptotic measure for 7/v/3 was
5.8174. Rhin [29] gave quite a simple explanation for Chudnovsky’s procedure and
improved the asymptotic measure of log 2 to 4.0765 by employing more complicated
polynomials. His results also covered numbers not lying directly within the scope
of hypergeometric treatment, for example m(log3) < 13.3.

In considering the binomial case, Chudnovsky [12] also introduced the important
method of common factors. This idea combined with that set out in the preceding
paragraph made it possible for Rukhadze and Dubitskas to obtain magsymp(log2) <
3.893 and Masymp(7/v/3) < 5.516, respectively.

Hata [18] generalized the classical Legendre polynomials and applied them to
the values of the hypergeometric function and to some numbers involving higher
dimensional integral representations. He formulated his results only for special
numbers such as log 2 and 7/ /3, for which he obtained the asymptotic measures
3.8914 and 5.0875. The essence of these sharpenings is the same as in Ruchadze
and Dubitskas. In [19] he used closely related Legendre type polynomials and

considered the numbers /
1,1—a/b _
2F1< 27(1/() '1/5)

with s satisfying certain conditions. In this case he also gave an explicit formula
for the asymptotics of the common factor of the coefficients of the approximation
polynomials.

Our paper I reformulates the idea of finding the common factor of the coefficients
of approximation polynomials. Our Divisibility Criterion gives a general method
for determining this common factor for the Jacobi type polynomials A; ,, . Thus
it is possible for us to give an explicit formula for the asymptotic behaviour of this
common factor in logarithmic and arctan cases. We obtain essentially the same
results for the numbers log2 and 7/v/3 as Hata [18]. The effective measure for
log 2 in paper IIT improves the result of [1] for rationals with large denominators.

Hata’s case in [19] is closely related to a special case of our arctan case, and all
the common numerical examples coincide.
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We note that our function is a special case of Gauss’s hypergeometric ratio

o 22D

A (%)

The Padé approximation method has been applied to irrationality considerations of
the values of this function (see [21] and [41]). Theorem 1 provides sharper measures
for certain class of values of the function G with a = 0 than do these more general
results. The recent paper [23] employs our Divisibility Criterion to obtain sharper
results in some other special cases of the function G.

2.3. Sharpening in the binomial case and an application

In our binomial case we have b = 1/k, ¢ = 1, where k > 3 is a natural number.
For a given r € ZZ, let us denote the denominators of

r/k and r/(ka)

plk

by k. and k.., respectively. We assume that D, is a common factor of the numbers

ntE\(noE i=0,...,n
i n—i)’ Y

satisfying D, > e"?(0:%) for all n > ny. Applying our Divisibility Criterion we
show in paper II that there exists a sequence D,, with an asymptotic D,, ~ eno(eok)

where
= T (- e(2)

"V k/2<q<k
(¢.k)=1

(here ¥ means the digamma function). In paper III we also derive a formula for
o(ng, k) with ng € Z.
For ng € Z U {oo} we define

Qno, k) = (Vs + /s — T’) =00 k) min{ky fi, Fax b

R(T?07 k)= (Vs—s— 1“) e~ (no.k) min{ Ky fige, K b
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Theorem 5. If k > 3 is a natural number and r/s satisfies R(no, k) < 1 for some
no € Z, U {oo}, then

)

where m means Magymp if no = 00, and meg if ng € Z.. In the latter case the
constants ¢ and Ny are explicitly specified for every r/s, k and ng € Z satisfying
the conditions of the theorem.

Paper III gives an extensive list of effective irrationality measures and corre-
sponding constants for numbers of the form ¥/D. This involves finding an appro-
priate solution to the Diophantine equation zF — Dy* = K, i.e. a solution such
that K is small with respect to x and y. We show in paper III that solutions to
this equation that exceed a certain bound are convergents of the continued frac-
tion expansion of ¥/D, and employ this fact in a systematic search for appropriate
solutions, finding some cases not explicitly considered in preceding papers on this
subject. Direct use of Theorem 5 gives results with Ny quite large. Easton [15]
has presented by means of an example a method involving the continued fractions
to eliminate the bound Ny. We provide a general formulation of this method in
paper III and employ it to obtain results that are true from Ng = 0 on. Increasing
ng in Theorem 5 has the effect of improving the measure, but the bound Ny grows
at the same time and the method involves computation of the continued fraction
expansion up to Ny. Thus we should choose ng in such a way that we obtain as
good a measure as possible, while Ny remains within a range where we can apply
the method described above. The new algorithm of Shiu [34] for the calculation of
the continued fractions of algebraic numbers made it possible for us to allow the
bound Ny to be of the order of magnitude of 1020000,

These results can be applied to the solution of the Diophantine equation

az® — by = K, (4)

usually called the Thue equation. More exactly, if we have a non-trivial irrationality
measure m for W with an explicit constant ¢, we obtain an upper bound for
the solutions z,y in terms of a, b, k, K, m and ¢. Some examples of bounds and
solutions are also given. For instance, our results give the upper bound 1.3 x 1087
for the solutions of 2% — 5y%| < 100 .

In fact, the history of the approximation of the binomial function is so closely
connected with the problem of solving equation (4) that the two questions could
not be handled separately. Thue [36], [37], [38], [39] was the first to deduce classical
Padé approximations for the binomial function and to apply it to the solution of
(4). Thue'’s ineffective improvement of the theorem of Liouville made it possible
for him to restrict the number of solutions of (4) in certain cases. For later results
concerning the number of solutions of (4) we refer the reader to [26] and [35].

The other line of investigation also originated by Thue is an attempt to determine
upper bounds for the size of the solutions of (4). In fact, Thue’s paper [40] includes
results which are equivalent to non-trivial effective irrationality measures for the
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E:th roots of certain rationals, e.g. for ¢/(a + 1)/a with a > 17 and for ¥/17. Our
method in paper III for the solution of (4) is essentially that of Thue refined in
certain respects, especially by the use the common factor of the approximation
polynomials as proposed by Chudnovsky [12].

It was almost half a century before Baker [2], [3] essentially rediscovered the
method of Thue based on approximation of the hypergeometric function. Baker
found, for example, that meg(¥/2) < 2.955. Chudnovsky [12] was able to improve
on the results of Baker, but he gives his measures only in asymptotic form, and these
do not allow immediate effectivization, for this depends on effective knowledge of
the distribution of primes in arithmetic progressions, and the polynomial bounds
used are deduced from the Lemma of Poincaré. For example, he observed that
masymp(\3/§) < 2.4298. Chudnovsky also gave asymptotic bounds for some equa-
tions (4) with higher degrees, but without explicit proofs. The results of McCurley
[25] made it possible for Easton [15], [16] to work out some cases handled by Chud-
novsky in explicitly effective form. One example of his results is meff(W) < 2.795
with the constant ¢ = 2.2 x 1078 in (3).

A second method for computing irrationality measures for algebraic numbers
or, equivalently, for determining upper bounds for the solutions of (4), is Baker’s
method involving linear forms of logarithms. With this approach Baker became
the first to obtain a general effective improvement of the result of Liouville. First
he [5] observed that the bound

M N/
¥ — N' > cN—kellos M)V ,

where k > k4 1 and ¢ = ¢(9, k), holds for every algebraic number 9 of degree
k > 3 and finally he [6] gave an improvement with a constant diminution of the
Liouville bound. These results imply that the solutions of (4) are below a cer-
tain bound, and thus give a general algorithm for its solution. In many cases the
algorithm works only in principle since the bounds are very large. All the improve-
ments for special classes of algebraic numbers imply better bounds for solution of
(4) in corresponding cases. This is perhaps the main ground for interest in this
case. Baker and Stewart [8] also obtained using the linear forms of logarithms that
m(V/5) < 2.99999999999998.

A third possible approach to this problem may be attributed to Bombieri and
Mueller [9], who used their method involving the box principle to obtain a result
for certain numbers of the form W If @ and b are large numbers satisfying
conditions of a certain type, their result compares favourably to those obtained by
the hypergeometric method.

Our paper IT generalizes the results of Chudnovsky [12], and agrees with them
in all the examples given by him. In particular, we give an explicit formula for the
common factor in both the asymptotic and the effective case for all k > 3. We
also give the result Magymp(V/5) < 2.7636 in paper I11, which improves on that of
Baker [8]. A systematic search with continued fractions also leads to some other
new non-trivial measures, but there are still numbers for which the hypergeometric
method seems not to give non-trivial measures, for example /14.
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In paper III we use the recent results of Ramaré and Rumely [28] on the dis-
tribution of primes, which are almost throughout sharper than those of McCurley
[25]. On account of this and on our more accurate treatment of the common factor
and related matters we are able to improve on the results of Easton for all the
numbers presented in [15] and [16] and are also able to consider some cube roots
not occuring in Easton’s papers. As for higher roots of integers, our results provide
the first explicitly presented irrationality measures in both asymptotic (paper II)
and effective form (paper IIT).

2.4. The p-adic case

We also obtained in paper I a general p-adic result on the effective irrationality
measures of the values of F(z).

Theorem 6. Suppose that p is a prime such that p ffh. If r/s > 1 is a rational
number satisfying

A(R)

Ir/slp <1, (r,s)=1, LH*puppg-e*Mrlr[? <1,

then

S (F (f)) 2In|r|,

<
s/ = 2In|r|, +Inr + A(h) + In(LH* porpepm+)

Theorem 6 enables us to deduce p-adic results for the logarithmic and arctan
cases. We note that attempts to improve these results by the method used in the
complex case lead in these cases to difficulties in proving that the remainder is not
Zero.

On the other hand, we were able to make use of the common factor in the p-
adic binomial case. We recall that the asymptotic of this common factor relates to
o(00, k) given above. The result is effective.

Theorem 7. Let p [k be a prime and let us assume |r/s|, < 1.
1) If r/s > 1 and

—o(oc0,k)

min{ky fix, ke e rlrfy <1,

then

(1 'r’)*l/’C < 2In|r|,
Masym - = ~ B .
ymp s 2ln|rl, +1nr — o(oo, k) + Inmin{k, fu, ke }

In particular, we have

_ 2lInp
basym 1— o <
Masymp (( p) ) “ llnp+o(oo, k) — Inkpuy

for all p' > kpe k),
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2) Ifr/s <1 and

min{k*,uk, k**}eia(w'k) (\/g+ VS — T)Q ‘T‘Z% <1

then

N —1/k
Masymp <<1 — ;) ) <
21n|r|,

2In|r|, +2In|y/s + /s — 7| — o(co, k) + Inmin{k, pug, ks b

The p-adic parts of paper I and II are among the first works to discuss p-adic
Diophantine approximation of the values of the hypergeometric function, and the
results represent a major improvement of those of the earlier general paper on this
subject [24]. Likewise, our theorem improves on the earlier results of Bundschuh
[10] for the p-adic binomial function. As a numerical example, we may mention
7nasymp(\3/§) < 2.4597 in the 2-adic case.
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