
LOCALIZATION AND REGULATION 
OF PEROXIREDOXINS IN HUMAN 
LUNG AND LUNG DISEASES

SIRI
LEHTONEN

Faculty of Medicine,
Department of Internal Medicine,

Clinical Research Center,
University of Oulu;

Oulu University Hospital;
Division of Pulmonary Diseases,

University of Helsinki

OULU 2005





SIRI LEHTONEN

LOCALIZATION AND REGULATION 
OF PEROXIREDOXINS IN HUMAN 
LUNG AND LUNG DISEASES

Academic Dissertation to be presented with the assent of
the Faculty of Medicine, University of Oulu, for public
discussion in the Auditorium 7 of Oulu University
Hospital, on June 22nd, 2005, at 12 noon

OULUN YLIOPISTO, OULU 2005



Copyright © 2005
University of Oulu, 2005

Supervised by
Professor Vuokko Kinnula

Reviewed by
Docent Sisko Anttila
Doctor Anna-Liisa Levonen

ISBN 951-42-7764-3 (nid.)
ISBN 951-42-7765-1 (PDF) http://herkules.oulu.fi/isbn9514277651/

ISSN 0355-3221 http://herkules.oulu.fi/issn03553221/

OULU UNIVERSITY PRESS
OULU  2005



Lehtonen, Siri, Localization and regulation of peroxiredoxins in human lung and lung
diseases 
Faculty of Medicine, Department of Internal Medicine, Clinical Research Center, University of
Oulu, P.O.Box 5000, FIN-90014 University of Oulu, Finland; Oulu University Hospital, P.O.Box
10, FIN-90029 OYS, Finland; Division of Pulmonary Diseases, University of Helsinki, P.O.Box 22,
FIN-00014 University of Helsinki, Finland 
2005
Oulu, Finland

Abstract
Reactive oxygen species (ROS) can cause severe damage to cells and organs but they are also
important mediators of inflammatory responses and cellular signalling. Due to the significant role of
ROS, the cells have evolved a broad antioxidative system to regulate the concentration of these
species. Peroxiredoxins (Prxs) are enzymes that participate in the regulation of the cellular redox-
homeostasis by detoxifying hydrogen peroxide. Prxs are not classified as conventional antioxidant
enzymes and their physiological role, whether protective or regulatory, is still unclear. 

The aim of this project was to study the localization and regulation of Prxs in normal human lung
and also their role in selected lung disorders (pulmonary sarcoidosis, pleural mesothelioma, lung
carcinomas and chronic obstructive disorder, COPD). Additionally the expression of thioredoxin
(Trx) and thioredoxin reductase (TrxR) was analysed in the lung of smokers and COPD patients.
These enzymes are important reductants in cell and Prxs are one of their targets. Lung is an important
organ in the field of ROS and antioxidant research since it is especially vulnerable to exogenous
oxidative stress caused by pollutants, cigarette smoke and also by high oxygen pressure.

The results showed that all six human Prxs were expressed in healthy human lung but in a cell-
specific manner. The most prominent expression was detected in the epithelium and in macrophages,
the cells most prone to oxidative stress. There were also differences in subcellular locations of Prxs. 

The expression of Prxs in non-malignant lung diseases (pulmonary sarcoidosis and COPD) and in
smoker's lung was very similar with that in normal lung. Higher expression of Prx V and VI was
detected in a subpopulation of macrophages sampled from COPD patients' lung. In contrast, Trx
expression was induced in the bronchial epithelium of smoker's lung.

Differences in the expression compared to normal lung were seen in lung malignancies (pleural
mesothelioma and lung carcinomas). Interestingly, different Prxs were highly expressed in different
types of carcinomas. In pleural mesothelioma, all Prxs except Prx IV were highly expressed when
compared to normal pleura, in adenocarcinoma Prxs I, II, VI and especially IV, and in squamous cell
carcinoma Prxs I, II and IV were upregulated.

Tests performed on cultured cells in vitro revealed only a minor increase in the Prx expression
after severe oxidant stress in malignant lung cell line originating from alveolar type II pneumocytes
(A549) or non-malignant cell line derived from bronchial epithelium. None of the tested growth
factors or cytokines affected Prx expression or oxidation state, but severe oxidant stress influenced
remarkably the oxidation state of the Prxs. 

Keywords: antioxidant enzyme, chronic obstructive pulmonary disease, lung neoplasms,
mesothelioma, oxidants, peroxiredoxin, sarcoidosis
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1 Introduction 

Oxygen (from two Greek words oxy=acid and genes=forming) was first described and 
named by Antoine Laurent Lavoisier (1743-1794), who is considered as one of the fathers 
of modern chemistry. However, this mysterious component of the air and water had 
puzzled researchers already prior to Lavoisier's innovative experiments. Already during 
the 18th century, it became obvious that this component was essential for life but later 
findings also suggested a dual role of oxygen as under certain circumstances it may also 
be toxic (Hensley & Floyd 2002). Current knowledge has further supported this dual 
roles i.e. oxygen is both essential and harmful to life. Both these roles are based on the 
reactivity of oxygen and this property has given rise to the entire concept of 
oxidation/reduction reactions. 

 During the last century, researchers noted that oxygen may form even more reactive 
molecules, termed reactive oxygen species (ROS). These include both radicals and other 
oxygen derivatives. Henry John Horstman Fenton (1854-1929) discovered that certain 
metals have the capability to improve the effect of hydrogen peroxide (H2O2), one 
member of the ROS family. Today we know that this phenomenon is based on hydroxyl 
radical production from H2O2 by using metal ion as a catalyst. This was the first 
important discovery utilising oxygen centred free radicals and even today the so called 
Fenton reaction is used in detoxifying certain chemicals. However, despite the possibility 
of utilising ROS in industrial processes and cleaning, it is now evident that ROS can be 
very harmful for living organisms. These molecules can disrupt the structure of all the 
critical cellular macromolecules, namely DNA, RNA, lipids, proteins and carbohydrates. 
Damage to DNA can lead to mutations, which can make cells susceptible to diseases like 
cancer. However, in processes like signal transduction even our own cells have learned to 
utilise ROS in controlling cell growth and proliferation  and ROS have also a significant 
role in immune defence (Burdon et al. 1995, Thannickal & Fanburg 2000). Therefore 
their concentration in and outside the cells is strictly controlled by enzymatic systems, 
which include both ROS-producing and ROS-degrading enzymes, the latter being called 
antioxidant enzymes (AOEs). Classical AOEs contain superoxide dismutases (SODs, EC 
1.15.1.1), catalase (EC 1.11.1.6) and glutathione peroxidases (GPxs, EC 1.11.1.9). 
Furthermore there are several AOE related proteins i.e. thioredoxins (Trxs), glutaredoxins 
(EC 1.20.4.1), and peroxiredoxins (Prxs, EC 1.11.1.15).  
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Prxs are small but abundant thiol-based enzymes that catalyse the degradation of 
H2O2, but they are also capable of decomposing other peroxides, such as certain oxidised 
lipids. They have been found in a wide variety of organisms from archea and eubacteria 
to humans. There are six distinct Prxs characterised in human cells, these being called 
Prxs I-VI, which share structural and functional similarities but have different tissue 
distributions (Jin et al. 1997, Kang et al. 1998a, Kang et al. 1998b, Seo et al. 2000, 
Okado-Matsumoto et al. 2000). Trxs and glutathione (GSH) provide the most important 
reducing power in the cells both having a broad substrate capacity. Reduction of Prxs is 
one task of Trxs: this is essential to restore the catalytical activity of Prxs. 

In addition to their antioxidative role, Prxs and Trxs regulate signalling cascades 
affecting cell proliferation, differentiation, apoptosis and transcriptional regulation 
(Zhang et al. 1997, Kim et al. 2000, Sasagawa et al. 2001). Furthermore they can have an 
influence on the efficacy of drugs or other therapies based on ROS production (Park et al. 
2000b, Chung et al. 2001). According to mouse mutant models, Prxs I, II or VI do not 
seem to be essential for normal development, but lack of Prx I or II causes haemolytic 
anaemia and Prx I seems to act as a tumour suppressor (Wang et al. 2003, Lee et al. 2003, 
Neumann et al. 2003). Lack of Prx VI renders especially the lung of mice susceptible to 
oxidant stress (Wang et al. 2003, Lee et al. 2003).  

Prxs have been studied in human tissues only briefly, especially their expression and 
role in lung is unclear. There is however evidence for a connection between Prx levels 
and certain diseases; elevated Prx levels have been observed in some tumours but studies 
have mostly focused only to Prx I (Yanagawa et al. 1999, Yanagawa et al. 2000, Chang et 
al. 2001, Noh et al. 2001, Choi et al. 2002, Karihtala et al. 2003). Altered Prx levels have 
been also detected in neurological diseases characterised by oxidative stress, like 
Creutzfeld-Jacob disease, Alzheimer’s disease, Pick’s and Down syndromes (Kim et al. 
2001b, Nicolls et al. 2003). There have been also proposals about their possible 
involvement to other diseases like atherosclerosis, but these issues need further 
clarification (Phelan et al. 2002). The role of Prxs in inflammatory diseases may be 
crucial, but at the beginning of this project there were no human studies on their 
involvement.  

The lung provides an entry into the body for inhaled oxygen as well as bacteria, virus 
and many other harmful agents such as example pollutants or smoke. Oxygen and many 
chemicals give rise to ROS; furthermore the immune system of lung is dependent on 
active production of ROS by inflammatory cells. Therefore lung is continuously exposed 
to higher levels of ROS than most other tissues, which makes it especially important in 
the field of antioxidant research.  

This study aimed at elucidating the expression, regulation and role of Prxs in normal 
human lung and during various lung disorders including pulmonary sarcoidosis, COPD, 
pleural mesothelioma and lung carcinomas. 



2 Review of the literature 

2.1  Reactive oxygen and nitrogen species 

Reactive oxygen species can be defined as partially reduced oxygen intermediates. They 
contain free radicals like superoxide anion (O2

•-), hydroxyl (OH•), peroxyl (ROO•), 
alkoxyl (RO•) and hydroperoxyl (HOO•) radicals and non-radicals like hydrogen 
peroxide (H2O2) and ozone (O3). In addition there are nitrogen-centred reactive species, 
which include peroxynitrite (OONO-), nitric oxide (NO•) and nitric dioxide (NO2

•) 
radicals, whose formation is closely linked with ROS.  

2.1.1  Hydrogen peroxide 

Hydrogen peroxide is a small molecule that easily passes through all membranes of the 
cell. In contrast to most other ROS, it is stable and can therefore be transported far from 
site of synthesis. H2O2 is generated spontaneously or enzymatically by superoxide 
dismutation (O2

•- + 2 H+ → H2O2 + O2) and it can be converted to other ROS by Haber-
Weiss reaction (O2

•- + H2O2 → O2 + OH- + OH•) or Fenton reaction (Fe2+ + H2O2 → Fe3+ 
+ OH- + OH•). 

Even though H2O2 is considered to be toxic, its role as second messenger became 
evident decades ago. Its concentration inside the cell fluctuates in phase with 
proliferation and it is thought to have a crucial role in maintaining normal cell growth and 
metabolism (Burdon et al. 1995). H2O2 is produced in adipocytes after insulin exposure, 
but it can itself cause the same stimulatory effects even without the presence of insulin 
(May & de Haen 1979a, May & de Haen 1979b). Growth factors like transforming 
growth factor β  (TGF-β1), platelet-derived growth factor (PDGF) and epidermal growth 
factor (EGF) are known to elevate the H2O2 concentration inside the cell and also some 
other signalling routes are known to associate with its concentration (Ohba et al. 1994, Li 
et al. 1995, Sundaresan et al. 1995, Bae et al. 1997, Bae et al. 2004). The mechanisms of 
this H2O2 production are still unclear, but probably it is mediated by Rac-sensitive system 
as discussed later (Sundaresan et al. 1996, Bae et al. 2004). 
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There are two possible consequences of H2O2 induction associated with signal 
cascades: binding of it or modification catalysed by it (Rhee 1999). Since the chemical 
structure of H2O2 is so simple, it seems unlikely that it could be recognised and bound 
specifically by some protein during a specific signalling cascade. Probably the effect of 
H2O2 is mediated by its ablility to oxidize other molecules, especially the sulfhydryl 
moiety of cysteine (Cys) residues is thought to be an important target (Cooper et al. 2002, 
Poole et al. 2004). Cys exists in nature in several different oxidation states like thiols, 
thiolates, thiyl radicals, disulphides and sulphenic/sulphinic/sulphonic acids. Each state 
has its own properties, which affect the Cys containing protein's stability, redox-
sensitivity, binding and catalytical properties. 

H2O2 is not however capable of oxidizing all Cys residues, because pKa values of 
most protein Cys-SH groups are above 8 due to the surrounding amino acids. Oxidation 
by H2O2 requires the pKa to be below 7. Nonetheless there are a number of candidate 
proteins possessing Cys-SH residues with low pKa values: Trx; protein disulfide 
isomerase; phosphatases; proteases and Prxs (Holmgren 1989, Freedman et al. 1994, 
Kortemme & Creighton 1995, Lohse et al. 1997, Rhee 1999). A common feature of these 
proteins is that they have two cysteines separated by two other residues (CxxC motif), In 
certain proteins, the carboxy-terminal Cys may be replaced by serine or threonine. 
Another possible target of H2O2 modification is a methionine (Met) residue that can be 
oxidised to sulfoxide, but there is no evidence for signal transduction associated with 
Met. 

2.1.2  Sources of reactive oxygen species 

Molecular oxygen is the most important oxidant in nature and the high oxygen pressure 
present in the lung favours the formation of ROS. Like other tissues exposed directly to 
the atmosphere, the lung is constantly exposed to many extracellular components, i.e. not 
only ROS but other chemicals promoting chain reactions leading to ROS production. 
Additionally harmful components of cigarette smoke, pollutants, asbestos, irradiation and 
several chemoterapeutics evoke ROS exposure to lung (Kinnula & Crapo 2003). A brief 
overview of ROS production in the human lung is shown in figure 1. 

The major intracellular source of ROS is aerobic energy metabolism. This is based on 
oxidative phosphorylation in which adenosine triphosphate (ATP) is formed as electrons 
originating from food sources are transferred to molecular oxygen (O2) by a 
multicomponent enzymatic system, in which cytochrome oxidase is the terminal electron 
donor. In eukaryotes, the oxidative phosphorylation takes place in the inner membrane of 
mitochondria by respiratory assemblies. However, during this transfer process, oxygen 
may be reduced only partially due to the sequential nature of reaction as shown in figure 
2. The tendency towards partial reduction is a result of the molecular structure of O2, 
which actually contains two unpaired electrons located in different orbitals and 
possessing different spins. This is not a common structure in other molecules or atoms 
and therefore it is difficult to find a matching molecule with electrons with opposite 
spins, and thus O2 is generally reduced by one electron at a time. Cytochrome oxidase 
itself maintains partially reduced oxygen in a tightly bound fashion, but some other 
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components of the electron transfer system (NADH ubiquinone reductase, succinate 
ubiquinone reductase or cytochrome c reductase) may leak electrons to oxygen 
(McLennan & Esposti 2000). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 1.  Major sources of ROS in human lung (modified from Kinnula & Crapo 2003 and 
Kinnula & Crapo 2004). 

One-electron reduction of O2 yields O2
•-, which can be converted to other ROS like H2O2 

or OH•. The amount of electrons leaking from the respiratory chain has been under 
debate, estimates varying from 0.1 % even to 2 % of total electron flow and even the 
whole concept of ROS generation in this way has been questioned (Boveris & Chance 
1973, Imlay & Fridovich 1991, Forman & Azzi 1997). In addition to their location in the 
inner mitochondial membrane, cytochrome oxidases are also located in endoplasmic 
reticulum and participate in oxidizing several compounds like steroids, xenobiotics and 
fatty acids (Zangar et al. 2004) 

In addition to the mitochondrial respiratory chain, peroxisomal β-oxidation may also 
generate H2O2 as a by-product (Kasai et al. 1989, Arnaiz et al. 1995). The first step it is 
the conversion of the fatty acyl-coenzyme A (-CoA) to trans-2-enoyl-CoA by acyl-CoA 
oxidase, which transfers electrons from the substrate to molecular oxygen, thus leading to 
H2O2 generation (Schulz 1991). The leakage of H2O2 out from peroxisomes may even be 
related to cell proliferation i.e. more H2O2 is claimed to be released in highly proliferating 
cells (Oikawa & Novikoff 1995). On the other hand, the destruction of H2O2 is very 
effective in peroxisomes, and thus there may be only minimal leakage of ROS to cytosol 
in general. 
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Fig. 2. Schematic representation of the sequential reduction of molecular oxygen to water. 

There are also several other enzymes like NADPH oxidase (Nox), and xanthine oxidase 
(XO) that may produce ROS. Nox was originally defined as a phagocytic leukocyte 
specific enzyme, but subsequently similar oxidase complexes have been characterised in 
non-phagocytic cells such as vascular endothelial, smooth muscle cells and fibroblasts 
(Meier et al. 1991, Zulueta et al. 1995). In phagocytes, Nox is activated by chemokines 
or phagocytic particles, which induce assembly of cytosolic subunits (Rac2, p47phox and 
p67phox) with membrane bound compartments (p22phox and gp91) to generate O2

•- from O2 
and NADPH. This so called respiratory burst leads to the release of ROS out of the cell, 
which is an important feature of immune defence against bacterial and fungal infections 
(Holmes et al. 1967). Released O2

•- may be converted to H2O2, which in turn is a 
substrate for myeloperoxidase that produces hypochlorous acid and other strong oxidants 
(Winterbourn et al. 2000). 

In non-phagocytotic cells, endogenous ROS production by Nox has not been as 
extensively characterized. Several different homologues of gp91 are found in 
mammalians with tissue specific expression and Rac2 has a homologue Rac1, while other 
subunits seem to be expressed widely in different cells. Several factors can initiate ROS 
production by Nox e.g. interleukin 1β (IL1β), tumour necrosis factor α (TNFα), 
menadione, insulin, TGFβ or other growth factors (Nisimoto et al. 1988, Chiu et al. 2001, 
Li et al. 2002b, Baea et al. 2004, Chena et al. 2004, Talior et al. 2005).  

XO, a key enzyme in purine catabolism, possesses the capability of generating O2
•-. It 

is located in cytoplasm, but is has been also detected on the outer surface of endothelial 
cells in an asymmetric manner (Rouquette et al. 1998). There are possibly several other 
systems also capable of generating ROS under certain circumstances. In addition, non-
enzymatic reactions like radiolysis of water can result in the production of H• and OH• 
radicals.  

2.1.3  Effects of reactive oxygen species 

Reactive oxygen species can cause damage to living organisms via different targets as 
briefly reviewed in table 1. In multicellular organisms, ROS damages to DNA can be 
very harmful since they can cause mutations, which are then passed on to future cell 
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generations. However, more commonly ROS damage evokes apoptosis or necrosis, which 
can be very severe and extensive leading to major tissue damage.  

In addition to H2O2, other ROS have also been linked to several signalling pathways 
and may have important regulatory functions. They have been associated with mitogen-
activated kinase (MAPK), stress-activated protein kinase (SAPK) and protein kinase C 
(PKC) activities (Janssen-Heininger et al. 1999, Liu et al. 2000, Majumder et al. 2001). 
These provide tools for wide regulatory possibilities in cell growth, proliferation, 
apoptosis, differentiation and cellular metabolism. 

Table 1. Targets of ROS damage in the cells. 

Target Damage Primary consequence Secondary consequence 
DNA Base damage 

Strand break 
DNA repair  
Mutations  
 

Cell cycle arrest  
Apoptosis  
Cancer or other diseases  

RNA Base damage 
Strand break 

Translational errors  
Inhibition of protein 
synthesis 

Alterations of cell growth 
and proliferation 

Proteins Oxidation of 
Cysteine or 
Methionine 

Modified enzyme activity 
Modified protein stability 
Modified ion transport 

Alterations of cell growth 
and proliferation 

Lipids Loss of 
unsaturation 
Formation of 
reactive 
metabolites 

Membrane damage  
Altered membrane 
permeability  
Modified affinity of 
membrane bound proteins 
Chain reactions 

Alterations of cell growth 
and proliferation 

Carbohydrates Formation of 
reactive 
metabolites 

Disruption of other 
molecules  
Chain reactions 

Alterations of cell growth 
and proliferation 

Several transcription factors have been reported to be redox sensitive e.g. nuclear factor 
κB (NFκB), activator protein 1 (Ap1) and specificity protein 1 (Sp1) (Toledano & 
Leonard 1991, Li et al. 1994, Ammendola et al. 1994). However, the participation of 
endogenously produced ROS in the activation of NFκB was recently questioned, as in 
TNFα stimulated cells, the activation occurs independently of Rac/NADPH oxidase and 
is terminated before the ROS concentration has become elevated (Hayakawa et al. 2003). 
This suggestion is supported by earlier observations indicating that H2O2 does not 
activate NFκB in all cell types (Anderson et al. 1994, Bowie et al. 1997). Clearly further 
studies are needed to clarify the role and mechanism of the elevated ROS concentration 
during cell signalling processes.  

Oxidative damage to lipids, proteins and especially to DNA is capable of activating 
the repairing machinery inside the cell. Oxidative DNA damage is predominantly 
repaired by base excision repair, nucleotide excision repair or direct ligation of single 
strand break. The first step in base excision repair is to remove oxidised nucleotides from 
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DNA by glycosylases, which cleave the bond between the base and the sugar. The 
resulting site without a base is removed by apurinic/apyrimidinic endonuclease and the 
subsequent gap is filled by DNA polymerase and ligated by DNA ligase (Kubota et al. 
1996). Nucleotide excision repair removes a stretch of DNA, which is replaced after the 
synthesis of a new patch of DNA. This system requires the presencec of several 
components including replication factors, DNA polymerases, ligases and nucleases. 

2.2  Antioxidants 

Reactive oxygen species are detoxified by antioxidants, which include both enzymatic 
and non-enzymatic systems e.g. molecules like vitamin C, vitamin E and carotenoids. 
The most important enzymatic systems are superoxide dismutases (SODs), catalase and 
the glutathione peroxidases. There are also other important systems participating in the 
defence against oxidants.  

 
 

Fig. 3. Overview of ROS production and catabolism. 

The first group comprises of enzymes associated with GSH including GSH S-
transferases, glutamate-cysteine ligase (GCL, also known as γ-glutamyl-cysteine 
synthase) and glutaredoxins. The second group is formed by Trxs and Prxs, which are 
enzymes belonging to the thioredoxin system (Fig 3).  
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Oxidative stress may result not only from increased oxidant generation, but also from 
decreased antioxidant production or defective oxidative damage repair. Therefore the 
regulation of AOE expression is important and has been studied widely during recent 
years as have the effects of dietary antioxidants. Expression of several AOEs is regulated 
by transcription factors Ap1, NFκB, hypoxia inducible factor 1 (Hif1), Sp1 and/or 
nuclear factor erythroid 2 related factor 2 (Nfr2). Regulatory areas of these genes contain 
the so-called antioxidant response element (ARE), which binds Nfr2 (Jaiswal 1994, Ren 
& Smith 1995, Jones et al. 1995, Mulcahy & Gipp 1995). 

2.2.1  Superoxide dismutases 

Superoxide dismutases decompose O2
•- to the less reactive H2O2. There are three different 

SODs in humans: cytosolic copper-zinc SOD (CuZnSOD); mitochondrial manganese 
SOD (MnSOD) and extracellular SOD (ECSOD). Mitochondrial metabolism is the major 
source of O2

•- and therefore it is not surprising that MnSOD located in mitochondrial 
matrix seems to be the most essential of the SODs. According to mouse models, MnSOD 
seems to be crucial since knockout mice die within three weeks after birth, while 
CuZnSOD and ECSOD knockout mice are nearly normal (Carlsson et al. 1995, Li et al. 
1995).  

MnSOD is dramatically induced by oxidative stress like exposure to cigarette smoke, 
while other SODs are less strictly regulated (Gilks et al. 1998). According to transfection 
studies in cultured cells, the overexpression of MnSOD induces resistance against 
hyperoxia, cigarette smoke, cytokines, irradiation or oxidants (St Clair et al. 1991, Hirose 
et al. 1993, Lindau-Shepard et al. 1994, St Clair et al. 1994).  

2.2.2  Catalase and glutathione peroxidases 

There are three classes of enzymes that detoxify H2O2, namely catalases, GPxs and Prxs. 
Catalase is located mostly in peroxisomes, but detected to some extent also in cytoplasm 
and mitochondria. It decomposes high concentrations of H2O2 (H2O2 → H2O + ½O2) with 
catalytical efficiency of about 106 M-1s-1 but it may also oxidize molecules like ethanol at 
low H2O2 concentrations (Hillar et al. 2000). Catalase tightly binds heme and 
NADH/NADPH, though the latter compounds do not affect the enzymatic reaction but 
rather protect it from inactivation (Kirkman & Gaetani 1984). It has been recently 
suggested that catalase may have a dual role in oxidant systems as it has been shown to 
generate ROS in response to UVB radiation in keratinocytes (Heck et al. 2003). This 
observation gives another interesting perspective on the vulnerable balance of oxidants 
and antioxidants i.e. even the same enzyme may be both a protecting and damaging 
component depending on the prevalent circumstances.  

GPxs are enzymes that receive their reducing power from glutathione, which in turn is 
reduced by glutathione reductase (H2O2 + 2GSH→ 2H2O + GSSG). The catalytical 
efficiency of GPxs is high, about 108 M-1s-1. There are several GPxs, which have different 
locations (Brigelius-Flohe 1999). GPx1 and GPx2 are intracellular but GPx2 is found 
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only in the epithelium of gastrointestinal tract while GPx1 has a more widespread 
distribution in human tissues. GPx1 knockout mice develop normally and show no 
sensitivity to hyperoxia (Ho et al. 1997). However these mice suffer some abnormalities 
in their brain during cold-induced injury or stroke, pointing to a role for GPx1 in the 
regulation of cell death and inflammatory responses (Flentjar et al. 2002, Crack et al. 
2003). GPx3 is extracellular and located mainly in plasma (Schwaab et al. 1998). GPx4 is 
widely expressed but its catalytical activity may be targeted to hydroperoxides integrated 
in membranes (Kelner & Montoya 1998). GPx5 is epididymis-specific secreted protein 
(Rigaudiere et al. 1992).   

2.2.3  Antioxidant related enzymes 

The most important reductants in cells are GSH and Trx. Trxs are small proteins of 10-12 
kDa. Their major role is to reduce oxidised ribonucleotide reductase, Prxs and certain 
transcription factors like NFκB (Hayashi et al. 1993, Chae et al. 1994a). Trxs contain two 
Cys residues separated by two amino acids at their catalytical site. Sulphydryl groups of 
these Cys undergo reversible oxidation providing reducing power for the substrate. The 
formed disulphide of Trx is reduced by thioredoxin reductase (TrxR) with electrons 
originating from NADPH. 

In human cells, Trx and TrxR can exist in two isoforms, one mitochondrial and the 
other cytosolic. The processed form of Trx may also be secreted out from the cell, where 
it binds to the outer plasma membrane (Balcewicz-Sablinska et al. 1991). A nuclear 
localisation has also been detected in certain cancer cells, even though there is no nuclear 
localisation signal sequence, but the small size of these proteins allows them to pass 
through nuclear pores by passive diffusion (Hirota et al. 1997, Grogan et al. 2000). The 
number of different Trxs or TrxR may however be even higher, as recently new Trx like 
homologues have been found but their catalytical relevance is still unclear. It is feasible 
that there might be several Trxs with different properties, e.g. different substrate 
affinities. 

Due to Trx’s important role as a reductant, they have several biological tasks. Trx itself 
is able to break down H2O2, thus it can be considered as an antioxidant (Spector et al. 
1988). It has growth factor like properties, being able to stimulate growth of fibroblasts 
and certain tumour cells (Wakasugi et al. 1990, Oblong et al. 1994). Trxs also regulate 
kinase activity and thus can modify cell signalling in several different pathways and e.g. 
the apoptosis pathways (Saitoh et al. 1998). Trx is highly expressed in several carcinomas 
and this may be related to their developing resistance against anticancer treatments 
(Gasdaska et al. 1994, Kahlos et al. 2001a). 

GSH belongs to a family of low molecular weight antioxidants since it is a tripeptide. 
The Cys residue of GSH is responsible for redox status and it nonenzymatically forms 
conjugates with reactive electrophilic compounds like aldehydes or peroxides. The rate 
limiting enzyme in GSH formation is GCL, which is formed from two subunits: the 
heavy subunit with catalytical activity and the light subunit with a regulatory role. The 
GSH and Trx systems were originally considered as two distinct systems, but there is a 
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clear interaction between them as GSH can inactivate Trx (Casagrande et al. 2002). 
Oxidation of GSH can be reversed by GSH reductase.  

2.3  Peroxiredoxins 

2.3.1  Peroxiredoxins in different organisms 

Peroxiredoxins (Prxs) are a family of small proteins that catalyse the reduction of 
peroxides using their conserved Cys residues as catalytical centres. They do not require 
any co-factors, unlike the heme-dependent catalase and the selenium-dependent GPxs. 
The best characterised enzymes of the Prx family are the alkyl hydroperoxide reductases 
(Ahp) from Escherichia coli and Salmonella typhimurium (Greenberg & Demple 1988, 
Jacobson et al. 1989). They were characterised as protectors of DNA against oxidative 
injury and they use NADH or NADPH as their reducing agent, but act independently of 
GSH.  

There are five different Prxs in the yeast Saccharomyces cerevisiae, namely thiol 
specific antioxidant enzyme 1 (Tsa1, known also as cytosolic thioredoxin peroxidase I 
cTPx I), cTPx II, cTPx III, nTPx and mTPx (Chae et al. 1993, Verdoucq et al. 1999, 
Jeong et al. 1999, Lee et al. 1999, Pedrajas et al. 2000, Park et al. 2000a). Tsa1 is the 
most abundant Prx in the cytoplasm and mTPx is located in mitochondria. Genetic 
studies carried out in S. cerevisiae showed that Tsa1 is not essential for normal growth 
under anaerobic conditions (Chae et al. 1993). However, under aerobic conditions, the 
growth rate of a mutant yeast lacking Tsa1 becomes depressed especially under oxidative 
pressure. The importance of Tsa1 as antioxidant is further confirmed by the fact that its 
expression is upregulated in normal yeast if they are shifted from anaerobic to 
hyperaerobic conditions (Kim et al. 1989).  

In addition to microorganisms, Prx family members have been found in mammalians 
and plants (Chae et al. 1994b, Baier & Dietz 1996). There may be several different Prxs 
present in the same organism, up to eight in some plants with some being targeted to 
mitochondria and some to chloroplasts, where they are important in protecting proteins 
against oxidative injury and in maintaining normal photosynthesis (Baier & Dietz 1999). 
Some Prxs have a protective role also against reactive nitrogen species (Wong et al. 2002, 
Sakamoto et al. 2003). 

In human cells, there are six different Prxs, which are named Prx I-VI. Prxs were 
originally characterized from mammalian cells mostly recognized for properties other 
than their antioxidant effects. They have been identified for example as proliferation 
associated gene (PAG), natural killer enhancing factor (NKEF), macrophage 23 kDa 
stress protein (MSP23), peroxisomal membrane protein (PMP), torin and 23 kDa heme 
binding protein (HBP23) (Ishii et al. 1993, Shau et al. 1994, Iwahara et al. 1995, 
Yamashita et al. 1999, Harris et al. 2001).  

There is now convincing evidence for a role for H2O2 in cellular signalling, but the 
regulation of its concentration is poorly understood. As the concentrations needed for 
signalling are thought to be low, it seems unlikely that catalase could be the enzyme 
responsible for H2O2 removal. The catalytical efficiency of Prxs is weaker than that of 
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catalase or GPxs, but the optimal H2O2 concentration for Prxs is relatively low, and for 
this reason, these enzymes have been considered as potential regulators of endogenously 
produced H2O2. According to overexpression studies, cytosolic Prxs are known to break 
down H2O2 generated as second messengers of TNFα or growth factors and Prx III 
participates in apoptosis signalling in mitochondria (Kang et al. 1998b, Kang et al. 2004, 
Chang et al. 2004a). 

Human Prx genes have been poorly characterized, but the murine genes have been 
analysed in some detail. Some properties of human Prxs are summarised in table 2. In 
addition to the indicated chromosomal locations, there are several pseudogenes found in 
the human genome e.g. in positions 9p22, 13q12 and 4q35.2.  

2.3.2  Catalytical mechanism of peroxiredoxins 

Peroxiredoxins can be divided into three categories according to their structure and 
catalytical mechanism, namely 2-Cys Prxs, atypical 2-Cys Prxs and one cysteine (1-Cys) 
Prxs. Human Prxs I-IV belong to the first category, Prx V is an atypical 2-Cys Prx and 
Prx VI is 1-Cys Prx (Kang et al. 1998a, Kang et al. 1998b).  

 
 

Fig. 4. Model of typical 2-Cys Prx catalytical mechanism partially modified from Wood and 
co-workers (2002). 

2-Cys Prxs seem to be mostly present as homodimers, but they may also form 
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(Schroder et al. 2000, Harris et al. 2001, Wood et al. 2002). Prxs oligomerisation is 
dependent on ionic strength, pH, magnesium/calcium concentrations and most of all, the 
redox state of the active Cys.  It has been suggested that the peroxidase reaction of all 
Prxs is initiated when the thiol group of cysteine (–SH) attacks peroxide (figure 4).  

The thiol group becomes itself sulphenic acid (-S-OH), which is highly unstable and 
quickly forms either a disulphide bridge (-S-S-) with another thiol or is converted to 
sulphinic acid (-SOOH) or even sulphonic acid (-SOOOH). Disulphide bridges are 
generally reduced by thioredoxin or possibly by glutathione, but these reductants are not 
able to reduce sulphinic acid forms of cysteines. Previously these so called over-oxidised 
forms were thought to be irreversible, but recent data suggests that they are reduced by a 
protein called sulfiredoxin (Biteau et al. 2003, Woo et al. 2003). The catalytical 
mechanism of Prxs exhibits similarities to other thiol proteins (Poole et al. 2004).  

Atypical 2-Cys Prxs probably form an intramolecular disulphide bridge instead of 
dimerization as shown in figure 5 (Seo et al. 2000). 1-Cys Prxs bind some other molecule 
than Prx.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 5. Model of atypical 2-Cys Prx catalytical mechanism as proposed by Seo and co-authors 
(2000). 

Prxs can undergo a direct interaction with cyclophilin A. Cyclophilins are abundant 
proteins first characterised for their ability to act as a cyclosporine A receptor. They have 
cis-trans isomerase activity fitting with their proposed role as chaperones (Ivery 2000). 
Additionally cyclophilins seem to act as mediators in signalling and have growth factor 
like effects after oxidant exposure (Jin et al. 2000).  
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2.3.3  Sulfiredoxin 

Sulfiredoxin was recently characterized from budding yeast as an enzyme with an ability 
to reduce Cys-SOOH (Biteau et al. 2003). Sulfiredoxin, like Trxs and Prxs, is a thiol 
protein whose activity is based on its Cys residue. It has conserved homologues in higher 
eucaryotes, but they are so far poorly characterized. No homologue has been found in 
procaryotes, except in certain cyanobacteria. Bacterial Prxs are indeed much less 
sensitive to overoxidation, as they generally have a slightly different structure at their C-
terminal end. Budding yeast has both sensitive and insensitive Prxs for overoxidation and 
sulfiredoxin was shown especially to affect the activity of sensitive forms. Yeast 
sulfiredoxin was proposed to act both as a phosphotransferase and a thioltransferase, as 
ATP hydrolysis, Mg-ion and dithiotreitol was essential for the function. Mammalian 
sulfiredoxins seem to have different mechanisms of action as they prefer using GTP 
hydrolysis as power and Trx or GSH as co-factor (Chang et al. 2004b). The substrate 
specificity of sulfiredoxins is still unclear but they cannot rescue the overoxidised forms 
of atypical 2-Cys Prxs or 1-Cys Prxs (Woo et al. 2004) but on the other hand, their 
activity may not be targeted only to Prxs, but they may be involved in repairing several 
other damaged proteins as well.  

2.3.4  Peroxiredoxin I 

Human Prx I is a 22 kDa protein expressed ubiqitously throughout the body. It has been 
known by the names PAG-A, NKEF-A and thioredoxin peroxidase A (TpX-A or TDPX-
A) (Prosperi et al. 1993, Prosperi et al. 1994, Shau et al. 1994, Pahl et al. 1995). Its 
mouse homologue is known also as MSP23 or osteoblast specific factor (OSF-3) (Ishii et 
al. 1993, Kawai et al. 1994). It has been considered to be a cytoplamic enzyme, but a 
recent report has suggested additionally nuclear, mitochondrial and peroxisomal locations 
(Immenschuh et al. 2003). Its expression is induced by serum, oxidative stress and in 
some cases by H2O2 but not in every cell type (Ishii et al. 1993, Prosperi et al. 1993, 
Prosperi et al. 1994, Kim et al. 2000). In cultured murine cells, Prx I expression is cell 
cycle dependent being highest at the S phase (Prosperi et al. 1998). This has not been 
observed in human cells, but instead Prx I phosphorylation is affected by cell cycle state 
so that it occurs during mitosis (Chang et al. 2002). This Cdc2 mediated phosphorylation 
on threonine 90 inhibits Prx I activity, which may have an important role in regulating the 
H2O2 concentration during mitosis. However, only a fraction of Prx I is phosphorylated, 
which may in theory even result in a H2O2 gradient inside the cell. 

Prx I expression is upregulated in the rat lung during late gestation being highest at the 
time of birth (Kim et al. 2001a). This upregulation seems to occur at the translational 
level as the amount of mRNA is even lowered. In newborn rats, the expression is lowered 
within a few days to adult levels but can be again induced by hyperoxia. Prx I expression 
has also been studied in the fetal baboon lung, but only at the mRNA level, where it 
remained constant during the last trimester (Das et al. 2001). The amount of mRNA was 
however increased after birth in an oxygen dependent manner via PKC regulation. 
Sodium arsenate, an agent inducing oxidative stress, increases the level of Prx I 
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expression as well acting via a PKCδ mediated mechanism in murine osteoblasts (Li et 
al. 2002a). Very little is known about the details of Prx I induction, but transcription 
factor Nrf2 is essential in this induction response, at least in mouse macrophages (Ishii et 
al. 2000). 

In cultured cells, the overexpression of Prx I protects cells against apoptosis induced 
by H2O2 but not by other agents such as doxorubicin (Berggren et al. 2001). Murine Prx I 
has been shown to interact with the SH-3 and kinase domains of c-abl and to reverse c-
abl´s cytostatic effects (Wen & Van Etten 1997). It also interacts with the Myc Box II 
(MBII) region of the c-Myc transactivation domain (TAD), which is highly conserved 
among all Myc oncoprotein members (Mu et al. 2002). Prx I and c-Myc also confer 
resistance to oxidative stress. In contrast, Prx I inhibits tumorigenesis by c-Myc 
overexpressing fibroblasts and cause a selective loss of c-Myc target gene regulation, 
which suggests a role for Prx I as a tumor suppressor. This is also supported by results 
from a transgenic mouse model: Prx I knockout mice develop lymphomas, sarcomas and 
carcinomas (Neumann et al. 2003). Mice lacking Prx I suffer also from haemolytic 
anaemia, which shows the importance of Prx I for erythrocyte antioxidative defence 
(Immenschuh et al. 2003). 

2.3.5  Peroxiredoxin II 

Prx II (22 kDa) is also known as TDPX-1 or -B, TpX-B, PAG-B, NKEF-B, protector 
protein (PRP), TSA, torin and calpromotin (Harris & Naeem 1981, Kim et al. 1988, 
Moore et al. 1990, Prosperi et al. 1994, Shau et al. 1994). It is very similar to Prx I in the 
structure, subcellular location and catalytical properties (Lim et al. 1994). Prx II has some 
anti-apoptotic characteristics as its overexpression leads to resistance against cisplatin, 
irradiation, serum starvation, ceramide and etoposide (Zhang et al. 1997, Park et al. 
2000b, Chung et al. 2001). Manipulations of Prx II levels have also shown that Prx II 
inhibits NFκB activation after TNFα or H2O2 treatment and they have also shown the 
importance of the H2O2 concentration in several signalling cascades downstream to 
TNFα (Kang et al. 1998b, Kang et al. 2004). Artificial Prx II down-regulation in cultured 
cells makes the cells more susceptible to apoptosis by cisplatin treatment, and in that way 
it can be considered as a chemosensitiser, which makes it extremely important in the 
cancer treatment strategies (Yoo et al. 2002).  

Prx II expression in the rat lung during perinatal period is constant at the protein level 
but transcriptional induction is observed at the time of the birth (Kim et al. 2001a). The 
regulation of Prx II expression is poorly characterised, but it does not seem to be altered 
by H2O2 (Seo et al. 1999, Kim et al. 2000). Prx II expression is induced by ultraviolet B 
radiation in rat skin and by a high glucose content in glomerular mesangial cells (Lee et 
al. 2000a, Morrison et al. 2004). 

Prx II is an abundant protein in erythrocytes, Prx II knockout mice develop hemolytic 
anemia (Lee et al. 2003). It binds membrane proteins or membranes by its C-terminus 
(Moore & Shriver 1997, Cha et al. 2000). 
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2.3.6  Peroxiredoxin III 

Prx III is a mitochondrial enzyme and it may have a significant role in the protection 
against ROS produced by aerobic metabolism. In mouse, it is known by the names 
antioxidant protein 1 (AOP1) and Mer5 (Tsuji et al. 1995). Prx III has a mitochondrial 
localisation signal sequence that is cleaved. Antisense experiments performed on murine 
cells have revealed that it is essential for normal mitochondrial function as its depletion 
decreases mitochondrial mass, membrane potential and affects mitochondrial morphology 
(Wonsey et al. 2002). Prx III activity is negatively regulated by protein synthesis inhibitor 
Abrin A-chain (ABRA), which is an inducer of apoptosis (Shih et al. 2001). This 
interaction can influence the ROS levels in the mitochodria thus resulting in the release of 
cytochrome c that activates the caspase cascade. Cyclophilin 18 binds and stimulates its 
activity, but the significance of this interaction is not clear as they have different 
subcellular localizations (Jaschke et al. 1998). Prx III is regulated by c-Myc and on the 
other hand it is required for c-Myc mediated proliferation, transformation and apoptosis 
(Wonsey et al. 2002).  

2.3.7  Peroxiredoxin IV 

Prx IV, which is also called antioxidant enzyme 372 (AOE372) and TPx related activator 
of NF-κB (TRANK), is partly extracellular and the intracellular precursor is proposed to 
be inactive (Okado-Matsumoto et al. 2000). The location and the role of Prx IV have 
been under debate due to conflicting reports, but probably the intracellular or membrane 
bound form of 31 kDa is cleaved to the secreted form of 27 kDa in certain but not in all 
cell types. In cultured rodent cells, it has been detected only in the intracellular space, 
where its overexpression prevents ROS production by p53 or EGF (Wong et al. 2000). 
Prx IV seems to have cytokine-like properties, as Prx IV exposure of the cells induces 
iNOS by receptor-mediated mechanism (Haridas et al. 1998). It also activates c-Jun N-
terminal kinase and induces proliferation in fibroblasts.  

Prx IV can bind to heparan sulphate, which is located on the cell surface. It has been 
proposed that Prx IV is anchored on the extracellular surface, where its function is 
regulated by extracellular signals like redox status (Okado-Matsumoto et al. 2000). Prx 
IV may have an effect on rat spermiogenesis during membrane rearrangement as cleaved 
and membrane bound forms seem to be present in different phases (Sasagawa et al. 
2001). 

2.3.8  Peroxiredoxin V 

Prx V is the smallest (22 kDa and cleaved form 17 kDa) but most widely subcellularly 
distributed of the Prxs; it is cytoplasmic, nuclear and organellar (Knoops et al. 1999, Seo 
et al. 2000, Zhou et al. 2000). It was first identified as a gene that is downregulated in 
adenovirus-infected cells and it has been known by names like antioxidant enzyme 166 
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(AOE166), PMP20 or ARC1 (Wattiez et al. 1999, Kropotov et al. 1999). It has the 
capability to bind DNA and to repress RNA polymerase III catalysed transcription in 
vitro, but the in vivo significance of these abilities remains unclear (Kropotov et al. 
1999). In mouse, there are different transcripts produced tissue-specifically but some of 
them are possibly translationally inactive (Lee et al. 2000b, Sparling & Phelan 2003). Prx 
V expression is induced by calcium in keratinocytes but in other cell types the regulation 
is unclear (Seo et al. 2002). Also Prx V overexpression prevents p53 induced ROS 
generation and apoptosis, furthermore when targetted to the nucleus it can protect DNA 
(Zhou et al. 2000, Banmeyer et al. 2004). Downregulation of Prx V increases the amount 
of etoposide-induced DNA double-strand breaks (Kropotov et al. 2004). In the rat lung 
inflammation increases Prx V transcription pointing to protective role for Prx V in lung 
during inflammatory processes (Knoops et al. 1999). Prx V is the only one of human Prxs 
known to act also as a peroxynitrite reductase (Dubuisson et al. 2004). 

2.3.9  Peroxiredoxin VI 

Prx VI has been known by names AOP2, ORF6, phospholipase A2 (PLA2), KIAA0106 
and non-selenium glutathione peroxidase (Nagase et al. 1995, Jin et al. 1997, Kim et al. 
1997, Kim et al. 1998, Phelan et al. 1998). Prx VI is cytosolic, but it differs remarkably 
from Prxs I and II as it belongs to the group of 1-Cys Prxs and it is not reduced by Trx 
but rather GSH (Fisher et al. 1999, Fratelli et al. 2002, Manevich et al. 2004). It has not 
only peroxidase but also possesses phospholipase A2 activity and has been implicated in 
repairing oxidised lipids (Manevich et al. 2002). Animal models have indicated that it is 
possibly the most important Prx in the lung and also highly expressed there (Kim et al. 
1998, Kim et al. 2002, Wang et al. 2003, Wang et al. 2004). 

Prx VI knock-out mice have a shorter life span, severe tissue damage and increased 
protein oxidation compared to normal mice (Wang et al. 2003). Also knock-in mice have 
been developed and they have a decreased H2O2 accumulation (Phelan et al. 2003), but 
the relevance of this finding to the normal life span or diseases is not clear, even though 
oxidative stress in the rat lung is known to induce Prx VI expression (Kim et al. 2003). 
Adenovirus mediated transfer of Prx VI into murine lung protects its lung against 
hyperoxic injury thus supporting results obtained from transgenic animals (Wang et al. 
2004). 

2.3.10  Human peroxiredoxins 

Increased oxidative stress in tissues and cells has to be combalted by increased 
antioxidant capacity.  Indeed, Prx expression is known to be increased in several different 
carcinomas. One preliminary study performed in two different cell lines originating from 
human lung and in four homogenate samples of lung carcinoma indicated that Prx I 
expression might be altered in lung carcinoma (Chang et al. 2001). Prx I expression is 
high also in thyroid, oral and breast carcinomas (Yanagawa et al. 1999, Yanagawa et al. 
2000, Noh et al. 2001, Karihtala et al. 2003). Mouse models support the idea for an 
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important role for Prxs in several diseases. Prx level alterations have been also noted in 
Creutzfeld-Jacob disease, Alzheimer’s disease, Pick’s and Down syndromes (Kim et al. 
2001b, Nicolls et al. 2003, Sanchez-Font et al. 2003). The properties of human Prxs are 
summarised in table 2. 

 

Table 2. Properties of human Prxs. 

Prx Length 
(amino 
acids) 

Calculated 
size (kDa) 

Cleaved 
form 
(kDa) 

Genebank 
accession 
number 

Interactions with Chromosome 

I  199 22 - GI 440306 
 

C-myc 
Heme 
c-Abl 
Macrophage 
migration 
inhibitory factor 
Cyclophilin 

1p34.1  

II  198 22 - GI 440308 
 

Membrane 
Cyclophilin 

19p13.2 
 

III  256 28 21 GI 682748 
 

ABRA 
Cyclophilin 

10q25-26  

IV 271 31 27 GI 799381 
 

Heparin 
Cyclophilin 

Xp22.11 
 

V  214 22 17 GI 6103724 
 

DNA 
Cyclophilin 

11q13  

VI 224 25 - GI 285949 
 

Cyclophilin 1q25.1 

2.4  Human lung diseases associated with reactive oxygen species and 
antioxidant enzymes in human lung 

ROS have been linked to several both non-malignant and malignant lung diseases e.g. 
obstructive lung diseases (asthma and chronic obstructive pulmonary disease COPD), 
interstitial lung diseases (granulomatous diseases and idiopathic pneumonias), 
carcinomas, dysplasias and respiratory distress syndrome (Saetta et al. 2001, Kinnula & 
Crapo 2003, Kinnula & Crapo 2004, Kinnula et al. 2004). Cigarette smoke contains free 
radicals and other ROS, but it also activates inflammatory cells to produce the ROS and 
thus a high proportion of patients suffering lung disease will have a smoking history.  

Normal human lung is well protected against ROS. The epithelial lining fluid contains 
GSH, vitamin E, vitamin C and several important proteins like metal binding transferrin 
(Cantin et al. 1987, Cantin et al. 1990, Kinnula et al. 2004). Furthermore, several AOEs 
including CuZnSOD, MnSOD, ECSOD and catalase are expressed in the epithelium of 
the human airways (Marklund 1984, Oury et al. 1996, Lakari et al. 1998, Lakari et al. 
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2000). All of these enzymes are detected in both bronchial and alveolar epithelium. 
MnSOD and ECSOD are also located in macrophages. All of these enzymes, except 
MnSOD, can be found in vascular endothelial cells and MnSOD and CuZnSOD are also 
found in fibroblasts.    

2.4.1   Chronic obstructive pulmonary disease  

One common disease generally caused by smoking is COPD. It is a severe and 
progressive disease characterized by inflammation in airways, obstruction of peripheral 
airways and emphysema. It consists of morphological changes in both central and 
peripheral airways. Histopathological changes include increased amounts of 
macrophages, neutrophils, Goblet cells and enlarged mucous secreting glands, but fewer 
ciliated cells. Tissue proteolysis results in loss of lung elasticity and reduces the amount 
of alveolar epithelial cells. Oxidant stress plays an important role in injury and the 
inflammatory responses of COPD and thus the regulation of antioxidant enzymes may 
have a crucial effect on the initiation and progression of this disease (Ichinose et al. 2000, 
Paredi et al. 2000, Saetta et al. 2001, MacNee 2001, Langen et al 2003).  

2.4.2  Pulmonary sarcoidosis 

Sarcoidosis is a granulomatous disorder of unknown origin. In addition to granulomas, it 
is characterised by inflammation. It is capable spreading over several organs and its grade 
can vary from spontaneous recovery to fatal. ROS production especially from 
inflammatory cells increases the oxidative stress during sarcoidosis and presumably can 
affect the pathogenesis of this disease (Calhoun et al 1988). MnSOD is highly expressed 
in granulomas and is upregulated also in bronchoalveolar lavage (BAL) of patients with 
sarcoidosis (Lakari et al. 1998, Lakari et al. 2000)  

2.4.3  Lung carcinomas 

Lung carcinomas can be divided to small cell and non-small cell lung carcinomas. Small 
cell carcinomas are usually aggressive but sensitive to anti-cancer drugs. Non-small cell 
carcinomas include adenocarcinomas, large cell carcinomas and squamous cell 
carcinomas, which are often resistant to drugs. In addition to smoking, asbestos exposure 
is considered as a risk factor for their promotion (Rahman et al. 1977, Mossman & Gee 
1989). ROS are important in initiation, progression and even treatment of lung 
carcinomas as ROS affect mitogenic signalling, cell motility, tumour invasiveness and 
apoptosis (Behrend et al. 2003, Knaapen et al. 2004). In particular, p53 mediated 
apoptosis and hypoxia-inducible factor stabilisation with resulting angiogenesis are 
important ROS sensitive mechanisms associated with tumour initiation and progression 
(Green & Reed 1998, Chandel & Schumacker 2000). The levels of antioxidant enzymes 
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in lung caner are variable, but there is evidence that at least the Trx-system is highly 
elevated in this tumor and this is claimed to have an association to patient prognosis 
(Kahlos et al. 2001a, Raffel et al. 2003). 

2.4.4  Malignant pleural mesothelioma 

Malignant pleural mesothelioma is often attributable to asbestos exposure. Asbestos 
causes DNA strand breaks and damage to cells (Jackson et al. 1987, Kamp et al. 1992). 
Even though it is rather rare tumour, its resistance to therapeutics makes it an important 
target of cancer research. Mesothelioma contains elevated levels of several AOEs 
including MnSOD, catalase and GCL and Trx (Kahlos et al. 1998, Kahlos et al. 2001b, 
Järvinen et al. 2002, Kinnula & Crapo 2004). 



3 Aims of the study 

The purpose of the study was to understand the mechanisms of Prx expression, action and 
regulation in human lung. The more specific aims of the study were: 

1. To determine the cell specific expression and subcellular localization of Prxs at the 
protein level in normal human lung and in various cultured human lung cell lines 
including malignant A549 cells and five different mesothelioma cell lines , and non–
malignant bronchial Beas2B cells and mesothelial cells Met5A. 

2. To assess the cell specific expression of Prxs during inflammation (sarcoidosis).  
3. To examine Prx during different malignancies of the lung (especially squamous cell 

carcinoma and adenocarcinoma) and pleura (malignant pleural mesothelioma).  
4. To study the responses of Prx, Trx and TrxR expression to smoking and in patients 

with COPD. 
5. To assess the regulation of Prxs at the transcriptional and translational levels, and the 

post-translational oxidation state in lung cells exposed to oxidants or cytokines that 
are relevant in human lung diseases.  

 
 



4 Materials 

4.1  Biopsies and bronchoalveolar lavage (I, II, III, IV) 

Biopsies used were retrieved from the files of the Department of Pathology. Clinical 
information of all patients was received from patient records from Oulu University 
Hospital. Parenchymal biopsy specimens with sarcoidosis from ten patients and four 
control samples with normal histopathology from non–smokers were studied by 
immunohistochemistry (I). Samples with malignant mesothelioma from 36 patients and 
four apparently normal control samples of pleura (II), 92 carcinoma samples from 
patients with lung cancer and six histopathologically normal controls (III) were analysed 
by immunohistochemistry. Fifteen patients with COPD, 9 nonsmoking and 17 smoking 
controls (IV) were studied by immunohistochemistry so that a central and peripheral 
sample of each patient were analysed.  

Tissue carcinoma samples from five patients with adenocarcinoma and six with 
squamous cell carcinoma were analysed by Western and/or RT-PCR (III). Seven 
peripheral tissue samples from patients with COPD and three healthy controls were 
studied by Western analysis (IV). The cells from the bronchoalveolar lavage were studied 
from four patients with sarcoidosis and two controls (I). The controls were suffering from 
minor respiratory symptoms, but their BAL cell profile was normal. Bronchoscopic 
examinations have been conducted as differential diagnostic investigations under local 
anesthesia. 

Usage of patient samples in this study has been approved by Ethics committee of 
Northern Ostrobothnica District and TEO as required. 

4.2  Cell cultures (I, II, IV and V) 

Malignant lung adenocarcinoma cell line A549 derived from type II pneumocyte, non-
malignant SV40 transformed bronchial epithelial Beas 2B cells and non-malignant SV40 
transformed pleural mesothelial Met5A cells have been purchased from American Type 
Culture Collections or from National Cancer Institute (Laboratory of Human 
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Carcinogenesis, Dr Harris, Bethesda, USA). These cell lines were selected as they are 
well characterised and studied. Five different continuous mesothelioma cell lines (M14K, 
M24K, M25K, M28K and M38K) have been originally established from the tumour cells 
of five patients with untreated malignant mesothelioma (Pelin-Enlund et al. 1990).  

4.3  Antibodies (I, II, III, IV and V) 

Polyclonal anti-Prx antibodies were kindly provided by Professor Sue Goo Rhee 
(Laboratory of Cell Signaling, National Institute of Health, Bethesda, MD, USA) and 
Professor Sang Won Kang (Ewha Womans University, Seuol, Repulic of Korea). They 
are well characterised antibodies and have high specificity (Jin et al. 1997, Kang et al 
1998a, Kang et al. 1998b, Seo et al. 2000). Monoclonal anti-β-actin antibody (Sigma-
Aldrich) has been used to normalize the detection. Trx and TrxR antibodies (Sigma-
Aldrich) were used in some cases. Polyclonal MnSOD and GCS heavy chain antibodies 
were generous gifts from Professor J.D. Crapo and T. Kavanagh and they were used as 
controls of cell culture treatments. Ki–67 antibody (Zymed) was used to estimate the 
proliferation state of cells (II) since Ki–67 is expressed only in proliferating cells but is 
missing from resting cells (Gerdes et al. 1984). 



5 Methods 

5.1  Cell culture treatments (I, II, IV and V) 

The cells were cultured according to the suppliers’ instructions. Cultured A549 and 
Beas2B cells were exposed to variable concentration of H2O2 to create direct oxidative 
stress and to menadione or cisplatin to cause endogenous ROS production (IV and V). 
TNFα was used because it is an important cytokine and is known to upregulate MnSOD 
expression. TGFβ was selected as it is a growth factor whose function is associated with 
ROS and it downregulates GCL expression. BSO was used to deplete GSH, which affects 
the redox state of the cell. Generally cells were passaged the day before the initiation of 
exposure so that growth phase had started. The agent was added to normal growth 
medium and cells were cultured there for 1-72 hours. For some overoxidation analysis, 
the cells received a 30-60 min pulse of H2O2, after which the medium was replaced with 
fresh growth media. 

In the serum starvation and stimulation assay, the cells were passaged normally and on 
the next day the normal medium was replaced with medium containing no serum. Cells 
were cultivated for 72 h to synchronise the cells, after which the medium was replaced 
with normal media. 

5.2  Protein analysis  

5.2.1  Immunohistochemistry (I, II, III and IV)  

The tissues were fixed in 10 % formalin and embedded in paraffin after dehydration. Four 
μm thick sections were cut from paraffin embedded biopsies and processed routinely 
through xylene and ethanol series. Immunostainings were done by Histostain™ –Plus Kit 
(Zymed Laboratories Inc., USA) according to the manufacturer’s instructions. This 
staining is based on biotinylated secondary antibody in conjuction with streptavidin 
peroxidase. Counterstaining was performed with Mayer-hematoxylin. Stain intensities 
have been evaluated semiquantitatively in collaboration with two or three pathologists. 
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Negative controls containing PBS or isotype control serum from non–immunised host 
animal instead of primary antibody were prepared in each staining series and confirmed 
to be negative. Dilutions of Prx antibodies varied slightly in different series due the 
different lots used. 

5.2.2  Western blotting (I, II, III, IV and V) 

For Western analysis, the biopsies were stored in liquid nitrogen and cultured cells were 
trypsinated and the cell pellets were stored at -70°C after washing with PBS. Western 
blotting was used to detect Prxs after routine SDS-PAGE or after non-reducing 
electrophoresis. Non-reducing electrophoresis was performed as standard SDS-PAGE, 
except that the sample buffer contained no β-mecaptoethanol. This left the subunits of the 
dimeric forms associated together, since to break the disulphide bridge would require 
addition of a strong reductant. An enhanced chemilumenescence system was used for 
detection.  

5.2.3  Immunoelectron microscopy (II) 

Immunoelectron microscopy was performed to study the subcellular localisation of Prxs 
in lung cells. Cultured cells were fixed in 4 % paraformaldehyde, immersed with 2.3 M 
sucrose and frozen. Cryosections were treated with Prx antibodies and thereafter with 
Protein A-gold conjugate. Methyl cellulose embedded sections were analysed with a 
transmission electron microscope.   

5.3  Transcript analysis  

5.3.1  Extraction of RNA (III and V) 

For RNA isolation, the cell pellets were stored at -70°C and tissue samples were 
incubated with RNAlater™ (Ambion) prior to storage in liquid nitrogen. The mRNAs of 
the cultured cells were extracted with the QuickPrep Micro mRNA Purification Kit 
(Amersham Pharmacia). Alternatively total RNA of cultured cells or human tissues was 
purified by Rneasy Mini Kit (Qiagen). 

5.3.2  Quantitative reverse transcriptase polymerase chain reaction 
 (RT-PCR) (III and V) 

The RT-PCR primers were designed to be cDNA specific and to contain at least one 
predicted intron sequence in order to avoid contamination of genomic DNA. Competitive 
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RT-PCR controls for Prxs were prepared by PCR using recombinant primers, which 
caused a 50-100 bp deletion into the product leaving the RT-PCR primer binding sites 
intact. These products were subcloned into pGem-3zf and amplified in E. coli XL1-blue 
strain. Plasmids were purified from the bacteria and RNA was produced by the Riboprobe 
in vitro transcription system (Promega) according to the manufacturer’s instructions. 
Produced control RNA was used in the same RT-reaction as the mRNA under 
investigation. By preparing serial dilutions of the control RNA and comparing the 
amounts of PCR products from the control and studied mRNA it was possible to obtain 
an estimate of the amount of mRNA level in the sample. 

5.4  Assessment of proliferation and apoptosis (II) 

Proliferation of tumour cells was estimated immunohistochemically by staining with Ki–
67 antibody. Apoptosis was detected by the ApopTag Kit (Oncor) that stains the 3’–ends 
of DNA fragments present in apoptotic cells.  

5.5  Computational and statistical analysis 

Alignment analyses were performed by BLAST programs available at 
www.ncbi.nlm.nih.gov against nucleotide, expressed sequence tags of human (human-
EST) or genomic nucleotide databases for designing proper primers for RT–PCR 
(Altschul et al. 1990). Genetic structure was predicted also to help primer design by 
comparing genomic sequences with cDNAs (GeneFinder, URL www.bcm.edu). Promoter 
prediction and computational analysis was done by using the TFFACTOR, TFSITE and 
Eucaryotic Promoter Database (URL www.embl–heidelberg.de) to help in the Prx 
regulation studies. Statistical analysis was performed with SPSS 10.0 or 11.5 for 
Windows (Chicago, IL, USA). Data was analysed using ANOVA and post hoc 
comparison (continuous data) or using Fisher’s exact test (categorical data). Kaplan-
Meier curves were used for survival studies and log-rank, Breslow and Tarone-Ware tests 
were used to test the statistical significance. Generally, probability values below 0.05 
were considered statistically significant. The immunohistochemical evaluations of two 
pathologists were compared using Cohen’s κ statistics to ensure good agreement. 
 



6 Results 

6.1  Peroxiredoxins in healthy human lung (I, II, III and IV) 

All six Prxs were clearly detectable in homogenates of apparently normal lung by 
Western analysis and by RT-PCR. Immunohistochemical staining revealed the expression 
to be cell-specific according to table 3. Prxs I and III had a similar cell specific 
expression, that was highest in bronchial epithelial cells and alveolar macrophages, but 
lower expression could be detected in alveolar epithelium and vascular endothelium. Prx 
II was seen in epithelial cells and macrophages. Prx IV was expressed in bronchial 
epithelium and alveolar macrophages. Prxs V and VI were located in epithelium and a 
lesser extent in macrophages. 

Table 3. Cell-specific expression of Prxs in normal human lung.  

Cell type Prx I Prx II Prx III Prx IV Prx V Prx VI 
Bronchial epithelium Moderate Low High Low High High 
Endothelium Low No Low No No Low 
Alveolar epithelium Low Low Moderate No High High 
Alveolar macrophages Moderate Low High Low Moderate Moderate 

Immunohistochemistry and immunoelectron microscopy revealed that the Prxs had 
different subcellular locations in the manner shown in figure 6. Even though Prxs can be 
detected in several compartments of the cell, their nuclear location can be seen only 
occasionally and not for example in cultured A549 cells. 

6.2  Peroxiredoxins in pulmonary sarcoidosis (I) 

The expression pattern of Prxs in parenchymal tissue and BAL fluid cells of pulmonary 
sarcoidosis was very similar to that seen in normal lung, but there was high expression of 
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Prxs I and III in granulomas detected by immunohistochemistry (table 4). Also Prxs IV, V 
and VI were detected in granulomas but less intensively.  
 
 

Fig. 6.  Subcellular locations of Prxs in cultured human lung cells. 

6.3  Peroxiredoxins in malignant mesothelioma and lung carcinomas 
(II and III) 

All of the Prxs except Prx IV were highly expressed in malignant mesothelioma, and their 
expressions were conspicuously higher than in normal pleura (table 4). In 
adenocarcinoma and squamous cell carcinoma Prxs I, II and IV were highly expressed 
compared to normal lung as reviewed in table 4. Additionally Prx VI was elevated in 
adenocarcinoma but not in squamous cell carcinoma. In particular high Prx IV expression 
was seen in adenocarcinoma and Prx VI expression was associated with high grade 
squamous cell carcinoma.  
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6.4  Peroxiredoxins, thioredoxin and thioredoxin reductase in 
smoker’s lung and in chronic obstructive pulmonary disorder (IV) 

Prxs were studied from lung homogenates of non-smokers, smokers and smokers with 
COPD. Since Prx VI is highly expressed in human lung and its role there is significant, 
Prxs V and VI were selected for more detailed analysis by immunohistochemistry. Trx 
and TrxR were also analysed in these cases.  

Trx was significantly increased in the smokers' lung bronchial epithelium but other 
effects of smoking or COPD were quite small. Some increase in the expression of Prxs V 
and VI was seen in alveolar macrophages. A summary of Prx expression in the studied 
lung diseases is shown in table 4. 

Table 4. Expression of peroxiredoxins in various disorders of the lung or pleura 
compared to apparently normal tissue 

Prx Pulmonary 
sarcoidosis, 
granulomas 

COPD Adeno-
carcinoma, 
lung 

Squamous cell 
carcinoma, lung 

Pleural 
meso-
thelioma 

I Highly 
expressed 

No alterations 
in 
homogenates 

Increased Increased Increased  

II Not expressed No alterations 
in 
homogenates 

Increased Increased  Increased 

III Highly 
expressed 

No alterations 
in 
homogenates 

No clear 
alterations 

No clear 
alterations 

Increased 

IV Highly 
expressed 

No alterations 
in 
homogenates 

Increased Increased No clear 
alterations 

V Highly 
expressed 

Mild 
induction in 
macrophages 

No clear 
alterations 

No clear 
alterations 

Increased 

VI Highly 
expressed 

Mild 
induction in 
macrophages 

Increased No clear 
alterations 

Increased 

6.5  Peroxiredoxins in cultured cells (I, II, IV and V) 

All Prxs were expressed very similarly in both non-malignant bronchial Beas 2B cells 
and in malignant A549 cells, except that Prx II was almost totally missing from A549 
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cells as could be seen both by RT–PCR and Western analysis. Prx expression was also 
very constant in both of these cell lines and could be induced only by the oxidative stress 
generated by H2O2 exposure but not by agents like TNFα, TGFβ, BSO, cisplatin or 
menadione. Western analysis was performed generally 2, 4 or 6, 24, 48 and 72 hours after 
exposure. Quantitative RT–PCR was performed 30 min, 1, 4 or 24 hours after exposure 
but no alterations were seen. Also the catalytical cycle of Prxs was affected only by H2O2 
Serum depletion/addition was tested, but also in these experiments the alterations were 
rather minor. A representative of oxidation state analysis is shown in figure 7. Oxidation 
state analysis was performed also from tissue samples of apparently normal lung tissue, 
adenocarcinoma, squamous cell carcinoma or COPD but there were no differences 
detected. 
 

 

Fig. 7. Non–reducing SDS–PAGE analysis of Prx I (A) and III (B) 1, 24 or 48 hours after 
H2O2 exposure (H) or unexposed control cells (C). Sites of dimeric (DI) and monomeric 
(MONO) forms are indicated by arrows. 

6.6  Predicted gene structures and properties of peroxiredoxins 

Before planning the competitive constructs for RT-PCR, the exon/intron boundaries were 
predicted by computational analysis from published human genome project sequences. 
Furthermore the predicted promoter sequences were analysed for transcription factor 

← DI 

← DI 

← MONO 

← MONO 
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binding sites. The amount of predicted exons is shown in table 5, where also the existence 
of the ARE sequence and selected putative transcription factor binding site are indicated. 

Table 5. Predicted properties of genomic sequences of human Prxs.   

Putative binding sites Prx Number of 
exons 

ARE 
NFκB Ap1 Ap2 c-Myc Sp1 Hif1 

I 6 + + + +  + + 
II 6 + + + +  + + 
III 7 +    + + + 
IV 7 + +   + + + 
V 6 + +     + 
VI 6 + +     + 



7 Discussion 

The main goals of this project were first to study the expression of Prxs in human lung 
under normal physiological conditions and during selected lung disorders and secondly to 
study the role and regulation of Prxs by using cultured cells as model systems. The  
results showed minor alterations in Prx expression during non-malignant diseases but a 
remarkable increase during malignancies. Regulation of Prxs in cultured human lung 
cells was found to be TNFα and TGFβ independent, but slightly upregulated by high 
concentrations of H2O2 Furthermore, the issue about the role of Prxs in human lung, i.e. 
they have a protective or regulatory nature, remained ambiguous.    

7.1  Peroxiredoxins in normal human lung (I, II, III, IV and V) 

This was the first study of Prxs in human lung revealing their expression in normal lung 
and in various lung disorders. Prxs are abundant proteins existing in six different 
isoforms, but the reasons for their multiplicity and their interplay are mostly unclear. One 
explanation for the existence of six different Prxs was noted already in our preliminary 
studies, when different Prxs were observed in different cell types of the lung (I). 
Furthermore their subcellular compartmentalisation was clear. Prxs III and V were known 
to be present in organelles, Prx IV in extracellular space and Prx III had been previously 
detected in the nuclear fraction of cultured cells. Our results confirmed these localisations 
in lung cells and in addition our studies indicated that also other Prxs may not only have a 
nuclear location but they also may be occasionally concentrated in the nucleus. This 
phenomenon was mostly detected in the bronchial epithelium, but more rarely also in 
other areas of the lung. This raises the question about their role in the nucleus. Prx V has 
been reported to have DNA binding properties and possibly to regulate retroposon 
transcription (Kropotov et al. 1999), but no other direct connections of Prxs to DNA have 
been reported. It is also possible that their only purpose in the nucleus is to protect DNA 
from being exposed to ROS. This is supported by the fact that a strong nuclear location 
was observed in the bronchial epithelium, which experiences a very strong oxidative 
stress compared to other areas. On the other hand, also cultured cells are cultivated in an 
oxidant rich environment as compared to human tissues, but, as stated, no nuclear 
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location has been detected except for Prx III. These results suggest that there may be 
some sort of targeting machinery for Prxs, as their capability to passively translocate to 
the nucleus does not explain their concentration there and no traditional nuclear 
localisation signals are present in their sequences. The possible targeting force remained 
unsolved, is it H2O2, the general redox state or for example the cell cycle state. Trx is 
known to regulate directly the activity of certain transcription factors and therefore one 
cannot exclude a similar regulatory role for Prxs. 

7.2  Peroxiredoxins in non-malignant diseases (I and IV) 

Analysis of lung samples from patients with pulmonary sarcoidosis or COPD suggested 
that Prxs may have a role during inflammation. First all of the Prxs except Prx II were 
highly expressed in sarcoidosis granulomas, even though their expression elsewhere in 
the lung was very similar to normal lung. BAL cells mostly contain inflammatory cells 
and they seemed to have a slightly different Prx profiles in healthy controls and in 
sarcoidosis patients. Secondly we observed that macrophages were very heterogenous in 
how they expressed Prxs V and VI expressions, which may indicate different expression 
at different activation states of inflammatory cells or in different macrophage 
populations. As this induction was clear only in a subpopulation of macrophages, it is 
probable that this induction is caused more by intracellular signals than by for example 
the increased oxidative stress of present in the lungs of smokers. 

Prxs V and VI were surprisingly constantly expressed in the epithelium of the airways 
of non-smokers, smokers and smokers with COPD. Similar results would be expected for 
the other Prxs as microarray studies performed on bronchial epithelium revealed only a 
minor induction of Prx IV in smoker’s lung (Hackett et al. 2003, Golpon et al. 2004). In 
contrast, a clear induction of Trx by smoking could be seen. Since Prxs are not induced 
by cigarette smoke, it is probable that they do not provide any extra defence against the 
elevated oxidative stress. This could indicate either that the role of Prxs is non-AOE-like 
or they could be one part of AOE machinery that does not respond to oxidative stress 
forcefully thus resulting in accumulation of H2O2. The lack of induction by cigarette 
smoke is in line with studies that show Prx upregulation immediately after birth in rat 
lung and also with the reports that Prx expression is high in normal lung at ambient 
oxygen tension. 

7.3  Peroxiredoxins in malignant diseases (II and III) 

Several Prxs were upregulated in both lung carcinomas and malignant mesothelioma as 
expected from previous reports of high expression of Prx I in some other human 
malignancies (Yanagawa et al. 1999, Yanagawa et al. 2000, Chang et al. 2001, Noh et al. 
2001, Choi et al. 2002, Karihtala et al. 2003). Obviously the Prx expression pattern was 
different in different carcinoma subtypes such that Prxs III and V levels were high 
especially in pleural mesothelioma, Prx VI in pleural mesothelioma and adenocarcinoma 
but not in squamous cell carcinoma, Prx IV in adenocarcinoma and squamous cell 
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carcinoma but not in pleural mesothelioma. These results highlight the need for further 
studies to map their possible use in diagnostics, for example differentiating malignant 
pleural mesothelioma from metastatic carcinomas which have spread to pleura.   

Prx I is a potent tumor suppressor, but it was highly expressed in lung carcinomas as 
well as in malignant pleural mesothelioma in a manner similar to that occuring in several 
other carcinomas. This apparent disagreement is explained by the different phases of 
tumor initiation and progression. At the very early stages, the lack of Prx I makes cells 
more susceptible to oxidative damage and thus increases the accumulation of mutations 
ultimately leading to malignant transformation. It is not known whether decrease of Prx I 
occurs in human tissues and is one of the factors leading to cancer, but it would be 
interesting to follow its behaviour as cells are transformed. Once the cell has been 
transformed, Prx I expression would however be favourable for cancer progression as it 
would protect cells from apoptosis, which explains why several tumors contain high 
levels of this enzyme. In some COPD patients there were dysplastic areas in their bronchi 
and in these regions, Prx V and VI expressions were lower than in the surrounding 
epithelium, but reliable results would require analysis of more samples. 

Prxs II and VI, the other cytosolic Prxs, were generally induced in malignancies, 
except for Prx VI in squamous cell carcinoma which showed no difference from normal 
lung. These differences between various carcinoma types could be simply explained by 
the different origins of these cells. A more elaborate explanation would be the different 
proliferation rate of these cells or some other yet unidentified system affecting Prx 
expression. Ultimately the factors leading to high Prx expression in malignant cells 
remained unclear. It is possible that elevated metabolic activity, increased proliferation or 
improved ability of the cancer cell to protect itself against apoptosis would be directly or 
indirectly affecting the Prx expression.  

7.4  Oxidation state of peroxiredoxins (IV and V) 

In tissues, Prxs I-IV are present mostly as dimers, but in cultured cells a higher proportion 
seemed to exist as a monomer (IV and V). During the normal catalytical cycle, Prxs 
fluctuate between monomeric and dimeric forms, but when the cells were treated with 
more than 50 μM H2O2, the balance was disturbed so that the proportion of the 
monomeric form increased. This was presumably because of overoxidation, which 
transiently inactivates Prxs. The importance of this type of regulation in human tissues 
remains unclear. However, recently characterized sulfiredoxin, the rescucer of 
overoxidised forms of 2-Cys Prxs, poses several questions and explanations. Sulfiredoxin 
is not expressed in all cell types. Thus in some tissues, Prx overoxidation may be 
irreversible and thus allow H2O2 accumulation and its long-term usage as a second 
messenger. In other tissues, sulfiredoxin is expressed at high levels and thus allows 
efficient H2O2 removal constantly offering good protection against oxidative stress. 
Sulfiredoxin catalyses the reduction relatively slowly in cells, which could even give time 
for the initiation of apoptotic signaling after the H2O2 burst. 

Even though overexpression studies on cultured cells have indicated that Prxs break 
down H2O2 generated after TNFα exposure (Kang et al. 1998b), we did not observe any 
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alteration in Prxs I-IV dimer/monomer ratio after TNFα, TGFβ or BSO treatments. It is 
however possible that they degrade H2O2, but do so in a way that their catalytic cycle is 
not affected. On the other hand, the differences of the redox state between cultured cells 
and tissue biopsies suggests that cultured cells grown under conventional conditions may 
not represent a good model for this kind of study, since under normal cell culture 
conditions, a high proportion of Prxs might be inactivated. 

7.5  Regulation of peroxiredoxin expression (V) 

One important aim of this study was to identify factors regulating Prx expression. 
However, the growth factors, cytokines or other treatments that regulate the traditional 
AOEs had no effect on Prx expression in cultured cells. The depletion of GSH by BSO or 
serum starvation of the cells also had surprisingly small effects on Prx expression, even 
though serum has been reported to induce Prx I expression in murine cells (Ishii et al. 
1993, Prosperi et al. 1998).  

Computational analysis of the predicted promoter areas of Prxs showed some putative 
binding sites for Ap1, NFκB, c-myc and Hif1. These predictions do not however actually 
determine, whether these sites are functional or not. Preliminary attempts were made for 
Ap1 and NFκB depletion by antisense techniques, but no effects on Prx expression were 
seen. Also the lack of induction by TNFα would suggest only minor NFκB mediated 
regulation. In mouse, c-myc regulates Prx III expression and as there are several putative 
binding sites of c-myc in the predicted Prx promoters, c-myc seems likely to be one of 
the transcription factors involved. Additionally Nrf2 regulated induction in inflammatory 
cells may be the most important mechanism also in non-malignant human lung (Ishii et 
al. 2000). Very impressive Prx expression was seen in malignant tissue samples, but the 
precise upregulator triggering this process remained unsolved. It is probably attributable 
to several different factors including a mixture of growth factors and other regulators 
leading to the high proliferation.  

7.6  Methodological aspects (I, II, III, IV and V) 

Human lung contains dozens of different cell types, which makes it a very challenging 
target for research. The best way to study the protein expression of the lung is obviously 
immunohistochemistry, which was the most important method also used in these studies. 
Samples of lung tissue homogenates or BAL fluid cells can be very heterogeneous, for 
example the amount of macrophages may vary greatly not only between individuals but 
also in various areas of the same lung. Therefore it is not surprising that Western analysis 
of homogenates did not invariably correlate with the more detailed immunohistochemical 
findings (III and IV). In addition, it must be kept in mind that Prx IV is extracellular and 
Prxs III and V are organellar, which make these enzymes difficult to measure by 
immunohistochemistry as a proportion of extracellular proteins may escape during 
sample preparation and granular staining of organelles is difficult to evaluate. It is most 
likely that especially Prx IV is underestimated by immunohistochemistry. Therefore 
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further studies were conducted using several methodologies with the same tissue 
specimens. Immunoelectron microscopy provides more specific information about 
localisation, but as also here, it can be performed only in a very limited area and thus 
reveales expression only in a few cells. One major disadvantage of 
immunohistochemistry is the method used for evaluation of staining, since the assessment 
of positivity is very subjective, and requires several independent assessments of the same 
sample. Thus it is both time-consuming and not particularly accurate. However, as the 
samples are very heterogenous with all different cell types, a great deal of information 
may be lost if samples are evaluated only by means of positive area. 

In situ hybridization was viewed as a good method for detecting expression at the 
transcriptional level in the lung. Therefore constructs for probe production were 
subcloned for different Prxs for further studies. A quantitative RT-PCR system was set up 
for these studies and they provided information about transcript levels in cultured cells 
but also in few cases in lung homogenates. In particular lung homogenate studies by RT-
PCR and Western anlysis suggested that some Prxs are strongly regulated at the 
translational level (III), therefore in situ hybridization might give interesting results to 
compare with immunohistochemistry. Especially Prx V expression was clearly different 
in tissue samples by RT-PCR and Western analysis (III), which pointed to strong 
translational regulation or that perhaps there are two distinct transcripts in human cells 
similarly to the situation in mice, which have short and long forms. This was not tested 
by Northern blotting, but attempts were made to amplify two forms from human lung 
cDNA library by RT-PCR, but only one size transcript was amplified. This does not 
exclude the existence of longer transcript, especially as PCR favors shorter products.  

Prxs are regulated also at the posttranslational level by phosphorylation and oxidation. 
There are some antibodies available for specifically these modified forms, but at least the 
antibody against phosphorylated Prx I did not work properly in immunohistochemistry 
nor Western, probably due to low levels of this protein form. Activity measurements 
would provide information about Prx modifications as phosphorylated and overoxidised 
forms are inactive, but this is difficult from tissue samples, as the correct use of this 
method would need sample fractionation, which is limited by small size of biopsy 
samples and this procedure itself might alter the protein conformation/activity. Therefore 
Western analysis was performed after non-reducing electrophoresis, which shows 
monomeric and dimeric forms of Prxs I-IV in different positions. This method does not 
directly reveal Prx activity, but reflects more disturbances in the catalytical cycle and in 
its simplicity provides a useful alternative to 2–dimensional electrophoresis, which 
separates proteins both based on their size and isoelectric point. On the other hand, the 
monomeric form may contain functional thiol or sulphenic acid groups, but there can be 
also non-functional sulphonic or sulphinic acid. The monomeric form could also, in 
theory, represent the unfolded form of Prx, as in addition to transcriptional responses, the 
stress experienced by the cell not only reduces translation but also reduces protein folding 
leading to the accumulation of unfolded proteins in endoplastic reticulum. Also 
alterations in the redox state may occur during sample preparation and this factor must be 
carefully considered especially when using tissue samples. 

There are several under- and overexpression studies with Prx but no systematic studies 
on their regulation in intact cells.  Therefore, cultured cells were used as a model for Prx 
expression. They were highly expressed in cultured cells, at about the same magnitude as 
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in carcinoma tissue but this expression was hard to manipulate with any tested agent. 
Possibly Prxs are up-regulated already in conventional cell culturing conditions, i.e. cells 
under high oxygen pressure and with several growth factors or serum added to the 
medium. A high basal level of expression may make it impossible to detect significant 
induction even by factors that may have a crucial role in vivo. These results do not rule 
out the possibility of a regulatory role for TNFα, TGFβ or other factors in vivo. In future 
studies it should be possible to reduce Prx amount in the cells via antisense technology 
and this may be one way to obtain information about their expression and especially their 
importance in cultured lung cells.   

In addition to the small sample size also number of available samples was a limiting 
factor. In common diseases like COPD, the samples were easier to obtain, but for 
example it proved difficult to aquire a suitable amount of samples from patients with 
usual interstitial pneumonia even though our preliminary results were very interesting. In 
particular, the number of healthy controls was very small in all of these studies and they 
mostly contained individuals with minor respiratory symptoms. There are also other 
problems in obtaining lung tissue or BAL samples, especially if one wishes to study the 
redox system. Anaesthetic agents and elevated oxygen pressure during operation are 
procedures that can affect the redox state and the expression of AOEs.  



8 Conclusions 

1. All the members of Prx family are expressed in human lung but they are 
expressed in a cell-specific manner. The expression is generally highest in the 
epithelium and in inflammatory cells. 

2. Several Prxs are highly expressed in granulomas of sarcoidosis, while the 
expression in non-granulatomous inflammatory areas is not affected. 

3. Several Prxs are highly expressed in malignant mesothelioma, adenocarcinoma 
and squamous cell carcinoma. The expression pattern differs between different 
carcinoma subtypes. 

4. The Prx expression pattern in the lungs of smokers or COPD patients is rather 
similar to that found in healthy non-smokers. The only difference was seen in 
alveolar macrophages, which contained more Prx V and VI positivity in COPD 
patients’ lung than in healthy non–smokers’ lung. However, Trx expression was 
elevated in bronchial epithelium of smoker’s lung compared to healthy bronchial 
tissue from non-smokers. 

5. It was difficult to modify Prx levels in cultured cells. None of the tested growth 
factors or cytokines affected the transcription or translation, only very strong 
oxidative stress created by high concentrations of H2O2 increased the expression. 
Strong oxidative stress also affected the oxidation state of 2-Cys Prxs, 
presumably inactivating them. 
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