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ABSTRACT

The traditional methods of analysing heart rate variability based on means and variance are un
detect subtle but potentially important changes in interbeat heart rate behaviour. This researc
designed to evaluate the clinical applicability and prognostic significance of new dynamical met
of analysing heart rate behaviour derived from nonlinear mathematics.

The study covered four different patient populations, their controls and one general populati
elderly people. The first patient group consisted of 38 patients with coronary artery disease w
previous myocardial infarction, the second of 40 coronary artery disease patients with a prior Q-
myocardial infarction, and the third of 45 patients with a history of ventricular tachyarrhythmia.
fourth group comprised 10 patients with a previous myocardial infarction who had experie
ventricular fibrillation during electrocardiographic recordings. The fifth group comprised a rand
sample of 347 community-living elderly people invited for a follow-up of 10 years af
electrocardiographic recordings.

Heart rate variability was analysed by traditional time and frequency domain methods. The
dynamical measures derived from nonlinear dynamics were: 1) approximate entropy, which re
the complexity of the data, 2) detrended fluctuation analysis, which describes the presence or a
of fractal correlation properties of time series data, and 3) power-law relationship analysis, w
demonstrates the distribution of spectral characteristics of RR intervals, but does not reflec
magnitude of spectral power in different spectral bands.

Approximate entropy was higher in postinfarction patients (1.170.22), but lower in coronary a
disease patients without myocardial infarction (0.930.17) than in healthy controls (1.03014, p<
p<0.05 respectively). It did not differ between patients with and without ventricular arrhythmia.
short term fractal-like scaling exponent of the detrended fluctuation analysis was higher in coro
artery disease patients without myocardial infarction (1.340.15, p<0.001), but not in postinfar
patients without arrhythmia (1.060.13) compared with healthy controls (1.090.13). The short
exponent was markedly reduced in patients with life-threatening arrhythmia (0.850.25 ventri
tachycardia patients, 0.680.18 ventricular fibrillation patients, p<0.001 for both). The long t
power-law slope of the power-law scaling analysis was lower in the ventricular fibrillation group t
in postinfarction controls without arrhythmia risk (-1.630.24 vs. -1.330.23, p<0.01) and predi
mortality in a general elderly population with an adjusted relative risk of 1.74 (95% CI 1.42-2.13

The present observations demonstrate that dynamic analysis of heart rate behaviour gives new
into analysis of heart rate dynamics in various cardiovascular disorders. The breakdown of the n
fractal-like organising principle of heart rate variability is associated with an increased ris
mortality and vulnerability to life-threatening arrhythmias. .

Keywords:dynamic analysis, non-linear methods, heart rate variability.
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Prediction is difficult, especially of the future

NEILS BOHR
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Abbrevations

α1 short term fractal-like correlations of RR interval data
α2 long term fractal-like correlations of RR interval data
β slope of the power-law relationship of RR interval data
CAD coronary artery disease
ECG electrocardiography
EF ejection fraction
HF high frequency
HR heart rate
LF low frequency
MI yocardial infarction
NSVT nonsustained ventricular tachycardia
NYHA New York Heart Association
SD standard deviation
SD1 standard deviation of instantaneous beat-to-beat variability
SD2 standard deviation of continuous long term RR interv

variability
SDANN standard deviation of RR intervals of measured segment
SDNN standard deviation of RR intervals of 24-hour recording
VF ventricular fibrillation
VLF very low frequency
VPB ventricular premature beat
VT ventricular tachycardia
ULF ultra low frequency
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1. Introduction

The cardiovascular concept of homeostasis refers to the tendency of the organi
maintain a relatively regular heart rate and blood pressure in the face of chan
environmental conditions. No physiological variable, however, will give a time seque
that is absolutely stationary or periodic. Spontaneous fluctuations can be observ
cardiovascular functions, such as heart rate and blood pressure, even whe
environmental parameters are maintained at as constant a level as possible a
perturbing influences can be identified. Since the possible significance of this fluctua
was realised, heart rate variability has been widely studied. Several studies have s
that decreased fluctuation of RR intervals implicates an increased risk for arrhyth
events and an increased mortality rate in patients with a previous myocardial infarc
(Kleiger et al. 1987, Farrellet al. 1991, Biggeret al. 1992).

Since the observation that heart rate fluctuation is related to various cardiovas
disorders, the analysis of heart rate variability has become a widely used tool in
assessment of the regulation of heart rate behaviour (Akselrodet al. 1981, Paganiet al.
1986, Huikuriet al. 1995). Because cardiovascular function is not a stationary system
traditional indexes of heart rate variability (Kleigeret al. 1992, Öriet al. 1992) may lack
the ability to detect subtle but important changes in heart rate behaviour. Bec
nonlinear mechanisms are also involved in the genesis of heart ratedynamics (Goldberger
& West 1987, Babyloyantz & Destexhe 1988), analysis of the dynamic behaviou
cardiac signals has opened up a new approach towards the assessment of norm
pathological cardiovascular behaviour. It has been hypothesised that spontan
fluctuation in the dynamics of cardiovascular function may protect the system in cas
acute perturbations, and that abnormalities in dynamic behaviour may predispo
abrupt changes in cardiovascular function (Goldberger 1996). A number of new met
have been recently developed to quantify complex heart rate dynamics (Penget al. 1995,
Pincuset al. 1992, Yamamotoet al. 1991). They may reveal abnormalities in time-serie
data that are not apparent when conventional statistics are used (Goldberger 1996,
et al. 1994, Iyengaret al. 1996, Fleisheret al. 1993).

This study was designed to test the hypothesis that some dynamical analysis me
can reveal subtle abnormalities in heart rate behaviour and complement the tradit
methods of analysing heart rate variability in various pathological conditions.
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2. Review of the literature

2.1. History of heart rate variability

Various cardiovascular variables, such as heart rate and blood pressure, fluctuate fro
beat to another. Stephen Hales (Hales 1733) reported beat-to-beat heart rate variab
be synchronous with respiration (respiratory sinus arrhythmia). Although the temp
fluctuations in cardiovascular signals were noted in ancient times, physicians h
overlooked for a long time the possible significance of beat-to-beat fluctuation
cardiovascular signals. This variability has generally been treated as noise to be e
ignored or averaged out. The field in which the potential clinical significance of beat
beat variability in cardiovascular signals was first recognised was obstetrics. In 1965
importance of sinus arrhythmia was described in relation to fetal monitoring. T
variability correlated with fetal viability; diminution of beat-to-beat variability indicate
fetal compromise (Hon & Lee 1965). Initially, heart rate variability measurements w
based on simple measurements of RR intervals in studies on diabetics (Murrayet al.
1975).

Subtle beat-to-beat fluctuations in cardiovascular signals have received only
at ten t io n un t i l re cen t ly, m os t pr ob ab ly du e t o a lac k of h igh r eso l u t io
electrocardiographic recordings and digital computers with adequate calculation cap
Since the introduction of such computers, computation of heart rate variability us
various algorithms to assess the frequency and amplitude of the oscillatory compone
heart rate behaviour has been possible (Kay & Marple 1981, Akselrod et al. 1981). Re
studies have shown that decreased fluctuation of RR intervals is not noise, but impli
an increased risk for arrhythmic events and an increased mortality rate in patients w
previous myocardial infarction (Kleiger et al. 1987, Farrell et al. 1991, Bigger et
1992). Time and frequency domain measures of heart rate variability have prov
prognostic information and also made it possible to perform noninvasive studies on
significance of changes in the regulation of heart rate behaviour. Most recently,
methods based on nonlinear dynamics have also been introduced for heart rate beh
analysis.
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2.2. Physiological background of heart rate variability

Beat-to-beat fluctuation in heart rate partly reflects the interplay between vari
perturbations of cardiovascular function and the response of the cardiovascular regu
systems to these perturbations and also initially raised behaviour. The changes in
rate behaviour may be either exogenous or endogenous. Continuous chang
sympathetic and parasympathetic neural impulses exhibits changes in heart rate and
oscillation around the mean heart rate.

A relatively well known event that causes oscillations in heart rate is respiration. H
rate fluctuation is related to respiration due to the inspiratory inhibition of vagal tone.
inspiratory inhibition is evoked primarily by central impulses from the medullary a
cardiovascular center (Davidson et al. 1976). This parasympathetically medi
fluctuation can be abolished by atropine or vagotomy (Akselrod et al. 1985, McCabe
1985, Raczkowska et al. 1983, Pomeranz et al. 1985). RR interval fluctuation in rela
to respiration is used as a noninvasive index of vagal nerve excitation in humans (H
et al. 1991, Eckberg 1983, Kollai & Mizsei 1990). However, respiration related hi
frequency heart rate fluctuation has been shown to be a somewhat imperfect ind
vagal activity (Kollai & Mizsei 1990). There are situations in which high frequen
changes of RR intervals may not reflect changes in vagal modulation at all (Brown e
1993), but can be explained by the kinetics of sino-atrial node responses to acetylch
(Saul et al. 1991). This respiration caused fluctuation occurs at both high and
frequencies (Koh et al. 1994).

Sympathetic excitations have been suggested to correspond to RR interval fluctu
at around 0.1 Hz frequency (Malliani et al. 1991, Pagani et al. 1997). However, m
evidence does not support the notion that low frequency spectral power detect chan
sympathetic nerve activity (Koh et al. 1994, Hopf et al. 1995, Saul et al. 1990, Kingw
et al. 1994). The phenomenon of sympatho-vagal balance in heart rate variability ana
can also be questioned (Eckberg 1997). One fluctuation loop affecting heart
variability is the vasomotor part of the baroreflex loop, which is responsible for arte
pressure oscillations (Madwed et al. 1989), causing low frequency fluctuation. Sev
other factors, such as peripheral vascular resistance and thermoregulation, are sug
to cause very low frequency oscillation (Rosenbaum & Race 1968, Kitney 1975), bu
relevance of these suggestions can be questioned. In addition, rapid control syste
pressoreceptors and chemoreceptors maintain the cardiovascular homeostasis by a
the heart rate through small frequent adjustments (Ravenswaaij-Arts et al. 1993). H
rate fluctuation is also a result of various factors, which are often difficult to discern fr
total behaviour, which combine different wave forms. Thus, by studying heart r
variability, we have an opportunity to study the cardiac dynamic behaviour influence
a variety of endogenous and exogenous factors. It is possible to obtain information a
the nature of the perturbations to which the cardiovascular system is exposed as w
the regulatory responses to these perturbations. Since the process is dynami
nonlinear, the usefulness of studying the behaviour of fluctuations rather than s
averages is acknowledged.



15

rt rate
ents

vide
992,

ed on
time
th of
ise
ram

ings.
term

are
of a
val
the
are
ngth.

RR
by

own
tion
his
not
t
me
er 50
and
e RR
liers,
s have

D470.book Page 15 Friday, August 7, 1998 3:01 PM
2.3. Conventional methods of assessing heart rate variability

2.3.1. General

The changes in the sinus rate over time have been termed heart rate variability. Hea
variability analysis has become an important tool in cardiology, because its measurem
are noninvasive and easy to perform, have relatively good reproducibility and pro
prognostic information on patients with heart disease (Kleiger et al. 1992, Öri et al. 1
Huikuri et al. 1995, David et al. 1994, Baselli et al. 1987, Ewing et al. 1984b).

2.3.2. Time domain analysis of heart rate variability

Conventionally, heart rate fluctuation has been assessed by calculating indices bas
statistical operations on RR intervals (means and variance). The most widely used
domain index is the average heart rate. It is easy to calculate over a suitable leng
time. The calculations of other different time domain indices naturally require prec
timing of R waves. Time domain analysis can be performed on short electrocardiog
segments (lasting from 0.5 to 5 minutes) or on 24-hour electrocardiographic record
Beat-to-beat or short term variability represents fast changes in heart rate. Long-
variability indices mainly reflect slower fluctuation of RR intervals. These indices
calculated from the RR intervals occurring in a chosen time window. An example
short term variability index is the standard deviation of beat-to-beat RR inter
differences within the time window. The standard deviation of all the RR intervals or
difference between maximum and minimum RR interval length, within the window
examples of long term indices. The value of the estimate depends on the record le
Therefore, the measures should be compared within segments of similar length.

The most commonly used index is the standard deviation of all normal-to-normal
intervals (SDNN) over a 24 h period. This recording length is commonly used
cardiologists to calculate heart rate variability. This index is probably also the best kn
heart rate variability index. Kleiger et al. (1987) estimated RR interval standard devia
over a 24 h period as a predictor of mortality in postmyocardial infarction patients. T
estimate reflects primarily the very low frequency fluctuation in heart rate behaviour,
the heart rate fluctuations in segments with a duration of< 1 minute, because these fas
fluctuations of RR intervals “drown” under the slower waves. Other example of ti
domain variables are NN50, which is a measure of the instantaneous difference ov
ms between two consecutive normal-to-normal RR intervals (Ewing et al. 1984),
RMSSD, which is the square root of the mean squared differences of successiv
intervals. All the time domain measure indices could be affected by artefacts and out
and these measures therefore require data from which artefacts and ectopic beat
been carefully eliminated.
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2.3.2.1. Geometrical methods of heart rate variability analysis

Geometrical methods present RR intervals in geometric patterns and various appro
have been used to derive measures of heart rate variability from them. The triang
index is a measure where the length of RR intervals serves as the x-axis of the plo
the number of each RR interval length serves as the y-axis. The length of the base
triangle is used and approximated by the main peak of the RR interval freque
distribution diagram. Triangular interpolation approximates the RR interval distribut
by a linear function and the baseline width of this approximation triangle is used
measure of the heart rate variability index (Malik et al 1989, Farrell et al. 1991). T
triangular index had a high correlation with the standard deviation of all RR intervals,
it is highly insensitive to artefacts and ectopic beats, because they are left outsid
triangle. This reduces the need for preprocessing of the recorded data (Malik et al. 19

The Poincaré plot as another geometrical measure, is a diagram (scattergram) in
each RR interval is plotted as a function of the previous RR interval. Poincaré plots ca
interpreted visually and also quantitatively (Huikuri et al. 1996, Tulppo et al. 199
Instantaneous beat-to-beat variability of data and continuous long-term variability of
intervals can be calculated. In addition to the present quantitation, which can be clas
as geometrical, the Poincaré plot also gives a useful visual scheme of the RR da
representing qualitatively with graphic means the kind of RR variations included in
recording. The shape of the plot can be used to classify the signal into one of se
classes (Woo et al. 1994, Schechtman et al. 1993), and the irregular shapes quanfie
Poincaré plots may then be classified as nonlinear.

2.3.3. Frequency domain measures of heart rate variability

Since the introduction of spectral analysis as a method for studying heart rate varia
(Akselrod et al. 1981, Bloomfield 1976), an increasing number of investigators h
utilized this method. The main advantage of spectral analysis of signals is the possi
to study their frequency-specific oscillations. Spectral analysis involves decompositio
the series of sequential RR intervals into a sum of sinusoidal functions of differ
amplitudes and frequencies. The result can be displayed with the magnitude of varia
as a function of frequency (power spectrum). The power spectrum reflects the ampl
of the heart rate fluctuations present at different oscillation frequencies. Methods bas
Fast Fourier transformation and autoregressive analysis are most commonly us
transform signals into the frequency domain. Practically speaking, both yield sim
results. Investigators usually divide the power spectrum into different spectral bands
calculate the powers in these bands. The boundaries of these bands are defined diffe
by different authors. The spectrum is usually divided into three or four different ban
depending on the major frequency bands. The boundaries of the most commonly
frequency bands are as follows: ultra low frequency< 0.0033 Hz, very low frequency
from 0.0033− 0.04 Hz, low frequency from 0.04− 0.15 Hz and high frequency from 0.15
to 0.4 Hz. The boundaries that should be used in physiological studies have
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recommended by European Society of Cardiology and the North American Socie
Pacing and Electrophysiology (Task Force, 1996). These recommendations are base
suggested, but only partly proved, physiological background of heart rate variability.

2.4. Dynamical analysis methods of heart rate behaviour

There is increasing evidence to suggest that the heart is not a periodic oscillator u
normal physiologic conditions (Babyloyantz & Destexhe 1988, Kaplan & Goldber
1987, Goldberger & West 1987), and the commonly employed moment statistics of h
rate variability may not be able to detect subtle, but important changes in heart rate
series. Therefore several new analysis method of heart rate behaviour, motivate
nonlinear dynamics and chaos theory, have been developed to quantify the dynam
heart rate fluctuations (Goldberger & West 1987, Pincus 1991, Yamamoto & Hugh
1991). The development of these new methods has been based on the Chaos T
(Crutchfield et al. 1987).

2.4.1. History of chaotic and nonlinear dynamics

At the beginning of the 17th century, Johannes Kepler tried to prove the harmony o
structure of the solar system. The success of Newton’s principles of mechanics led t
ultimate predominance of determinism. The past and future of the material world
particularised. Everything seemed to be perfectly predictable and causal. It was ass
that a small inaccuracy in the baseline data leads to only a small error in prediction.
is true of linear systems, where effect is proportional to cause.

After the development of the rules of statistical thermodynamics, however, it bec
clear that there was a limit to the mechanics of nature. Henry Poincare (1854−1912)
showed that there are stable and unstable types of orbits and that sometimes even
disturbance in the system can bring about a change in the nature of the orbit. He exam
predictability and noticed that systems are deterministic on the one hand, but the s
principle of causality is violated on the other. He noticed that similar causes do not lea
similar effects. He concluded that there is no formula that relates the state of a system
given time to the state at some future time. Edward Lorenz was intereste
computerized weather forecasting and recognised that starting the computer program
slightly different initial conditions eventually resulted in totally different weath
conditions. This was clear evidence of a failure of the principle of causality (Lore
1963).
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2.4.1.1. Chaos

Chaos, in the technical sense, is used to denote a type of time evolution in which
difference between two states that are initially closely similar grows exponentially o
time. All systems have been shown to be linear, close to any static equilibrium, unle
until there is a continuous injection of energy to excite the system enough to make
linearity appreciable and chaos possible. Chaos also requires a dissipative mechan
prevent the system from blowing apart (Crutchfield et al. 1987, Gleick 1987).

Chaos is more easily understood through a comparison with randomness
periodicity. Random behaviour never repeats itself and is inherently unpredictable
disorganised. Unlike random behaviour, periodic behaviour is highly predictable, bec
it always repeats itself over some finite time interval. A sine wave is a typical exampl
we know the amplitude, frequency and phase of a sine wave at any instant, we can p
the wave perfectly at any other point in time. Chaos is distinct from periodicity a
randomness, but has characteristics of both. It looks disorganised, but is act
organised. The most important criteria for chaotic behaviour are summarised as foll
1. Chaos is deterministic and aperiodic and it never repeats itself exactly. There a
identifiable cycles that recur at regular intervals. 2. Most chaotic systems have sen
dependence on the initial conditions. In other words, very small differences in the in
conditions will later result in large differences in behaviour. 3. Chaotic behaviou
constrained. Although a system appears random, the behaviour is bounded, and do
wander off to infinity. 4. Chaotic behaviour has a definite form. The behaviour
constrained, and there is a particular pattern to the behaviour (Crutchfield et al. 1
Gleick 1987, Ruelle 1979, Grassberger & Procaccia 1984, Procaccia 1988).

2.4.1.2. Nonlinearity and its relation to chaos

Nonlinear equations are of two types, monotonic and folded (i.e. exponential or para
like). This ambiguity gives rise to chaos under suitable conditions. Nonlinearity
necessary and fundamental to chaos and can also endow stability. Nonlinear system
seek out and maintain essentially the same optimum state in response to a wide var
external conditions (Procaccia 1988, Jensen 1987, Devaney 1987).

2.4.1.3. Strange attractors

A simple attractor in which the orbit is a closed loop corresponds to sustained oscilla
This attractor is not chaotic. A chaotic attractor is a continuous curve confined to a f
region of phase space, which never crosses itself , and yet never closes on itself.
attractors are called “strange attractors”. Chaotic behaviour is also constrained, and
is a particular pattern to it (Freeman 1988, Mandelbrot 1982) .
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2.4.1.4. Fractal form

A Fractal system is a specific form of chaos. The geometry of chaotic attractors o
suggests the existence of fractals. A fractal is a system which has the same structu
many measurement scales. Mathematician Benoit Mandelbrot introduced the w
“fractal” to refer to one of the fundamental properties of a specific structure: self-sca
similarity over a wide range of scales. This self-similarity occurs over an infinite range
scales in pure mathematical fractal structures and over a limited range in natural ob
or systems. The normal heart rate time series is fractal-like and seems to displa
fractal property of self-similarity over different time scales without a characteristic ti
scale. The power spectra of heart rate time series have been shown to concur wi/f
behaviour, which is essential for fractal-like behaviour and also characteristic of cha
behaviour. Normal heart rate time series have been shown to demonstrate a “strang
attractor, which is characteristic of chaotic as opposed to random or periodic sig
Based on this Ary Goldberger has concluded that “the most compelling clinical exam
of cardiac chaos is paradoxically found in the dynamics of the normal sinus rhyth
These chaotic, fractal and nonlinear qualities of heartbeat behaviour have insp
investigators to develop new analysing methods of heart rate behaviour (Mande
1982, Goldberger 1996, Goldberger & West 1987, Yamamoto et al. 1995).

2.4.2. Approximate entropy analysis

Approximate entropy is a measure and parameter that quantifies the regulari
predictability of time series data. It has been developed for time series to classify com
systems that include both deterministic chaotic and stochastic processes. (Pincus
Pincus & Goldberger 1994, Pincus & Huang 1992, Pincus & Viscarello 1992). Redu
complexity of heart rate dynamics has been found in sick neonates and in patients
postoperative complications after cardiac surgery ( Pincus & Viscarello 1992, Fleish
al. 1993). The obvious advantage of this method is its capability to discern chan
complexity from a relatively small amount of data. This makes the approximate entr
measure applicable to a variety of contexts. This measure cannot certify chaos.

2.4.3. Detrended fluctuation analysis

The detrended fluctuation analysis technique is a measurement which quantifie
presence or absence of fractal correlation properties and has been validated for time
data (Peng et al. 1995). It was developed to characterise fluctuations on scales
lengths. The self-similarity occurring over an large range of time scales can be define
a selected time scale with this method. The details of this method have been describ
Peng et al. (1995). Normal healthy subject have shown scaling exponent values (α) near
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1, indicating fractal-like heart rate behaviour, and altered fractal-like behaviour has
reported in patients with cardiovascular diseases and with advancing age (Peng
1995, Ho et al. 1997, Hausdorff et al. 1995, Iyengar et al. 1996).

2.4.4. Power-law relationship analysis of heart rate dynamics

The power-law relationship of RR interval variability is a spectral measure different fr
the traditional measures of heart rate variability, because it does not reflect the magn
of heart rate variability, but the distribution of the spectral characteristics of RR inte
oscillations. In this method, the power-law relationship of RR interval variability
calculated from the frequency range of 10-4 to 10-2 Hz, characterising mainly slow hear
rate fluctuations. The physiological background of the spectral distribution is not exa
known, but the observation of a significantly steeper slope in denervated hearts sug
that it is influenced by the autonomic input to the heart (Bigger et al. 1996). The detai
this method have been described previously (Saul et al. 1987, Bigger et al. 1996, Pr
al. 1995).

2.4.5. Two dimensional vector analysis

As described above, the Poincaré plot is a diagram in which each RR interval is plott
a function of the previous one. The Poincaré plot gives a useful visual representati
the RR data by illustrating qualitatively with graphic means the kind of RR variatio
included in the recording. The shape of the plot can be used to identify “attracto
(Tulppo et al. 1996). In chaotic behaviour a particular pattern of behaviour needs t
found. The nonlinear relationship and structure in the plots indicate that the process m
be chaotic rather than random. It does not prove the existence of chaos, but indicate
chaotic behaviour is likely.

2.4.6. Other nonlinear analysis methods

The Lyapunov numerical method (Wolf et al. 1985, Eckmann & Ruelle 1985) is use
an adjunct to graphic analysis. The Lyapunov exponent is a quantitative measu
separation the trajectories that diverge widely from their initial close positions. T
magnitude of this exponent is related to how chaotic the system is. The large
exponent, the more chaotic the system. For periodic signals, the Lyapunov expon
zero. A random signal will also have an exponent of zero. A positive Lyapunov expo
indicates sensitive dependence on the initial conditions and is diagnostic of ch
although these exponents are not easily measured (Grassberger & Procaccia 1984
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major limitation in their calculation is that the currently available algorithms require la
amounts of data and long computing times. Also, the system must remain stable ove
recording time, but biologic systems seldom remain stable.

By evaluating the Haussdorff correlation dimension D, evidence of the chaotic na
of cardiac activity can be obtained (Bergé et al. 1984, Eckmann & Ruelle 198
Haussdorff dimension D is a measure of the complexity of the system. The lower
value of D, the more coherent the dynamics. D= 1 presents periodic oscillations. If D has
non-integer values greater than two, it defines a chaotic behaviour (Grassberg
Procaccia 1983, Bergé et al. 1984, Eckmann & Ruelle 1985, Mayer-Kress et al 19
Although D is a convenient measure, because it does not require the system
stationary, it unfortunately always involves a potentially large error of estimati
Therefore, instead of using D, it is more convenient to evaluate the correlation dimen
D2 from a time series with the help of the existing algorithms (Grassberger & Proca
1983 and b, Eckmann & Ruelle 1985).

Another important quantity of the characterisation of deterministic chaotic activity
Kolmogorov entropy K, which may be estimated by a procedure (Grassberge
Procaccia 1983b, Eckmann & Ruelle 1985) close to the one used for dimension D.
quantity measures how chaotic an experimental signal is. In the case of determin
chaos, K is positive and measures the average rate at which the information abo
state of the system is lost over time. In other words, K is inversely proportional to the
interval over which the state of the system can be predicted. Moreover, K is related t
sum of the positive Lyapunov exponents (Eckmann & Ruelle 1985). The above met
can be evaluated quantitatively and are diagnostic of chaos, whereas spectral ana
time autocorrelation function and Poincaré plot construction are qualitative methods.

The fractal dimension can be employed as an estimate of the minimal numbe
degrees of freedom that a process obeys. A fractal has the same overall structu
multiple scales. A fractal dimension can be quantified in a meaningful way ( Lipsitz
Goldberger 1992, Eckmann & Ruelle 1985, Grassberger & Procaccia 1984, Grassb
& Procaccia 1983b, Mandelbrot 1982, Goldberger 1996). To do this, the object has
observed under many different magnifications; by varying magnification and measu
the amount of space the object occupies, its fractal dimension can be determined
algorithms used for the analysis of unknown signals are still evolving. The most com
algorithm is that developed by Grassberger and Procaccia (1983b). Chaotic systems
exhibit low dimension, but periodic and random signals can also exhibit the sa
magnitude of dimension. For this reason, a diagnosis of chaos should not be made,
exclusively on a fractal dimension.

Spectral analysis alone cannot distinguish a chaotic process either, but s
investigators have suggested that a particular spectral pattern (one in which the p
density is inversely related to frequency) is highly suggestive of a nonlinear or cha
process (Goldberger & West 1987, Goldberger 1996, Goldberger et al. 1987). How
the diagnostic value of this 1/f pattern has also been questioned (Pool 1989). Wrink
fluctuations occur in the human heart rate dynamics, which have many of
characteristics of nonlinear dynamics and deterministic chaos. These features can
detected by traditional measures of heart rate variability, suggesting that met
motivated by nonlinear dynamics may have important clinical applications to analys
heart rate behaviour. Whether the various nonlinear methods detect chaotic behavi
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an important academic issue, but from the practical point of view, it is important to kn
whether they are applicable for clinical purposes. The prognostic accuracy and cli
applicability of these measures are not well known.

2.5. Heart rate variability in pathological conditions

2.5.1. Heart rate variability in uncomplicated coronary artery disease

Heart rate variability is reduced in patients with stable coronary artery disease, and
been suggested to be reduced even before the development of symptomatic cor
artery disease. Eckberg et al. (1971) reported that reduced baroreflex sensitivity is re
to coronary artery disease. Airaksinen et al. (1987) observed reduced vagal activ
patients with coronary artery disease manifested as lower heart rate variabilit
disturbed circadian rhythm of heart rate variability was found in patients with coron
artery disease by Huikuri et al. (1994), but 24-hour heart rate variability was not redu
There is also evidence to suggest that the reduction of heart rate variability correlates
the angiographic severity of coronary artery disease (Hyano et al. 1990), and espe
high frequency fluctuation seemed to be reduced in relation to the severity of coro
artery disease, although no association of this kind was not found by Rich et al. (198
Airaksinen et al. (1987). Although heart rate variability has been shown to be decreas
patients with coronary artery disease, the exact mechanisms of reduced hear
variability are not known. The effect of the severity of coronary artery disease
controversial. Ischaemia has been suggested to destroy the cardiac receptors resu
altered autonomic regulation (Minisi & Thames 1989), but ageing also affects autono
activity (Airaksinen et al. 1987). The contribution of transient myocardial ischaemi
unresolved, but recent clinical data have demonstrated that short term coronary occ
during coronary angioplasty causes divergent changes in heart rate variability, w
could not be predicted on the basis of the location of the coronary stenoses (Airaksin
al. 1991).

2.5.2. Heart rate variability after acute myocardial infarction

In 1965, Schneider & Costiloe proposed that heart rate fluctuation is decreased in pa
with an acute myocardial infarction. In the late 1980’s a few landmarking stud
confirmed the strong and independent predictive value for mortality following myocar
infarction (Kleiger et al. 1987, Malik et al. 1989). Later, several reports have show
decrease in the spectral measures of heart rate variability after a myocardial infar
(Pipilis et al. 1991, Bigger et al. 1991, Valkama et al. 1994). The reduction in heart
variability after a myocardial infarction seems to be a transient feature. Evidence
recovery of heart rate variability after myocardial infarction has been observed (Bigg
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al. 1991, Flapan et al. 1993), but heart rate variability remains still on a lower level tha
healthy controls (Bigger et al. 1991) after an infarction, and this may be related to adv
prognosis.

2.5.3. Prognostic significance of heart rate variability

Reduced short term (30 consecutive RR intervals) heart rate variability was found t
associated with a higher in-hospital mortality rate in patients with acute myocar
infarction (Wolf et al. 1978). Heart rate variabil ity from 24-hour continuou
electrocardiographic recordings was computed in a large multicenter postinfarction s
(Kleiger et al. 1987), and the population was followed up for a mean of 31 months. H
rate variability was found to be an indicator of long term prognosis after an ac
myocardial infarction. The relative risk of death was 5.3 times higher in the patients
poor heart rate variability (SDNN< 50 ms) than in the patients with good (SDNN> 50
ms) 24-hour heart rate variability. Decreased heart rate variability remained a signif
prognostic indicator after adjustment for clinical, demographic and other Holter varia
and left ventricular ejection fraction. The association between postinfarction morta
and low heart rate variability was confirmed by Bigger et al. (1992). They studied
frequency domain measures of heart rate variability in 715 patients two weeks af
myocardial infarction. The population was followed up for four years. After adjustm
for the known risk markers, slow fluctuation spectral bands (ultra low and very l
frequencies) of heart rate variability remained a significant predictor of mortality. V
low frequency power was the only variable that was a more powerful predicto
arrhythmic death than cardiac or all-cause mortality. The association between low
rate variability and mortality after acute myocardial infarction was also confirmed
Vaishnav et al. (1994). Rich et al. (1988) showed that decreased heart rate variabilit
low left ventricular ejection fraction were the best and independent predictors of mort
also in patients with angina pectoris but without recent myocardial infarction.

Impaired heart rate variability was proposed to be a better predictor of cardiac d
and arrhythmic events than left ventricular ejection fraction in patients with pr
myocardial infarction (Farrell et al. 1991) and confirmed by Odemuyiwa et al. (199
Cripps et al. (1991) found that the relative risk of sudden death or ventricular tachyca
was seven times greater in postinfarction patients with low heart rate variability tha
those with high heart rate variability. Pedretti et al. (1993) found that heart rate variab
in addition to various other risk indicators, was significantly related to late arrhythm
events. Heart rate variability was found to provide more prognostic information than
ventricular ejection fraction or the occurrence of ventricular premature depolarizat
and to predict independently arrhythmic events. Huikuri et al. (1992) compared hear
variability in 22 survivors of cardiac arrest not associated with acute myocard
infarction and 22 clinically matched controls. The survivors of cardiac arrest had lo
heart rate variability than the controls without a history of life-threatening arrhythm
Heart rate variability has been observed to be an independent predictor of sudden
(Odemuyiwa et al. 1994). Hartikainen et al. (1996) showed decreased heart
variability to be related to both arrhythmic and nonarrhythmic death in postinfarct
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patients. Both case-control and epidemiological studies have suggested that low hea
variability increases the risk of arrhythmic events and death. The recent data sugges
impaired heart rate variability increases the risk of non-fatal cardiac events,
myocardial infarction and unstable angina pectoris, suggesting that low heart
variability analysed with conventional methods is strongly related to cardiovasc
events and not specifically to arrhythmic events (Tsuji et al. 1996).

2.5.4. Other risk markers of arrhythmic death

Poor left ventricular function is an important determinant of both cardiac death
arrhythmic mortality after myocardial infarction (Ruberman et al. 1977, Moss et
1982). Residual ischemia may also associate with sudden cardiac death (Savage
1987, Pepine et al. 1991).

In postinfarction patients, frequent premature depolarizations and the occurren
nonsustained ventricular tachycardia have been shown to be risk markers of su
cardiac death or arrhythmic events (Moss et al. 1979, Follansbee et al. 1980, Mukha
al. 1984, Holmes et al. 1985). However, the predictive accuracy of spontane
ventricular arrhythmias (excluding sustained ventricular tachycardia) for cardiac arre
low (Bigger et al. 1984, Hartikainen et al. 1996).

Prolongation of the QT interval in postinfarction patients has been shown to predic
risk for ventricular tachyarrhythmias and sudden death (Schwartz & Wolf 1978, Ahnv
al. 1980). QT dispersion is defined as the variability of the length of the QT inter
between the leads of a conventional 12-lead surface electrocardiogram, and i
introduced by Campbell et al. (1985). Broad QT dispersion reflects differences in
local myocardial repolarization/recovery times (Day et al. 1990, Zabel et al. 1995)
hence an electrophysiologic environment (substrate) that favours reentry (Mitchell e
1986, Perkiömäki et al. 1995). Increased QT dispersion has been shown to be asso
with vulnerability to life-threatening ventricular arrhythmias in patients with a previo
myocardial infarction (Perkiömäki et al. 1995 and 1997).

Signal-averaged ECG is a method of determining high-frequency low-amplit
potentials at the end of the QRS complex (Simson 1981). These late potentials have
observed to predict sudden death and arrhythmic events (Kuchar et al. 1987, Farrell
1991).

Baroreflex sensitivity reflects the vagal activity exerted by baroreceptor reflexe
Smyth et al. 1969). In postinfarction patients, depressed baroreflex sensitivit
associated with ventricular arrhythmias and sudden death and does not correlate
ejection fraction, but is inversely related to age ( La Rovere et al. 1988, Farrell e
1992).

The variation of every other T wave amplitude is defined as T wave alternans. T
alternans can be measured with digital signal processing techniques, and has
suggested to be associated with the genesis of ventricular arrhythmias (Adam et al.
Rosenbaum et al. 1994).
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Using electrophysiologic indicators, postinfarction patients can be stratified into l
and high-risk groups in terms of the future risk for life-threatening arrhythmias (Bourk
al. 1991). Sustained monomorphic ventricular tachycardia during programmed elec
stimulation is suggested to be the only arrhythmia of prognostic relevance (Bourke
1991, Zoni-Berisso et al. 1996). In a selected population of postinfarction patie
inducible sustained monomorphic ventricular tachycardia was the most important var
related to late arrhythmic events (Zoni-Berisso et al. 1996).

2.5.5. Heart rate variability in other disease states

Heart rate variability has been found to be decreased in congestive heart failure (Cas
al. 1989, Kienzle et al. 1992). Brouwer et al. (1996) observed, however, that
conventional measures of heart rate variability were not related to survival in patients
heart failure, but abnormal Poincaré plots were independent mortality predict
Decreased heart rate variability has also been observed in hypertensive patients wi
ventricular hypertrophy (Petretta et al. 1995, Chakko et al. 1993). More recent d
however, suggest that decreased heart rate variability is not specifically relate
ventricular hypertrophy, but rather to hypertension itself (Huikuri et al. 1996, Perkiöm
et al. 1996, Ylitalo et al. 1997). Heart rate variability has also been shown to be reduc
diabetic neuropathy (Smith 1982) and in several neurological conditions (Lowensoh
al. 1977, Kuroiwa et al. 1983, Korpelainen et al. 1996) as well as in chronic renal fai
(Cloarec-Blanchard et al. 1992).

2.5.6. Influence of physical training and drugs on heart rate variability

The relation between physical fitness and heart rate variability is controversial. Phy
fitness and regular endurance training have been suggested to be associate
increased heart rate variability (Seals & Chase 1989, De Meersman 1993, Boutch
Stein 1995), but some studies have failed to show any association (Reiling & Seals 1
Beta-blockers have been suggested to enhance heart rate variability ( Niemelä et al.
Rich et al. 1991). Scopolamine has been found to increase the high-frequency sp
component (Vybiral et al. 1990). Flecainide and propafenone have appeared to dim
heart rate variability (Zuanetti et al. 1991). Generally, studies on the effects of drug
heart rate variability have shown that heart rate is often not normalised, and it is ther
difficult to conclude whether changes take place only due to an altered heart rate. Al
is not known whether possible changes in heart rate variability have connections wit
observed prognostic influences of these drugs.



26

D470.book Page 26 Friday, August 7, 1998 3:01 PM



f new
our.

artery

ction

ction
on

rilla-
en-

lity in

D470.book Page 27 Friday, August 7, 1998 3:01 PM
3. Purpose of the present study

1. The main purpose of the present research was to assess the clinical applicability o
dynamical analysis methods derived from nonlinear dynamics of heart rate behavi

2. The specific aims of the individual substudies were:

a) to compare dynamical measures of heart rate behaviour between coronary
disease patients without a previous myocardial infarction and healthy controls.

b) to compare dynamical measures of heart rate behaviour between postinfar
patients and healthy controls.

c) to compare dynamical measures of heart rate behaviour between postinfar
patients with vulnerability to ventricular tachyarrhythmia and postinfarcti
patients without propensity to ventricular tachyacardia

d) to compare dynamical measures of heart rate behaviour before ventricular fib
tion in postinfarction patients and postinfarction control patients without prop
sity to ventricular arrhythmias.

e) to evaluate dynamical measures of heart rate behaviour as predictors of morta
a general elderly population.
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4. Populations

The study covered four different patient populations, their controls and a gen
population of elderly people. The demographic characteristics of the study population
IV) are shown in Table 1.

The first group consisted of 38 consecutive patients with stable angina pectoris
without previous myocardial infarction who had been referred for an angiograp
examination because of a history of chest pain and evidence of ischemic ST-seg
depression during an exercise test (I). Medication had been withdrawn before
examination. Age and sex matched healthy subjects served as controls. They had
selected from the general population of Oulu from among individuals participating
larger trial. They had undergone a complete physical examination and their med
history revealed no cardiovascular disease or medication.

The second group comprised 40 consecutive patients with a prior Q-wave infarc
referred for angiography on account of angina pectoris (II). Patients with diabetes or a
fibrillation were excluded. Medication had been withdrawn before the examination. A
and sex matched healthy subjects served as controls.

The third group, the ventricular tachyarrhythmia group, consisted of 45 consecu
patients who had had a documented cardiac arrest or spontaneous sustained ven
tachycardia and in whom sustained monomorphic ventricular tachycardia was indu
by programmed electrical stimulation. Antiarrhythmic treatment had been withdraw
least 4 half-lives before the electrophysiological testing. The studies were performed
10 days after the occurrence of ventricular tachycardia. Two different control groups w
used. The postinfarction controls consisted of 45 patients with a prior Q-wave myoca
infarction but without any history of ventricular tachycardia events. Patients w
inducible nonsustained or sustained ventricular tachycardia were excluded. All of t
control patients also showed arrhythmia-free survival during a follow-up of two yea
The groups were matched with respect to age, sex and left ventricular ejection frac
Forty-five age-matched healthy subjects without evidence of heart disease serv
normal controls (III).

The fourth group consisted of 10 postinfarction patients, all of whom had spontan
onset of ventricular fibrillation during 24-h electrocardiographic recordings witho
significant preceding ST segment changes and who also underwent electrophysiolo
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and angiographic examinations (IV). The control group consisted of postinfarc
patients without any history of ventricular arrhythmia events. The controls were sele
from among 83 consecutive postinfarction patients referred for angiography on accou
angina pectoris or for prognostic reasons, on whom programmed electrical stimula
was performed. The ventricular fibrillation patients were matched with postinfarct
controls with respect to age, sex, left ventricular ejection fraction,β-blocking and diuretic
medication and functional class. Two postinfarction control subjects, who had ha
arrhythmia-free follow-up period of two years, were matched to each ventricu
fibrillation patient.

Table 1. Characteristics of patient populations

The fifth population consisted of a random sample of 480 persons aged 65 or older l
in the community (V). They were obtained from the register of the Social Insura
Institution covering the population of the city of Turku. No exclusion criteria other th
living in an institution were used. Ambulatory 24-hour electrocardiographic recording
these subjects were analysed. A clinical history was obtained by personal interview,
comprehensive clinical evaluation was carried out, including a physical examinat
standard ECG, chest x-ray, blood pressure and biochemical analyses. Functional c
and levels of disability due to any cause were classified. Major diagnoses w
established on the basis of the history and clinical evaluation. The population
followed up for ten years. Ten-year mortality and causes of death were recorded from
mortality statistics. The mode of death was defined after a review of the hospital reco
autopsy findings and death certificates. The end-points of the follow-up were all-ca
mortality, cardiac mortality, cerebrovascular mortality, cancer mortality, and mortality
to various other causes.

healthy subjects
(n = 45,

I,II,III,IV)

uncomplicated
CAD

(n = 38, I)

post-MI group
without arrhytmia

(n= 45, II,III)

post-MI group
with VT

(n = 45, III)

VF group
(n = 10, V)

Age 59± 9 55± 9 60± 6 62±14 67± 4

Men/women 39/6 39/6 39/6 39/6 7/3

NYHA I-II 23 17 19 −

NYHA III-IV 15 28 26 10

LV ejection
fraction (%)

71± 7 45± 8 44± 11 38± 8

Number of major coronary
arteries narrowed > 50% in
diameter

1 17 6 9 −

2 & 12 17 2

3 15 27 19 8

Abbreviations: the values are mean± standard deviation; NYHA = New York Heart Association; LV = left
ventricular; CAD = coronary artery disease; MI = myocardial infarction; VT = ventricular tachycardia; VF

= ventricular fibrillation.
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5. Methods

5.1. Electrocardiographic recordings

All the subjects in all studies (I,II,III,IV,V) were monitored for 24 hours (if possible) wit
an ambulatory electrocardiographic recorder. The Del Mar Avionics (I-IV) and Oxfo
Medilog, Oxford (V) recording systems were used. The data were sampled digitally
transferred to a microcomputer for the analysis of heart rate variability. For the detec
and quantification of arrhythmias, a 2-channel oscilloscopic display and an arrhyth
analyser were used.

5.2. Analysis of heart rate behaviour

After transfer of the electrocardiographic data to a microcomputer, the RR interval s
were edited manually and premature beats and noise were deleted (I-V). Questio
portions were printed out on a 2-channel electrocardiogram at a paper speed of 25 m/sec
to confirm the sinus origin of the RR interval data. Only segments with> 80% pure sinus
beats were included.

An autoregressive model was used to estimate the power spectrum densities o
interval variability (Burg 1975, Kay & Marple 1981) in which the computer progra
automatically calculates autoregressive coefficients (I-IV). The size of 20 was used a
model order in the analysis of the RR interval data. The Fourier transform method
used to estimate the power spectrum densities of heart rate variability in one subs
(V). The power spectra were quantified by measuring the area in four frequency ba
< 0.0033 Hz (ultra low frequency) 0.0033− 0.04 Hz (very low frequency), 0.04− 0.15 Hz
( low frequency) and 0.15− 0.40 Hz (high frequency). The standard deviation and me
length of the RR intervals both in the whole measured epoch and in shorter segm
were used as time domain measures (I-V).



32

m is
tact

ions
tive

n the
rvals
tails
e

reas
rised
f the
h the
. The
plot
axis
-term

rs

ta. It
ries.
istic
hmic
next
ity)
duce
ate
en
The

o used
too

ngly
e at

D470.book Page 32 Friday, August 7, 1998 3:01 PM
5.2.1. Poincaré plot analysis

The Poincaré plot is a diagram (scattergram) in which each RR interval of a tachogra
plotted as a function of the previous RR interval. The Poincaré plot gives a visual con
to the RR data by representing qualitatively with graphic means the kind of RR variat
included in the recording. The plots were also analysed quantitatively. This quantita
method of analysis is based on the notion of different temporal effects of changes i
vagal and sympathetic modulation of the heart rate on the subsequent RR inte
without a requirement for a stationary quality of the data. Computerised analysis en
fitting an ellipse to the plot, with its center coinciding with the center point of th
markings. The line defined as axis 2 shows the slope of the longitudinal axis, whe
axis 1 defines the transverse slope, which is perpendicular to axis 2. In the compute
analysis, the Poincaré plot is first turned 45° clockwise, and the standard deviation o
plot data is then computed around the horizontal axis (axis 2), which passes throug
data center (SD1). SD1 shows the instantaneous beat-to-beat variability of the data
standard deviation of continuous long-term R-R intervals is quantified by turning the
45° counterclockwise (SD2) and by computing the data points around the horizontal
(axis 1), which passes through the center of the data. SD2 shows the continuous long
RR interval variability. In addition, the SD1/SD2 ratio was computed. The paramete
quantified on the plot are shown in Figure 1.

5.2.2. Approximate entropy analysis

Approximate entropy analysis was used to measure the complexity of time series da
quantifies the regularity or predictability of data and has been developed for time se
This method can be used to classify complex systems that include both determin
chaotic and stochastic processes. Approximate entropy measures the logarit
likelihood that runs of patterns that are close to each other will remain close in the
incremental comparisons. A greater likelihood of remaining close (high regular
produces smaller approximate entropy values, and conversely, random data pro
higher values. Two input variables, m and r, must be fixed to compute approxim
entropy, and m= 2 and r= 20% of the standard deviation of the data sets have be
recommended for time series, based on previous findings of good statistical validity.
details of this method have been described by Pincus (1991). These values were als
in the present study. Different r values were first tested, however. With high r values
much detailed system information was lost, which made the time series misleadi
regular. Too low r values, on the contrary, did not keep the effect of signal nois
minimum, and therefore the recommended input variables were used.
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5.2.3. Detrended fluctuation analysis

The detrended fluctuation analysis technique was used to quantify the fractal-like sc
properties of RR interval data. This method is a modified root-mean-square analys
random walk, which quantifies the presence or absence of fractal correlation prope
and has been validated for time series (Peng et al. 1995). In this method, the root-m
square fluctuation of integrated and detrended time series is measured at each obse
window and plotted against the size of the observation window on a log-log scale. H
rate correlations were defined particularly for short-term (< 11 beats,α), but also for
long-term correlations of RR interval data. In this method, a fractal-like signal (1/f signal
spectrum) results in an exponent value 1 (α = 1.0). White Gaussian noise (totally random
signal) results in a value 0.5 (α = 0.5), and a Brownian noise signal (1/f2 signal spectrum)
with a spectrum of rapidly decreasing power in the higher frequencies results i
exponent value 1.5.α = 0.5 corresponds to a time series where interbeat behaviou
random.α = 0 − 0.5 correspond to time series where large and small values are m
likely to alternate, whereas atα values of 0.5− 1.0 a long interbeat interval is more likely
to be followed by a long interval and vice versa.

5.2.4. Power-law relationship analysis

The power-law relationship of RR interval variability was calculated from the freque
range of 10-4 to 10-2 Hz. The point power spectrum was logarithmically smoothed in t
frequency domain and the power integrated into bins spaced 0.0167 log (Hz) apa
robust line- fitting algorithm of log (power) on log (frequency) was then applied to t
power spectrum between 10-4 to 10-2 Hz and the slope of this line was calculated (β). The
robust algorithm minimises the absolute deviations of data points from a linear m
instead of the squared fitting error, thus reducing the adverse effect of occasional o
points in the spectrum. This specific frequency band is chosen on the basis of pre
observations regarding the linear relationship between log (power) and log (frequenc
this frequency band in human heart rate time series data. Only recordings with> 12 hours
of analysed data were used for the power-law relationship analysis. The details o
method have been described previously (Saul et al. 1987, Bigger et al. 1996). The slo
this power-law relationship of heart rate variability computed over the ultra low and v
low frequency oscillations is a spectral measure different from the traditional measur
heart rate variability, because it does not reflect the magnitude of heart rate variability
the distribution of spectral characteristics of RR interval oscillations.
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5.3. Signal behaviour tests

A series of simulations with artificially generated data and real RR signals w
performed to test the behaviour of dynamical measures (I,III,IV). 1) Artificial whi
Gaussian noise, noise with a spectrum compatible with the inverse power law (1/f noise)
and noise with a spectrum compatible with the 1/f2 noise were generated, and values o
dynamical variables were calculated for these, using different input variables and e
sizes. The artificial signals described above were also randomly shuffled by interchan
the sample positions pairwise 500 times. Similar shuffling was performed on real
interval data. 2) In addition, artificial signals with different spectral characteristics w
generated in order to simulate real RR signals. The relative powers of the very low
high frequency spectral bands were varied systematically to see how this affecte
dynamical variables. Also, the power ratio of very low and high frequency componen
a real RR signal was varied by digital filtering techniques. 3) Artificial noise wi
different power spectral properties was added to real RR data. The amount of frequ
powers and the width of the frequency bands were varied. 4) Finally, two types of b
noise were added to a real RR signal in different signal to noise ratios. The first type
additive white Gaussian noise and the second additive quantization type of n
generated by recording constant RR intervals with an electronic device (Lionh
Multiparameter Stimulator) via the usual Holter measurement procedure.
quantization effect occurs due to the limited sampling accuracy of RR intervals.
standard deviation of additive white Gaussian noise and quantization noise was 5 ms
standard deviation of the real RR signal was increased from 40 ms to 80 ms in 1
steps. Thus, a signal-noise ratio of 8 to 16 was tested in the experiments.

Artificial white Gaussian noise with a spectrum of the same power content at
frequencies (flat spectrum) resulted in short-term fractallike scaling exponent va
between 0.5 and 0.55 (expected valueα1 = 0.5) , approximate entropy values betwee
1.94 and 2.02 and a power-law slope value (β) 0, as expected. Digitally filtered noise with
a spectrum compatible with the 1/f power law resulted in slightly higher (0− 3%) short-
term fractal values than expected (expected valueα1 = 1.0) and a power-law slope value
(β) −1.0, as expected. The Brownian noise signal with a 1/f2 signal spectrum resulted in a
short term exponent value 1.5 and a power-law slope value (β) −2.0, as expected. After
shuffling the filtered artificial signals and real RR interval data, the values obtained w
the different measures were similar to those obtained with artificial white Gaussian n
(I,II,III,IV).

In experiments with different relative very low and high frequency powers of artific
signals, a decrease in very low frequency power invariably caused an increa
approximate entropy. A slight artificial addition of the band width high frequency pow
in real RR data resulted in increased approximate entropy. The larger the power inc
was, the larger the increase in entropy value. Addition of white Gaussian noise to a
RR signal in different signal to noise ratios had a minor effect on approximate entr
(V).

Artificial modification of real RR interval data showed that an increase of lo
frequency power resulted in a subtle increase of the short term exponent value, wh
increase of the high frequency component resulted in a decrease of this expone
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addition, an artificial addition of the band width of the high frequency power towards
direction of the very-high frequency band resulted in a significant reduction of the sh
term scaling exponent.

5.4. Effects of editing

To test how data editing affects the values of dynamical measures, the data of se
subjects were edited using different methods. The effect of the number of excluded
on dynamic analysis was studied by increasing progressively the number of edited
from the same data set. The effects of different editing methods were studie
comparing the results obtained when edited beats were alternatively deleted, replac
the value of neighbouring RR interval or replaced by inserting new RR interval val
interpolated from previous and subsequent beats.

The heart rate behaviour values did not differ between the different editing meth
when< 5% of the beats were randomly edited. When 5− 30% of the beats were randomly
edited in 5% of the intervals, the short term scaling exponent value decrea
progressively when the edited beat was replaced by the interval length of
neighbouring beats or when the interpolating method was used, but remained s
(< 5% error) when the editing was carried out by deleting the beats. When ectopic b
were retained in the data sets, the short term scaling exponent and power-law slope
were lower, whereas approximate entropy resulted in higher values compared t
values recorded after removal of the ectopic beats. The selection of the editing metho
not affect the long range slope values of power-law relationship analysis, whe
approximate entropy was sensitive to editing method, as expected.

5.5. Electrophysiologic and angiographic examinations

Electrophysiologic testing included incremental ventricular pacing and programm
ventricular stimulation using up to 3 extrastimuli and 2 basic drive cycle lengths (600
400 ms) from the right ventricular apex and outflow tract. The stimulation protocol a
the definition of induced arrhythmias have been described in detail previously (Huiku
al. 1993). Left heart catheterisation was performed by the Judkins technique.
ventricular cineangiograms were recorded in the 45 degree right anterior obl
projection, and ejection fraction was calculated by a biplane area-length met
Coronary angiograms were recorded in multiple projections, and coronary artery sten
with > 50% luminar narrowing were considered significant.
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5.6. Echocardiographic measurements

A Hewlett-Packard 77020A ultrasound colour Doppler system was used for the M-m
two-dimensional and Doppler echocardiographic recordings, observing stan
techniques and a method described previously (Airaksinen et al. 1989).

5.7. Exercise electrocardiographic measurements

The healthy subjects and the patients with stable angina pectoris performed a sym
limited maximal exercise test on an electrically braked bicycle ergometer (I,II,III,IV).
horizontal or downsloping ST depression of> 0.1mV occurring 0.08 seconds after the
point was considered to be of ischemic origin. The criterion for an ischemic epis
during the 24-hour ambulatory recording was a≥ 1 mm horizontal or downsloping ST
segment depression lasting for≥ 1 min.

5.8. Other analysis

A clinical history and evaluation, a physical examination, chest x-ray, blood pressure
biochemical analyses were obtained by standard methods. Serum total cholesterol,
density and low-density lipoprotein cholesterol, triglyceride and glucose were meas
from overnight fasting samples by the methods described earlier (Räihä et al. 1
1997).

5.9. Statistics

The results are mostly given as means± standard deviation. In the light of Kolmogorov-
Smirnov tests (Z-value> 1.0), in addition to the absolute values, a logarithm
transformation to the natural base was performed on all the spectral components of
rate variability (I,V). Student’s t-test for normally distributed variables, Mann-Whitney
test for other continuous values and chi-square test for categorical variables were us
analyse the differences between the groups (I-V). Analysis of variance followed
Bonferroni’s post hoc multiple range tests was also used to compare the differe
between the groups (III). The paired t-test for dependent variables was used to an
differences one hour before a specific event and in the 24-hour average (IV). Mul
regression analysis was used to determine the best independent variable
differentiating between the patient groups (I-IV). When analysing the sensitiv
specificity and predictive accuracy of the different measures, the 90% or 95% perce
of the values obtained for healthy subjects was used as the normal range for each m
(I,III). Spearman’s and Pearson’s correlation coefficients were used to estimate
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correlations between the measured variables. A p-value< 0.05 was considered significan
(I,II,III,IV,V). Cox proportional hazards regression analyses were used to assess
association between different risk predictors and mortality, using SPSS Windows ve
6.1 (V). To find the best cut-off points for various measures of heart rate variability,
dichotomisation cut-off points that maximised the hazards ratio obtained from the
regression model were sought, with all-cause mortality as the end point. All
proportional hazards regression analyses were stratified using sex and age as cova
In addition, all the variables that had a univariate association with all-cause morta
were included in the model, in order to estimate the independent power of the diffe
variables in predicting the mortality. Kaplan-Meier estimates of the distribution of tim
from baseline to death were computed, and log-rank analysis was performed to com
the survival curves between the groups (V).
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6. Results

6.1. Comparison of measures of heart rate behaviour between patients
with stable angina pectoris and healthy controls

Patients with stable uncomplicated coronary artery disease had lower standard dev
of all RR intervals (p< 0.01 ) and high-frequency spectral component of heart ra
variability (p < 0.05) than healthy controls. The mean heart rate was similar in b
groups. Coronary artery disease patients also had lower approximate entropy (p< 0.05)
than healthy controls. The short term fractal scaling exponent (α) was significantly higher
in patients with coronary artery disease than in healthy controls (1.34± 0.15 vs.
1.11± 0.12, p< 0.001, Table 2 and Figure 1). When the groups were matched w
respect to the ratio of low-to-high frequency spectral components, the short term sc
exponent value continued to be higher in coronary artery disease patients (p< 0.001), but
approximate entropy did not differ. The short-term fractal scaling exponent differentia
coronary artery disease patients from healthy subjects better than any other variable
a sensitivity of 78% and a specificity of 87% (I).

6.2. Comparison of measures of heart rate behaviour between
postinfarction patients and healthy controls

The standard deviation of RR intervals and the very low (p< 0.01) and low frequency
(p < 0.001) components in the spectral analysis of heart rate variability were lowe
postinfarction patients than in healthy subjects. The high frequency band was also l
in the patient group (p< 0.05). However, discrete high frequency peaks were less of
observed in postinfarction patients. The mean heart rates did not differ between
groups. Approximate entropy was significantly higher in postinfarction patients tha
healthy subjects (p< 0.001, Table 2 and Figure 1), whereas neither the short term frac
like scaling exponent nor the power-law slope differed between postinfarction pati
and healthy controls. When analysed from successive segments of 4000 beats, the 2
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variability in approximate entropy was lower in postinfarction patients than in heal
subjects (0.27± 0.09 vs. 0.32± 0.07, p< 0.05). When the study groups were matche
with respect to total RR interval variance (standard deviation of RR intervals
postinfarction patients 76± 15 msec and 76± 24 msec in healthy subjects, n= 30 for
both), the approximate entropy value was still higher in postinfarction patie
(1.24± 0.21) than healthy subjects (1.05± 0.10, p< 0.001, II).

Table 2. RR interval measurements

6.3. Comparison of measures of heart rate behaviour between
postinfarction patients with and without vulnerability to ventricular

tachyarrhythmia and healthy controls

There were no differences between the patients with and without vulnerability
ventricular tachycardia in the clinical characteristics, the frequency of ventricu
premature depolarizations or the occurrence of nonsustained ventricular tachycardia
mean standard deviation of all RR intervals was lower than in healthy controls, but did
differ between the groups with and without arrhythmia risk. Low frequency spec

healthy subjects
(n = 45,

I,II,III,IV)

uncomplicated
CAD

(n = 38, I)

post-MI group
without arrhyth-

mia
(n = 45, II,III)

post-MI group with
VT

(n = 45, III)

VF group
(n = 10, IV)

Mean RR inter-
val (ms)

888± 117 858± 119 944± 146* 953± 168* 879± 187

SDNN (ms) 150± 40 131± 39** 106 ± 30*** 90 ± 35*** 77 ± 47***

SDANN (ms) 90± 27 77± 23** 75 ± 26** 63 ± 26** 73 ± 34**

HF power (ln) 5.4± 0.9 4.9± 1.0* 5.2± 0.9 5.2± 1.3 6.2± 1.5*

LF power (ln) 6.3± 0.9 6.2± 0.8 5.9± 1.0 5.3± 1.2** 6.0 ± 1.5

α 1.09± 0.13 1.34± 0.15*** 1.06 ± 0.13 0.85± 0.25*** 0.68 ± 0.18***

β −1.27± 0.18 −1.30± 0.14 −1.33± 0.23 −1.37± 0.26 −1.63± 0.24**

SD1 21± 7 17± 9* 20 ± 10 23± 17 52± 41*

SD2 125± 38 111± 40* 104± 36* 85 ± 35*** 86 ± 48**

SD1/SD2 0.18± 0.04 0.16± 0.04 0.21± 0.06 0.30± 0.18* 0.59± 0.25**

ApEn 1.03± 0.14 0.93± 0.17* 1.17± 0.22** 1.20± 0.28** 1.01± 0.34

Abbreviations: the values are mean± standard deviation,α = short-term scaling exponent;β = power-law slope
between 0.000− 0.01 Hz; SD1= instantaneous heart rate variability from Poincaré plots; SD2 = continuou

heart rate variability from Poincaré plots; ApEn = approximate entropy; HF = high frequency spectral com
nent; LF = low frequency spectral component; SDNN = standard deviation of all RR intervals during the

hour recording; SDANN = standard deviation of RR intervals of 4000 beats segments; Mean RR = averag
lengths of RR intervals; ln = logarithm to the natural base of the absolute value; MI = myocardial infarctio

VT = ventricular tachycardia; VF = ventricular fibrillation CAD = coronary artery disease. * = p< 0.05, ** =
p < 0.01, *** = p < 0.001, significance levels for differences between healthy subjects and cardiovascula

patient groups.
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power was significantly lower in the ventricular tachycardia group than in postinfarct
patients (p< 0.01), but high frequency spectral power did not differ. However, the sh
of the high frequency spectral band was different in the ventricular tachycardia grou
such a way that the high frequency band was flatter with more power distributed in
very-high frequency area (Figure 1). The short term scaling exponent (α) was
significantly smaller in the arrhythmia group than in the postinfarction control gro
(p < 0.001) or in healthy controls (p< 0.001). Approximate entropy was significantly
lower in healthy subjects than in postinfarction patients (p< 0.001), but did not differ
between the groups with and without vulnerability to ventricular tachyarrhythmia. N
was the power-law regression slope able to differentiate between patients with
without a risk of tachycardia. The standard deviation of long-term (SD2) continuous
interval variabil ity was smaller in the ventricular arrhythmia group than in t
postinfarction control group (p< 0.05). Stepwise multiple regression analysis showed
short-term scaling exponent to be the most powerful independent predicto
vulnerability to ventricular tachycardia (III).

6.4. RR interval dynamics before spontaneous onset of ventricular
fibrillation

The frequency of ventricular premature depolarizations and the occurrenc
nonsustained ventricular tachycardia on the Holter recordings were significantly high
ventricular fibrillation patients compared to arrhythmia-free postinfarction controls. T
conventional measures of heart rate variability, i.e. the standard deviation of RR inte
in each segment and the standard deviation of the entire measured epoch, did not
between the ventricular fibrillation group and the postinfarction control group. The v
low and low frequency spectral components did not differ significantly between
ventricular fibrillation and control subject groups, but the high frequency spec
component was higher in ventricular fibrillation patients (p< 0.05). The power of the high
frequency spectral component was distributed widely in the high and very high frequ
areas in the ventricular fibrillation patients without any discrete respiration peak (Fig
1). Of the dynamic measures of RR interval behaviour, the short term fractal-rel
scaling exponentα and the power-law regression slopeβ showed smaller values in the
ventricular fibrillation group than in the postinfarction control group (p< 0.001, p< 0.01
respectively). The instantaneous beat-to-beat RR interval variability SD1 from Poin
plots and the SD1/SD2 ratio were higher in the ventricular fibrillation cases (p< 0.05,
p < 0.01, respectively). Approximate entropy did not differ from the values observe
healthy controls. In stepwise multiple regression analysis, including the ventric
premature depolarization frequency, the occurrence of nonsustained ventric
tachycardia, two-dimensional vector analysis, detrended fluctuation analysis, powe
behaviour analysis of low frequencies and conventional time and frequency dom
measures of heart rate variability,α proved to be the strongest independent predict
differentiating ventricular fibrillation patients from postinfarction controls. None of t
variables changed significantly during the last hour before the spontaneous ons
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ventricular fibrillation compared to the longer period preceding ventricular fibrillatio
When the last hour before ventricular fibrillation was divided into 15 minute intervals,
statistically significant changes in any variables were observed between the intervals

Fig. 1. (I,II,III,IV) Examples of power spectra, two dimensional vector analysis and detrended
fluctuation analysis of fractal scaling exponents from 24-hour data in different patient popula-
tions. Healthy subject show power spectra with distinct low and high frequency peaks, a comet
shape Poincarè plot and a short term scaling value∼1 in DFA analysis. Patient with uncompli-
cated coronary artery disease shows a clear reduction in high frequency spectral power and an
increased and short term scaling valueα . Patients with previous myocardial infarction show
reduced low frequency spectral power. Postinfarction patient with vulnerability to tachyar-
rhythmia shows a flatter spectrum and a reduced short term scaling valueα. Ventricular fibril-
lation patient shows a widened high frequency spectral band, a ball-shaped Poincarè plot of
successive RR intervals and a reduced short term scaling exponent (α ∼ 0.5). Abbreviations:α =
short-term scaling exponent; VF = ventricular fibrillation; VT = ventricular tachycardia; MI =
myocardial infarction; CAD = coronary artery disease.

6.5. Dynamical heart rate behaviour measures as a predictor of
mortality in elderly population

By the end of the 10-year follow-up 184 subjects (53%) had died and 167 (47%) were
alive. Seventy-four subjects (21%) had died of cardiac disease, 37 of cancer (11%),
cerebrovascular disease (7%), and 49 (14%) of various other causes. Univa
comparison showed age, sex, history of congestive heart failure, angina pectoris,
myocardial infarction, or cerebrovascular disease, functional class, use of car
medication, elevated baseline blood glucose and smoking history to be associated
all-cause mortality. Of the heart rate behaviour measures, the slope of the powe
regression line of heart rate behaviour, the standard deviation of all RR intervals, an
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very low frequency and low frequency spectral components appeared to have a univ
association with all-cause mortality. Short-term fractal-like measure was not analyse
stepwise proportional hazards method showed both the slope of the regression lin
the standard deviation of all RR intervals to possess independent predictive power
respect to all-cause mortality (p< 0.001 for both), whereas the very low frequency an
low frequency spectral components did not enter the model as independent predictor

In multivariate analysis, a history of previous myocardial infarction, angina pecto
congestive heart failure and cerebrovascular disease, smoking, functional class, ele
blood glucose, standard deviation of all RR intervals< 120 msec and a slope of power
law regression< −1.50 were associated with all-cause mortality after adjustment for
and sex. When all the risk variables were included in the analysis, a steep slope o
power-law regression line (adjusted relative risk 1.74, p< 0.001) and a history of
congestive heart failure (adjusted relative risk 1.70, p< 0.001, Table 3) were the only
independent predictors of all-cause mortality. After the 10-year follow up in the to
study population, only 19 of the 94 subjects (20%) with a power-law slope< −1.50 were
alive, whereas 141 of the 211 subjects (67%) with a power-law slope≥ −1.50 were still
alive (Figure 2). After adjusting for age and sex, cardiac death was predicted by the
variables as all-cause mortality, except for smoking history, and also by the presen
≥ 10 ventricular premature beats/hour on the 24-hour ECG recording. After adjusting fo
all the risk variables, cardiac death was independently associated only with a steep
of the regression line of heart rate variability (adjusted relative risk> 2, p< 0.001) and a
history of congestive heart failure (adjusted relative risk 1.56, p< 0.05). The slope of the
regression line of heart rate variabili ty was also an independent predicto
cerebrovascular death (age and sex adjusted relative risk, 1.85, p= 0.008), which was also
predicted by a history of cerebrovascular disease. The slope of long-term hear
variability had the best accuracy in predicting all-cause, cardiac and cerebrovas
death. The presence of frequent ventricular premature beats was specifically relate
risk cardiac of cardiac death, but had a low sensitivity (30%) compared to the sensit
of the slope of heart rate variability (60%, V).

Table 3. Significant Predictors of All-Cause Mortality in Proportional Hazards Regressi
analysis

Age and sex adjusted
association with mortality

Association with mortality
adjusted for all variables

Relative risk: 95% CI p-value†
Relative

risk:
95% CI p-value†

Clinical and
laboratory variables

prior AMI 1.39 (1.12–1.74) 0.003 0.82 (0.58–1.14) NS

angina pectoris 1.40 (1.1–1.67) 0.003 1.23 (0.90–1.66) NS

CHF 1.65 (1.3–2.01) < 0.001 1.70 (1.28–2.26) < 0.001

Abbreviations: AMI = acute myocardial infarction; CHF = congestive heart failure; CI = confidence interva
ECG = electrocardiography; SDNN = standard deviation of all N-N intervals; slope of HRV = power-law reg
sion of heart rate variability. †p-values determined in multivariate Cox regression analysis. NS denotes no

nificant
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Fig. 2. (V) Examples of power law regression slopes computed over frequencies between 10-2

and 10-4 for a 70-year-old man who was alive 10 years after the 24-hour electrocardiographic
recordings (left), and a 68-year-old man who had died of myocardial infarction 22 months after
the 24-hour electrocardiographic recording (right). ULF = ultra low frequency power, VLF =
very low frequency power, and slope = slope of the regression line computed from the log(pow-
er) - log(frequency) plot.

smoking 1.42 (1.01–1.60) 0.04 1.25 (0.92–1.92) NS

functional class 3–4 1.83 (1.46–2.29) < 0.0001 1.24 (0.91–1.68) NS

cardiac medication 1.69 (1.33–2.14) < 0.0001 1.32 (0.96–1.82) NS

CVD 1.33 (1.05–1.69) 0.02 1.40 (0.98–1.98) NS

glucose > 6.0 mmol/l 1.27 (1.06–1.52) 0.009 1.10 (0.85–1.42) NS

Ambulatory ECG data

SDNN < 120 ms 1.29 (1.09–1.53) 0.003 1.16 (0.95–1.77) NS

slope of HRV <−1.5 1.77 (1.48–2.11) < 0.001 1.74 (1.42–2.13) < 0.001

Age and sex adjusted
association with mortality

Association with mortality
adjusted for all variables

Relative risk: 95% CI p-value†
Relative

risk:
95% CI p-value†

Abbreviations: AMI = acute myocardial infarction; CHF = congestive heart failure; CI = confidence interva
ECG = electrocardiography; SDNN = standard deviation of all N-N intervals; slope of HRV = power-law reg
sion of heart rate variability. †p-values determined in multivariate Cox regression analysis. NS denotes no

nificant
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6.6. Correlations between dynamical and conventional measures of
heart rate behaviour

All the time and spectral measures of heart rate variability correlated highly significa
with each other (0.3< r < 0.7 for all, n= 536), with the exception of the ratio of low-to-
high frequency components, which correlated only weakly with the other time
frequency domain measures (−0.2 < r < 0.2 for all). The short-term fractal-like scaling
exponent and approximate entropy were not related to any single measure of hea
variability, but correlated significantly with the ratio of low-to-high frequency spect
components (r= 0.74, r= −0.49, respectively, p < 0.001 for both) and with each oth
(r = −0.53, p< 0.001). The slope of the power-law regression line showed only a w
correlation with the time or spectral measures of heart rate variability and with the o
dynamic parameters (−0.3 < r < 0.3 for all).

6.7. Correlations between dynamical measures of heart rate behaviour
and clinical variables

No significant association was observed between the short-term scaling exponent of
rate behaviour and the following clinical variables: age (r= −0.2, ns, I-V), sex,
angiographic severity of coronary artery disease, functional class or left ventric
ejection fraction (r= 0.1, ns) (II). The slope of the power law regression line of heart ra
variability showed weak correlations with age (r= −0.16, p< 0.01) and blood glucose
concentration (−0.14, p< 0.05) and no significant correlations with the other ris
variables (V).
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7. Discussion

The main new finding of this research was that dynamic analysis methods derived
nonlinear dynamics of heart rate behaviour provide substantial complemen
information of abnormal heart rate dynamics. Dynamical analysis of heart rate beha
revealed abnormal patterns of RR interval dynamics which cannot be detected b
commonly employed moment statistics of heart rate variability. Fractal-like heart
behaviour was observed in normal healthy hearts. This organising principle was fou
be altered in various patient populations. The consequences of a breakdown of fracta
organisation were shown among ventricular tachyarrhythmia patients, in whom
breakdown of the fractal-like behaviour of RR intervals predicted life-threaten
ventricular arrhythmia, and also among elderly people, of whom these with a breakd
of the fractal-like behaviour of RR intervals had a significantly higher mortality rate th
those with normal fractal-like heart rate behaviour.

7.1. Heart rate dynamics in patients with stable angina pectoris

The patients with stable uncomplicated coronary artery disease had a lower stan
deviation of all RR intervals, as expected and already shown by other studies (Hya
al. 1990, Airaksinen et al. 1987). The high-frequency spectral component of heart
variability was also lower in them than in healthy controls. Reduced instantaneous
long term heart rate variability in Poincaré plots was observed in coronary artery dis
patients, but their ratio remained unchanged. The patients with stable coronary a
disease also showed altered correlation properties in their RR interval dynamics, i.e
of normal fractal characteristics, and enhanced regularity in heart rate tracings. The s
term fractal scaling exponent was more sensitive than the other measures in dete
abnormalities in heart rate behaviour in this group of patients with stable angina pec
Information about the fractal organisation of heartbeat behaviour provided by prev
studies has shown that healthy heartbeat dynamics have a fractal-like temporal stru
with self-similar fluctuations over a wide range of time scales (Goldberger 19
Hausdorff et al. 1995, Goldberger 1990). This study implicated that this normal fra
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property of RR interval dynamics is altered in patients with uncomplicated coron
artery disease. This finding is partly related to changes in the spectral characterist
heart rate behaviour. In patients with uncomplicated coronary artery disease, a signi
reduction in the high frequency spectral band indicates a dominant role of the
frequency band. The loss of high frequency fluctuations corresponds to more regular
complex) short term signal behaviour associated with a higher short-term sca
exponent and a lower approximate entropy value. The ratio of the low-to-high freque
components did correlate with the short-term fractal scaling exponent of heart
behaviour in this study. However, when the groups were matched with respect to the
of low-to-high frequency spectral components, the short term scaling exponent value
still significantly higher in patients than in the healthy subjects, confirming that dyna
analysis of heartbeat behaviour gives complementary and independent information
cannot be obtained by traditional spectral analysis techniques (I). The changes in
rate behaviour variables in this study were not related to the clinical or angiogra
severity of coronary artery disease, and none of the patients had evidence of myoc
ischemia during the recordings, suggesting that the loss of fractal correlation prope
and the reduction in heartbeat complexity are not simply a consequence of end-o
damage caused by ischemic heart disease.

7.2. Heart rate dynamics in patients with prior myocardial infarction

Patients with previous myocardial infarction showed lower heart rate variability th
healthy controls as analysed with time and frequency domain measures. Of the sp
measures, the low frequency spectral component was most markedly reduced, wh
concurrent with the finding of a reduced low frequency component in patients with a p
myocardial infarction by Bigger et al. (1995). Neither a short term fractal-like measur
a power-law slope was able to detect changes in the heart rate behaviour of postinfa
patients, but continuous long term variabil ity in Poincaré plots differentiat
postinfarction patients from healthy controls. Despite the reduced overall RR inte
variability, the approximate entropy of RR interval dynamics increased in coronary ar
disease patients with a prior myocardial infarction. This was the most efficient dynam
measure for differentiating postinfarction patients from healthy subjects, implicating
the intrinsic randomness or unpredictability of RR interval dynamics increases in he
damaged by myocardial infarction.

The explanation for why the measure of approximate entropy is higher
postinfarction patients than in healthy subjects can be partly derived from chang
spectral measures.The reduction in the dominant power spectrum band, i.e ver
frequency or low frequency band, in postinfarction patients results in more rand
behaviour of RR interval data, resulting in higher approximate entropy. This concept
confirmed by experiments with artificial signals, where decreased very low or l
frequency power caused invariably higher approximate entropy values.
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7.3. Heart rate dynamics in patients with vulnerability to ventricular
tachyarrhythmia

Of the conventional heart rate variability measures, the standard deviation of RR inte
was lower in postinfarction patients than in healthy subjects, but it did not different
between patients with and without vulnerability to ventricular tachycardia. The o
traditional variable able to differentiate between patients with and without arrhythmia
was the low frequency spectral component (p< 0.01). Of the dynamical measures th
power-law slope did not identify the patients with vulnerability to ventricular arrhythm
Approximate entropy was higher in postinfarction patients, but was not able
differentiate between patients with and without vulnerability to ventricular tachycar
The short term fractal correlation properties of RR interval dynamics appeared t
altered, specifically in postinfarction patients with vulnerability to ventricular tachycard
implicating more uncorrelated short term heart rate behaviour. Conventional spe
measures were not able to differentiate between these patients equally well as the
term fractal scaling exponent.

The analysis of short term scaling subtends fluctuations mainly in the high and p
in the low frequency part of the signal spectrum. An exponent value 0.5 means that
term fluctuation is completely random. Values under 0.5 correspond to time series w
long and short RR intervals are more likely to alternate (Peng et al. 1995). RR inte
behaviour of this type was only observed in subjects (6 patients) with vulnerabilit
ventricular tachycardia. A previous study has shown alternating heart rate behav
before ventricular tachycardia onset (Huikuri et al. 1996), and the present study ext
these observations by offering a method to detect not only alternating behaviour, bu
the large aperiodic abrupt temporal changes in RR intervals.

7.4. Heart rate dynamics before spontaneous onset of ventricular
fibrillation

The standard deviation of RR intervals failed to predict ventricular fibrillation. Consist
with our data, Vybiral et al. (1993) have also shown that conventional analysis of h
rate variability fails to predict imminent changes in the RR intervals before the onse
ventricular fibrillation. Altered beat-to-beat RR interval dynamics were observed
precede the onset of ventricular fibrillation, however. Spectral analysis showe
increase in the high frequency component, but this spectral area was flat and w
distributed. Detrended fluctuation analysis showed that the altered beat-to-bea
interval variability resulted from an almost random-like form of short-term RR inter
behaviour rather than the fractal-like correlation properties observed in healthy sub
previously (Iyengar et al. 1996). This was visualised in Poincarè plots, which show
ball-like or complex structure of the plots with an increase in the standard deviatio
instantaneous RR interval variability (Figure 1). Skinner et al. (1994) also obser
changes in the correlation dimension of RR intervals several hours before the ons
ventricular fibrillation. The present findings agree with the recent findings on heart fai
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patients in whom a reduced short term scaling exponent was related to mortality (Ho
1997). In addition, the long range correlation properties of RR intervals were also alt
before the onset of ventricular fibrillation. The computed slope of the power-l
relationship of heart rate variability was more negative in ventricular fibrillation patien
despite the absence of differences in low frequency spectral components betwee
groups. The slope of the power-law relationship of heart rate variability did not reflect
magnitude of heart rate variability, but rather the distribution of spectral characteristic
RR interval oscillations. The steep slope of the power-law relationship has also b
shown to be associated with increased mortality in postinfarction patients (Bigger e
1996).

7.5. Dynamical measures of heart rate behaviour as a predictor of
mortality in elderly people

Heart rate behaviour analysed by new dynamical methods turned out to be a m
powerful predictor of mortality than the conventional risk markers in elderly subjec
Concurrent with the previous findings, the common risk factors, such as cholest
hypertension and smoking, were not powerful predictors of death, confirming that
prognostic markers applicable to younger subjects do not perform equally well amon
elderly (Anderson et al. 1987, Harris et al. 1988, Mattila et al. 1988, Krumholz et
1994).

A previous study of a Framingham cohort showed that the traditional short-te
measures of heart rate variability are able to predict all-cause mortality in elderly sub
(Tsuji et al. 1994). In our elderly population with a longer follow-up, the tradition
spectral and non-spectral measures did not emerge as independent predictors of su
because they were related to clinical risk variables. The slope of the power-
relationship of heart rate behaviour did not bear any significant relation to the other
markers, and it remained a powerful predictor of survival after adjustment for all ot
variables.

The slope of the power-law behaviour of heart rate dynamics was specifically rel
to vascular causes of death, i.e. cardiac and cerebrovascular deaths. Heart rate var
has been previously shown to predict all-cause and cardiac mortality in pat
populations with documented heart disease (Kleiger et al. 1987, Bigger et al. 1
Bigger et al. 1996), but there has been no information on the prognostic role of hear
variability as a predictor of cerebrovascular death. The present findings sugges
altered long-term heart rate behaviour is not only related to cardiac death, but also re
an increased risk for any acute vascular events leading to death.
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7.6. Mathematical interpretation of dynamical analysis of RR intervals

The mathematical background of the new dynamical measures of RR interval variab
used in this study have been described in detail previously by Peng et al. 1995, Bigg
al. 1996 and Pincus & Goldberger 1994. Briefly, approximate entropy reflect
complexity of time series data, the power-law regression slope demonstrate the fra
like correlation properties of RR interval data over 10-4 to 10-2 Hz, and the short term
fractal-like scaling exponent indicate the correlation properties of the shorter term
interval fluctuation. The fluctuations of a time series can also be assessed by comp
their behaviour to various types of artificially generated signals. White Gaussian n
represents time series where no correlations are found, but the data are comp
random. The power-law slope (β) of a signal of this kind is 0, the short term fracta
scaling exponent (α) is 0.5 and approximate entropy is∼ 2. Brown noise (1/f2 noise), an
integration of white noise, is characterised by the frequency spectrum of a curve ra
decaying (power inversely proportional to frequency squared) withβ = −2 andα = 1.5.
The frequency curve for a 1/f signal is smooth with fluctuations inversely proportional t
frequency and withβ = −1 andα = 1.0. Approximate entropy values are higher for a 1/f
signal than a 1/f2 signal. The 1/f signal is used as an example of a fractal-like proces
which is characterised by scale-invariant self-similar long-range correlations, wh
generate irregular and complex fluctuations on multiple time scales.

It has been suggested that the 1/f signal properties might be an organising principle o
physiological structure or function. Changes an organisation pattern of this kind
result in a less adaptable system favouring vulnerability to various pathological st
(Goldberger 1996). It was shown here that a breakdown of 1/f signal properties, both in
short term and in long range RR interval behaviour, occurs in subjects with vulnerab
to life-threatening arrhythmias, suggesting a causal relationship between altered fra
like signal behaviour and the onset of life-threatening arrhythmia. Since the deviation
the short-term slopes from the 1/f curve did not occur immediately before the onset o
ventricular fibrillation, altered RR interval dynamics may not be a direct trigger of
onset of ventricular fibrillation, but may rather reflect changes in other regulatory syst
preconditioning the heart to a life-threatening event. The importance of 1/f signal
behaviour was also seen among elderly people, in whom the breakdown of
organisation pattern was a powerful predictor of cardiovascular death.

7.7. Possible pathophysiological mechanisms of abnormal short and
long term heart rate dynamics

The physiological background of altered short term fractal-like behaviour is not exa
known, but one potential explanation for the altered short-term correlation propertie
heart rate dynamics in patients with vulnerability to life-threatening arrhythmia migh
altered sympathovagal interaction (Levy 1971). The concept of sympathoexcitatio
supported by observations of more complex Poincaré plots of successive RR interv
heart failure patients (Brouwer et al. 1996, Woo et al. 1994) with high norepineph
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levels (Woo et al. 1994). Similar changes have also been observed upon intrave
infusion of physiological doses of norepinephrine in young healthy adults (Tulppo e
1998). Random, uncorrelated beat-to-beat RR interval behaviour may also rese
repolarization dynamics of the myocardium and thereby increase vulnerabilit
ventricular arrhythmogenesis.

The physiologic relevance of high approximate entropy of RR interval data is a
open to speculation. It is possible that a higher sympathetic tone may also explai
reduction in the very low frequency spectral component and the change in beat-to
complexity and, consequently, the increase in approximate entropy.

The moderate correlation of the value of low-to-high frequency spectral compon
rates with both fractal correlation properties and approximate entropy suggests
dynamic fractal behaviour and the complexity of RR interval dynamics are relate
neuroautonomic interactions.

The physiological background of altered long term heart rate behaviour (power
slope) is not known, but the observation of significantly steeper power-law slope
denervated hearts suggests that it is partly influenced by the autonomic input to the
(Bigger et al. 1996).The slope has been found to be steeper in elderly subjects th
younger healthy subjects (Bigger et al. 1996, Saul et al. 1987), showing that ageing
results in progressive changes in the long-term spectral characteristics of hear
variability. No changes in ultra low frequency power, but a linear decline in very l
frequency power have been observed upon ageing (Bigger et al. 1995), which prob
also explains the steeper slope of the power-law regression line in the elderly. The a
autonomic modulation of long-term heart rate behaviour with advancing age may a
from age-related changes in various organs and body systems, which may interac
each other and thereby impair the function of the cardiovascular autonomic regula
systems.

Abnormalities in the autonomic modulation of heart rate have been observed in va
cardiovascular and cerebrovascular disorders (Huikuri 1995, Barron et al. 1
Korpelainen et al. 1996), and it is possible that altered cardiovascular neural regul
expressed by a steep slope of long-term heart rate dynamics may be a sign
underlying subclinical vascular disease predisposing to mortality. Another poten
explanation for the prognostic role of altered long term heart rate behaviour is that it
reflect an impairment in the adaptive systems during acute perturbations, suc
myocardial or cerebral ischemic events. This is supported by experimental observa
which have shown that cardiovascular autonomic regulation plays an important role i
occurrence of life-threatening arrhythmias during acute cardiac or cerebral ische
(Schwartz et al. 1992, Hachinski et al. 1992).



from
hich
lity.
with
ious
dif-

ised
dif-

his
s the

tery
ted

icular
RR
ple,
ntly

D470.book Page 53 Friday, August 7, 1998 3:01 PM
8. Conclusions

1. This research showed that a dynamical analysis of heart rate behaviour derived
nonlinear mathematics can reveal abnormal patterns of RR interval dynamics w
cannot be detected by commonly employed moment statistics of heart rate variabi

2. Approximate entropy showed heart rate tracings to be more predictable in patients
uncomplicated coronary artery disease, but more complex in patients with prev
myocardial infarction as compared to healthy controls. This method was not able to
ferentiate patients with and without ventricular tachyarrhytmias.

3. A short term fractal-like scaling exponent of RR intervals showed more organ
behaviour in patients with uncomplicated coronary artery disease. It was not able to
ferentiate patients with previous myocardial infarction from healthy controls. T
measure was markedly reduced in patients with life-threatening arrhythmia and wa
best variable to differentiate patients with and without ventricular arrhythmia.

4. Long term power-law slope was normal in patients with uncomplicated coronary ar
disease, but significantly steeper before ventricular fibrillation, and it also predic
mortality in a general elderly population.

5. The consequences of a breakdown of fractal-like organisation were seen in ventr
tachyarrhythmia patients, in whom the breakdown of the fractal-like behaviour of
intervals predicted life-threatening ventricular arrhythmia, and also in elderly peo
among whom those with altered fractal-like behaviour of RR intervals had significa
higher mortality rates than those with normal fractal-like heart rate behaviour.
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	SDANN
	SDANN
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	VF
	VF
	ventricular fibrillation
	ventricular fibrillation


	VLF
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	very low frequency
	very low frequency
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	VPB
	ventricular premature beat
	ventricular premature beat
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	1. Introduction
	1. Introduction
	The cardiovascular concept of homeostasis refers to the tendency of the organism to maintain a re...
	Since the observation that heart rate fluctuation is related to various cardiovascular disorders,...
	This study was designed to test the hypothesis that some dynamical analysis methods can reveal su...

	2. Review of the literature
	2. Review of the literature
	2.1. History of heart rate variability
	2.1. History of heart rate variability
	Various cardiovascular variables, such as heart rate and blood pressure, fluctuate from one beat ...
	Subtle beat-to-beat fluctuations in cardiovascular signals have received only little attention un...

	2.2. Physiological background of heart rate variability
	2.2. Physiological background of heart rate variability
	Beat-to-beat fluctuation in heart rate partly reflects the interplay between various perturbation...
	A relatively well known event that causes oscillations in heart rate is respiration. Heart rate f...
	Sympathetic excitations have been suggested to correspond to RR interval fluctuation at around 0....

	2.3. Conventional methods of assessing heart rate variability
	2.3. Conventional methods of assessing heart rate variability
	2.3.1. General
	2.3.1. General
	The changes in the sinus rate over time have been termed heart rate variability. Heart rate varia...

	2.3.2. Time domain analysis of heart rate variability
	2.3.2. Time domain analysis of heart rate variability
	Conventionally, heart rate fluctuation has been assessed by calculating indices based on statisti...
	The most commonly used index is the standard deviation of all normal-to-normal RR intervals (SDNN...
	2.3.2.1. Geometrical methods of heart rate variability analysis
	2.3.2.1. Geometrical methods of heart rate variability analysis
	Geometrical methods present RR intervals in geometric patterns and various approaches have been u...
	The Poincaré plot as another geometrical measure, is a diagram (scattergram) in which each RR int...


	2.3.3. Frequency domain measures of heart rate variability
	2.3.3. Frequency domain measures of heart rate variability
	Since the introduction of spectral analysis as a method for studying heart rate variability (Akse...


	2.4. Dynamical analysis methods of heart rate behaviour
	2.4. Dynamical analysis methods of heart rate behaviour
	There is increasing evidence to suggest that the heart is not a periodic oscillator under normal ...
	2.4.1. History of chaotic and nonlinear dynamics
	2.4.1. History of chaotic and nonlinear dynamics
	At the beginning of the 17th century, Johannes Kepler tried to prove the harmony of the structure...
	After the development of the rules of statistical thermodynamics, however, it became clear that t...
	2.4.1.1. Chaos
	2.4.1.1. Chaos
	Chaos, in the technical sense, is used to denote a type of time evolution in which the difference...
	Chaos is more easily understood through a comparison with randomness and periodicity. Random beha...

	2.4.1.2. Nonlinearity and its relation to chaos
	2.4.1.2. Nonlinearity and its relation to chaos
	Nonlinear equations are of two types, monotonic and folded (i.e. exponential or parabola- like). ...

	2.4.1.3. Strange attractors
	2.4.1.3. Strange attractors
	A simple attractor in which the orbit is a closed loop corresponds to sustained oscillation. This...

	2.4.1.4. Fractal form
	2.4.1.4. Fractal form
	A Fractal system is a specific form of chaos. The geometry of chaotic attractors often suggests t...


	2.4.2. Approximate entropy analysis
	2.4.2. Approximate entropy analysis
	Approximate entropy is a measure and parameter that quantifies the regularity or predictability o...

	2.4.3. Detrended fluctuation analysis
	2.4.3. Detrended fluctuation analysis
	The detrended fluctuation analysis technique is a measurement which quantifies the presence or ab...

	2.4.4. Power-law relationship analysis of heart rate dynamics
	2.4.4. Power-law relationship analysis of heart rate dynamics
	The power-law relationship of RR interval variability is a spectral measure different from the tr...

	2.4.5. Two dimensional vector analysis
	2.4.5. Two dimensional vector analysis
	As described above, the Poincaré plot is a diagram in which each RR interval is plotted as a func...

	2.4.6. Other nonlinear analysis methods
	2.4.6. Other nonlinear analysis methods
	The Lyapunov numerical method (Wolf et al. 1985, Eckmann & Ruelle 1985) is used as an adjunct to ...
	By evaluating the Haussdorff correlation dimension D, evidence of the chaotic nature of cardiac a...
	Another important quantity of the characterisation of deterministic chaotic activity is Kolmogoro...
	The fractal dimension can be employed as an estimate of the minimal number of degrees of freedom ...
	Spectral analysis alone cannot distinguish a chaotic process either, but some investigators have ...


	2.5. Heart rate variability in pathological conditions
	2.5. Heart rate variability in pathological conditions
	2.5.1. Heart rate variability in uncomplicated coronary artery disease
	2.5.1. Heart rate variability in uncomplicated coronary artery disease
	Heart rate variability is reduced in patients with stable coronary artery disease, and has been s...

	2.5.2. Heart rate variability after acute myocardial infarction
	2.5.2. Heart rate variability after acute myocardial infarction
	In 1965, Schneider & Costiloe proposed that heart rate fluctuation is decreased in patients with ...

	2.5.3. Prognostic significance of heart rate variability
	2.5.3. Prognostic significance of heart rate variability
	Reduced short term (30 consecutive RR intervals) heart rate variability was found to be associate...
	Impaired heart rate variability was proposed to be a better predictor of cardiac death and arrhyt...

	2.5.4. Other risk markers of arrhythmic death
	2.5.4. Other risk markers of arrhythmic death
	Poor left ventricular function is an important determinant of both cardiac death and arrhythmic m...
	In postinfarction patients, frequent premature depolarizations and the occurrence of nonsustained...
	Prolongation of the QT interval in postinfarction patients has been shown to predict the risk for...
	Signal-averaged ECG is a method of determining high-frequency low-amplitude potentials at the end...
	Baroreflex sensitivity reflects the vagal activity exerted by baroreceptor reflexes ( Smyth et al...
	The variation of every other T wave amplitude is defined as T wave alternans. This alternans can ...
	Using electrophysiologic indicators, postinfarction patients can be stratified into low- and high...

	2.5.5. Heart rate variability in other disease states
	2.5.5. Heart rate variability in other disease states
	Heart rate variability has been found to be decreased in congestive heart failure (Casolo et al. ...

	2.5.6. Influence of physical training and drugs on heart rate variability
	2.5.6. Influence of physical training and drugs on heart rate variability
	The relation between physical fitness and heart rate variability is controversial. Physical fitne...



	3. Purpose of the present study
	3. Purpose of the present study
	1. The main purpose of the present research was to assess the clinical applicability of new dynam...
	1. The main purpose of the present research was to assess the clinical applicability of new dynam...
	1. The main purpose of the present research was to assess the clinical applicability of new dynam...

	2. The specific aims of the individual substudies were:
	2. The specific aims of the individual substudies were:
	a) to compare dynamical measures of heart rate behaviour between coronary artery disease patients...
	a) to compare dynamical measures of heart rate behaviour between coronary artery disease patients...
	a) to compare dynamical measures of heart rate behaviour between coronary artery disease patients...

	b) to compare dynamical measures of heart rate behaviour between postinfarction patients and heal...
	b) to compare dynamical measures of heart rate behaviour between postinfarction patients and heal...

	c) to compare dynamical measures of heart rate behaviour between postinfarction patients with vul...
	c) to compare dynamical measures of heart rate behaviour between postinfarction patients with vul...

	d) to compare dynamical measures of heart rate behaviour before ventricular fibrillation in posti...
	d) to compare dynamical measures of heart rate behaviour before ventricular fibrillation in posti...

	e) to evaluate dynamical measures of heart rate behaviour as predictors of mortality in a general...
	e) to evaluate dynamical measures of heart rate behaviour as predictors of mortality in a general...





	4. Populations
	4. Populations
	The study covered four different patient populations, their controls and a general population of ...
	The first group consisted of 38 consecutive patients with stable angina pectoris and without prev...
	The second group comprised 40 consecutive patients with a prior Q-wave infarction referred for an...
	The third group, the ventricular tachyarrhythmia group, consisted of 45 consecutive patients who ...
	The fourth group consisted of 10 postinfarction patients, all of whom had spontaneous onset of ve...
	Table 1. Characteristics of patient populations
	Table 1. Characteristics of patient populations
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	healthy subjects
	uncomplicated CAD
	post-MI group without arrhytmia
	post-MI group with VT
	VF group


	<TABLE BODY>
	<TABLE ROW>
	Age
	59�±�9
	55 ± 9
	60 ± 6
	62 ±14
	67 ± 4

	<TABLE ROW>
	Men/women
	39/6
	39/6
	39/6
	39/6
	7/3

	<TABLE ROW>
	NYHA I-II
	23
	17
	19
	-

	<TABLE ROW>
	NYHA III-IV
	15
	28
	26
	10

	<TABLE ROW>
	LV ejection
	71 ± 7
	45 ± 8
	44 ± 11
	38 ± 8

	<TABLE ROW>
	Number of major coronary arteries narrowed >�50% in diameter

	<TABLE ROW>
	1
	17
	6
	9
	-

	<TABLE ROW>
	2
	&
	12
	17
	2

	<TABLE ROW>
	3
	15
	27
	19
	8


	<TABLE FOOTING>
	<TABLE ROW>
	Abbreviations: the values are mean ± standard deviation; NYHA = New York Heart Association; LV = ...




	The fifth population consisted of a random sample of 480 persons aged 65 or older living in the c...

	5. Methods
	5. Methods
	5.1. Electrocardiographic recordings
	5.1. Electrocardiographic recordings
	All the subjects in all studies (I,II,III,IV,V) were monitored for 24 hours (if possible) with an...

	5.2. Analysis of heart rate behaviour
	5.2. Analysis of heart rate behaviour
	After transfer of the electrocardiographic data to a microcomputer, the RR interval series were e...
	An autoregressive model was used to estimate the power spectrum densities of RR interval variabil...
	5.2.1. Poincaré plot analysis
	5.2.1. Poincaré plot analysis
	The Poincaré plot is a diagram (scattergram) in which each RR interval of a tachogram is plotted ...

	5.2.2. Approximate entropy analysis
	5.2.2. Approximate entropy analysis
	Approximate entropy analysis was used to measure the complexity of time series data. It quantifie...

	5.2.3. Detrended fluctuation analysis
	5.2.3. Detrended fluctuation analysis
	The detrended fluctuation analysis technique was used to quantify the fractal-like scaling proper...

	5.2.4. Power-law relationship analysis
	5.2.4. Power-law relationship analysis
	The power-law relationship of RR interval variability was calculated from the frequency range of 10


	5.3. Signal behaviour tests
	5.3. Signal behaviour tests
	A series of simulations with artificially generated data and real RR signals were performed to te...
	Artificial white Gaussian noise with a spectrum of the same power content at all frequencies (fla...
	In experiments with different relative very low and high frequency powers of artificial signals, ...
	Artificial modification of real RR interval data showed that an increase of low frequency power r...

	5.4. Effects of editing
	5.4. Effects of editing
	To test how data editing affects the values of dynamical measures, the data of several subjects w...
	The heart rate behaviour values did not differ between the different editing methods when <�5% of...

	5.5. Electrophysiologic and angiographic examinations
	5.5. Electrophysiologic and angiographic examinations
	Electrophysiologic testing included incremental ventricular pacing and programmed ventricular sti...

	5.6. Echocardiographic measurements
	5.6. Echocardiographic measurements
	A Hewlett-Packard 77020A ultrasound colour Doppler system was used for the M-mode, two-dimensiona...

	5.7. Exercise electrocardiographic measurements
	5.7. Exercise electrocardiographic measurements
	The healthy subjects and the patients with stable angina pectoris performed a symptom- limited ma...

	5.8. Other analysis
	5.8. Other analysis
	A clinical history and evaluation, a physical examination, chest x-ray, blood pressure and bioche...

	5.9. Statistics
	5.9. Statistics
	The results are mostly given as means�±�standard deviation. In the light of Kolmogorov- Smirnov t...


	6. Results
	6. Results
	6.1. Comparison of measures of heart rate behaviour between patients with stable angina pectoris ...
	6.1. Comparison of measures of heart rate behaviour between patients with stable angina pectoris ...
	Patients with stable uncomplicated coronary artery disease had lower standard deviation of all RR...

	6.2. Comparison of measures of heart rate behaviour between postinfarction patients and healthy c...
	6.2. Comparison of measures of heart rate behaviour between postinfarction patients and healthy c...
	The standard deviation of RR intervals and the very low (p�<�0.01) and low frequency (p�<�0.001) ...
	Table 2. RR interval measurements
	Table 2. RR interval measurements
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	healthy subjects
	uncomplicated CAD
	post-MI group without arrhythmia
	post-MI group with VT
	VF group


	<TABLE BODY>
	<TABLE ROW>
	Mean RR interval (ms)
	888�±�117
	858 ± 119
	944 ± 146*
	953 ± 168*
	879 ± 187

	<TABLE ROW>
	SDNN (ms)
	150�±�40
	131 ± 39**
	106 ± 30***
	90 ± 35***
	77 ± 47***

	<TABLE ROW>
	SDANN (ms)
	90�±�27
	77 ± 23**
	75 ± 26**
	63 ± 26**
	73 ± 34**

	<TABLE ROW>
	HF power (ln)
	5.4 ± 0.9
	4.9 ± 1.0*
	5.2 ± 0.9
	5.2 ± 1.3
	6.2 ± 1.5*

	<TABLE ROW>
	LF power (ln)
	6.3 ± 0.9
	6.2 ± 0.8
	5.9 ± 1.0
	5.3 ± 1.2**
	6.0 ± 1.5

	<TABLE ROW>
	a
	1.09 ± 0.13
	1.34 ± 0.15***
	1.06 ± 0.13
	0.85 ± 0.25***
	0.68 ± 0.18***

	<TABLE ROW>
	b
	-1.27 ± 0.18
	-1.30 ± 0.14
	-1.33 ± 0.23
	-1.37 ± 0.26
	-1.63 ± 0.24**

	<TABLE ROW>
	SD1
	21 ± 7
	17 ± 9*
	20 ± 10
	23 ± 17
	52 ± 41*

	<TABLE ROW>
	SD2
	125 ± 38
	111 ± 40*
	104 ± 36*
	85 ± 35***
	86 ± 48**

	<TABLE ROW>
	SD1/SD2
	0.18 ± 0.04
	0.16 ± 0.04
	0.21 ± 0.06
	0.30 ± 0.18*
	0.59 ± 0.25**

	<TABLE ROW>
	ApEn
	1.03 ± 0.14
	0.93 ± 0.17*
	1.17 ± 0.22**
	1.20 ± 0.28**
	1.01 ± 0.34


	<TABLE FOOTING>
	<TABLE ROW>
	Abbreviations: the values are mean�±�standard deviation, a = short-term scaling exponent; b = pow...





	6.3. Comparison of measures of heart rate behaviour between postinfarction patients with and with...
	6.3. Comparison of measures of heart rate behaviour between postinfarction patients with and with...
	There were no differences between the patients with and without vulnerability to ventricular tach...

	6.4. RR interval dynamics before spontaneous onset of ventricular fibrillation
	6.4. RR interval dynamics before spontaneous onset of ventricular fibrillation
	The frequency of ventricular premature depolarizations and the occurrence of nonsustained ventric...
	Fig. 1. (I,II,III,IV) Examples of power spectra, two dimensional vector analysis and detrended fl...
	Fig. 1. (I,II,III,IV) Examples of power spectra, two dimensional vector analysis and detrended fl...
	<GRAPHIC>


	6.5. Dynamical heart rate behaviour measures as a predictor of mortality in elderly population
	6.5. Dynamical heart rate behaviour measures as a predictor of mortality in elderly population
	By the end of the 10-year follow-up 184 subjects (53%) had died and 167 (47%) were still alive. S...
	In multivariate analysis, a history of previous myocardial infarction, angina pectoris, congestiv...
	Table 3. Significant Predictors of All-Cause Mortality in Proportional Hazards Regression analysis
	Table 3. Significant Predictors of All-Cause Mortality in Proportional Hazards Regression analysis
	<TABLE>
	<TABLE HEADING>
	<TABLE ROW>
	Age and sex adjusted
	Association with mortality

	<TABLE ROW>
	Relative risk:
	95% CI
	p-value†
	Relative risk:
	95% CI
	p-value†


	<TABLE BODY>
	<TABLE ROW>
	Clinical and

	<TABLE ROW>
	prior AMI
	1.39
	(1.12–1.74)
	0.003
	0.82
	(0.58–1.14)
	NS

	<TABLE ROW>
	angina pectoris
	1.40
	(1.1–1.67)
	0.003
	1.23
	(0.90–1.66)
	NS

	<TABLE ROW>
	CHF
	1.65
	(1.3–2.01)
	< 0.001
	1.70
	(1.28–2.26)
	< 0.001

	<TABLE ROW>
	smoking
	1.42
	(1.01–1.60)
	0.04
	1.25
	(0.92–1.92)
	NS

	<TABLE ROW>
	functional class 3–4
	1.83
	(1.46–2.29)
	< 0.0001
	1.24
	(0.91–1.68)
	NS

	<TABLE ROW>
	cardiac medication
	1.69
	(1.33–2.14)
	< 0.0001
	1.32
	(0.96–1.82)
	NS

	<TABLE ROW>
	CVD
	1.33
	(1.05–1.69)
	0.02
	1.40
	(0.98–1.98)
	NS

	<TABLE ROW>
	glucose > 6.0 mmol/l
	1.27
	(1.06–1.52)
	0.009
	1.10
	(0.85–1.42)
	NS

	<TABLE ROW>
	Ambulatory ECG data

	<TABLE ROW>
	SDNN < 120 ms
	1.29
	(1.09–1.53)
	0.003
	1.16
	(0.95–1.77)
	NS

	<TABLE ROW>
	slope of HRV < -1.5
	1.77
	(1.48–2.11)
	< 0.001
	1.74
	(1.42–2.13)
	< 0.001


	<TABLE FOOTING>
	<TABLE ROW>
	Abbreviations: AMI = acute myocardial infarction; CHF = congestive heart failure; CI = confidence...




	Fig. 2. (V) Examples of power law regression slopes computed over frequencies between 10
	Fig. 2. (V) Examples of power law regression slopes computed over frequencies between 10
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	6.6. Correlations between dynamical and conventional measures of heart rate behaviour
	6.6. Correlations between dynamical and conventional measures of heart rate behaviour
	All the time and spectral measures of heart rate variability correlated highly significantly with...

	6.7. Correlations between dynamical measures of heart rate behaviour and clinical variables
	6.7. Correlations between dynamical measures of heart rate behaviour and clinical variables
	No significant association was observed between the short-term scaling exponent of heart rate beh...


	7. Discussion
	7. Discussion
	The main new finding of this research was that dynamic analysis methods derived from nonlinear dy...
	7.1. Heart rate dynamics in patients with stable angina pectoris
	7.1. Heart rate dynamics in patients with stable angina pectoris
	The patients with stable uncomplicated coronary artery disease had a lower standard deviation of ...

	7.2. Heart rate dynamics in patients with prior myocardial infarction
	7.2. Heart rate dynamics in patients with prior myocardial infarction
	Patients with previous myocardial infarction showed lower heart rate variability than healthy con...
	The explanation for why the measure of approximate entropy is higher in postinfarction patients t...

	7.3. Heart rate dynamics in patients with vulnerability to ventricular tachyarrhythmia
	7.3. Heart rate dynamics in patients with vulnerability to ventricular tachyarrhythmia
	Of the conventional heart rate variability measures, the standard deviation of RR intervals was l...
	The analysis of short term scaling subtends fluctuations mainly in the high and partly in the low...

	7.4. Heart rate dynamics before spontaneous onset of ventricular fibrillation
	7.4. Heart rate dynamics before spontaneous onset of ventricular fibrillation
	The standard deviation of RR intervals failed to predict ventricular fibrillation. Consistent wit...

	7.5. Dynamical measures of heart rate behaviour as a predictor of mortality in elderly people
	7.5. Dynamical measures of heart rate behaviour as a predictor of mortality in elderly people
	Heart rate behaviour analysed by new dynamical methods turned out to be a more powerful predictor...
	A previous study of a Framingham cohort showed that the traditional short-term measures of heart ...
	The slope of the power-law behaviour of heart rate dynamics was specifically related to vascular ...

	7.6. Mathematical interpretation of dynamical analysis of RR intervals
	7.6. Mathematical interpretation of dynamical analysis of RR intervals
	The mathematical background of the new dynamical measures of RR interval variability used in this...
	It has been suggested that the 1/f signal properties might be an organising principle of physiolo...

	7.7. Possible pathophysiological mechanisms of abnormal short and long term heart rate dynamics
	7.7. Possible pathophysiological mechanisms of abnormal short and long term heart rate dynamics
	The physiological background of altered short term fractal-like behaviour is not exactly known, b...
	The physiologic relevance of high approximate entropy of RR interval data is also open to specula...
	The moderate correlation of the value of low-to-high frequency spectral component rates with both...
	The physiological background of altered long term heart rate behaviour (power-law slope) is not k...
	Abnormalities in the autonomic modulation of heart rate have been observed in various cardiovascu...


	8. Conclusions
	8. Conclusions
	1. This research showed that a dynamical analysis of heart rate behaviour derived from nonlinear ...
	1. This research showed that a dynamical analysis of heart rate behaviour derived from nonlinear ...
	1. This research showed that a dynamical analysis of heart rate behaviour derived from nonlinear ...

	2. Approximate entropy showed heart rate tracings to be more predictable in patients with uncompl...
	2. Approximate entropy showed heart rate tracings to be more predictable in patients with uncompl...

	3. A short term fractal-like scaling exponent of RR intervals showed more organised behaviour in ...
	3. A short term fractal-like scaling exponent of RR intervals showed more organised behaviour in ...

	4. Long term power-law slope was normal in patients with uncomplicated coronary artery disease, b...
	4. Long term power-law slope was normal in patients with uncomplicated coronary artery disease, b...

	5. The consequences of a breakdown of fractal-like organisation were seen in ventricular tachyarr...
	5. The consequences of a breakdown of fractal-like organisation were seen in ventricular tachyarr...
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