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Tyni, Teemu, Direct and inverse scattering problems for perturbations of the
biharmonic operator. 
University of Oulu Graduate School; University of Oulu, Faculty of Science
Acta Univ. Oul. A 725, 2018
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

This dissertation is a combination of four articles on the topic of scattering problems for a
biharmonic operator. The operator of interest has two coefficients which may be complex-valued
and singular. Each of the articles concerns a different aspect of the problem. Namely, the first
article discusses the direct scattering problem in higher dimensions and culminates in a proof of
Saito's formula, which yields a uniqueness result for the inverse scattering problem. The second
paper is about a backscattering problem in two and three dimensions. We prove that the inverse
Born approximation can be used to recover the singularities in the coefficients of the operator. The
third article fills in an answer to the question about recovering the complex-valued coefficients in
three dimensions that was left open in the second article. The final article studies the inverse
scattering problem on the line for a quasi-linear operator.

Keywords: biharmonic operator, Born approximation, inverse problem, scattering
theory





Tyni, Teemu, Suoria ja käänteisiä sirontaongelmia biharmonisen operaattorin
perturbaatioille. 
Oulun yliopiston tutkijakoulu; Oulun yliopisto, Luonnontieteellinen tiedekunta
Acta Univ. Oul. A 725, 2018
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

Väitöskirjatyö koostuu neljästä artikkelista, jotka käsittelevät sirontaongelmia biharmoniselle
operaattorille. Työn kohteena olevalla operaattorilla on kaksi kerrointa, jotka voivat olla komp-
leksiarvoisia ja singulaarisia. Kukin artikkeli käsittelee sirontaongelmaa eri näkökulmasta.
Ensimmäinen artikkeli koostuu pääasiassa suorasta sirontateoriasta korkeammissa ulottuvuuksis-
sa huipentuen lopulta Saiton kaavan todistukseen, jonka seurauksena saadaan yksikäsitteisyystu-
los käänteiselle sirontaongelmalle. Toisen artikkelin aiheena on takaisinsirontaongelma kahdes-
sa ja kolmessa ulottuvuudessa. Todistamme, että käänteistä Bornin approksimaatiota voidaan
käyttää paikantamaan kertoimien mahdolliset singulariteetit. Kolmas artikkeli vastaa toisessa
artikkelissa avoimeksi jääneeseen kysymykseen kompleksiarvoisien kertoimien rekonstruoimi-
sesta kolmessa ulottuvuudessa. Viimeisessä artikkelissa tutkitaan käänteistä sirontaongelmaa
kvasilineaariselle operaattorille yhdessä ulottuvuudessa.

Asiasanat: biharmoninen operaattori, Bornin approksimaatio, käänteiset ongelmat,
sirontateoria
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1 Introduction

In inverse scattering problems the objective is to locate and identify the unknown
target from the way it scatters incoming waves or particles. This kind of problem has
important applications in, for example, medical imaging, radar applications, seismic
prospecting, non-destructive material testing and nuclear physics. The waves used in
possible applications can be as diverse as acoustic waves in ultra sound imaging, radio
waves in radar and electromagnetic and elastic waves in material testing and geophysical
applications.

Let ∆ = ∑
n
j=1

∂ 2

∂x2
j

denote the Laplace operator in Rn. Classical examples of op-

erators that are used to describe scattering include the Helmholtz operator −∆−λ ,
the Schrödinger operator H :=−∆+V and the magnetic Schrödinger operator Hm :=
−(∇+ i~W )2 +V . These operators are second-order differential operators and they
appear in, for example, quantum mechanics and obstacle scattering.

This work concerns scattering problems for perturbations of the fourth-order
differential operator, henceforth called the biharmonic operator, ∆2. Equations involving
the biharmonic operator arise naturally, for example, in the study of vibrations of beams
and in the theory of elasticity [15]. As an example, in the context of beams the quantities
u, ∇u and ∆u have certain important physical interpretations. Here u is the displacement
of the beam, ∇u is related to the slope of the beam and ∆u is the bending moment. The
third-order derivative is known as the shear force.

The aim of this dissertation is to study both the direct and the inverse scattering
problems for the operator

H4 := ∆
2 +~q ·∇+V,

where ∇ is the gradient operator and~q and V are vector- and scalar-valued functions
of the spatial coordinates, respectively. In this work when we speak of a scatterer,
we collectively mean the functions ~q and V . Generally, the term scatterer can have
different meanings in different contexts. Examples of scatterers in practise might be
a tumor in the lungs of a patient or a crack in the supporting pillar of a bridge. The
direct scattering problem is to solve what kind of reflection does a given scatterer
yield, or more mathematically, to find a suitable solution u to a certain differential
equation involving H4. Conversely, the inverse scattering problem is to recover the
operator H4 (or the coefficients of H4) from suitable measurements, the scattering data.
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A recurring theme in this dissertation is to obtain results for possibly complex-valued
coefficients. This generality makes some calculations technically more involved than in
the real-valued case.

1.1 Notation

Let 1≤ p < ∞. We define the Lebesgue spaces as

Lp(Rn) :=
{

f : Rn→ C | f is measurable and
∫
Rn
| f (x)|pdx < ∞

}
and

L∞(Rn) := { f : Rn→ C | f is measurable and essentially bounded} .

The norms in the Lebesgue spaces are given by

‖ f‖Lp(Rn) :=
(∫

Rn
| f (x)|pdx

) 1
p

and ‖ f‖L∞(Rn) := esssup
x∈Rn

| f (x)|

and they make these spaces into Banach spaces. In the special case p = 2 the Lebesgue
space L2(Rn) is also a Hilbert space. We often require weighted Lebesgue spaces, which
we denote by Lp

δ
(Rn), where δ ∈ R, defined by finiteness of the norm ‖ f‖Lp

δ
(Rn) :=

‖(1+ |x|2) δ
2 f‖Lp(Rn). Let S′ denote the collection of all tempered distributions (see, e.g.

[18, 22]) and let k ∈ N. The Sobolev spaces W k
p (Rn) are the spaces of those tempered

distributions, whose weak derivatives up to order k belong to Lp(Rn), i.e.

W k
p (Rn) :=

{
f ∈ S′ | ∑

|α|≤k
‖∂ α f‖Lp(Rn) < ∞

}
,

where α = (α1, . . . ,αn) is a multi-index and ∂ α = ∂
α1
1 · · ·∂ αn

n .
In this dissertation the Fourier transform pair of f is defined by the formulae

f̂ (ξ ) := F( f )(ξ ) =
1

(2π)
n
2

∫
Rn

e−i(x,ξ ) f (x)dx

and

F−1( f )(x) =
1

(2π)
n
2

∫
Rn

ei(x,ξ ) f (ξ )dξ ,

where the symbol (x,ξ ) := ∑
n
i=1 xiξi denotes the usual real inner product of vectors

x,ξ ∈ Rn. These formulae are defined on the Schwartz class of rapidly decaying
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functions and can be extended to tempered distributions by duality. If s ∈ R we define
the Sobolev spaces W s

p(Rn) as

W s
p(Rn) := { f ∈ S′ | F−1((1+ | · |2)

s
2 f̂ ) ∈ Lp(Rn)}.

We say that f belongs to the weighted Sobolev space W s
p,δ (R

n) if (1+ |x|2) δ
2 f ∈W s

p(Rn).
In the case p = 2 we write Hs(Rn) := W s

2 (Rn). Finally, the letter C will be used to
denote a generic constant whose value can change from line to line.

1.2 Direct scattering problem

In the rest of this chapter we will work in a space of dimension n≥ 2 as the 1D-case
requires some minor changes. The classical scattering theory for Schrödinger operators
is quite well-understood and some of the basic literature on the subject include the
monographs [9, 11, 13]. To learn more about general scattering theory of differential
operators with constant coefficients see the classic book of Hörmander [19].

We study the direct scattering problem for the perturbed biharmonic operator given
by the equations

H4u = k4u, k > 0, u = u0 +usc, u0(x,k,θ) = eik(x,θ), (1)

where θ ∈ Sn−1 := {x ∈ Rn | |x|= 1} is the incident angle. Here k ∈ R is often called
the wavenumber. The scattered wave usc is required to be outgoing in the following
sense 

∂usc
∂ |x| − ikusc = o

(
|x|− n−1

2

)
,

∂∆usc
∂ |x| − ik∆usc = o

(
|x|− n−1

2

)
,

as |x| →+∞. These conditions are an analogue of the Sommerfeld radiation condition
(see Section 28 of [48]) for the operator H4. Next, we reduce the scattering problem (1)
into an integral equation. We start by rearranging the equation H4u = k4u as

∆
2u− k4u =−~q ·∇u−Vu. (2)

Then it is possible to show that the function

G+
k (|x|) =

i
8k2

(
|k|

2π|x|

) n−2
2
(

H(1)
n−2

2
(|k||x|)+ 2i

π
K n−2

2
(|k||x|)

)
is a fundamental solution to the operator ∆2−k4 in Rn (k 6= 0), that is, (∆2−k4)G+

k = δ0

in the sense of distributions. Here H(1)
n−2

2
and K n−2

2
are the Hankel function of first
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kind and the Macdonald function of orders n−2
2 and δ0 is the delta distribution. This

fundamental solution is outgoing in the sense that it satisfies the above radiation
conditions. By using theory of differential equations (see e.g. [18]) we write (2) as the
integral equation

u(x,k,θ) = u0(x,k,θ)

−
∫
Rn

G+
k (|x− y|) [~q(y) ·∇u(y,k,θ)+V (y)u(y,k,θ)]dy. (3)

In the context of the Schrödinger operator equation (3) is often called the Lippmann-
Schwinger integral equation and we use the same naming convention here.

To find a solution to the direct scattering problem we apply estimates for the resolvent

(∆2− k4− i0)−1 := lim
ε→0+

(∆2− k4− iε)−1.

In order to define this operator we first note that the spectrum of ∆2 with domain H4(Rn)

is σ(∆2) = [0,∞[. This fact allows us to define the resolvent operator (∆2− k4− iε)−1

as a bounded operator from L2(Rn) to H4(Rn) for any ε > 0. The limiting procedure as
ε → 0+ is usually called the limiting absorption principle [1] and there is no reason to
expect that the limiting operator exists on L2(Rn). However, due to the famous estimates
by S. Agmon (see Appendix A of [1]), one can prove that this operator exists in the
uniform operator topology of L2

δ
→ H2

−δ
for δ > 1

2 with good norm estimates.
Under certain technical integrability and smoothness assumptions we can show that

for a fixed and sufficiently large k > 0 the Lippmann-Schwinger integral equation (3)
has a unique solution. Further, this solution has the asymptotic form

u(x,k,θ) = u0(x,k,θ)+Cn
k

n−7
2 eik|x|

|x| n−1
2

A(k,θ ,θ ′)+o
(
|x|−

n−1
2

)
, |x| → ∞,

for fixed k > 0. Here θ ′ := x/|x| is the direction of the observation (measurement or
receiver angle) and

A(k,θ ,θ ′) =
∫
Rn

e−ik(y,θ ′) [~q ·∇u+Vu]dy

is known as the scattering amplitude. This scattering amplitude is a quantity which we
can measure in practise.

1.3 Inverse scattering problem

Broadly speaking the inverse scattering problem for an operator H4 is the recovery of its
unknown coefficients from measurements made far away from the scatterer. According

16



to J. Hadamard a problem qualifies as well-posed if the problem has a unique solution
which depends continuously on the data. Inverse scattering problems are known to
be ill-posed, and with some limited measurement data often we cannot hope to fully
describe the unknown scatterer. Instead, we settle for partial reconstructions of the
unknowns.

There exists a large amount of literature on inverse scattering problems for the
Schrödinger operator and the magnetic Schrödinger operator and we mention here
[1, 9, 11, 32–34] and the references therein. Some of the popular methods to study
inverse scattering problems for the Schrödinger operators include the Born approximation
[34], the linear sampling developed by Colton and Kirsch in [10] and continued in [12],
the singular source method [35] and the Kirsch factorization method [23].

Along with these different methods, one can also study different data sets and thus
obtain very different problems. Here we would like to recover the scatterer which de-
pends on n independent variables. The full data problem, where the scattering amplitude
is known in all directions and for all wavenumbers, contains 2n−1 independent variables
and is formally over-determined in dimensions n > 1 whence one is naturally led to study
more limited data. For example, by fixing the measurement or the observation angle one
obtains the so-called inverse fixed angle scattering problem [14, 42, 45]. Other data
types include fixed energy data, where only one incident wavenumber k (energy) is used
[28, 29, 32, 46] and backscattering data, where the measurement is made at the opposing
angle of the incident wave [31, 41, 43]. It seems that the study of backscattering data
for Schrödinger operators gained popularity after the publication of the 1956 article
by Moses [27] and the series of papers by Prosser [36–39] from 1969–1982. Some
of the above problems deal with more general operators with non-linear coefficients
(e.g. [14, 46]). It is also possible to consider energy-dependent coefficients to model
situations where the wave speed depends on location [2, 3].

Recently, inverse problems for bi- and polyharmonic operators have received more
attention. Examples include [5, 6, 25, 26] and [24] where the problem of determining
the perturbations of the polyharmonic operator (−∆)m and the biharmonic operator ∆2

from the Dirichlet-to-Neumann map have been studied. In the same spirit, in [47] it is
proved that a Dirichlet-to-Neumann map uniquely determines the coefficients of the
biharmonic operator up to a second order perturbation. However, to the best of the
author’s knowledge inverse scattering problems for biharmonic operators are not so
common in the literature. The author is aware of [20, 21]. We also mention [4] for a
study of the time-evolution of scattering data.
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In this thesis we assume that there exists at least one solution to the inverse scattering
problem, i.e. the scattering amplitude corresponds to at least one scatterer. Our results
then deal mostly with the uniqueness and recovery of this scatterer. We approach
the inverse scattering problem via method known as the inverse Born approximation,
following [34]. Analysis of the scattering amplitude reveals a connection to the Fourier
transform: by substituting in the formula of the scattering amplitude A the first-order
Born approximation u≈ u0 we find that

A(k,θ ,θ ′)≈
∫
Rn

eik(θ−θ ′,y) [ikθ ·~q(y)+V (y)]dy =: AB(k,θ ,θ ′).

Especially in the case of backscattering data, where θ ′ =−θ , we have by the divergence
theorem that

A(k,θ ,−θ)≈ (2π)
n
2 F−1

(
−1

2
∇ ·~q+V

)
(2kθ).

Heuristically, the Fourier transform interchanges the local smoothness of a function with
decay at infinity on the frequency side. Thus the large k asymptotics of A should contain
the jump discontinuities and singularities of the scatterer. With this interpretation in mind
we show in Articles II–III and IV that by using the inverse Born approximation defined
as the Fourier transform of the backscattering amplitude indeed the local singularities
of the combination β :=− 1

2 ∇ ·~q+V can be recovered. The main idea is to show that
the difference between the inverse Born approximation and the precise unknown is
smoother than the unknown itself, for example in the scale of Sobolev spaces. We
remark that the precise definition of the inverse Born approximation depends on the
problem at hand, as already seen above.

Another important aspect in inverse scattering problems is the uniqueness of the
solution to the problem, that is, whether the scattering amplitude leads to a unique
scatterer. For scattering data containing all incoming and observation angles for
arbitrarily high frequencies we have Saito’s formula (cf. article I) named after Yoshimi
Saitō, who used the formula to prove a uniqueness theorem for the inverse scattering
problem for the Schrödinger equation [44]. This formula also gives an affirmative answer
to the question whether the scattering amplitude corresponds to a unique combination of
the coefficients of H4 when n≥ 2.

To conclude this section we mention some limitations of our results. For one, it
is known that for Schrödinger operator −∆+V the Born approximation AB does not
correspond to an exact scattering data set A. This is shown, e.g. in [40] by demanding
the equality A(k,θ ,θ ′) = AB(k,θ ,θ ′) and then deducing that this is only possible when

18



V = 0. It can also be mentioned that one can try to obtain an analogue of Saito’s formula
also in the case n = 1 by replacing the integrals over the unit spheres with sums over the
two possible directions – left and right – on the line and the scattering amplitude with
suitable transmission and reflection coefficients. However, for n = 1 this formula does
not yield a uniqueness result and as such is not very useful. It is also important to keep
in mind that all of our recovery results correspond to the unique combination β of the
coefficients~q and V . Without some a priori knowledge about these coefficients~q and V

we cannot tell them apart by simply looking at the reconstruction.
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2 Summaries of the original articles

2.1 Article I

The main theme of this article is to study the classical direct scattering theory for
operator H4 in dimensions n≥ 2 and finally provide a uniqueness result for the inverse
scattering problem in the form of Saito’s formula. We start by enforcing the connection
between equations (1) and (3).

Theorem 2.1.1. Let~q ∈W 1
p,2δ

(Rn) and V ∈ Lp
2δ
(Rn), where 2δ > n− n

p and n < p≤∞.

If u = u0 +usc, usc ∈ H4
loc(Rn)∩H2

−δ
(Rn), solves (1) then it also solves (3).

The converse of the above theorem can be understood by noting that a solution to
the Lippmann-Schwinger integral equation (3) provides a solution to (1) in the sense of
distributions. Instead of (3) at this point it is more convenient to study the equivalent
integral equation

usc =−
∫
Rn

G+
k (|x− y|) [~q ·∇(u0 +usc)+V (u0 +usc)]dy

= ũ0−
∫
Rn

G+
k (|x− y|) [~q ·∇usc +Vusc]dy =: ũ0 +Lkusc,

where ũ0 := Lku0. The solution to this integral equation is obtained as a Neumann series
as follows.

Theorem 2.1.2. Let~q ∈W 1
p,2δ

(Rn) and V ∈ Lp
2δ
(Rn), where 2δ > n− n

p and n < p≤∞.

Then there exists a constant k0 > 1 such that the function usc(x,k,θ) defined by the

Neumann series

usc(x,k,θ) =
∞

∑
j=0

L j
kũ0(x,k,θ)

solves the integral equation usc = ũ0 +Lkusc uniquely in H2
−δ

(Rn), when k > k0.

Actually, in the important special cases when n = 2 or 3 we can show that the
solution u belongs to the Sobolev space W 1

∞(Rn). As another consequence we also
obtain a mapping property for the resolvent operator of H4.

Corollary 2.1.3. Let~q∈W 1
p,2δ

(Rn) and V ∈ Lp
2δ
(Rn), where 2δ > n− n

p and n < p≤∞.

Then the operator

Ĝp := lim
ε→0+

(H4− k4− iε)−1

21



exists in the uniform operator topology from L2
δ
(Rn) to H1

−δ
(Rn) with the norm estimates

‖Ĝp f‖H j
−δ

(Rn)
≤ C

k3− j ‖ f‖L2
δ
(Rn), j = 0,1,

for sufficiently large k > 0.

For fixed k > 0 the solution u to the Lippmann-Schwinger integral equation has the
asymptotic behaviour

u(x,k,θ) = eik(θ ,x)−Cn
k

n−7
2 eik|x|

|x| n−1
2

A(k,θ ,θ ′)+o

(
1

|x| n−1
2

)
, |x| → ∞,

where θ ′ ∈ Sn−1 is the angle of measurement and the function

A(k,θ ,θ ′) =
∫
Rn

e−ik(θ ′,y) [~q ·∇u+Vu]dy

is called the scattering amplitude. In fact, if the coefficients ~q and V are compactly
supported we can improve the behaviour of the remainder term to O

(
|x|− n+1

2

)
. While

this better behaviour is not needed for our purposes, it may have some independent
interest.

To conclude this part we prove an analogue of Saito’s formula.

Theorem 2.1.4 (Saito’s formula). Assume that~q ∈W 1
p,2δ

(Rn) and V ∈ Lp
2δ
(Rn), where

2δ > n− n
p and n < p≤ ∞. Then the limit

lim
k→∞

kn−1
∫
Sn−1×Sn−1

e−ik(θ−θ ′,x)A(k,θ ,θ ′)dθdθ
′ = 2n

π
n−1

∫
Rn

β (y)
|x− y|n−1 dy

holds uniformly in x. Recall that β :=− 1
2 ∇ ·~q+V .

The proof of this theorem is technical. It is based on the asymptotic behaviour of
Bessel functions (see for example [49]) and the mapping properties of the operator Ĝp

combined with the Sobolev embedding theorems.
Observe that the right-hand side of Saito’s formula can be considered as a convolution

operator which maps Lp
2δ
(Rn) to L∞(Rn). This operator has trivial kernel in the sense of

distributions and consequently we obtain the following result.

Corollary 2.1.5 (Uniqueness). Let~q1,V1 and~q2,V2 be as in Theorem 2.1.4. If the corre-

sponding scattering amplitudes for these coefficients coincide for some sequence k j→∞

then the corresponding coefficients β1 and β2 are equal in the sense of distributions.
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Remark 2.1.6. Since β is locally integrable (in fact, integrable) the equality in Corollary
2.1.5 holds not only in the sense of distributions but also almost everywhere.

The inversion of Saito’s formula also yields the following representation formula.

Corollary 2.1.7 (Representation formula). Under the same assumptions as in Theorem

2.1.4 we have

β (x) =
Γ
( n−1

2

)
2n+1π

3n−1
2

lim
k→∞

kn−1
∫
Sn−1×Sn−1

A(k,θ ,θ ′)|θ −θ
′|e−ik(θ−θ ′,x)dθdθ

′

in the sense of tempered distributions. Here Γ is the gamma function.

Remark 2.1.8. The combination β can be discontinuous and it can contain infinite
singularities, since locally it is just an Lp-function. In the sequel we consider the
recovery of these possible jumps and singularities.

2.2 Article II

The second article is about the backscattering problem for perturbations of the biharmonic
operator. The backscattering data is obtained by taking the measurement in the opposing
angle of the incident wave, that is, θ ′ =−θ . This data type is very natural and important
because it corresponds to measuring reflections (or echoes): the receiver is in the
same direction as the emitter. The choice θ ′ = −θ also simplifies certain formulae
considerably.

We choose to study the inverse Born approximation for this data type. For technical
reasons we define the scattering amplitude as A(k,θ ,−θ) = 0 if 0 < k < k0, where
k0 > 0 is sufficiently large (cf. Theorem 2.1.2). By substituting the first-order Born
approximation u(x,k,θ)≈ u0(x,k,θ) into the formula of the scattering amplitude and
using θ ′ =−θ we get

A(k,θ ,−θ)≈
∫
Rn

e2ik(θ ,y) [ikθ ·~q(y)+V (y)]dy = (2π)
n
2 F−1(β )(2kθ), (4)

where we applied the divergence theorem in the first term and used β =− 1
2 ∇ ·~q+V .

This approximation suggests the backscattering Born approximation qB of β can be
defined as

qB(x) :=
1

(2π)n

∫
∞

0
kn−1

∫
Sn−1

e−ik(θ ,x)A
(

k
2
,θ ,−θ

)
dθdk.

By substituting in the definition of the scattering amplitude the Neumann series
u = u0 +Lku0 +∑

∞
j=2 L j

ku0, where Lk is as above and L j
k = Lk(L

j−1
k ), j ≥ 2, then the
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backscattering Born approximation can also be expressed as qB = q0 +q1 +qrest. Here
q1 and qrest correspond to the terms Lku0 and ∑

∞
j=2 L j

ku0, respectively. Then by changing
to Cartesian coordinates as y = kθ and using Fourier inversion in (4) we see that

q0(x) =
1

(2π)
n
2

∫
∞

2k0

kn−1
∫
Sn−1

e−ik(θ ,x)F−1 (β )(kθ)dθdk = β (x)+ q̃(x),

where

q̃(x) :=
1

(2π)
n
2

∫ 2k0

0
kn−1

∫
Sn−1

e−ik(θ ,x)F−1 (β )(kθ)dθdk ∈C∞(Rn)

as the Fourier transform of a compactly supported distribution.

Lemma 2.2.1. Let n ≥ 2, ~q ∈W 1
p,2δ

(Rn) and V ∈ Lp
2δ
(Rn), where n < p ≤ ∞ and

2δ > n− n
p . Then qrest ∈ Hs(Rn) for any s < 6−n

2 .

Usually the main difficulty in the inverse Born approximation method is to obtain
good enough estimates for the first nonlinear term q1 (also known as the first quadratic
term [7] or the bilinear term [31]). In this text our approach is to split the fundamental
solution G+

k into two parts as

G+
k = GM

k +GE
k ,

where GM
k is the oscillating main part corresponding to the Hankel function and the

exponentially decaying part GE
k corresponds to the Macdonald function. Then we can

further split q1 = q1,M +q1,E and obtain the following results.

Lemma 2.2.2. Let n ≥ 2 and ~q and V be as in Lemma 2.2.1. Then q1,E ∈ Hs(R) for

any s < 8−n
2 .

Our next step is to obtain a more convenient representation for q1,M.

Remark 2.2.3. There is a misprint in article II: the function denoted by χ there should
be the characteristic function of R\ [−k0,k0], not that of [−k0,k0]. To emphasize this
complementary role in the summary part, we denote by χc the characteristic function of
R\ [−k0,k0]. This misprint does not affect the proofs in any way.
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Lemma 2.2.4. Let n≥ 2. If~q and V are as in Lemma 2.2.1, then

q1,M(x) =
(2π)

n
2

2
F−1

(
χc(|µ +η |/2)
|µ +η |2

∇̂ ·~q(η)∇̂ ·~q(µ)
(µ,η)+ i0

)
(x,x)

− (2π)
n
2

2
F−1

(
χc(|µ +η |/2)
|µ +η |2

∑
n
j,k=1 ∂̂ jqk(η)∂̂kq j(µ)

(µ,η)+ i0

)
(x,x)

−2(2π)
n
2 F−1

(
χc(|µ +η |/2)
|µ +η |2

̂̃V (η)V̂ (µ)

(µ,η)+ i0

)
(x,x)

in the sense of distributions. Here F−1 is the 2n-dimensional inverse Fourier transform

and Ṽ := ∇ ·~q−V .

Lemma 2.2.4 can be used to show that it suffices to study the behaviour of the
bilinear form

I( f ,g)(x) = p.v.
∫
Rn×Rn

ei(x,η+µ) χc(|µ +η |/2)
|µ +η |2

f̂ (η)ĝ(µ)
(η ,µ)

dηdµ

− iπ
∫
Rn×Rn

ei(x,η+µ) χc(|µ +η |/2)
|µ +η |2

f̂ (η)ĝ(µ)δ0((η ,µ) = 0)dηdµ

=: I′+ I′′.

Finally, a careful analysis of the two bilinear forms I′ and I′′ allows us to conclude
the recovery of singularities of β in the special cases when n = 2 or 3. To the best
of the author’s knowledge, this approach was first taken in [31] in the context of the
backscattering problem for the Schrödinger operator in two dimensions. Our results may
be summarized separately in two and three dimensions as follows.

Theorem 2.2.5 (Main theorem, n = 2). Let ~q ∈W 1
p,2δ

(R2) and V ∈ Lp
2δ
(R2), where

2 < p ≤ ∞ and 2δ > 2− 2
p . Then the difference qB−β defines a bounded and con-

tinuous function. If, in addition, ~q and V are real-valued, then Re qB−β ∈ Hs(R2)

(mod C∞(R2)) for any s < 2.

Corollary 2.2.6. If~q and V are as in Theorem 2.2.5, then the jumps of β over smooth

(bounded) curves are uniquely determined by the backscattering data A(k,θ ,−θ) and

can be recovered from qB.

Theorem 2.2.7 (Main theorem, n = 3). Let ~q ∈W 1
p,2δ

(R3) and V ∈ Lp
2δ
(R3), where

3 < p≤ ∞ and 2δ > 3− 3
p , be real-valued. Then the difference Re qB−β belongs to

the Sobolev space Hs(R3) (mod C∞(R3)) for any s < 3
2 .
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Corollary 2.2.8. If~q and V are as in Theorem 2.2.7, then the main singularities of β

over smooth (bounded) domains are uniquely determined by the backscattering data

A(k,θ ,−θ) and can be recovered from qB.

Remark 2.2.9. In the three dimensional case we use the fact that~q and V are real-valued
in a quite essential way. If the coefficients are real-valued, it can be shown that the delta
term in the bilinear form I′′ can be cancelled entirely. This simplifies the proofs, but
leaves open the question about recovery of singularities in the case of complex-valued
coefficients in 3D.

Several examples are also presented to demonstrate the numerical reconstruction of
the potentials in two dimensions. We remark that numerically we are able to recover
the shape, size and location of β reasonably well, even though our theoretical results
guarantee only the recovery of jumps and singularities.

2.3 Article III

This part answers the question posed in Remark 2.2.9 above. Namely, in Article II we
assumed that the coefficients are real-valued in three dimensions to obtain convenient
cancellation of a certain delta term. In this part we further extend the method of inverse
Born approximation for complex-coefficients in 3D. The missing link in 3D is the
computation of the bilinear form I′′( f ,g) of Article II.

Note that we cannot directly generalize the approach of the 2D case to three
dimensions. In the two dimensional case our approach was to write

I′′ =
∫
R2×R2

ei(x,η+µ) χc(|µ +η |/2)
|µ +η |2

f̂ (η)ĝ(µ)δ0((η ,µ) = 0)dηdµ

=
∫
R2

∫
∞

−∞

ei(x,η+tη⊥) χc(|η + tη⊥|/2)
|η |2 + t2 f̂ (η)ĝ(tη⊥)|η |−1dtdη ,

where η⊥ is the unit vector perpendicular to η chosen according to any specific
orthogonal reference. The similar approach does not, at least directly, work in 3D. The
reason is that in three dimensions there is no smooth (even continuous) way to choose
for each unit vector η a unique perpendicular η⊥ (cf. hairy ball theorem [17]). Instead,
we use the mapping properties of the Radon transform. The Radon transform of a
suitable measurable function f is defined as

R( f )(θ , t) :=
∫
(θ ,x)=t

f (x)dσ(x),
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where θ ∈ Sn−1 and t ∈ R, see e.g. [16]. The measure dσ(x) is the usual Lebesgue
surface measure. Our main tool is the following theorem, which is proved in [30] by
methods of complex interpolation.

Theorem 2.3.1. For n≥ 3 the inequality∫
Sn−1

sup
t∈R
|R( f )(θ , t)|ρ dθ ≤C‖ f‖α

La(Rn)‖ f‖1−α

Lb(Rn)

holds with ρ ≤ n whenever 1≤ a < n
n−1 < b≤ ∞ and

α

a
+

1−α

b
=

n−1
n

.

Remark 2.3.2. Any estimate of the type of Theorem 2.3.1 cannot hold in two dimensions
[30]. An explicit counterexample can be provided by taking f = χK , where χK is the
characteristic function of a Besicovitch set (or Kakeya set) K ⊂ R2. A Besicovitch set K

is a set which contains a unit line segment in every direction. Here K can be chosen
so that it is compact and has an arbitrarily small Lebesgue measure (such sets were
first constructed by Besicovitch in [8]). This means that supt∈R |R( f )(θ , t)| ≥ 1 for all
θ ∈ S1, while the right-hand side of the inequality in Theorem 2.3.1 can be made as
small as we want.

By using Theorem 2.3.1 we prove the following lemma.

Lemma 2.3.3. Let f ,g ∈ L2(R3). If f or g is also in L1(R3), then I′′ = I′′( f ,g)(x)

defines a bounded and continuous function of x ∈ R3.

The main results of this article can be summarized in the following theorem and its
corollary.

Theorem 2.3.4 (Recovery of singularities). Let~q ∈W 1
p,2δ

(R3) and V ∈ Lp
2δ
(R3) with

3 < p≤ ∞ and 2δ > 3− 3
p . Then the difference qB−β belongs to the Sobolev space

Ht(R3) (mod C(R3)) for all t < 3
2 .

Corollary 2.3.5. Under the same assumptions as in Theorem 2.3.4 the infinite singular-

ities of β =− 1
2 ∇ ·~q+V over boundaries of smooth domains in three dimensions are

uniquely determined by the backscattering data A(k,θ ,−θ) and can be recovered from

qB.
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2.4 Article IV

The final article discusses an inverse scattering problem for quasi-linear perturbations of
the biharmonic operator on the line. The operator is given by

Q4u :=
d4u
dx4 +q1(x, |u|)u′+q0(x, |u|)u,

where the coefficients q1 and q0 are required to satisfy several technical regularity
conditions.

Assumption 2.4.1. Let us assume that the coefficients q j, j = 0,1, have the following
properties.

1. There exist functions α j ∈ L1(R) such that for all a > 0 we find C j(a)> 0 with the
property that |q j(x,s)| ≤C j(a)α j(x), for all 0≤ s≤ a.

2. The coefficients q j have Lipschitz property in the second variable, that is, there
exists β j ∈ L1(R) such that for all a > 0 we find C′j(a)> 0 with the property that
|q j(x,s1)−q j(x,s2)| ≤C′j(a)β j(x)|s1− s2| for all 0≤ s1 ≤ 1+a and 0≤ s2 ≤ 1+a.

3. Denote h1(y) := q1(y,1) and h0(y) := q0(y,1). Suppose that the coefficients q0 and
q1 have the following representations:

q0(x,1+ s) = h0(x)+q∗0(x,s
∗
0)s,

q1(x,1+ s) = h1(x)+q∗1(x,1)s+q∗∗1 (x,s∗1)
s2

2
,

where |s∗0|, |s∗1| < |s|. Here we assume that h1 ∈W 1
1 (R), q∗1(x,1) ∈ L1(R)∩Lp(R)

for some p > 1 and |q∗0(x,s∗0)| ≤ h∗0(x), |q∗∗1 (x,s∗1)| ≤ h∗∗1 (x) uniformly in |s|< s0 for
some 0 < s0 ≤ 1 and for some h∗0,h

∗∗
1 ∈ L1(R).

The first two assumptions are smallness and regularity conditions for the nonlinear
coefficients and they guarantee that the direct problem has a unique solution if k > k0 is
large enough. The proof of this result is a straight-forward application of the Banach
fixed-point theorem. As a consequence we find that the scattered wave can be expressed
as the limit

usc = lim
j→∞

u( j)
sc ,

where the terms are obtained iteratively from u( j)
sc := T (u( j−1)

sc ), u(0)sc = 0 and

T (ũ) :=−
∫

∞

−∞

G+
k (|x− y|)

(
q1(y, |u0 + ũ|)(u0 + ũ)′+q0(y, |u0 + ũ|)(u0 + ũ)

)
dy.
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The solution u has the asymptotic behaviour

u(x,k) = eikx +b(k)e−ikx +o(1), x→−∞,

where b(k) is called the reflection coefficient and is defined by

b(k) =− i
4k3

∫
∞

−∞

eiky (q1(y, |u|)u′+q0(y, |u|)u
)

dy

for sufficiently large k > 0. By formally defining the solutions u(x,k) = u(x,−k)

for k < 0 also the reflection coefficient can be extended for k < 0 and it satisfies
b(k) = b(−k). For technical simplicity we set b(k) = 0 if −k0 < k < k0.

By using Assumption 2.4.1 for large k > 0 we may approximate u(x,k)≈ u0(x,k)

and obtain
b(k)≈− i

4k3

∫
∞

−∞

e2iky (ikq1(y,1)+q0(y,1))dy.

Here an integration by parts yields

b(k)≈− i
4k3

∫
∞

−∞

e2iky
(
−1

2
q′1(y,1)+q0(y,1)

)
dy

and hence it makes sense to attempt recovery of the special combination of the
coefficients h(x) :=− 1

2 q′1(x,1)+q0(x,1).
We propose to define the inverse Born approximation by

hB(x) := F
(

ik3

2
√

2π
b
(

k
2

))
(x)

in the sense of distributions. The third condition of Assumption 2.4.1 allows us to
linearize the coefficients sufficiently and after some quite technical calculations we
can conclude our main result and its corollary. Let us denote the space of continuous
functions vanishing at infinity { f ∈C(R) | f (x)→ 0, as x→±∞} by Ċ(R).

Theorem 2.4.2. The inverse Born approximation hB of h is of the form

hB(x) = Re(h)(x)+
1
π

p.v.
∫

∞

−∞

Im(h)(y)
x− y

dy (mod Ċ(R)).

Corollary 2.4.3. Let q0 and q1 satisfy Assumptions 2.4.1. If Im(h) ∈ Hr(R) for some

r > 1
2 or if h is just real-valued, then the difference hB−Re(h) is a continuous function.

In particular, any jumps and singularities contained in Re(h) can be recovered by

calculating hB.
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We also present a numerical example demonstrating the inverse Born approximation
for nonlinear complex-valued coefficients. The reader may also be interested in the
difference between the results of the reconstruction on the line and in higher dimensions.
In higher dimensions we expect to recover information about the function β directly,
while on the line we recover information about the real part and the Hilbert transform of
the imaginary part. A heuristic reason for this is that on the line we have quite limited
data (reflection coefficient in one direction) while in higher dimensions we have more
room to integrate around the problematic neighbourhood of k = 0.
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