
On Using Monte-Carlo Tree Search to Solve Puzzles
Mohammad Sina Kiarostami
Center for Ubiquitous Computing,
Faculty of ITEE, University of Oulu

Oulu, Finland
mohammad.kiarostami@oulu.fi

Mohammadreza
Daneshvaramoli

School of Computer Sciences,
Institute for Research in Fundamental

Sciences (IPM)
Tehran, Iran

daneshvaramoli@ipm.ir

Saleh Khalaj Monfared
School of Computer Sciences,

Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran

monfared@ipm.ir

Aku Visuri
Center for Ubiquitous Computing,
Faculty of ITEE, University of Oulu

Oulu, Finland
aku.visuri@oulu.fi

Helia Karisani
School of Computer Sciences,

Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran

h.karisani@ipm.ir

Simo Hosio
Center for Ubiquitous Computing,
Faculty of ITEE, University of Oulu

Oulu, Finland
simo.hosio@oulu.fi

Hamed Khashehchi
School of Computer Sciences,

Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran

hkhashehchi@ipm.ir

Ehsan Futuhi
School of Computer Sciences,

Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran

efutuhi@ipm.ir

Dara Rahmati
School of Computer Sciences,

Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran

dara.rahmati@ipm.ir

Saeid Gorgin
School of Computer Sciences,

Institute for Research in Fundamental
Sciences (IPM)
Tehran, Iran
gorgin@ipm.ir

ABSTRACT
Solving puzzles has become increasingly important in artificial
intelligence research since the solutions could be directly applied to
real-world or general problems such as pathfinding, path planning,
and exploration problems. Selecting the best approach to solve
puzzles has always been an essential issue. Monte-Carlo Tree Search
(MCTS) has surged into popularity as a promising approach due
to its low run-time and memory complexity. Thus, it is required to
know how to employ this method to solve the puzzles.

In this work, we study the applicability of MCTS in solving
puzzles or solving a puzzle with MCTS, not comparing many MCTS
approaches. We propose a general classification of puzzles based on
their features. This classification consists of four primary classes
that provide a mathematical formula for each and their satisfactory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCTA 2021, July 13–15, 2021, Vienna, Austria
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9052-1/21/07. . . $15.00
https://doi.org/10.1145/3477911.3477915

criteria. This classification let us know how to utilize MCTS based
on the puzzle’s features. We pass each puzzle to an MCTS algorithm
as a series of satisfaction functions based on this mathematical
formulation. The classification can perform general pathfinding
or path-planning if the outlining problem is defined within the
described mathematical constraints. MCTS progressively solves a
puzzle until the functions are completely satisfied in our proposed
classification. We examine different puzzles for each class using
our proposed methodology. Furthermore, to evaluate the proposed
method’s performance, each of these puzzles is compared with their
available SAT solvers using the Z3 implementation and different
variations of MCTS that are generally used.

CCS CONCEPTS
• Theory of computation → Solution concepts in game the-
ory; Representations of games and their complexity; Theory of ran-
domized search heuristics.

KEYWORDS
Puzzle, Games, Classification, Monte-Carlo Tree Search (MCTS),
SAT.

https://doi.org/10.1145/3477911.3477915

ICCTA 2021, July 13–15, 2021, Vienna, Austria Kiarostami et al.

ACM Reference Format:
Mohammad Sina Kiarostami, Mohammadreza Daneshvaramoli, Saleh Khalaj
Monfared, Aku Visuri, Helia Karisani, Simo Hosio, Hamed Khashehchi,
Ehsan Futuhi, Dara Rahmati, and Saeid Gorgin. 2021. On Using Monte-
Carlo Tree Search to Solve Puzzles. In 2021 7th International Conference on
Computer Technology Applications (ICCTA 2021), July 13–15, 2021, Vienna,
Austria. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3477911.
3477915

1 INTRODUCTION AND BACKGROUND
Throughout the last five decades, proposing a generic, unified, and
efficient solver capable of solving any puzzle has been an open
problem in Artificial Intelligence research [27]. In this context, pi-
oneered by works in [25] and [30], General Game Playing (GGP)
strives to introduce an accurate and efficient game-independent
platform for Game or Puzzle descriptors. Various works regarding
the general expression of puzzles have been proposed. Game De-
scription Language (GDL) [22], as a known framework, provides
a representation capable of describing multi-player deterministic
games. Regular Board Game (RBG) [20], a new GGP reasoner and
language class, is based on mathematical formalization and proffers
efficient reasoning for a wide range of deterministic multi-player
board games. However, due to the wide variety of puzzles of differ-
ent nature, it has been a considerable challenge to suggest a general
framework to include all kinds of games rather than board games.
Furthermore, from computation complexity and puzzles’ features,
constructing a unified algorithm is a challenging problem.

Many efforts have been made to investigate the computational
complexity of different puzzles [17]. Others have tried to give a com-
prehensive classification for puzzles [7]. Among all of these classes,
most logic puzzles are proved to be NP-complete [11], at the same
time, completely different sequential puzzles such as Samegame
(Clickomania) are also shown to be NP-complete [5]. Nevertheless,
for solving puzzles, the issue remains crucial, mainly due to the lack
of a single general algorithm to tackle them all. Different puzzles
require different heuristics to be effectively solved.

From the perspective of generalized solving algorithms, Monte-
Carlo Tree Search (MCTS), as thoroughly surveyed by [8], as a pow-
erful randomized algorithm, is known to be very effective against
puzzles in general domains [32],[15]. MCTS has four stages. It em-
ploys Monte-Carlo-based simulations to obtain the best final goal in
an iterative mechanism. At the Selection stage, a constructed tree is
traversed among the possible Children to find the best Child based
on the existing Tree Policy. It then Expands the chosen node for
every possible child, guaranteeing a visitation for all non-terminal
children of the selected node. Furthermore, multiple randomized
Simulation are performed, down into the last leaf of the tree, result-
ing in a Value which is calculated via a pre-defined Value Function.
Finally, as the forth stage, the obtained Value affects all the existing
nodes a Back Propagation procedure.

1.1 Our Contributions
. In this work, we investigate the applicability of MCTS on single-
player logical puzzles. We classify the puzzles based on their charac-
teristics into four classes, where MCTS could be applied efficiently
or not for each specific Class. By defining a description, regardless
of the puzzle’s domain and definition, mathematical constraints

based on the proposed classification could be passed into the unified
MCTS. We introduce the classes with their mathematical definition
in section III. Also we investigate and apply several optimizations
and improvements to MCTS, namely Ordering, Reliable MCTS, Fast
Rollout, and Accurate Randomness which are explained in section III
as well. Ultimately, we evaluate our classification in section IV on
several sample puzzles with numerous experimental test cases. We
show that the MCTS could be more powerful and efficient in most
benchmarks and puzzles than state-of-the-art SAT/CSP solvers.

2 EXISTINGWORKS
Regarding the Logic Puzzles, it is shown that state-of-the-art SAT
solvers are suitable choices for tackling these puzzles. [10]. Simi-
larly, Constraint Satisfaction Programming (CSP) uses an identical
method to approach these puzzles [26]. Moreover, works employ-
ing stochastic CSPs (SCSP) such as [19] are demonstrated to be
effective in multi-player games where randomness and stochastic
information involved. Recently, authors in [28] present a puzzle
solver based on Luddi [29], a newly proposed GDL which uses
Monte-Carlo Tree search (MCTS) as its core for AI move planning.
Incorporating the XCSP3 [6] solver provides a universal integrated
framework for constraint problem representation, numerous Logic
Puzzles are demonstrated to be effectively solved.

On the other hand, MCTS methods studied in [8] are considered
one of the most successful approaches to solving puzzles when no
domain-specific knowledge is required. MCTS has already been
shown to be suitable for multi-player games. [33]. It is believed that
MCTS outperforms any other approaches in multi-player games.
Improvements in Computer Go by the employment of MCTS have
led to a migration from conventional Computer Chess to Computer
Go [21]. Other approaches mostly suffer from the large size of the
problem and become ineffective. MCTS has also been studied for
single-player games/puzzles such as Samegame [32] and Sudoku
[9]. However, MCTS solutions for single-player puzzles are not
considered favourable and effective as they are in sophisticated
multi-player games like Go and Chess. This fact has motivated the
authors to comprehensively investigate the applicability of MCTS
to single-player puzzles, where, despite the probabilistic nature of
MCTS, the problem should be solved deterministically and accu-
rately. It is also worth mentioning that there are numerous pre-
viously proposed heuristic algorithms specifically for each logic
puzzle. Existing works on GGP solving with MCTS mainly focus on
multi-player games where randomness and stochastic procedure
are involved. Although MCTS is utilized for logical puzzles, by the
appearance of high-performance SAT/CSP solvers, logical deter-
ministic puzzles are deemed to be efficiently solved by constraints
solvers.

3 IMPLEMENTING CONSTRAINT-BASED
MCTS FOR PUZZLE SOLVING

This section defines a general classification for MCTS to understand
how we should apply this method to solve a logic puzzle based on
the puzzle’s features.

https://doi.org/10.1145/3477911.3477915
https://doi.org/10.1145/3477911.3477915

On Using Monte-Carlo Tree Search to Solve Puzzles ICCTA 2021, July 13–15, 2021, Vienna, Austria

3.1 Puzzle Classification
It is already demonstrated in [12], that numerous puzzles could be
described by CSP (Constraint Satisfaction Problem) and SAT for-
mulation. However, to efficiently employ the MCTS approach, the
SAT description should be modified and simplified to its essential
parts. A unified mathematical foundation could be defined for each
puzzle. Here, we classify the puzzles into Three main Classes based
on their features and solutions. It is also worthy to emphasize that
the described classification could be used to quickly implement the
SAT/CSP code.

3.1.1 Class A. The puzzles in Class A are defined by the 3-tuple
G = ⟨X ,D,C⟩. The tuple X = (X1,X2, ...,XN) represents the
Variables. The Domain of each variable is defined by the tuple
D = (D1,D2, ...,DN). Thus, the range of the variableXi is restricted
by Di . (∀i : Xi ∈ Di). The Constraints are defined by set of L con-
straints ofC = {C1,C2, ...,CL}, where each constraint is defined by
Ci = (fi ,di). Boolean function fi () is a primitive function and di
with the size ofmi , identifies the domain of Variables for fi (). The
function fi () is satisfied over the domain Si , described as follows:

∀i ∈ {1, 2, ...,L} :
di = {α1,α2, ...,αmi }, Si = {Xα1 ,Xα2 , ...,Xαmi

}

⇒ fi (Si) = True

(1)

Hence, the puzzle is considered to be solved if :

L∧
i=1

fi (Si) = True (2)

The tuple X represents the unknown values to be found in the
puzzle. (e.g X = (X1,X2, ...,X81) in the case of Sudoku). Alterna-
tively, if possible, characterizing the puzzle map by aM ×M grid,
one could identify the X values in a 2-D representation. (e.g. Xi, j
is located at the ith row and jth column in the puzzle grid). The
Domain could also be explained as the permitted Pieces or Values at
each specific position. (e.g Di = {1, 2, ..., 9} is the domain of each
cell in Sudoku). Most of the logic grid puzzles such as Sudoku and
Kakuro are generally categorized in the Class A. In contrast, other
puzzles which involve time-step movements could not be simply
included in this class. This kind of puzzles will be mathematically
described in the next class.

The puzzles categorized in the Class A are known to be solved
statically with simple Constraints. More importantly, this class of
puzzles is Time Independent. It demonstrated that these puzzles are
usually solved by SAT/CSP solvers (e.g., Z3, XCSP). Nevertheless,
we demonstrate that a suitable MCTS organization to approach this
category of the puzzle would be as efficient and even faster in some
scenarios.

3.1.2 Class B. The Class B of puzzles is directly affected by the
step moves. To define these puzzles, Time dimension should be
carefully considered to express an accurate formulation. For in-
stance the flood it [2] puzzle is categorized in this class. This class
could be defined by 6-tuple G = ⟨X t ,Dt ,T t ,V t ,G,Et ⟩. Similar to
the previous class, the X t represents Variables in the time steps
t = {0, 1, 2, .., tf inal }, where t = 0 and t = tf inal denote the initial

and final states, respectively. Dt demonstrates the Domain of vari-
ables at each time steps. As an important indicator,T t describes the
Transition tuple for each variable. The tuple T t = {T t1 ,T

t
2 , ...,T

t
N }

is responsible for the next states (time-states) of the variables based
on the previous variables. It is defined as follows:

T ti = {hti (X
t ′)|t ′ ≤ t ,h : Dt ′

i → Dt
i } (3)

Note that h could be any simple function such as Summation, All
different, Etc. Moreover, Et = {Et1,E

t
2, ...,E

t
M } illustrates the Event,

and Eti is defined by (pti ,q
t
i), where p

t
i is the index and qti is the

value of a variable which is altered as an Event in the time state t .
A transition is valid if the following is satisfied:

∀i ∈ {1, 2, 3, ...,n},∀t ∈ {1, 2, 3, ..., tf inal } :

ati = (X t
i ∈ Dt

i) ∧ (X t
i ∈ T ti)∧

((X t
i = X t−1

i) ∨ ((i,X t
i) ∈ Et

∧ �Y , (i,Y) ∈ Et))) = True

(4)

In Equation (4), a Transition is valid, either if the variable has
not been altered from the previous state or has been indicated in
the Event set. Furthermore, the last term of the Equation ensures
that the alteration is due to the occurred Event. To ensure that
the Event is validated and does not violate the puzzle’s rules, tuple
V t = {V t

1 ,V
t
2 , ...,V

t
P } with the definition ofV

t
i = (f ti ,d

t
i) is applied

as constraints at each time step (similar to set C in Class A).
Understandably, tupleG , defined byL constraints ofG = {G1,G2, ...,GL}

indicates the Goal situation. Each goal constraint is described by
Gi = (дi ,ui). Boolean function дi () and its domain ui with the size
ofmi , represent Goal circumstances for each Variable. The puzzle is
solved if the goal constraints are satisfied with validated Transition
as demonstrated in the following:

∃ tдoal ∈ {0, 1, 2, .., tf inal } : ∀tj ≤ tдoal

∀i ∈ {1, 2, ...,L},∀k ∈ {1, 2, ..., P} :

ui = {α1,α2, ...,α |ui |},d
tj
k = {β

tj
1 , β

tj
2 , ..., β

tj
mk

}

Si = {X
tдoal
α1 ,X

tдoal
α2 , ...,X

tдoal
α |ui |

}

O
tj
k = {X

tj
βj
,X

tj
β2
, ...,X

tj
βmk

}

(

tдoal∧
tj=1

atj ∧

tдoal∧
j=0

(

P∧
k=1

f
tj
k (O

tj
k)) ∧

L∧
i=1

дi (Si)) = True

(5)

As discussed, the puzzles in the B category are much more com-
plex compared to Class A due to the involvement of time step. As
an example, 15-puzzle [34] is categorized in the Class B since the
puzzle is based on time-state sliding movements.

3.1.3 Class AB. This class is not a complete separated class. It
means that the puzzles in this class can be defined and solved by
Class A or Class B, as the problem solver prefers. It is also worth
mentioning that the formulation could express any A puzzle in in
Class B. However, some puzzles with dynamic nature can be classi-
fied in both classes. The definition and constraint may be different
in these two classes for these puzzles. For instance, NumberLink[18]
puzzle could be described differently in both classes. We refer to
these puzzles as AB Class puzzles.

ICCTA 2021, July 13–15, 2021, Vienna, Austria Kiarostami et al.

3.1.4 Class C. Other puzzles which are not classified in Class A,
Class B, and Class AB are left to Class C. These puzzles are often
more complex and involve random input variable at each time-
states. As an example, 2048 game is labelled in this category since
the player faces with random inputs, for instance random 2 or 4.
More importantly, these puzzles are usually solved by heuristic al-
gorithms, and pure probabilistic algorithms are not quite successful
in solving these puzzles [31]. Also, SAT solvers could not approach
these puzzles efficiently since the random parameters increase the
memory/time complexity exponentially. However, incremental SAT
approaches such as [24] could be employed to solve such puzzles.

In this class, puzzles have at least one random feature that funda-
mentally makes them unsolvable on a sheet of paper. In every state
of these puzzles, one or several random factors exist, making the
problem description a stochastic problem that could not be solved
efficiently via MCTS. To have a better understanding, consider 2048
game as an NP-Complete [1] sliding block puzzle. In this puzzle
numbered cells with values of 2 or 4 are randomly added each step.
The objective is to slide the cells on the grid horizontally or verti-
cally to add them up, creating a cell to achieve the value of 2048 (or
more). The puzzle continues until there are no more possible moves.
It is clear that a randomized algorithms such as MCTS are deemed
inefficient when applied to such puzzle [31]. So, we only describe
this class to inform other to not consider MCTS as a promising
approach to solve these kinds of puzzles.

3.1.5 Summary. We categorize several famous puzzles based on
our classification. As indicated in Table 1, each puzzle that is in-
volved in both Class A and Class B, is also classified as Class AB.
Table 1 demonstrates a classification of some common logical puz-
zles based on the proposed Classes.

Table 1: Classification of common logical puzzles based on
our proposed Classes.

Puzzle Class A Class B Class AB Class C
Sudoku X
Kakuro X
Tetris X

Clickomania X
Flood-it X

NumberLink X X X
Slitherlink X X X
Nonogram X X X
n-Puzzle X
Sokoban X
2048 X

Light-up X

3.2 Generic MCTS for solving puzzles
Here, we construct a modified MCTS to solve the puzzle based on
the classification parameters discussed in the previous section. All
the stages of the MCTS, namely Selection, Expansion, Simulation,
and Back-Propagationwith the proposedmethodology are explained
and discussed. We refer readers to [8] for a complete explanation of
MCTS. Based on the classification of puzzles, each puzzle is reduced
to several constraint functions and domains.

By describing the puzzle in Class A, with the tuple of ⟨X ,D,C⟩,
the goal is to find the correct Xi s over domain Di s, to satisfy the
constraints Ci s. For this structure, each state of the MCTS is con-
structed based on one permitted value for Xi according to the Di .
Hence, in the stage of the Expansion, |Di | number of Child nodes
are constructed for a Leaf node for considered variable Xi . (Branch
Factor = |Di |) This procedure is demonstrated for a simple 4 × 4
Sudoku in Fig 1.

3 1

34
1

X1

3 1

34
1

43 1

34
1

33 1

34
1

23 1

34
1

1

Figure 1: Expansion in the proposed MCTS for a simple 4× 4
Sudoku

Note that the configuration of the children could be arranged
differently. However, here we propose the simple ordered config-
uration where all children nodes are a variation of the same Xi .
The impact of the different configurations will be discussed as an
optimization later on. As for the Selection, the most valued node
is chosen similar to the conventional MCTS. Consequently, nodes
with most constraints satisfied in C is preferred over other nodes
and are selected in the successive MCTS iterations. The Simulation
phase is executed similarly to the regular MCTS procedure, playing
random roll-out moves by assigning random values for the remain-
ing Xi s until the puzzle is finished. Subsequently, the value of the
final node is calculated according to the Equation 6 as follow:

Valuesim =

∑L
i=1(fi (Si))

L
(6)

Afterwards, in the Backpropagation, the value of the terminal
node, which is computed in the third step, is used to update all
previous nodes’ value. In other words, the value is propagated
toward the top of the tree. In this process, the average value of
all children’s values is computed and then is propagated to their
father. Finally, all of the values, including the value of the root, are
updated based on the following:

Value =
(K − 1) ×Value +Valuesim

K
(7)

It is worth noting that the K is the number of times that the tree
has visited the node. The stages are executed i times iteratively,
similar to the main MCTS algorithm, until the desired X is found
as the final solution for the puzzle. With the given mathematical
description of Class B puzzles, the employment of MCTS is much
more sophisticated and complex compared to Class A. Due to these

On Using Monte-Carlo Tree Search to Solve Puzzles ICCTA 2021, July 13–15, 2021, Vienna, Austria

class’s time-state nature, the Branch Factor of the MCTS is directly
affected by the T ti , in which the Transitions are chosen. tf inal is
passed to the simulation process as the depth of the tree. Moreover,
the Events are defined in the state relations in the nodes. By incor-
porating the same methodology explained for Class A, the set of
Goals are validated in the value function when the simulation step
is carried out attf inal . Note that the boolean characteristics of the
Goal constraints are converted to a dynamic fractional value when
the simulation is executed many times.

3.3 Optimizations and Modifications to MCTS
In this section, we have proposed the optimizations and modifica-
tions which is employed in the solving procedure.

3.3.1 Order of Solving. In solving process, we have considered an
arrangement for choosing the next node for the expansion step
[8]. The process which renders the order of children nodes for
expansion could be performed before execution of the algorithm
as pre-processing, or it could be calculated in the middle of the
MCTS procedure. If the simultaneous expansion is employed, the
branching factor of the tree would be reduced, decreasing the size
of the non-simulated section of MCTS [18]. Furthermore, this re-
duction improves the accuracy of the algorithm. In summary, this
optimization reduces the branching factor by choosing a generic
approach that lets the algorithm decide to start from where to solve
the entire puzzle.

3.3.2 Reliable MCTS. The purpose of this modification is to find
the complete solution to the puzzle. In other words, by adding
this modification, MCTS would not be halted until it could solve
the puzzle. Thus, MCTS would be reliable with 100% accuracy,
but most probably, the algorithm will take more time to solve the
entire puzzle or even we will not know when it would be stopped.
This modification only provides us with the highest accuracy. In
Reliable MCTS, if any non-terminal node returns a low value, the
algorithm will not expand the node. Instead, it prunes the tree,
which means it goes back through the tree and continues from
there. This modification is similar to employment of minimax in
MCTS [4].

3.3.3 Fast Rollout Function. Rollout Function is a stage in the sim-
ulation step of the MCTS algorithm. This function creates the pre-
vious state of the puzzle in simulation, which causes a O(N 2) com-
plexity for each node and then performs the new changes. In fast
rollout function, a general state is created in the first node of the
simulation, and all the following next simulations only apply their
changes by O(1) complexity to the original shared state [13].

3.3.4 Accurate Randomness. This optimization is applied to the
simulation step of MCTS. Since the simulation step is entirely ran-
dom based on the definition of MCTS, the algorithm should be
repeated for reasonable times to obtain an accurate answer. In this
optimization, instead of performing a complete random simulation,
we consider some heuristics and validate them after each random
move to direct the simulation without adding a considerable compu-
tation. This trivial verification impacts the accuracy of the random
simulation process significantly. It is usually not possible to find the
desired leaf in the tree after 1000 searches. However, considering a

minor heuristic and validation (such as choosing the nodes orderly),
it might be possible to achieve the correct answer.

4 RESULTS AND EVALUATION
We evaluate the proposed MCTS method on three different versions
along with an implementation of SAT solver for each test-case. Our
code used for this benchmark is compiled by Java 12 platform and is
executed on Ubuntu 16.04 with 8 Intel XEON E5620 CPUs clocked
at 2.4 GHz. We execute the programs on a single core with 12GB
available RAM. All the results are an average of 50 times executions.

4.1 Target Examples (Puzzles)
Here, we apply our MCTS algorithm to a set of commonly known
puzzles. The proposed generic MCTS for described classes is applied
to at least one puzzle for each class. The chosen puzzles in our
evaluation, span three classifications to experiment results for five
puzzles in different categories, and are all equally NP-Complete
[17]:

• Class A: Sudoku, Calcudoku, Light-up.
• Class B: Clickomania.
• Class AB: Slitherlink.

4.2 Results for Class A
In this class, in the MCTS methods, the starting state of the puzzle
is placed in the root, and the algorithm chooses the next possible
state by filling an empty variable in the puzzle. This is done by
expanding the root and selecting a node that represents an empty
cell. In this class of puzzles, the solution could be provided by the
solver regardless of time, meaning that a step by step procedure
to solve the entire puzzle is not required. By the way of example,
we investigate Sudoku puzzle, Calcudoku and Light-up, in this class.
Here, we apply the proposed MCTS with the discussed modifica-
tions and optimizations and compared the accuracy and run-time
results to the puzzles’ SAT(Z3) solution.

4.2.1 Sudoku. Sudoku is an NP-Complete [17] grid-based number-
placement puzzle. One way to solve this puzzle is to solve the
mini-grids of size 3×3 squares to significantly decrease the number
of total possible permutations and then apply a guessed-free back-
tracking algorithm[23]. The definition of Sudoku puzzle constraints
based on the described Class A formulation is thoroughly explained
in the Appendix of the paper. Each puzzle’s constraints follow the
similar procedure and can be straightforwardly defined based on
the explained classes’ mathematical definition. Figure 2 represents
run-time and memory consumption of different implementations.
As shown, a run-time/accuracy trade-off could be confirmed. The
Standard MCTS which is the basic implementation of the MCTS
method based on the proposed formulation of Class A, performs
well in run-time compared to corresponding SAT solver solutions.
Optimized MCTS is the approach where the proposed optimizations
are equipped. In this approach, run-time is considerably improved
compared to others. The Reliable MCTS on the other hand, guar-
antees a correct final solution for the puzzle by a locked iterative
execution of MCTS with a final 100% accuracy constraint. Also,
in terms of accuracy, SAT and MCTS-Reialble methods solve the

ICCTA 2021, July 13–15, 2021, Vienna, Austria Kiarostami et al.

puzzles completely by nature, where the other two might not give
a complete final solution.

Figure 2: Sudoku Evaluation. (Time andAccuracy of four dif-
ferent approaches are compared)

4.2.2 Calcudoku. Calcudoku or Ken Ken is a grid-based puzzle that
divides the grid into different sections with random shapes. This
puzzle is a more complex variation of Kakuro which is known to be
NP-Complete [17]. Figure 3 illustrates the evaluation of solutions for
3 different configuration of the Calcudoku puzzle. As indicated, our
SAT solver implementation fails to give a solution for the Difficult-
8 × 8 test-bench surpassing the time-limitation of 300 seconds. Due
to the time-consuming iterative approach in the Reliable MCTS,
the overall run-time is higher than Optimized MCTS and Standard
MCTS in the D-8 benchmark. However, MCTS variations are broadly
accurate without a significant difference in performance.

Figure 3: Calcudoku Run-time and Accuracy Evaluation.

4.2.3 Light-up. Light-up or Akari is an NP-Complete [17] grid-
based puzzle in which its cells are colored black and white. The
goal is to illuminate the map completely while the constraints are
satisfied and no light bulb overlapped with each other in emitting
light. The most recent work utilizes a Hopfield neural network to
solve the Light-up puzzle [14]. In Figure 4, our implemented so-
lutions are shown. Similar to other puzzles, comparison among
different MCTS methods for run-time and accuracy are justifiable.

Figure 4: Light-up Run-time and Accuracy Evaluation.

As could be inferred, the SAT solution performs relatively well in
normal and small-sized hard puzzles since the logical SAT formula-
tion of this puzzle requires a relatively small number of variables.
However, when the puzzle’s size is increased to 25, the solution is
over-timed since the satisfiability mechanism increases exponen-
tially in memory and computation.

4.3 Results for Class B
In Class B, the MCTS algorithm begins from the initial state of the
puzzle where no plays have been made. MCTS assigns the next
move for the player whenever it can move forward through the
tree. The most important aspect of this class’s process is that the
solution is executed in a step-by-step process analogous to a term
as time. It means that the movements perform in turn or round,
and each step depends entirely on the previous one. Thus, in these
puzzles, solvers have to demonstrate a gradual solution. We have
studied the Clickomania as a suitable nominee for Class B puzzles.
Clickomania is an NP-Complete [17] puzzle in a grid map with the
cells filled with various colours. At each step of the game, the goal
is to find and match monochromatic, adjacent cells, which lead to
removing the selected cells and falling tiles. The MCTS approach
is used recursively to find the best rollout policy for higher-level
search in solving this puzzle [3].

Here, we apply Class B’s description on the proposed generic
MCTS and investigate different optimization, as shown in Figure 5.
As discussed earlier, for the Class B puzzles, SAT solutions fail as an
efficient approach mainly due to the wide search space caused by
the time parameter. Hence, only the MCTS evaluation are shown.
Again, it is evident that the Optimized MCTS performs very well
in run-time compared to the other two approaches as depicted in
Figure 5.

4.4 Results of Class AB
Puzzles in this class could be solved with the approach of Class
A or Class B. In other words, the solvers of these puzzles could
perform in both single tree search and step-by-step process. As
demonstrated, pathfinding puzzles are categorized in this context.
For example, in the Numberlink, the player could start solving with
each pair of numbers. Also, connecting each pair is not a one-step

On Using Monte-Carlo Tree Search to Solve Puzzles ICCTA 2021, July 13–15, 2021, Vienna, Austria

Figure 5: Clickomania Run-time and Accuracy Evaluation.

movement for the algorithm. We examine the puzzle Slitherlink in
this category.

Slitherlink is an NP-Complete [17] logic puzzle with the final
purpose of connecting the adjacent dots, aiming to create a loop
without a loosed corner. By employing SAT-solving and Constraint
Logic Programming, a new rule-based approach was represented to
solve Slitherlink in [16]. The comparison of the proposed method
and SAT-based solutions in terms of accuracy and run-time are
illustrated in Figure 6. As mentioned in the definition of this class,
the MCTS approach can be defined and formulated based on Class
A or Class B by choice. In this example, we solve the puzzle based
on Class B since the number of total variables of the such problem
will be much higher in Class A representation.

Figure 6: Slitherlink Run-time and Accuracy Evaluation.

By increasing the puzzle size to 25 × 30, the run-time for an
accurate solution increases as shown for SAT and Reliable MCTS
methods. However, for smaller puzzles, Optimized MCTS outper-
forms other approaches in terms of run-time with an acceptable
accuracy rate. Furthermore, Table 2 gives detailed evaluation results
of the methods based on proposed Classification. Note that the SAT
solution fails to solve some instances where the run-time surpasses
the maximum limitation of 300 Seconds. Also, the accuracy of the
proposed Reliable MCTS can be a little lower than 100% when the
user forces the algorithm to be finished in a specific time (to prevent
over-timing).

5 DISCUSSION AND CONCLUSION
Efficient and generalized AI-based solutions for multi-player puz-
zles and games have been extensively studied in recent years. In this
context, randomized methods such as MCTS have drawn significant
attention to the researchers among all methods and algorithms. In
this work, we have studied the applicability of the MCTS approach
to solve logical single-player puzzles. To introduce a unified MCTS
method for solving puzzles, we mathematically categorized puzzles
into four classes based on their characteristics. Using a detailed
description of each of these classes, we pinpoint that MCTS could
be applied effectively. Our evaluation shows that MCTS performs
well both in accuracy and run-time in most logical puzzles com-
pared to the conventional state of the art SAT solvers. Furthermore,
multiple optimizations for the proposed generic MCTS are studied
to improve the solver’s performance. To solve a puzzle with the
proposed classification, first, the puzzle should be classified based
on our proposed classes. Then, it should be formulated based on
the class’s definition, constraints, and finally should be passed to
MCTS core to be solved.

Multiple essential notes should be mentioned according to the
employment of the proposed generic MCTS method. Firstly, we
have developed an infrastructural mathematical categorization that
could be used to describe puzzles and suitably to be approached
by MCTS. One could extend this mathematical description to be
utilized as an API to fetch the puzzle parameters directly and au-
tomate the solution process based on the MCTS method similar
to the work done with Ludii as explained in [28]. Secondly, the
puzzles categorized in class C could also be approached by dynamic
MCTS with the similar approaches introduced in [31]. The mathe-
matical formulation of these class could also be studied as further
investigation.

ACKNOWLEDGMENTS
This research is connected to the GenZ strategic profiling project
at the University of Oulu, supported by the Academy of Finland
(project number 318930), and CRITICAL (Academy of Finland Strate-
gic Research, 335729). Part of the work was also carried out with
the support of Biocenter Oulu, spearhead project ICON.

REFERENCES
[1] Ahmed Abdelkader, Aditya Acharya, and Philip Dasler. 2015. 2048 is NP-

Complete.
[2] David Arthur, Raphaël Clifford, Markus Jalsenius, Ashley Montanaro, and Ben-

jamin Sach. 2010. The complexity of flood filling games. In Int Conf on Fun with
Algorithms. Springer, 307–318.

[3] H Baier and Mark Winands. 2012. Nested Monte-Carlo Tree Search for online
planning in large MDPs. Frontiers in Artificial Intelligence and Applications,
109–114. https://doi.org/10.3233/978-1-61499-098-7-109

[4] Hendrik Baier and Mark HM Winands. 2014. MCTS-minimax hybrids. IEEE
Transactions on Computational Intelligence and AI in Games 7, 2 (2014), 167–179.

[5] Therese C Biedl, Erik D Demaine, Martin L Demaine, Rudolf Fleischer, Lars
Jacobsen, and J Ian Munro. 2002. The complexity of Clickomania. More games of
no chance 42 (2002), 389–404.

[6] Frédéric Boussemart, Christophe Lecoutre, Gilles Audemard, and Cédric Piette.
2016. XCSP3: An integrated format for benchmarking combinatorial constrained
problems. arXiv preprint arXiv:1611.03398 (2016).

[7] Cameron Browne. 2015. The nature of puzzles. Game & Puzzle Design 1, 1 (2015),
23–34.

[8] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I
Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samoth-
rakis, and Simon Colton. 2012. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in games 4, 1 (2012), 1–43.

https://doi.org/10.3233/978-1-61499-098-7-109

ICCTA 2021, July 13–15, 2021, Vienna, Austria Kiarostami et al.

Table 2: Detail evaluation results of solution methods for puzzles based on proposed Classification

Solution Method SAT Standard MCTS Optimized MCTS Reliable MCTS
Classification Puzzle Instances Accuracy (%) Run-time (S) Accuracy (%) Run-time (S) Accuracy (%) Run-time (S) Accuracy (%) Run-time (S)

Class A

Sudoku

E-1 100 0.0524 37.85 0.097 100 0.004 100 0.004
N-1 100 0.797 8.14 0.173 100 0.008 100 0.008
H-2 100 0.443 3.66 0.251 96.22 0.411 100 12.377
H-3 100 0.810 4.37 0.271 100 0.801 100 0.828
Ex-4 100 0.341 5.32 0.229 100 0.037 100 0.036
Ex-5 100 0.336 4.29 0.229 100 0.049 100 0.08
Ex-6 100 0.359 5.55 0.219 99.11 0.114 100 3.941

Light-up

N-7 100 0.075 71.98 0.205 100 0.07 100 0.077
H-7 100 0.071 100 0.284 100 0.074 100 0.075
N-14 100 0.451 75 3.14 100 0.213 100 0.212
H-14 100 0.478 87.5 4.739 98.75 0.528 98.75 1.432
E-25 100 0.714 71.21 79.62 99.87 0.705 99.87 0.683
N-25 100 0.781 70.42 76.45 99.09 5.327 T/O T/O
H-25 100 0.755 T/O T/O 98.84 4.38 98.84 99.203

Calcudoku

M-5 100 0.046 100 0.006 100 0.004 100 0.0058
M-6 100 0.057 64.42 0.12 100 0.026 100 0.0465
D-6 100 0.139 66.66 0.23 100 0.0499 100 0.1314
M-7 100 35.21 74.2 0.34 97.3 0.086 100 0.1014
D-7 T/O T/O 48.9 0.69 89.1 0.162 100 0.3602
M-8 T/O T/O 57.3 1.7 77.3 0.206 100 0.3583
D-8 T/O T/O 59.0 5.34 76.9 3.27 100 6.6105

Class B Clickomania

4x7-4C N/A N/A 100 0.056 100 0.03 100 0.0321
13x15-3C N/A N/A 100 29.375 100 0.499 100 3.67
20x10-2C N/A N/A 100 11.84 100 0.363 100 1.719
20x10-5C N/A N/A 99.66 90.159 99.89 13.11 100 65.393
15x15-5C1 N/A N/A 99.11 115.51 100 16.062 100 71.47
15x15-5C2 N/A N/A 100 103.084 100 15.738 100 64.916
15x15-5C3 N/A N/A 99.71 115.3 99.82 17.809 100 85.561
15x15-5C4 N/A N/A 99.93 89.884 99.86 16.725 100 73.459

Class AB Slitherlink

5x5 100 0.341 49.91 0.0662 100 0.075 100 0.0792
7x7-1 100 1.276 93.92 0.067 100 0.073 100 0.0689
7x7-2 100 1.059 87.62 0.091 100 0.092 100 0.087
10x10-1 100 4.731 74.43 0.24 98.16 0.198 100 0.192
10x10-2 100 75.427 99.52 0.12 100 0.106 100 0.102
14x20 100 163.74 97.63 0.171 100 0.154 100 0.15
20x20-1 100 261.5 99.73 0.203 100 0.181 100 0.207
20x20-2 100 227.16 93.18 1.679 99.76 1.192 100 0.414
20x20-3 100 325.05 89.62 2.2 89.62 2.2 100 3.205
25x30 100 856.21 71.31 9.912 71.34 9.731 100 324.437

[9] Tristan Cazenave. 2009. Nested monte-carlo search. In 21st IJCAI.
[10] Mehmet Celik, Halit Erdogan, Firat Tahaoglu, Tansel Uras, and Esra Erdem. 2009.

Comparing ASP and CP on Four Grid Puzzles.. In RCRA@ AI* IA.
[11] Diogo M Costa. 2018. Computational Complexity of Games and Puzzles. arXiv

preprint arXiv:1807.04724 (2018).
[12] Broderick Crawford, Carlos Castro, Eric Monfroy, and Nibaldo Rodrıguez. 2009.

Solving constraint satisfaction puzzles with constraint programming. In Congreso
de Int Computacional Aplicada, CIC.

[13] Mohammadreza Daneshvaramoli, Mohammad Sina Kiarostami, Saleh Khalaj
Monfared, Helia Karisani, Keivan Dehghannayeri, Dara Rahmati, and Saeid Gor-
gin. 2020. Decentralized Communication-less Multi-Agent Task Assignment with
Cooperative Monte-Carlo Tree Search. In 2020 6th International Conference on
Control, Automation and Robotics (ICCAR). IEEE, 612–616.

[14] M Fitzsimmons and H Kunze. 2019. Combining Hopfield neural networks, with
applications to grid-based mathematics puzzles. Neural Networks (2019).

[15] Romaric Gaudel and Michele Sebag. 2010. Feature selection as a one-player game.
In International Conference on Machine Learning. 359–366.

[16] Stefan Herting. 2004. A rule-based appr to the puzzle of Slitherlink. Univ. Kent,
UK, Tech. Rep (2004).

[17] Graham Kendall, Andrew Parkes, and Kristian Spoerer. 2008. A survey of NP-
complete puzzles. ICGA Journal 31, 1 (2008), 13–34.

[18] Mohammad Sina Kiarostami, Mohammadreza Daneshvaramoli, Saleh KhalajMon-
fared, Dara Rahmati, and Saeid Gorgin. 2019. Multi-Agent non-Overlapping
Pathfinding with Monte-Carlo Tree Search. In IEEE Conference on Games.

[19] Frédéric Koriche, Sylvain Lagrue, Eric Piette, and Sébastien Tabary. 2017.
Constraint-Based Symmetry Detection in General Game Playing.. In IJCAI. 280–
287.

[20] Jakub Kowalski, Maksymilian Mika, Jakub Sutowicz, and Marek Szykuła. 2019.
Regular boardgames. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, Vol. 33. 1699–1706.

[21] Kirk L Kroeker. 2011. A new benchmark for AI. Commun. ACM 54, 8 (2011),
13–15.

[22] Nathaniel Love, Timothy Hinrichs, David Haley, Eric Schkufza, and Michael
Genesereth. 2008. General game playing: Game description language specification.
(2008).

[23] Arnab Kumar Maji and Rajat Kumar Pal. 2014. Sudoku solver using minigrid
based backtracking. In 2014 IEEE International Advance Computing Conference
(IACC). IEEE, 36–44.

[24] Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. 2014. Ultimately incre-
mental SAT. In International Conference on Theory and Applications of Satisfiability
Testing. Springer, 206–218.

[25] Allen Newell, John C Shaw, and Herbert A Simon. 1959. Report on a general
problem solving program. In IFIP congress, Vol. 256. Pittsburgh, PA, 64.

[26] Barry O’Sullivan and John Horan. 2007. Generating and solving logic puzzles
through constraint satisfaction. In PROCEEDINGS OF THE NATIONAL CONF ON
AI, Vol. 22. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 1974.

[27] Cédric Piette, Eric Piette, Matthew Stephenson, Dennis JNJ Soemers, and Cameron
Browne. 2019. Ludii and XCSP: Playing and Solving Logic Puzzles. In 2019 IEEE
Conference on Games (CoG). IEEE, 1–4.

[28] Cédric Piette, Éric Piette, Matthew Stephenson, Dennis JNJ Soemers, and Cameron
Browne. 2019. Ludii and XCSP: Playing and Solving Logic Puzzles. arXiv preprint
arXiv:1907.00245 (2019).

[29] Eric Piette, Dennis JNJ Soemers, Matthew Stephenson, Chiara F Sironi, Mark HM
Winands, and Cameron Browne. 2019. Ludii-the ludemic general game system.
arXiv preprint arXiv:1905.05013 (2019).

On Using Monte-Carlo Tree Search to Solve Puzzles ICCTA 2021, July 13–15, 2021, Vienna, Austria

[30] Jacques Pitrat. 1968. Realization of a GGP program.. In IFIP congress (2). 1570–
1574.

[31] Philip Rodgers and John Levine. 2014. An investigation into 2048 AI strategies.
In 2014 IEEE Conference on Computational Intelligence and Games. IEEE, 1–2.

[32] Maarten P. D. Schadd, Mark H. M. Winands, Mandy J. W. Tak, and Jos W. H. M.
Uiterwijk. 2012. Single-player Monte-Carlo tree search for SameGame. Knowl.-
Based Syst. 34 (2012), 3–11.

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[34] Jerry Slocum and Dic Sonneveld. 2006. The 15 puzzle book. Slocum Puzzle
Foundation (2006).

A APPENDICES
A.1 Mathematical Representation of Sudoku

Puzzle for Class A
In this section, we explain how we employ the proposed classifica-
tion and apply the puzzle’s constraints as an example to indicate
how this classification helps us to see the puzzle fromMCTS’s point
of view. Take a conventional 9 × 9 Sudoku puzzle as the example.
Here we described a two-dimensional variable for each cell in the
puzzle plane as in tupleX . The domain for each of these 81 variables
are also defined in the tuple D. So, we have:

X = (X1,1,X1,2, ...,X9,9) (1)

D = (D1,1,D1,2, ...,D9,9) (2)
According to the definition in a 9× 9 Sudoku puzzle, the domain

of the variables could be defined as:

∀(i, j) ∈ N+9,9 : Di, j = {1, 2, .., 9} (3)

The Condition tuple is consist of a tuple of 27 conditions over rows,
columns and mini-squares (9 + 9 + 9) described as:

C = {(f1,d1), (f2,d2), ..., (f27,d27)} (4)

The desired f function for each of these conditions is to satisfy
the uniqueness feature among the desired domain:

∀i ∈ N+27 : fi = alldi f f erent (5)

And finally, the desired domain for the condition functions are
divided into three separated group where rows, columns and mini-
squares are considered.

∀i ∈ N+9 :

di =
⋃
j ∈N +9

{Xi, j },

di+9 =
⋃
j ∈N +9

{X j, i },

di+18 =
⋃
j ∈N +9

X3×⌊
(i−1)
3 ⌋+ ⌊

(j−1)
3 ⌋+1, 3×((i−1)%3)+(j−1)%3+1

(6)

Note that the first condition domain is defined for the rows vari-
able. The second group is described as the transposed variable
domain for the column variables. Moreover, the last group defines
the mathematical representation for the variables that fall into the
mini-square domain.

By taking into account the described tuples and variables, the
desired assignment of the X tuple could lead to the correct solution
for any given Sudoku puzzle.

	Abstract
	1 Introduction and Background
	1.1 Our Contributions

	2 Existing Works
	3 Implementing Constraint-Based MCTS for Puzzle Solving
	3.1 Puzzle Classification
	3.2 Generic MCTS for solving puzzles
	3.3 Optimizations and Modifications to MCTS

	4 Results and Evaluation
	4.1 Target Examples (Puzzles)
	4.2 Results for Class A
	4.3 Results for Class B
	4.4 Results of Class AB

	5 Discussion and Conclusion
	Acknowledgments
	References
	A Appendices
	A.1 Mathematical Representation of Sudoku Puzzle for Class A

