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In this paper, a coplanar waveguide (CPW)-fed patch antenna is fabricated on a layer of metasurface to increase gain. �e antenna is
fabrication on Roger substrate with a thickness of 0.25mm, with the overall dimension of the proposed design being
45× 30× 0.25mm3. �e size of the patch antenna is 24×14× 0.25mm3, and the AMC unit cell is 22× 22× 0.25mm3. �is met-
asurface is designed based on the split-ring resonator unit cells forming an array of the arti�cial magnetic conductor (AMC).
Meanwhile, the antenna operation on 3.5GHz is enabled by etching a split-ring resonator slot on the ground plane with a small gap to
enhance antenna gain and improve impedance bandwidth when integrated with a metasurface. �is simulation planer monopole
antenna is applied for 5G application.�e experimenter test is applied for the antenna performance in terms of return loss, gain, and
radiation patterns.�e operating frequency range with and without MTM is from 3.41 to 3.68GHz (270MHz) and 3.37 to 3.55GHz
(180MHz), respectively, with gain improvements of about 2.7 dB (without MTM) to 6.0 dB (with MTM) at 3.5GHz. �e maximum
improvement of the gain is about 42% when integrated with the AMC. �e AMC has solved several issues to overcome the typical
limitation in conventional antenna design. A circuit model is also proposed to simplify the estimation of the performance of this
antenna at the desired frequency band.�e proposed design is simulated by CSTmicrowave studio. Finally, the antenna is fabricated
and measured. Result comparison between simulations and measurements indicates a good agreement between them.

1. Introduction

In recent years, mobile communication systems are
challenged by the increasing number of connected devices
and higher data rates, low latency, cost, and energy usage.

�e expected inclusion of Internet of things (IoT) devices
totaling more than 20 billion units [1, 2] will require
speeds of more than 10 Gbps. �e �fth-generation (5G)
services have been introduced, with new strategies to
optimize the limited spectrum to achieve such data rates
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[3, 4]. In many countries, the 5G new radio frequency
band has been standardized below 6 GHz. 78 GHz fre-
quency is a particular band in the range from 3.3 to 3.8
GHz which has been adapted 3 GHz spectrum congestion
cellular networks [6].

Planar antennas have received research attention in
recent decades due to their attractive benefits—low cost, low
profile, ease of integration with other circuits, and suitability
for multipolarization antennas [7, 8]. In recent years, these
antennas have been investigated to ensure size reduction,
enhanced bandwidth, and improved efficiency [9, 10].
Different antennas have been proposed to achieve minia-
turization and bandwidth improvements such as circular
[11, 12], elliptical [13], triangular [14], fractal [15], E-shaped
[16], and U-shaped antennas [17]. While it is ideal to use
multiband antennas with wide operating bands, the use of
asymmetric parasitic elements will result in radiation pattern
variations with frequency. On the other hand, adding slots in
the radiating patch is a very effective method to increase the
bandwidth without increasing the antenna size. However,
this technique is mainly suitable for thicker substrates
[18, 19]. Besides that, other techniques such as modification
of the ground structure or stacking of multiple substrate
layers potentially improve the gain of patch antennas [20].
For the former, several examples include the use of a
U-shaped slot, L-shaped arm, or interlocking semielliptical
holes in the ground plane, or feeding a rectangular and
hexagonal patch using the coplanar waveguide (CPW)
technique [21, 22].

Metamaterials (MTM) are artificial magnetic materials
that do not exist in nature, but their properties can be
emulated by special arrangements of existing materials [23].
Meanwhile, using technology MTM in the design of antenna
structure may be caused obtain a small size will use this
antenna for the large frequency bandwidth [24]. It is in-
creasingly popular to be used to improve the antenna
performance by increasing the directivity and gain and
reducing the back radiation of patch antennas [25, 26]. One
of the types of metamaterials widely used in antennas is the
electromagnetic band gap (EBG) and artificial magnetic
conductors [27]. To enhance gain, EBG or artificial magnetic
conductor (AMC) layers can be integrated with antennas
with a small distance between them [28], which maintains
the antenna’s overall low profile.&e novelty of the proposed
antenna is in terms of its compact size with metamaterial,
high gain of the antenna, and improved bandwidth. In this
work, the design of a planar monopole antenna with AMC is
proposed for compact size and high gain enhancement. It
operates in the 3.5GHz band for 5G applications. &e
contribution of the AMC plane is evaluated by comparing
the performance of the antenna with and without the AMC
reflector. It is observed that the AMC-backed antenna in-
creased its gain by more than 3 dB at 3.5GHz. &e next
section will explain the design of the patch antenna and the
AMC unit cell, followed by the presentation of the circuit
model, results, and discussion. Finally, Section 5 concludes
this paper with a summary of the findings.

2. Antenna Design

&is section discusses the design methodology of the planar
monopole antenna using discrete ground circular rings. In
order to verify the scattering parameters of this proposed
antenna, the equivalent circuit model is also made for the
validity of the 50-ohm input impedance and S11.

2.1. Antenna Design Procedure. &e structure of the pro-
posed design is printed on Rogers Duroid RT5880LZ sub-
strate with the relative permittivity of εr � 2, loss tangent of
tanδ � 0.0021, and the standard thickness of 0.25mm. &e
overall dimension of the antenna is 45× 30× 0.25mm3. &e
radiating patch is fed by a single 50Ω microstrip feed line
connected to the antenna. &e top view of the proposed
antenna and defected ground structure (DGS) are presented
in Figure 1. Figure 2 illustrates the step of the parametric
study of the proposed antenna. &e optimized parameters of
the planar monopole antenna with the defected ground
structure are listed in Table 1. In the first step, a simple patch
is designed. &en, in the next step, slots are added on the
right side of the radiating patch and truncated from its edge
to resonate at 3.8GHz.&e gain will then be improved when
discrete ground circular rings are added to the structure [29].
To calculate the initial antenna and feed line sizes, the
procedure outlined in [30] is used as a start.

3. Design of the AMC Unit Cell

3.1. AMC-Unit Cell. &e structure of the proposed AMC-
unit cell is presented in Figure 3(a). It is designed on Rogers
RT5880LZ substrate with the thickness of 0.25mm, di-
electric permittivity of 2, and loss tangent of 0.002, εr � 2, loss
tangent of tanδ � 0.0021.&e dimensions of the ring unit cell
radius are R1� 4.90mm, R2� 7.94mm, R3�10.95mm,
R4�13.96mm, whereas the split gap (G) is 1mm and ring
width (W) is 0.5mm. &e overall size of the square-shaped
unit cell is 22× 22× 0.25mm3. &e comparison of the re-
flection phase of a square patch unit cell with and without
the SRR is presented in Figure 3(b).

3.2. Design of the AMC-Backed Antenna. Two units of the
proposed unit cell are spaced at a 1mm distance from each
other to form the AMC plane. &e length and width of the
AMC plane, “Lm” and “Wm”, are 44mm and 22mm, re-
spectively. It is integrated onto the reverse side of the an-
tenna to operate as a reflector. &is is aimed at reducing
coupling, maintaining a compact size, and improving the
antenna’s forward gain. &e AMC plane is integrated at a
distance D� 15mm from the radiator, as shown in
Figure 4(a). To study the effects of the AMC plane on the
performance of the antenna, the S11 of the proposed AMC-
backed design is simulated and presented in Figure 4(b). It is
seen that the reflection coefficient of the antenna improves
by increasing the distance D from the AMC plane.
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4. Equivalent Circuit Model

An equivalent circuit model of the patch antenna and split
ring resonator (SRR) is introduced in this section to
simplify the estimation of the antenna’s resonant fre-
quency, as shown in Figure 5(a). �e circuit model consists
of an RLC (resistor-inductor-capacitor) circuit connected
in series with a capacitor and a resistor [31]. Parameters L1
and C1 correspond to the inductance and capacitance of the

slots and truncated patch, respectively, whereas C2 is re-
lated to the capacitance between the CPW ground plane
and a microstrip line as shown in Figure 5(a). �e in-
ductance of the feed line and Z0 is the characteristic im-
pedance of the line adjusted at 50Ω. It is noticed that by
increasing the values of the capacitor, the re�ection co-
e¡cient (S11) of the circuit model varies from the higher
frequency band to the lower frequency band, and the values
of the parameters are given in Table 2. A simple RLC circuit
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Figure 1: (a) Top view of the proposed patch antenna. (b) Back view of the antenna. (c) Side view of the patch antenna.

0

-5

-10

-15

-20

-25

-30

S1
1 

(d
B)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

Frequency (GHz)

Conventional Design

Patch With Slot

Proposed Design

Figure 2: Re�ection coe¡cients of the patch antenna in di¢erent
design steps.

Table 1: Dimensions of the patch antenna.

Parameter Value (mm)
Wg 30
Lg 45
Wp1 24
Wp2 13.7
Lp1 17
Lp2 14
Wf 2
Ws1 5
Ws2 6
L1 7
L2 6.36
L3 4
L4 4.5
L5 10
Gp 0.30
Wc 1
D1 8
D2 10
D3 14
D4 16
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is used to represent the planar monopole antenna while the
other resistor and the capacitor are used for the discrete
ground circular rings on the reverse side of the antenna
substrate. A comparison of S11 from the full-wave simu-
lations and the proposed circuit model is presented in
Figure 5(b). Estimation of the resonant frequency (fr) using
the equivalent circuit model can be performed using the
following equation:

fr �
1

2∏
�����������
L1 (C1 + C2)
√

.
(1)

5. Results and Discussion

�e photograph of the fabricated prototype of the planar
monopole antenna with the AMC is illustrated in Figure 6.
�e re�ection coe¡cient is lower than −10 dB for the desired
frequency band antenna both with and without an AMC, with
the former having a minimum re�ection coe¡cient of
−37.59 dB at 3.49GHz and the antenna without SRR a re-
�ection coe¡cient of −29.0 dB at 3.5GHz. �e measured
re�ection coe¡cient with and without AMC of −27.0 dB at
3.51GHz and −34.5 dB at 3.44GHz is as shown in Figure 7.
�e gain and bandwidth enhancement capability of the
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Figure 3: (a) Design of the unit cell. (b) Comparison of the AMC-backed antenna with and without SRR.
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Figure 4: (a) Perspective and cross-sectional view of the AMC-backed antenna. (b) |S11| of the antenna with and without AMC plane.
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Figure 5: (a) Equivalent circuit model of the patch antenna. (b) Comparison of S11 of the antenna from full-wave simulations and the
proposed circuit model.

Table 2: Values of the components used in the circuit model.

Inductors Values (nH) Capacitors Values (pF) Resistors Values (Ω)
L1 0.278 C1 7 R1 70
L2 0.01 C2 1.31 Z0 50

(a) (b)

Figure 6: Photograph of the fabricated monopole and AMC: (a) front view and (b) back view.
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Figure 7: Comparison of the measured S11 of the antenna with and without AMC.
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Figure 9: Radiation patterns of the proposed antenna: (a) without and (b) with AMC at 3.5GHz.
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proposed AMC surface at the desired frequency band of
3.5GHz is illustrated in Figure 8. It can be seen that the gain of
the antenna before placing the AMC is relatively low. To
achieve the higher gain with a compact size, the introduction
of the AMC plane behind the antenna increased its gain up to
65% in comparison with the antenna without the AMC
backing. A comparison between simulated and measured
radiation patterns with and without AMC is shown in Fig-
ure 9. From the 2D radiation pattern, it can be observed that
the proposed antenna has shown a quasi-omnidirectional
radiation pattern without the AMC and became more di-
rectional when integrated with the AMC. &is gain increase
can be explained by the constructive phase introduced by the
AMC plane from behind the antenna. Another important
consideration to ensure effective gain improvement is the
spacing between the antenna and the AMC surface.

&e antenna was measured in terms of reflection coef-
ficient (S11) using a vector network analyzer (VNA) (Agilent

8722ES), as shown in Figure 10. On the other hand, its
radiation patterns were measured in an anechoic chamber
room, as shown in Figure 11. Table 3 compares the proposed
planar monopole antenna with previous studies. From the
comparison table, it can be seen that the proposed design is
relatively compact in size and higher in gain. As shown in
Figure 10, the peak gain of the antenna is compared with and
without the AMC backing. &e peak gain of the AMC-
backed antenna is improved to 6.08 dB at 3.5GHz. &e gain
without an AMC antenna is 2.8 dB at 3.5GHz.

6. Conclusion

In this paper, we use MTM in an inspired planar monopole
antenna backed by an AMC plane is proposed in this work.
&e design process of the planar monopole antenna, AMC
unit cell, and AMC plane has been presented, with the
proposal of an equivalent circuit model. Simulations

Figure 10: Measurement setup of the reflection coefficient.

Figure 11: Measurement setup of the radiation pattern.

Table 3: Comparison between proposed designs with several relevant previous studies.

Ref Freq
(GHz)

Substrate
material Gain (dB) Proposed technique Area (mm2)/ λ Applications Design

complexity

[20] 3.5 FR-4 6.04 Complementary split-
ring resonator (CSRR)

35× 40/
0.85× 0.98 WLAN/WiMAX Simple

[29] 2.4 Rogers
RO3003C 5.1 Artificial magnetic

conductor (AMC)
130.8×130.8/
2.64× 2.64

Indoor/outdoor wireless
body area network

(WBAN)
Simple

[30] 10 FR-4 2 to 5.8 Split-ring resonator
(SRR)

48× 35/
1.17× 0.85 5G Complex

[32] 4.3 Rogers RT/
Duroid 5880 4.85 Defected ground plane

(DGS) 58× 22/1× 0.38 GPS Simple

[33] 0.9 to 2.6 FR-4 2.6–4.6 Stepped cut at four
corners

51× 40/
1.25× 0.98 LTE Simple

[34] 2.45, 3.5,
4.6, 5.8 FR-4 4.93, 5.92,

5.54, 4.95
Artificial magnetic
conductor (AMC)

50× 50/
1.22×1.22 WLAN, WiMAX, and 5G Complex

&is
work 3.5 Rogers RT/

Duroid 5880LZ 6.0 Artificial magnetic
conductor (AMC)

40× 30/
0.69× 0.51 5G Simple
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indicated that the operating range frequency of the planar
monopole antenna with and without MTM is from 3.3 to
3.5GHz and 3.41 to 3.67GHz, respectively. On the other
hand, the measurements indicated good agreements with
simulations, with an operation between 3.4 and 3.6GHz for
5G application. Due to the AMC backing, the monopole
antenna also showed improved reflection coefficient and
gain improvements, from 2.7 dB (without AMC) to 6 dB at
3.5GHz, while maintaining a compact size. &is indicates
the potential of the proposed AMC-backed antenna for 5G
application.
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