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Abstract—In recent years, generative adversarial networks 

(GANs) have been widely used to generate realistic fake face 

images, which can easily deceive human beings. To detect these 

images, some methods have been proposed. However, their 

detection performance will be degraded greatly when the testing 

samples are post-processed. In this paper, some experimental 

studies on detecting post-processed GAN-generated face images 

find that (a) both the luminance component and chrominance 

components play an important role, and (b) the RGB and YCbCr 

color spaces achieve better performance than the HSV and Lab 

color spaces. Therefore, to enhance the robustness, both the 

luminance component and chrominance components of dual-color 

spaces (RGB and YCbCr) are considered to utilize color 

information effectively. In addition, the convolutional block 

attention module and multilayer feature aggregation module are 

introduced into the Xception model to enhance its feature 

representation power and aggregate multilayer features, 

respectively. Finally, a robust dual-stream network is designed by 

integrating dual-color spaces RGB and YCbCr and using an 

improved Xception model. Experimental results demonstrate that 

our method outperforms some existing methods, especially in its 

robustness against different types of post-processing operations, 

such as JPEG compression, Gaussian blurring, gamma correction, 

and median filtering. 

Index Terms—generated face, generative adversarial network, 

Xception, color space. 

I. INTRODUCTION 

ENERATIVE  adversarial networks (GANs) were first put 

forward by Goodfellow et al. in 2014 [1]. The basic idea is 

to train two adversarial networks: a generator, and a 

discriminator. They compete against each other to achieve the 

expected results. The generator generates images, while the 

discriminator determines whether the generated images are 

generated. Then, the purpose of generating high-quality images 

that the discriminator cannot recognize will be achieved after 
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multiple iterations. Generating fake faces is one of the popular 

applications of GANs. Recently, with the rapid development of 

GANs, an increasing number of advanced GANs have been 

designed, such as DCGAN [2], WGAN [3], WGAN_GP [4], 

EBGAN [5], BEGAN [6], PGGAN [7], StyleGAN [8], 

DRGAN [9], CycleGAN [10], StarGAN [11], and Bridge-GAN 

[12]. Among them, the PGGAN and StyleGAN can generate 

high resolution (1024×1024) and high-quality face images that 

can even deceive human beings. The DRGAN is a conditional 

generative adversarial network that can automatically perform 

distortion rectification. The CycleGAN and StarGAN perform 

image-to-image translation and style alteration. The 

Bridge-GAN translates text descriptions to images with high 

content consistency. Regarding the local generation problem, 

Xu et al. [13] introduced edges into convolutional GAN-based 

inpainting and split the inpainting task into edge generation and 

edge-based image generation steps. If these generated faces 

were widely spread on the internet, they could cause security 

problems in politics, justice, criminal investigation, reputation 

protection, and other areas. Therefore, it is urgent to propose 

efficient methods for detecting these generated faces.  

Recently, researchers have begun to explore the problem of 

generated face detection. GAN-generated face detection is a 

binary classification problem  that determines whether a given 

face image is GAN-generated or not. The existing methods can 

be roughly divided into two categories: intrinsic feature-based 

and deep learning-based. The former exploits the inconsistency 

of natural faces and GAN-generated faces in terms of facial 

attributes, texture information, color information, and other 

factors. Yang et al. [14] extracted facial feature points and used 

support vector machine as the binary classifier. Matern et al. 

[15] distinguished natural images from generated images based 

on visual features, such as facial contours and eyes. Liao et al. 

[16] proposed a two-stream CNN network to detect both 

tampering artifact evidence and local noise residual evidence 

for image operator chain detection. McCloskey et al. [17] found 

that the color treatment of GANs was markedly different from 

that of real cameras, thus they utilized color cues to distinguish 

the synthesized images. Li et al. [18] found that chrominance 

components would expose more artifacts. Therefore, they 

exploited the chrominance components in the residual domain 

to detect generated images. In addition, Nataraj et al. [19] 

proposed using the images after color co-occurrence matrix 

pre-processing as input. However, all of these intrinsic 

attribute-based methods are based on hand-crafted features, 

which could limit their performance [20]. Therefore, some deep 

learning-based methods have been introduced into the field of 

GAN-generated face detection. Do et al. [21] employed 

VGGNet to distinguish between the generated faces and natural 
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faces. Kong et al. [22] presented a new framework that attempts 

to reveal the real face hidden behind the fake face by using a 

convolutional neural network (CNN) to learn the joint 

information of the face and the audio. Chen et al. [23] exploited 

CNN to extract global and local features to detect 

GAN-generated faces. Mo et al. [24] found that the differences 

between the natural faces and the generated faces in the residual 

field were more obvious than those in the plain field. Therefore, 

they transformed the face images into the residual domain by 

a high-pass filter and then extracted features from the 

residual input by a CNN. Yang et al. [25] exploited a deep 

CNN to extract dynamic features of lips to distinguish fake 

faces. He et al. [26] exploited a shallow CNN to extract 

chrominance components in different color spaces to improve 

robustness. Chen et al. [27] proposed an improved Xception 

model for locally GAN-generated face detection. The Xception 

model was improved by introducing the feature pyramid 

network and Inception block with dilated convolution to obtain 

the multiscale and multilevel features for the small-generated 

face regions. Fu et al. [28] designed a dual-channel network to 

extract robust representations for detecting GAN-generated 

faces. Jia et al [29] exploited a dual-stream network to extract 

discriminative information from RGB and YCbCr spaces to 

detect 3D face spoofing. Liu et al. [30] used the Gram matrix 

and ResNet architecture [31] to extract global texture features 

to improve the generalization and robustness. Mi et al. [32] 

designed a self-attention-based algorithm to exploit the 

structural defects in GANs by taking advantage of the 

up-sampling process conducted by the transposed convolution 

operation. Based on the social cognitive process of the human 

brain, Fernando et al. [33] proposed hierarchical attention 

memory networks to detect fake faces. Hu et al. [34] applied a 

temporality-level stream to extract temporal correlation 

features and combined the frame-level stream to detect 

compressed Deepfake videos.  

Most of the above-mentioned studies have achieved good 

performance in detecting the generated faces free of 

post-processing. However, in practical scenarios, the generated 

faces are often accompanied by some post-processing 

operations, such as JPEG compression and blurring. 

Unfortunately, most of the above-mentioned studies do not 

consider the robustness against the post-processing operations. 

Consequently, their performance will be degraded greatly when 

detecting post-processed generated faces. Data enhancement is 

a solution. However, in practice, the post-processing operation 

and its strengths are usually unknown and complex. Therefore, 

it is impossible to consider every post-processing step with 

arbitrary strengths by data enhancement. In addition, data 

enhancement will greatly increase the amount of data, which 

will affect the training speed and even lead to the overfitting or 

failure of the training. Therefore, it is very important to design a 

real robust model. To make the detection method as effective as 

possible in practical scenarios, a new robust detection method 

is proposed. Since Xception [35] has shown good performance 

in GAN-generated face detection [36, 37], it is used as the 

network benchmark. The main contributions are as follows. 

● The luminance and chrominance components are analyzed 

and compared to decide whether only two chrominance 

components used in [18, 26] or all three components need to be 

considered in the network input. 

● Four color spaces are compared in terms of their 

robustness against post-processing to determine which color 

space is suitable for GAN-generated face detection. 

● The Xception model is improved in robustness by 

introducing two technologies: convolutional block attention 

module (CBAM) [38, 39] and multilayer feature aggregation 

(MLFA) [40]. The CBAM can provide evidence for important 

information. The MLFA allows the capture of multilevel 

features to complement the missing details of deep 

representations. 

● A robust dual-stream network model is designed by 

integrating the luminance component and chrominance 

components of dual-color spaces RGB and YCbCr as the inputs 

of the dual-stream network and using an improved Xception 

model. The proposed model performs better than some existing 

models, especially in robustness against different types of 

post-processing operations. 

The remaining of this paper is organized as follows. Section 

II reviews the relevant works and technologies. Section III 

describes the structure of the proposed model in detail. The 

experimental results and analysis are presented in Section IV. 

Finally, Section V summarizes the paper. 

II. RELATED WORKS AND RELATED TECHNIQUES 

In this section, first, some related studies that use multiple 

color spaces for generated face detection and the network 

benchmark Xception [35] model are investigated; then, CBAM 

[38, 39] is introduced. 

A. Detection methods using multiple color spaces 

Other color spaces instead of RGB have been exploited to 

detect GAN-generated faces in recent years. Li et al. [18] 

pointed out that since GANs usually generate images in RGB 

space, they tend to follow the properties of natural images in 

RGB space and pay less attention to other color spaces. 

Therefore, Li et al. analyzed the generated images in the RGB, 

YCbCr, and HSV color spaces, and found that the chrominance 

components had a larger difference between natural and 

GAN-generated images than the luminance component. 

Therefore, they exploited the co-occurrence matrix to extract 

the features of chrominance components (H, S, Cb, and Cr) for 

classification. He et al. [26] pointed out that common 

post-processing operations would make the abnormal traces in 

the RGB space unreliable, while the statistical characteristics of 

chrominance information in other color spaces can be more 

distinguishable and robust. Therefore, they exploited a 

well-designed shallow CNN to extract the features of the 

chrominance components and then used the random forest 

classifier [41] for classification.   

However, both of these studies [18, 26] use only 

chrominance components. Consequently, the luminance 

information is lost. However, the luminance information has 

better resistance to some post-processing operations than the 
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chrominance components, such as JPEG compression, and 

gamma correction. The detailed experimental analysis will be 

provided in Section III. 

B. Xception model 

The Xception is an improved version of Inception-v3 [42]. In 

[32], the authors believed that it was better to learn channel 

correlation and spatial correlation separately. Therefore, they 

used depthwise separable convolution to replace the ordinary 

convolution operation in Inception-v3. The depthwise 

separable convolution decomposes ordinary convolution into 

two processes: first, spatial convolution performs on each input 

channel independently, and then, pointwise convolution adopts 

a 1 × 1 kernel to convolve point by point. The architecture of 

the Xception model is provided in Fig. 1. As shown in Fig. 1, 

the Xception model consists of 14 blocks. The 14 blocks 

contain 3 common convolution layers and 33 depthwise 

separable convolution layers in total. All of the blocks expect 

the first and last blocks have linear residual connections around 

them. 
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Fig. 1. Architecture of the Xception model.

C. Convolutional block attention module 

In human vision, attention can filter out irrelevant 

information and enhance important information, leading people 

to focus on the local area of the whole scene [43]. The CBAM 

[38] is a lightweight module that sequentially infers the 

attention map along two independent dimensions (channel and 

space), and then multiplies the attention map with the input 

feature map. Fig. 2 is the overview of CBAM. CBAM can help 

the network to extract effective features by learning 

information to be emphasized or suppressed. 

Channel 

attention
Spatial 

attention

Input feature Refined 

feature

 Fig. 2. Overview of the CBAM. 

The channel attention is computed as, 
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where Mc∈ Rc×1×1 is the channel attention map of the input 

feature F, c represents the number of channels, σ denotes the 

sigmoid function, MLP is the multilayer perceptron, AvgPool 

and MaxPool represent the average pooling and maximum 

pooling, respectively, and W0∈ Rc/r×c and W1∈ Rc×c/r represent 

the MLP weights, where r is the reduction ratio. 

 The spatial attention is computed as, 
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where Ms∈ RH×W is the spatial attention map of the input 

feature F, H×W represents its size, and f7×7 denotes a 

convolution operation with a filter size of 7 × 7. 

III. PROPOSED METHOD 

In this section, a robust dual-stream network model is 

proposed for detecting GAN-generated faces. Xception is used 

as a network benchmark since it has shown good performance 

in feature extraction of GAN-generated face detection [36, 37]. 

Here, the CBAM and MLFA modules are introduced into the 

Xception to improve its performance. In addition, the 

luminance component and chrominance components of 

dual-color spaces (RGB and YCbCr) are considered to be the 

network input after a detailed comparative analysis of the 

luminance component and chrominance components as well as 

different color spaces. Notice that the generated faces with 

different ages [44, 45] or expressions [46, 47] do not affect the 

GAN-generated face detection task because the detection 

performance mainly depends on the detection model itself and 

the training data provided. Therefore, we do not analyze the 

influence of age and expression. 

A. Is the luminance component important? 

The most recent detection studies [14-34], except for two 

works [18] and [26], consider only the RGB color space. 

Regarding [18] and [26], although they consider other color 

spaces, they exploit only the chrominance components, 

discarding the luminance component. Is the luminance 

component beneficial to robustness against post-processing? 

This question will be answered in the following through feature 

similarity analysis and performance comparison. Notice that 

the YCbCr color space is considered. The reasons are as 

follows: (a) in [48], the authors pointed out that the YCbCr 
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space was perceptually uniform and had a good separation of 

luminance and chrominance. Therefore, they adopted the 

YCbCr space in color face detection; (b) the YCbCr space has 

been widely used in image and video compression standards, 

e.g., JPEG and MPEG. Therefore, the use of the YCbCr color 

space will enhance the robustness against JPEG compression. 

Regarding the feature similarity analysis, a basic idea is that 

the stronger the similarity between the features extracted from 

the original image and those extracted from the corresponding 

post-processing image, the stronger the robustness. Specifically, 

the Xception model [35] is used to extract features in the 

YCbCr color space, and the Euclidean distance between the 

original image features and its corresponding post-processed 

image features are calculated. The Euclidean distance d(X, Y) of 

two feature vectors X = {X1, X2, …, Xn} and Y = {Y1, Y2, …, Yn} 

can be computed as follows,  

2( , ) ( )
1

nd X Y X Y
i i i

  
                (3) 

The smaller the distance is, the more similar the original image 

features and the post-processed image features. 

   
(a) JPEG compression                        (b) Gamma correction 

  
(c) Gaussian blurring                          (d) Gaussian noising 

   
(e) Median filtering                                   (f) Resizing 

Fig. 3. Average Euclidean distance values between the original image features 

and its corresponding post-processed image features under different types of 

post-processing operations with different strengths. 

A total of 2,000 face images from the natural CelebA dataset 

[49] and their corresponding generated images by the PGGAN 

are considered for analysis. The generated face images are 

processed by some post-processing operations, such as JPEG 

compression, gamma correction, Gaussian blurring, Gaussian 

noising, median filtering and resizing. Then, the Euclidean 

distance is calculated between the post-processed generated 

image features and their corresponding original features. The 

average Euclidean distance values of 2,000 pairs of images are 

provided in Fig. 3. Fig. 3 shows that the luminance component 

is more robust to JPEG compression, median filtering, and 

resizing, while the chrominance components are more robust to 

Gaussian blurring and Gaussian noising. However, in most 

cases of actual scenarios, the post-processing operation is 

usually unknown. Therefore, it is a good choice to combine the 

chrominance and luminance components.  

Furthermore, the performance of the chrominance 

component and luminance component are compared on the 

final GAN-generated face detection task. The YCbCr color 

space and the Xception model [35] are considered. The 

experimental datasets contain the natural CelebA dataset and its  

corresponding generated dataset by the PGGAN model. There 

are 202,599 natural images and 202,599 GAN-generated 

images. A total of 202,599 pairs were divided into training, 

validation, and testing sets at a ratio of 8:1:1. The evaluation 

metric accuracy is used to evaluate the performance of the 

chrominance component and luminance component. It can be 

computed by, 

          = number

number

C
Accuracy

T
×100%                 (4) 

where Cnumber is the number of correctly classified face images, 

and Tnumber denotes the number of total face images. 

The experimental results are shown in Table I. It can be seen 

from Table I that the chrominance components Cb and Cr have 

better robustness against Gaussian noising, while they only 

achieve an accuracy of 50% for JPEG compression. However, 

the luminance component Y is the opposite. Therefore, when 

the type of post-processing operation is unknown, considering 

both the chrominance component and luminance component is 

a good choice.  

B. Comparison of four color spaces 

The previous subsection shows that both the chrominance 

and luminance components are helpful for improving the 

performance in detecting post-processed GAN-generated faces. 

However, which color space is the optimal one? To address this 

question, in this subsection, four different color spaces (RGB, 

YCbCr, HSV, and Lab) are compared in terms of 

GAN-generated face detection. The experimental dataset is the 

same as in the previous subsection. The experimental results 

are shown in Table II. The results show that both the RGB and 

YCbCr spaces achieve better performance in terms of 

robustness than the other two color spaces, especially for JPEG 

compression. This finding further verifies the advantage of the 

YCbCr space in GAN-generated face detection. In addition, 

RGB and YCbCr have different effects on different 

post-processing operations. Therefore, dual-color spaces (RGB 

and YCbCr) are considered in the proposed method. 

C. Xception model combined with CBAM 

The CBAM module (Fig. 2) considers the importance of 

pixels not only in different channels but also in different 

positions of the same channel. In this paper, the CBAM module 

is applied to focus on the more important features in the feature 

Authorized licensed use limited to: Oulu University. Downloaded on October 05,2021 at 09:24:07 UTC from IEEE Xplore.  Restrictions apply. 



1051-8215 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2021.3116679, IEEE
Transactions on Circuits and Systems for Video Technology

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

Copyright © 20xx IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending an email to 

pubs-permissions@ieee.org. 

 

TABLE I  

DETECTION ACCURACY (%) COMPARISON OF DIFFERENT COLOR COMPONENTS IN YCBCR COLOR SPACE 

Color 

component 

JPEG compression with different quality factors Gamma correction with different gamma values Median filtering with different kernel sizes 

90 70 50 1.1 1.4 1.7 3×3 5×5 7×7 

Y 99.1 89.9 75.5 99.7 99.5 98.8 92.3 70.8 64.7 

Cb 50.0 50.0 50.0 99.6 99.4 91.3 83.7 50.0 50.0 

Cr 50.0 50.0 50.0 99.7 99.5 92.4 60.2 50.0 50.0 

CbCr 50.0 50.0 50.0 99.7 99.1 95.2 77.4 50.0 50.0 

YCbCr 97.1 91.4 83.8 99.6 98.4 97.1 94.7 75.4 66.6 

Color 
component 

Gaussian blurring with different kernel sizes Gaussian noising with different std values Resizing with different upscaling factors 

3×3 5×5 7×7 3 5 7 1% 3% 5% 

Y 95.8 87.7 65.3 98.6 90.1 98.6 90.2 78.2 69.8 

Cb 92.2 65.7 56.3 99.4 99.9 99.4 90.5 60.2 50.0 

Cr 77.1 66.3 57.2 99.9 99.4 99.9 79.3 52.9 50.0 

CbCr 86.5 71.2 65.1 99.9 99.5 99.9 91.2 70.5 60.4 

YCbCr 96.8 91.2 81.1 98.3 97.4 98.3 93.7 82.3 71.5 

TABLE II  

DETECTION ACCURACY (%) COMPARISON OF DIFFERENT COLOR SPACES 

Color 

spaces 

JPEG compression with different quality factors Gamma correction with different gamma values Median filtering with different kernel sizes 

90 70 50 1.1 1.4 1.7 3×3 5×5 7×7 

RGB 96.9 90.1 81.5 98.9 98.2 95.4 94.8 76.6 65.6 

YCbCr 97.1 91.4 83.8 99.6 98.4 97.1 94.7 75.4 66.6 

HSV 61.4 57.5 50.0 99.1 98.5 97.8 85.3 52.7 50.0 

Lab 52.7 50.0 50.0 99.3 99.1 98.2 93.2 61.3 52.2 

Color 

spaces 

Gaussian blurring with different kernel sizes Gaussian noising with different std values Resizing with different upscaling factors 

3×3 5×5 7×7 3 5 7 1% 3% 5% 

RGB 96.4 90.8 80.7 98.2 97.1 92.5 93.5 81.7 70.1 

YCbCr 96.8 91.2 81.1 98.3 97.4 91.5 93.7 82.3 71.5 

HSV 94.2 58.3 52.1 99.6 99.1 98.2 91.2 69.4 56.8 

Lab 96.5 84.2 75.3 99.7 99.5 98.9 72.5 59.7 55.9 

Separable Convolutional Group

Separable Convolutional Group

CBAM Module

x

x

Separable Convolutional Group

Separable Convolutional Group

CBAM Module

x

x

Separable Convolutional Group

 
(a). Different dimensions                   (b). Same dimension 

Fig. 4. Architecture of the CBAM-residual block for the input and output with 

same/different dimensions. 

map. It is inserted into each residual block of the Xception 

model as the CBAM-residual block shown in Fig. 4. In each 

CBAM-residual block, a separable convolutional group 

contains a separable convolutional layer, a batch normalization 

(BN) layer [50], and a ReLU activation layer. The 

1×1convolution is used when the dimensions of the input 

feature map and the output feature map are not the same, as 

shown in Fig. 4(a). The structure of Fig. 4(b) is suitable for the 

case where the input feature map and the output feature map 

have the same dimensions. To gain a deeper understanding of 

the improvement of the CBAM, Fig. 5 presents the 

classification activation maps [51] before and after the CBAM. 

As shown in Fig.5, the features after the CBAM module are 

more obvious and more reasonable. 

 
Fig. 5. Classification activation maps before and after the CBAM. The second 

column is before the CBAM, while the third column is after the CBAM. 

D. Main framework of the proposed method 

Based on the above discussion and analysis, a robust 

dual-stream network model is proposed for GAN-generated 

face detection by considering the luminance component and 

chrominance components of dual-color spaces (RGB and 

YCbCr) and using Xception, CBAM, and MLFA. The MLFA 

module aggregates multilayer features from different 

convolutional layers (blocks). It can make the corresponding 

model capable of finding inter-modal correlations not only at a 

fine level but also at a coarse level. With the deepening of the 

network, some shallow features, which have an important role 

in GAN-generated face detection, will be lost. As shown in Fig. 

6, there is a large difference between the shallow and deep 
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features. The deep features are more abstract, while the shallow 

features are more direct, focusing on some unnatural areas 

directly, especially for the post-processed images. Therefore, 

the MLFA module is introduced to save the features extracted 

from the shallow layers, and then fuse them with the deep 

features to enrich the features and improve the performance. In 

fact, similar ideas are also used in the U-Net model [52], which 

has been extensively used in the field of image segmentation. 

 
Fig. 6. Classification activation maps of the shallow layer and deep layer under 

different post-processing operations. For each image, the first row is for the 

shallow layer, while the second row is for the deep layer. For each row, from 
left to right, images correspond to the original image and its maps, the maps of 

JPEG compression, Gaussian noising, Gaussian blurring, gamma correction, 

median filtering and resizing.  

An overview of the main framework is presented in Fig. 7. 

As shown in Fig. 7, the proposed detection method has two 

streams (RGB stream and YCbCr stream). In the proposed 

model, the inputs represented by two different color spaces are 

thrown into the detection module to obtain the classification 

scores; then, the scores are fused by the average method. The 

details of the detection module are given in Fig. 8. As shown in 

Fig. 8, the detection module is based on an improved Xception 

that combines the CBAM and MLFA. It contains five 

submodules with 16 different blocks, B1-B16. The 

pre-processing submodule (B1-B2) uses an inception block 

where the convolution kernel size and activation function are 

3×3 and ReLU, respectively. The information content (B3-B5) 

submodule aims to learn shallow information. It is composed of 

three CBAM-residual blocks. Since the input features and 

output features of the CBAM-residual block have different 

dimensions, a 1×1 convolution is considered (Fig. 4(a)). The 

deep semantic submodule  is used to extract high-level 

semantic information. It has ten CBAM-residual blocks 

(B6-B16). The network parameters of each block are shown in 

Table III. Notice that the meaning of the number below each 

block is as follows: (a) m×1 represents a vector, where m 

represents the length of the vector; (b) n represents the number 

of channels in the feature map. The MLFA submodule focuses 

on extracting multi-level features. It fuses the features extracted 

by the pre-processing submodule and the information content 

submodule as the shallow features for the subsequent decision 

submodule. The decision submodule first merges the deep 

semantic features and shallow features and then applies two FC 

layers to reduce the feature dimensionality. Finally, the widely 

used softmax loss is considered for classification, 

1
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            (5) 

where N and n represent the batch size and the number of 

categories, respectively, xi and yi denote the deep feature and 

the label of 𝑖-th sample, W and b are the weight vector and the 

bias term, respectively. The goal is to minimize the loss Lsoftmax.  

Class score 

fusion
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Fig. 7. Overview of the proposed detection method. 
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Fig. 8. Details of the proposed detection module.
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TABLE III 

NETWORK PARAMETERS OF 16 BLOCKS B1-B16 IN THE FIG. 8 

Layers Name Parameters 

B1 Conv2D_1 
Filters = 32, Kernel_size=3, 

Strides = 2, Padding “Valid” 

B2 

Conv2D_2 
Filters = 64, Kernel_size=3, 

Strides = 2, Padding “Valid” 

Residual_Conv2d_1 
Filters = 128, Kernel_size=1, 

Strides = 2, Padding “Same” 

B3 

SeparableConv2d_1 
Filters = 128, Kernel_size=3, 

Strides = 1, Padding “Same” 

SeparableConv2d_2 
Filters = 128, Kernel_size=3, 

Strides = 1, Padding “Same” 

MaxPooling2D_1 
Kernel_size=3, Strides = 2, 
Padding “Same” 

Add_1 
(MaxPooling2D_1, 

Residual_Conv2d_1) 

Residual_Conv2d_2 
Filters = 256, Kernel_size=1, 
Strides = 2, Padding “Same” 

B4 

SeparableConv2d_3 
Filters = 256, Kernel_size=3, 

Strides = 1, Padding “Same” 

SeparableConv2d_4 
Filters = 256, Kernel_size=3, 
Strides = 1, Padding “Same” 

MaxPooling2D_2 
Kernel_size=3, Strides = 2, 

Padding “Same” 

Add_2 
(MaxPooling2D_2, 
Residual_Conv2d_2) 

Residual_Conv2d_3 
Filters = 728, Kernel_size=1, 

Strides = 2, Padding “Same” 

B5 

SeparableConv2d_5 
Filters = 728, Kernel_size=3, 
Strides = 1, Padding “Same” 

SeparableConv2d_6 
Filters = 728, Kernel_size=3, 

Strides = 1, Padding “Same” 

MaxPooling2D_3 
Kernel_size=3, Strides = 2, 
Padding “Same” 

Add_3 
(MaxPooling2D_3, 

Residual_Conv2d_3) 

B6-B14 

Residual Add_4 

SeparableConv2d_7 
Filters = 728, Kernel_size=3, 

Strides = 1, Padding “Same” 

SeparableConv2d_8 
Filters = 728, Kernel_size=3, 

Strides = 1, Padding “Same” 

SeparableConv2d_9 
Filters = 728, Kernel_size=3, 

Strides = 1, Padding “Same” 

Add_4 
(SeparableConv2d_9, 

Residual) 

B15 

Residual_Conv2d_4 

Filters = 1024, 

Kernel_size=1, Strides = 2, 

Padding “Same” 

SeparableConv2d_10 
Filters = 728, Kernel_size=3, 
Strides = 1, Padding “Same” 

SeparableConv2d_11 
Filters = 728, Kernel_size=3, 

Strides = 1, Padding “Same” 

MaxPooling2D_4 
Kernel_size=3, Strides = 2, 
Padding “Same” 

Add_5 
(MaxPooling2D_4, 

Residual_Conv2d_4) 

B16 

SeparableConv2d_12 
Filters = 1536, 
Kernel_size=3, Strides = 1, 

Padding “Same” 

SeparableConv2d_13 
Filters = 2046, 
Kernel_size=3, Strides = 1, 

Padding “Same” 

The pseudo-code of the proposed method can be summarized 

in Algorithm 1. 

Algorithm 1: Pseudo-code of the proposed method 

 Input: Image IRGB 

1: if step == Train do 

    2: Convert RGB image IRGB into YCbCr color space as 

IYcbCr; 

    3: Extract shallow features in the pre-processing 

submodule and information content submodule of 

four different blocks B2, B3, B4, B5 as  FS
 B2 , FS

 B3 , 

FS
 B4, FS

B5; 

    4: Fusion the shallow features in the MLFA submodule 

as FMS = Concatenate(FS
 B2, FS

 B3, FS
 B4, FS

 B5); 

5: Extract the deep semantic features from FS
B4 in the 

deep semantic submodule as FD; 

6: Reduce the dimensions of the shallow features and 

deep semantic features as FGMS = GAP(FMS), FGD = 

GAP(FD); 

    7: Merge the shallow features FGMS and deep semantic 

features  FD as FC = Concatenate(FGMS, FGD); 

8: Obtain the probability value of the YCbCr stream as 

PYCbCr = fully connected FC(FC);  

9: Repeat steps 3-8 for the RGB color space, obtaining 

the probability value of the RGB stream PRGB; 

   10: Predicate results as P = Argmax(Average(PRGB , 

PYCbCr)); 

   11: Calculate softmax as Lsoftmax  = Softmax_Loss(P, 

Label); 

   12:  Minimize Lsoftmax , and update the parameters of 

both the RGB stream and YCbCr stream by back 

propagation;  

   13: end if 

   14: if step == Test do 

   15: Calculate the probability values of two streams as  

PRGB = RGB_stream(IRGB),  

PYCbCr  = YCbCr_stream(IYCbCr); 

   16: Predicate result P = Argmax(Average( PRGB , 

PYCbCr)); 

   17: end if 

Output: Predicted result (natural or GAN-generated) 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, several experiments are conducted to 

demonstrate the effectiveness of the proposed method. Before 

the experiments, experimental datasets and implementation 

details are described. Then, ablation experiments are conducted 

to show the improvements on the Xception and dual-color 

spaces. Finally, comparative experiments with state-of-the-art 

work are performed to test the robustness against different 

types of post-processing operations. 

A. Experimental datasets 

In the experiment, the CelebA dataset [49] including 10,177 

identities and 202,599 aligned face images is used as the natural 

face dataset. We use the function get_frontal_face_detector in 

the open source Dlib library [53] to find faces in a face image, 

crop the facial regions by removing the background, and then 

resize the cropped regions to a resolution of 128×128. These 

processed natural face images are used to train PGGAN [7], 

generating 202,599 face images with a size of 128×128. Here, 

the PGGAN is considered because it can generate high-quality 

face images and has been used in many existing studies [14, 18, 

26, 28, 30]. Finally, 202,599 pairs of natural and generated 

images are obtained. In the experiments, 202,599 pairs were 
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divided into training, validation, and testing sets at a ratio of 

8:1:1. In addition, to test the robustness, several widely used 

post-processing operations are performed on the testing set. 

They are JPEG compression with different compression quality 

factors 90, 70 and 50, gamma correction with different gamma 

values 1.1, 1.4 and 1.7, Gaussian blurring with different kernel 

sizes 3×3, 5×5 and 7×7, median blurring with different kernel 

sizes 3×3, 5×5 and 7×7, Gaussian noising having different 

standard deviation values 3, 5 and 7, as well as resizing with the 

upscaling factor as 1%, 3%, 5% and then cropping the 128×128 

central region. Some samples in the experimental datasets are 

provided in Fig. 9. 

 
Fig. 9. Some samples in the experimental datasets. From left to right, the 

columns are the natural images in CelebA, the fake images generated by the 

PGGAN model, and the post-processed natural/fake images by JPEG 

compression, Gaussian noising, Gaussian blurring, gamma correction, median 

filtering and resizing. 

B. Implementation details 

All of the methods are implemented with Keras and a single 

11GB GeForce GTX 1080 Ti, i7-6900K CPU, 64GB RAM. 

Parameters in convolution kernels are initialized by using a 

truncated normal distribution with zero mean and σ = 0.01. The 

size of the minibatch is set to 10 and the optimizer is the Adam 

method [54]. The initial learning rate is set to 1.0e-5 and the 

learning rate decay is 1.0e-6. The source code is available at 

https://github.com/imagecbj/A-robust-GAN-generated-face-de

tection-method-based-on-dual-color-spaces-and-an-improved-

Xception. 

C. Ablation experiments 

First, the effects of the MLFA and CBAM on the Xception 

are evaluated. Four methods, i.e., Xception, Xception+CBAM, 

Xception+MLFA, and the proposed method (Xception + 

CBAM + MLFA), are compared. Notice that here only a single 

RGB color space is considered. The experimental results are 

shown in Table IV. The results show that both the MLFA 

module and CBAM are helpful to improve the robustness 

against the post-processing especially when using the CBAM 

module and MLFA module together. 

Then, the performance of dual-color spaces is tested. 

Therefore, the performance of the single RGB space, single 

TABLE IV  

ABLATION EXPERIMENTAL RESULTS FOR THE MLFA AND CBAM 

Methods 
JPEG compression with different quality factors Gamma correction with different gamma values Median filtering with different kernel sizes 

90 70 50 1.1 1.4 1.7 3×3 5×5 7×7 

Xception 96.9 90.1 81.5 98.9 98.2 95.4 94.8 76.6 65.6 

Xception+CBAM 97.1 89.9 80.0 99.1 98.8 96.1 95.6 81.9 72.5 

Xception+MLFA 97.5 91.2 85.3 98.9 98.4 95.7 93.2 82.4 73.9 

Xception+CBAM+MLFA 97.7 92.5 86.4 99.4 99.2 96.7 95.8 83.4 74.1 

Methods 
Gaussian blurring with different kernel sizes Gaussian noising with different std values Resizing with different upscaling factors 

3×3 5×5 7×7 3 5 7 1% 3% 5% 

Xception 96.4 90.8 80.7 98.2 97.1 92.5 93.5 81.7 70.1 

Xception+CBAM 95.2 91.3 81.4 98.9 97.8 92.5 93.9 80.5 68.7 

Xception+MLFA 95.4 91.2 80.9 98.5 97.7 91.8 91.9 82.5 72.7 

Xception+CBAM+MLFA 95.6 91.8 82.3 99.2 98.0 93.3 94.2 82.8 69.4 

TABLE V  
ABLATION EXPERIMENTAL RESULTS FOR DUAL-COLOR SPACES 

Color spaces 
JPEG compression with different quality factors Gamma correction with different gamma values Median filtering with different kernel sizes 

90 70 50 1.1 1.4 1.7 3×3 5×5 7×7 

RGB 97.7 92.5 86.4 98.7 97.7 96.7 95.8 83.4 74.1 

YCbCr 98.5 93.2 85.5 99.3 99.1 97.1 97.2 84.5 73.1 

RGB+CbCr 68.2 57.7 53.7 99.5 99.3 98.9 95.8 58.6 51.8 

RGB+ YCbCr 99.5 96.6 89.4 99.6 99.6 98.5 98.4 87.5 76.8 

Color spaces 
Gaussian blurring with different kernel sizes Gaussian noising with different std values Resizing with different upscaling factors 

3×3 5×5 7×7 3 5 7 1% 3% 5% 

RGB 95.6 91.8 82.3 99.2 98.0 91.3 94.2 82.8 69.4 

YCbCr 97.6 94.9 83.5 99.3 98.6 91.1 95.4 86.4 69.3 

RGB+CbCr 97.9 77.4 56.1 99.9 99.7 98.6 96.8 85.3 61.6 

RGB+ YCbCr 98.3 96.3 85.2 99.7 99.5 94.3 97.2 88.5 71.3 
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YCbCr space, and RGB + YCbCr dual spaces are compared in 

Table V. Notice that here RGB + YCbCr is also considered to 

evaluate the influence of the dropping of the luminance 

component. It can be observed from Table V that: (a) after the 

fusion of the two spaces, the results for various post-processing 

operations have been significantly improved; (b) the results 

further verify that the luminance component greatly improves 

the detection performance. 

D. Comparative experiments with state-of-the-art work 

To evaluate the effectiveness of the proposed method, the 

proposed method is compared with other methods, including 

Xception [35], Li’s method [18], He’s method [26], Liu’s 

method [30], Fu’s method [28] and Mi’s method [32]. Among 

these compared methods, three methods (He’s, Fu’s, and Mi’s) 

are also designed for robust detection. First, these methods are 

compared in the case of the original face images without 

post-processing. The detection accuracies of the different 

methods are shown in Table VI. It can be observed from the 

Table VI that all methods perform well with accuracies higher 

than 99% in free of post-processing. Then, seven methods are 

compared for their robustness against different post-processing 

operations. Table VII presents the comparative results. It can be 

seen from this table that: (a) the proposed method outperforms 

other methods overall due to the consideration of dual-color 

spaces and the use of MLFA, which considers both the deep 

semantic features and shallow features; (b) the Li’s method and 

He’s method perform well in detecting images post-processed 

by Gaussian noising. This finding is consistent with the 

conclusion from Fig. 3 and Table I that the chrominance 

component has better resistance to Gaussian noising than the 

luminance component. The Li’s method [18] and He’s method 

[25] exploit only the chrominance information.  

TABLE VI 
DETECTION ACCURACIES (%) OF DIFFERENT METHODS FOR ORIGINAL IMAGES 

Methods Accuracy 

Li’s [18] 99.7 

He’s [26] 99.8 

Xception [35] 99.8 
Liu’s [30] 99.2 

Fu’s [28] 99.5 

Mi’s [32] 99.4 

Proposed 99.9 

TABLE VII 
DETECTION ACCURACIES (%) OF DIFFERENT METHODS AGAINST DIFFERENT POST-PROCESSING OPERATIONS 

Methods 
JPEG compression with different quality factors Gamma correction with different gamma values Median filtering with different kernel sizes 

90 70 50 1.1 1.4 1.7 3×3 5×5 7×7 

Li’s [18] 88.5 54.3 51.2 99.7 99.3 97.2 88.2 68.5 60.8 

He’s [26] 89.6 57.2 52.1 99.8 98.7 96.1 89.3 70.4 60.1 

Xception [35] 96.9 90.1 81.5 98.9 98.2 95.4 94.8 76.6 65.6 

Liu’s [30] 89.8 70.3 65.8 95.5 93.4 92.2 78.5 68.3 64.2 

Fu’s [28] 89.2 68.3 61.8 99.5 99.3 98.2 71.2 62.1 57.6 

Mi’s [32] 97.8 90.2 83.2 99.9 99.5 98.3 80.1 73.2 63.2 

Proposed 99.5 96.6 89.4 99.6 99.6 98.5 98.4 87.5 76.8 

Methods 
Gaussian blurring with different kernel sizes Gaussian noising with different std values Resizing with different upscaling factors 

3×3 5×5 7×7 3 5 7 1% 3% 5% 

Li’s [18] 94.1 84.2 76.3 99.5 98.1 94.3 90.2 78.2 69.8 

He’s [26] 94.3 89.5 78.1 99.9 99.8 96.7 90.5 60.2 50 

Xception [35] 96.4 90.8 80.7 98.2 97.1 92.5 79.3 52.9 50 

Liu’s [30] 94.5 89.8 79.5 97.2 94.6 88.7 91.2 70.5 60.4 

Fu’s [28] 80.5 76.1 69.4 97.1 85.3 62.8 89.7 88.5 87.3 

Mi’s [32] 95.2 90.1 80.9 99.1 80.1 68.7 89.3 65.2 56.7 

Proposed 98.3 96.3 85.2 99.7 99.5 94.3 97.2 88.5 71.3 

E. Visualization and analysis of results 

To gain a deeper understanding of why the network is 

effective, we further exploited classification activation maps 

[46] to reveal the areas that are used as evidence for generated 

face detection by the proposed method. The classification 

activation maps are shown in Fig. 10. It can be easily seen that: 

(a) the main areas recognized by the proposed method are the 

skin and hair areas; (b) the proposed method can still pay 

attention to these main areas though the testing images are 

post-processed. This result shows that the proposed method has 

strong robustness. 

 
Fig. 10. Class activation maps from the trained proposed model in the RGB 

color space. From left to right, the column shows the GAN-generated images, 

and the post-processed images by JPEG compression, Gaussian noising, 

Gaussian blurring, gamma correction, median filtering and resizing. 

V. CONCLUSION 

In this paper, an improved GAN-generated face detection 

method is proposed. It considers both the luminance component 
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and chrominance components of dual-color spaces (RGB and 

YCbCr). In addition, it is based on an improved Xception 

model with the CBAM and MLFA. Experimental results show 

that our method achieves better performance than some 

existing methods in robustness against different types of 

post-processing operations. Certainly, for GAN-generated face 

detection, the generalization ability under a cross-dataset test is 

also very important. Therefore, a robust method with strong 

generalization ability is a goal for our future work. 
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