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AbstractFuture 5G/6G wireless networks will be increasingly  of RF chains is the same as the number of antennas, energy
using millimeter waves (mmWaves), where fast and efcient consumption is high. When each RF chain is connected to all
beamforming is vital for providing continuous service to highly antennas (fully connected), interconnections are voluminous.

mobile devices in the presence of interference and signal at-I ti RE chai f th i d
tenuation, manifested by blockage. In this paper, we propose a 'I Practice, chains are tewer than antennas and are con-

novel and ef cient method for mmWave beamforming in massive Nnected to some (not all) antennas [9] to save energy and reduce
multiple-input multiple-output (MIMO) systems to achieve the interconnections. The existing beamforming schemes need
aforementioned goals with low complexity in such scenarios. channel state information (CSI) in a timely manner, obtained
In doing so, we utilize deep reinforcement leaming (DRL) 0 gjther by sparse channel estimation [10] or by exhaustive or

maximize the network’s energy ef ciency subject to the quality of . . L . .
service (Q0S) constraint for each user equipment (UE) and obtain hierarchical search [8], resulting in uncertain CSI or requiring

its hybrid beamforming matrices. In doing so, we assume each €Xcessive signaling, which are aggravated in high mobility
UE is simultaneously associated with multiple access points (APs), cases, where channels and cell associations are fast changing.
i.e., simultaneous beamforming to/from multiple APs (coordi-  \We wish to develop a computationally ef cient scheme for
nated multipoints) is needed for each UE. We also propose a low- mmWave beamforming in the presence of channel variations

complexity training algorithm, based on approximate message . . .
passing, which is well suited for the network edge. Besides, Weand co-channel interference for fast-moving UEs. We consider

develop a distributed scheme to reduce communications over- Multiuser and multicarrier networks, and optimize a given

head via federated DRL. Extensive simulations show signi cant performance measure in partially-connected hybrid structures

performance improvement over existing methods. for mitigating interference and steering beams in a timely

Index Terms High mobility, mmWave connectivity, hybrid ~ manner. In general, the problem is to minimize the distance

beamforming, fast federated deep reinforcement learning, edge between hybrid and fully digital beamforming [10] for each

computing. beam, which is known to be NP-hard [7]. In what follows, we
brie y review prior works, and describe our contribution.

To reduce computations in optimization problems, various
UTURE NETWORKS are expected to provide new seiethods exist. The orthogonal matching pursuit is used in
vices such as virtual and augmented reality and vehicledly-connected structures, but with unsatisfactory results in

to-everything (V2X) communications [1] to highly mobilepartially-connected structures (PCSs) [10]. The alternating

users, where millimeter waves (mmWaves) provide largainimization method [7] is used for PCSs, but needs exces-
amounts of bandwidth [2]. A key enabler for connecting give computations in multiuser and multicarrier settings. Low
fast-moving user equipment (UE) to at least one access paidimplexity methods such as channel phase extraction [7] or

(AP) at any instance is mitigating interference and steeringnvex relaxation [9] exist, but require excessive signaling to

beams (together called beamforming) in a timely and ef cienfbtain uncertain CSI [11], [12]. To deal with uncertain CSI,

manner with reasonable signaling overhead in the presenceefS-aware schemes have been developed that either use CSI
channel variations and co-channel interference [2] [4]. statistics (statistically robust) [13], [14], or consider an uncer-

Fully digital beamforming is costly, power-hungry, andainty region assumed to contain all instantaneous CSI (worst-

requires complex hardware [3] [5], but hybrid beamformingase robust) [10], [11]. Nevertheless, all existing schemes fail

can achieve comparable performance [6] [9] with less cost and meet key features of high mobility communications as
complexity. In hybrid beamforming, digital signal processingpeci ed in the rst release of 5G new radio (NR), e.g., in

is employed in the baseband to eliminate/reduce interferenh@gh-speed trains [15], [16].

and discrete phase shifters are used in the RF to steer beamBeamforming via deep supervised learning is a promising,
In hybrid structures, RF chains are typically groupscalable and statistically robust approach for high mobility

connected to antennas via phase shifters. When the numéeses [17] [20]. In such schemes, RF signature of the environ-

ment and locations of users/APs are obtained via pilot signals
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I. INTRODUCTION
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Figure 1. (a) Network layout in which each fast-moving UE is simultaneously served by multiple APs, i.e., coordinated multipoint, depending on the service
and fronthaul load. Typical cell radius for urban (rural) deployments are 150 m (580 m), which means that each user stays only 10.8 seconds (8.35 seconds)
in the footprint of each AP for speeds ®00km/h (500km/h) [15]. (b) Block diagram of the system.

of channel covariance [20], long short-term memory in singl@rocessed data to obtain the shared optimum weight values.
user scenarios [21] and deep convolutional neural networks inOur contributions can be summarized as:

the downlink of multi-user settings [22] have been proposed.
In general, performance duperviseddeep learning algo-
rithms is promising [25], but require extensive labeled datasets
for training, and are sensitive to unpredictable variations in
mmWave channels manifested by prevalent blockage [26]. To
alleviate this, in [27], deep reinforcement learning (DRL) is
used for hybrid beamforming in point-to-point communica-
tions. DRL has its costs as well: Its convergence is slow
and needs excessive computations, usually provided via cloud
computing with high latency and excessive signaling [17].
To manage slow convergence, we present novel DRL-based
schemes with reduced convergence time. Besides, stringent
time constraints in fast-moving UEs can be met by utilizing
edge computing (with signi cantly less signaling and reduced
mobility interruption time) instead of cloud computing [28],
but the challenge is scarceness of computing power at the edge.
Ef cient, fast, and low-overhead beamforming in the pres-
ence of unpredictable line-of-sight (LoS) blockage and channel
uncertainties in space, frequency, and time in mmWave bands
is needed to connect a fast-moving UE with at least one AP

We show how DRL can be used for fast beamform-
ing in mmWave massive multiple-input multiple-output
(MIMO) channels in high mobility communications. In
doing so, we develop an ef cient, practical, and conver-
gent centralized processing/training algorithm whose per-
formance is stable in the presence of signi cant variations
in the UE’s velocity and uncertainties in typical values
of CSI.

We also develop a distributed processing/training scheme
whose communications overhead is signicantly less,
i.e., is fronthaul-load scalable, and does not need phase
synchronization among APs.

We apply our schemes in two important use cases, namely
vehicle to infrastructure (V2I) and high-speed train (HST)
communications in a train to infrastructure (T2l) scenario
in ultra wideband mmWave bands with spatial non-
stationarity in massive MIMO channels, and benchmark
our schemes against other existing schemes that do not
require perfect CSI. We also show that our approach has
important practical bene ts.

with strict limits on beam steering latency, as shown in Fig. The following notations are used in this papAr: a, a, A,
1(a). In this paper, we present a novel DRL-based approaaidA denote a matrix, a vector, a scalar, a set, and a function,
with low-overhead training for fast hybrid beamforming irrespectively;a / b denotes proportionalityjAj denotes the
urban and rural deployments. Speci cally, we present a cegardinality of sefA; [A];; denotes théi;j )-th entry of matrix
tralized and a distributed processing/training scheme for DRA; F and W are the uplink hybrid precoder and combiner
both of which can achieve the above objectives. Our schemmatrices, respectivelyd denotes the channel between an AP
avoid the problem of frequent handovers of fast-moving UEsd a mobile unit;Nc (m; C) denotes a complex normal
that are in cell-boundaries and/or are not in LoS (NL0S). distribution with meanm and covarianceC; E,() denotes

In our centralized processing/training scheme, the weightse ensembI% average with respeckid )" is the Hermitian
are learned by the DRL agent by alternating between trainingerator; 1; and P(x) is the probability of evenk.
and online beamforming. In general, centralized schemesThis paper is organized as follows. The system model and
suffer from high communications overhead and require phadgannel model are described in Section II. In Sections Il
synchronization among APs. To reduce communications overd |V, the problem is formulated and our proposed schemes
head, we develop a distributed processing/training schemedrg described, respectively. In Section V, performance of our
utilizing federated learning, which does not require phasehemes is numerically studied and compared with those of
synchronization as well, but the challenge is utilizing locallpther existing methods, followed by conclusion in Section VI.
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[l. SYSTEM MODEL AND CHANNEL MODEL From [29, Theorem 4.1], a tight lower bound on the
A. System Model achievable spectral ef ciency (SE) for UE in nats/s/Hz is
1
ConsiderL APs in the network, numbered from 1 g SEEL ’ Ui logdet | + Gl‘(JL[f] ; (5)
each equipped witthN A"RF antennas antl A°BB  NAP-RF Moy

RF chains. There aré UEs, each wittN V" antennas and whereGUL[f ] is given by (6).

NUEBS  NUERF RF-chains. Each UK is simultaneously  This lower bound is achieved by utilizing minimum
served by multiple APs irM f1;:::;L g over shared mean squared error with successive interference cancellation
bandwidthW, as shown in Fig. 1(b). The channel betwee(MMSE-SIC). Note thatkGY-k3 is the UL effective signal-
UE k and APl is denoted byH, 2 CN" N . Assume to-interference-plus-noise ratio (SINR). When UEs have the

channel reciprocity in time division duplexing (TDD). Henceggme priority, UL SE in nats/s/Hz is [30]
the estimate of UL channel at each AP can be readily use L H=2 ~H 1=2 , L.
in the downlink (DL) after compensating for any mismatches%EU =logdet 1+Cy = GTGCy, o1 SR (M

bﬁ(t)\f[vgie T};P: Vf/ﬁgf]rzﬁtae&;e;ﬁéelrogz;lr ' eE;?rzalfeEitesngr?agrl;el Similar results hold for DL SE [31]. The total UL consumed
P gnass, y powerP Yt is the sum of all UES’ transmit power and the static

to that UE, denoted by, . . .
Lets, 2 CNs with No N UEB8 denote the normalized hardware power consumed in all APsXand UEs, i.e,,

(unit-power) signal that UEk wants to transmit, wherélg uL _ X 1 .
is the number of independent transmit streams by that uE. =K Puesaict L Papsaict K Pl 1; (8)

In orthogonal frequency division multiplexing (OFDM), each fau k=t

UE k modulates its data streasp by taking ajUj-point IFFT Where  is the ef ciency of power ampli er in mobile unit
and adding a cyclic pre x of lengttD to obtains[t;f ] for K, and Pug-static and Pap-staiic are the static hardware power
subcarrierf 2 U at discrete instancé The total transmit consumption by one mobile unit and one AP, respectively. In
power of UE k in shared channels to all APs i | is the above, we assume that transmit ampli ers operate in their
pft;f] O, obtained via the water- lling algorithm. From linear region and static hardware power consumption is the
an interference perspective, this is a worst-case scenafi@me irrespective of data rates.

Assuming perfect frequency and carrier offset synchronization,Energy ef ciency (EE) is de ned as the ratio of the system’s
the received signal at APdenoted by 2 CN "¥is [29]  spectral ef ciency in nats/s/Hz to the total power consumption

N D in Joule/s (Watt) for a given bandwidth &Y, i.e.,
PHG ] = Hi [t f IF[t; f tf Is [t 1+ ni[t;f 1:(1 L
W= Hialb RG] Pl sl 1+ s EEUL WSP% s loule: ©

where Fi[t;f ] = FRF[t]FPB[t;f ] is the radio front end for
UE k, andFRF andFE® are the RF and baseband precoding' Channel Model

matrices of UEKk, respectivelyn; N c(Oyarse; 21y aesr) Consider one transmitter (UE), one receiver (AP), and a
is the complex-valued independent additive white Gaussiglyster of scatterers between UE and AP. We adopt a 3D time-
noise, and y is theN N identity matrix. Note that the UL varying wideband geometry-based stochastic channel model

RF beamformer for each UE is common to all subcarriers. between UEk and APl where theN APRF N VERF frequency-
APs in M  use their received signaly IUL 12 M g domain baseband channel transfer function (CTF) is [32], [33]

to jointly detect the signal received from UE As shown S W
in Fig. 1(b), each AR 2 M | selects the baseband and RF  [Hx (t;f )]ij = Uﬁ[H St )] (10)
beamformer matrices for UE, denoted byw 22 and W ¥, s ®
respectively, and computes 1 ()
$1— £ UL £ 1 + o [HAEG )y
MG ]= Wi [t F 1y~ [6f T; (2) Kij () +1 o

n=1

where Wy [t:f ] = W EP[t £ W [Tt NoteRFthat. the analog \yhere k ;; (t) is the K -Ricean factor[H EoS(t f )]ij is the
receive beamformer in AP2 _M k, i.e., W ¥t], is common LoS component given by (11), arjt P‘kL-gS(’t?f i » as given

to each UEk and all subcarriers. The values R are sent 15y g the narrow-band process associated withvial

to the w(rjtual cg_ntral 2aseband unit which takegUj-point irresolvable sub-paths in each cluster that have the same
FFTs and combines them to get delay ;™ (t) and mean gain nm (t) (including path loss

F1= s P = : ;
l6f]= G BT Pt T Isi[t T ] (3) and shadowing). The channel is modeled by a two-state
+ Gy [t; f ]p oIt f s [t f 1+ myft;f]; Markov process whose state depends on the LoS blockage.
j 6=k b The azimuth and elevation angles of arrival (AoAs) of sub-
wherery = .y . Tk, Gkj = v pWik Hyg Fj and pgfhm in clustern at rgcgive antenna.are ﬁﬁm )] anq
Me N cOnwse, 2Cm) WhereCpm = oy WI;kW:;-'k imn (1), respectively. Similarly, the azimuth and elevation

angles of departure (AoDs) of sub-pathin clustern from

is the post-processed colored-noise. We rewrite (3) as , : T T )
transmit antenng are x., () and 5., (1), respectively.

. — . . . . j;m;n
RIGT 1= SILTIGILT [+ MIGT T ) The azimuth (elevation) AoAs/AoDs are assumed to have
where[G]y; = P PGy - wrapped Gaussian (truncated Laplacian) distribution whose
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0 « 1= 0 « 1,2
GlMfl= @ pGl Gy + 2CuA PG Gk @ PG Gy + CnA (6)
j 6=k j 6=k
" #
[H LOS(t.f )] — I:IT\)> IT)I(_OS(t)1 |T>I<_OS(t) " e \505 0 (11)
MR TR Ros®: s 0 e
FE\Z El_ios (t);. jF;;Lf(os (t) 2 FWtg2 f Mg D0
Fi jlos (M) Tos(®
b S— H
noof oo m@®  FERX X (1), X (1)
HNL_OS t;f o= o nm [RY i;m;n ' i;m;n 12
[ l:k;n ( )]IJ e fc Mn FT')';!# |Tr)§1n (t); I'I'r>T<1n ('[) ( )
P e R R O B O
e Hv Pﬁe i Fj;|2|( ]Rn)gn ®; j?n)%;n ®

e? i Otg2 f i ® e 2pim (1)

parameter values are known for each scenario [34]. Thdnere , and 4 are the birth rate and death rate of the birth-
functions FIX(F[¥) and F§*(FRX) denote the antenna patternsleath process associated whi(t), respectively [33].

of vertical (horizontal) polarization of transmit and receive We focus on cases where fading coef cients vary quickly;
arrays, respectively. The transmit and receive array respomnsge, timely and accurate estimation of coef cients is not fea-

vectors arearx(; ) andagx(; ), respectively. sible. We model the channel as a stochastic process assumed
When a uniform linear array (ULA) with antenna elements to be stationary over tim&, where

andd spacing is employed at the receiver broadside, we have T =min fTy; TeQ; (14)

[Argdi = e TD4  sin 20 O forj=1;::::1, where = 2-

is th b d. is th : | h AT in which Ty, is the beam coherence time afgis the channel
Is the wave number and. is the carrier wavelength. AlSo, ooperence time, both of which depend on UES’ mobility and

k;l — H H

Vm;n |(2 tr:e ?agt(i\\:é;l\?enlqgc)it 'Svg(‘jof)g]?ﬂ‘; gﬁg%gfye\”herechannel multipath parameters [35]. In practide, T¢, and
; , Em; 1 1 )
ki Y mn  TNLS/ —4— andT' S/ —*+——; for NLoS and LoS,

i iawi i i H sin f
is the viewing direction vector of sub-path in clustern respectively, v?/heréD is the maximum Doppler frequency,

toward UE,R() returns the real part of a complex scalafg e mean beamwidth, 2 f1: 2g is a scenario-dependent
mm IS the frequency-dependent factor, angh, denotes the ;. meter, and is the direction toward the transmitter. Note

Cross polar!zatllon power ratio. Flnall_)i,}';’v IS a random ph.ase thatT is higher in LoS due to the beamforming gain, e.g., the

unlforml){ d'St”bUteq i ) ) assoc[ateq with Scarfter?f.,:n coherence time is around 23 ms for a vehicle moving at 48

clustem in the vertical-vertical polarization, and/ii s mv o kmih [36], and is 9 ms for a HST moving at 324 km/h [37].

and ;. are similarly de ned. The last term denotes th§\, \se these values in Section V.

group delay of each path.

In high-mobility communications with distributed large
scale massive MIMO, channels are assumed to be wideband
and non-stationary in space and time [32]. These features ardVithout loss of generality, we focus on the uplink (UL). Ide-
considered in the channel model in (11). Due to moveme®ly, each UEk simultaneously steers its beams towards APs in
of each UEK, AP |, and the cluster of scatterers, parametdfl k with optimal transmit power to maximize spectral/energy
values of channel model are time-varying, but assumed gbciency. At the same time, each AP simultaneously steers its
be stationary in short intervals during which fading statistidgceive beams towards its corresponding UEs. In this context,
remain invariant. We use the procedure described in [33] fast beamforming becomes vital. We assume that exact CSlI
generate channel parameters for each stationary interval. iS unavailable since obtaining exact CSI in a timely manner

In mmWaves, channels are typically sparse in the angu|'§rnontrivial and costly. We also assume hybrid beamforming,
domain resulting in few, say 3-5 paths [2] which may experWhere RF beamformers are shared among multiple UEs and

Ill. PROBLEM STATEMENT

ence blockage with the following probability subcarriers, and UEs may have different QoS requirements (SE
or EE). In noise-limited paradigms, SE and EE are aligned,
P(Blockage) = P(NLoS) P(N (t) = 0 jNLoS) which is not the case in interference-limited paradigms. The
1 by way in which resources are allocated and interference is
- m ¢ *d)' (13) mitigated signi cantly affect beamforming.
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A. Problem Formulation () is the observation function, i.eR(0jsi+1;a:); 80 2

Considering the beam steering latency, power consumption!he Markov process entails that future reward values
by UE and its throughput, we wish to maximize the QoS-awafépend only on past history of states and actions, i.e.,

UL EE, i.e., P(r¢;st+1jSos@05ro;  5St;a) = P(re; St+1]St; &), which is
maximize EEY (15a) often the case in practice.
F o if T8t sk In POMDP, the agent adopts an optimal nonstationary policy
W i [1 18 8k8lg denotedby : ! (A ) to maximize the expected reward.
1 o SEEL R, 0 8k Typically, for a POMDP, a belief state is de ned as
% W RF2 W 8l; b (s) = P(stjl O); (16)
subjectto _ FRF2F 8k; wherel £ is the complete suf cient information state at tirhe
§ KW 1 [f ]k = NAP-BB 8f: 8k: 8l: The value of a beliebunder policy , denoted by (b), is the

expected return when believirgand following thereafter.
b It is well-known that the optimal solutioW (b) satis es
(15b) the following Bellman optimalit;/( equation [38]
where an T is the training lengthRy is the minimum _ . . .
required data rate per bandwidth for Ug and W and F v (b)= Tﬁx (R(b;3g) + " PlbiaVv () (17)
are the sets of RF beamforming matrices and RF precodijgere 2 (0;1] is thepweight factor for the sum of
matrices of APs and UEs, respectively. ture rewardsR(b;d = = b(s)R(s;a and P(tfa;b) =
The rst constraint in (15b) makes the system QoS-aware Y oc0s P(Ha; b; PP (0%s® a)P(sYs; a)b(s). The belief up-
requiring each UE's data rate per bandwidth be higher th@gting in (17) can be computed only for discrete low-
itS minimum required Value. The Second Constraint in (15mmensi0na|s and |inear-GaUSSian dynamiCS_ The mode'_
limits the per—subcarrier transmit pOWer. A|SO, the Frobeniq%e reinforcement |earning (RL) can overcome the above
norm of precoding and beamforming matrices in the last tWhallenge, where the agent explores the state space to tune
constraints in (15b), limit the consumed power. The samg action on a trial-and-error basis [38].
power budget is assumed for both training and operation.
The above formulation considers simultaneous associations to
multiple APs for each user. Solving (15) in wideband com- In this section, we develop a framework to use POMDP-
munications requires many calculations because of couplifgsed DRL for solving (15). We also develop a low complexity
between subcarriers. To reduce calculations, one may decodféning algorithm for our proposed scheme. An important
subcarriers by utilizing block diagonalization precoders, but &sue for solving (15) is whether CSl is needed. Theorem IV.1
we will show in Section V, this reduces the achievable ratebelow shows that wheSINRis high, CSI may not be needed
The virtual central baseband unit solves (15) to nd thévhich is desirable) and noncoherent multiuser communica-
optimal beamforming matrices and transmit power vectoti®ns can be considered. The need for less computations and
in each short interval during which while the channel is resources when CSI is not needed is in fact the motivation

assumed to be stationary but unknown, the beams shoulddgdind our proposed framework.

steered. Since (15) is a non-convex problem and has mixelaqrem V.1, Problem (15) asymptotically has a solution
discrete/continuous variables, an ef cient and at least asympg- (R1:::1:Rk) 2 C(Pxmax8K) Where C(Py max 8K) is the

totically optimal method is needed to decouple the transmittg;stem,S polymatroid noncoherent capacity region Bac
design from the receiver design and obtain their respecti;\éethe maximum transmit power of UE e

matrices [7]. This signi cantly reduces the problem size. Notgroof_ Given a common diversity denoted hy for users,
that DRL interacts well with unpredictable and unknoque nd a set of K-tuple achievable multiplexing gains
environments, e.g., high mobility mmWave communicationg .....

KF i [f [k2 = N UE-B8 8f; 8k;

IV. PROPOSEDMETHOD

. h .. . . 1
by alternating between exploration (training) and exploitatio nk function is

(operation) to maximize a cumulative reward while solving

consecutive instances of (15). However, to use DRL for real- £(S) = ISIV myn (d)_; ifojsj | 1

time mmWave beamforming for highly mobile users, a low- Fisjmin @; iftljsi K

complexity training algorithm is needed. where d 2 [di; ;d], d = dpn (g) and dp, (0)

B. Preliminaries is the single-user noncoherent rate-diversity tradeoff given

The partially observed Markov decision process (POMDMY sphere packing in the Grassmann manifold, i@.=
is a mathematical framework that models interactions &OFI0g, SINR+ c(NVEB8; L NAPBE; T ) + o(1) [39], where
an agent with an unknown time-varying environment wheBoF= M (1 "4—q), M = minf |%NAP‘BB;NUE'BB;b%ch,
the agent has limited observations. POMDP is a sextupmél) is a vanishing term aSINR! 1, and Ty is the quantized
(S;A;P;R; ; O), whereS is the set of environment statescoherence tim@ . Hence, whersSINRis high, there is no need
A is the set of agent’s action®, : S A'! (S ) is the to have CSI. With beamforming, channel gain (8iNR) is
state transition function, i.eR(si+1jst;a), R: S A!  Ris the highest in the desired direction. At highNR using only
the reward function whose expectatiorEigfR(s; & )jst;a;g, M of the NAPBB available RF chains is optimal, i.e., using
is the set of limited observations, ar@d : S A ! more transmit antennas than receive RF chains does not yield
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(b)

Figure 2. All connections (beam pairs) between |Afnd UEKk are (a) trained via orthonormal UL pilots among which the connection(s) giving the highest
score (i.e., total achievable rate (received energy) across all subcarriers) are chosen for (b) online beamforming. In high mobility communications, obtaining
all scores is not practical, and one should consider only the observed scores (not the complete set) and predict the remaining ones.

any capacity increase. A capacity achieving scheme is to udext, AP | calculates its total achievable rate (score) for UE
Grassmannian signaling [40], [41]. O kas
X H H
Similar to [10], in (15), we separately consider transmit logdet(l + C FRo Hiq [f 1"w N W R H G [FIFRD):
precoding and receive beamforming for each kiIHo obtain f2u

the transmit precoding matrix, we use primal-dual interior ' d0iNg SO, in (19)'R'§H estirF?Fates channed [;I](it8k8f
point methods to solve by assuming knowiW ;" andF ., and observing g, [f 1.

o . When noise is low, it may use suboptimal RF energy estimator.
minimize KFoptk  Frke + k(R SEM);  (18) A set of RF beams, sayV R8I, FRF 8kg, is QoS-aware when
Tk the sum of their associated scores from all APs is no less than
where Fqp is the transmit precoding matrix for the fully-Ry, for all k (the rst constraint in (15b)). All scores are
digital design, and () is the logarithmic barrier. We then usethen sent to the virtual central baseband unit for solving (18)
the precoding matricerff) to obtain the receive beamformingby searching through all QoS-aware sets of RF beams that
matrix Wl(t& 8l 8k by minimizing mean squared errormaximizes (15a). The search space exponentially grows with
(MSE). We cycle through the above until either convergend@put size, i.e.,
or termination. To solve (18), we separately consider RF 0 Nuess ! K \ APss | L1
beamforming and baseband beamforming. (N VERF) (N APRR)
9 g o@ *~ 7 —~ < A
N UE-BB| N AP-BB|
A. RF beamforming via POMDP-Based DRL
A connection between UE and AP involves two beams !N high mobility communications, obtaining all scores is
(one for the uplink and one for the downlink), namely©t practical. To overcome this, instead of exhaustive search,
FRF 2 F and WRF 2 W. Hence, the connection spaceVe Use POMDP-based DRL which observes a small number

is EK W L from which the connections with maximum®©f scores (within optimizedyain), and predicts the unobserved

received energy (achievable rate) are chosen after training®ReS: In this way, the set of scores for all RF beams is obtained.

completed. When CSl is available at no cost, there is no needlable | shows the mapping of POMDP parameters to the

for training, and top_timal = 0. In practice, however, obtaining Parameters in (15). For fast convergence, both overestimation
CSl is costly and nontrivial. In this case, as shown in Fig. nd underestimation of the value function should be avoided.

each UEK repeatedly transmif§Vj known (orthonormal) UL We de ne a twin delayed deep deterministic policy gradient
i UE-BB . 5. sSel. eva . :
pilot sequencesff] 2 CN T » for each beam irF, (TD3) agenQ (s;a; * &) asthe fulnctlon aplproxmator
H H . se eval

during which each AR cycles through its RF beamformingfor the optimal actiorV (s;a), where (~and ™ are TD3
matrices and combines every received pilot sequence withVgights att used by the critic in DRL to select and evaluate
different RF beamforming matrix. a policy, respectively, and is the policy adopted by the

Each AP (UE) had\ APRF(N YERF) heams out of which at actor in DRL. Two clippedQ-functions Qse(s; a .fe.').and
mostN AP-BB(N UEBB) is active. After multiplying the received QevalS; &; _ evah ‘are concurrently learned by minimizing the
RF signal by(SPP![f ¥, the baseband received signal tthS§ function (mean squared Bellman error (MSBE)).
corresponds to therth RF beamforming matrix of AP and  Fig. 3 shows our POMDP-based DRL scheme for beam-

the p-th RF beamforming matrix of UK is forming. The learning agent feeds its model with the observed
A ylf’(;';‘f(t;p [f]1 and the (incomplete) score table, as inputs and
y,f’(;'ﬁ(‘;p [f1= W {H [f IFRp + noise: (19) desired outputs, respectively. The aim is to learn the hidden
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Evaluator/Target Replay Buffer Evaluator/Target
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Output
Normalization
Layer

Train DL

(b)

Figure 3. (a) A modular view of our DRL-based hybrid beamforming. (b) Timing: agent solves instances of (15) by adjusting the frame con guration.

relation between the jointly received signals by all APs and tiselect actions. We choose thgreedy policy to select actions,
rates of different sets of RF beams. Once trained, the agent edrich is known to have a linear regret (in time) as shown in
predict the best set of RF beams during the operation pha&&gorithm 1. In doing so, we rewrite (17) as

The objective is to train the DRL's neural network, i.e., obtain

the trained matrix of weight values that when multiplied by the Y1 (2f el selg

channel vector for each instance and location, the beam is set A :
to the desired direction. Beam steering is sequentially setting ) tzrfn%; selg Qw8 o)
the beam’s direction, depending on variations in channe . . -

vectors. The channel vector to each AP is impacted by fa\l/ysbere Is the weight of the minimum learned value, and
mobility (i.e., varying from LoS to NLoS and blockage), a= ., (s)+ clip(N (0; 2); c;c); (21)
which may be correlated to other APs’ channels. The matr

. : 18l which is the exploration noise clipped by, As can be
of weight values can be considered as the concatenations@f, jn simulations, our approach is stable, avoids convergence

different vectors, where each vector corresponds to a differggt;,4 minima, and also avoids over tting. Setting hyperpa-

channel vector. We also present a low complexity training eter values in machine learning algorithms to minimize the

algorithm for our scheme, in which we directly map thg,arning error is a demanding task, but in what follows, we
received pilot signals into hybrid beamforming vectors to stegfow that the learning error in TD3 is bounded.

beams without excessive comquations/signaIing to obtain CSlit is well known from learning theory that generalization
In DRL, convergence of TD3 is not guaranteed [42], but &y is upperbounded [43]. Hence, the learing MSE of our

nea_tr-opUma_I policy can be founql even when an arbitrary Off)'roposed scheme, denoted hyis upper bounded, i.e.,<

policy algorithm (exploratory policy) is used by the agent t% 21T X) +log(1= ) , where is the con dence levelM

=ry+ max min Q(st+1 :8; 1)
8 (20)

Table | is the number of training examplex, is TD3 input, T is the

MAPPING POMDP RARAMETERS TOPARAMETERS IN (15) -partition of X, and | (T ;X) is the mutual information of

Symbol  DRL Description Our Problem T andX, which depends on the neural network model [43],
. and can be used to choose a suitable model.
- Agent Virtual central baseband unit An ad f ff licv DRL is th iori d
S System state Instantaneous channel state information n a Yamage Y Qur ofr-policy ) Is that _aI.IprIOI‘I e- )
A Action set Precoding and beamforming matrices terministic target policy operates while the training (behavior)
P Environment Stochastic uplink wireless channel  policy explores all possible beamforming actions by utilizing
R Reward function QoS-aware EE . : . . A
Limited observations and EBL its own dataset. This, however, may introduce exploration bias

o Observation function i and ER- estimates [44] when the operation and training datasets are uncorrelated.
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(b)

Figure 4. (a) Beamforming via centralized processing/training. (b) Beamforming via distributed (federated) processing/training.

To mitigate this bias, the operation and training datasets must

be correlated but only to the extent that generalization is ntgorithm 1 QoS-Aware DRL-HBF

impeded. In other words, they should be similarly distribute®Require: R, 8k, W;F.

called the coverage assumption in [38, Section 5]. In ofansure: Precoding and beamforming matrices are optimal.

scheme, we usegreedy policy, i.e., the operation and training 1: Initialize: time slott = 0; critic networks Q se:; Q e and

datasets are correlated with a probability Iof ; and the actor network | with random numbers; target networks

training policy explores all actions with a probability s opel g el +; replay bufferB.
Low-complexity training algorithms that are based on ap-2: while TRUE do

proximate message passing (AMP) are proposed in [45], [463: if MSBE> for M steps & mod Ty  max then

for single-layer networks, where damped AMP is used t§paining Phase: Agent learning

improve stability at the cost of slow convergence. In Algo-

rithm 2, we propose a low-complexity AMP-based traininggf FRzggtec')\r/g F;gOttz t.?].f;tm;?ﬂi'?k' - Update state
algorithm with unitary transformation for fast convergence.™ O IS Initial value. 2
: Select actiona; (st)+ N (0; 9).

In case of large right-orthogonally invariant priors, Algorithm 6:
2 is convergent and its convergence rate depends on th7¢
spectrum of the observation matrix. This can be easily showﬁ:
by considering Algorithm 2 in terms of the factor graph, which 9‘_
is based on factorization of (16). Proof of convergence and its’
convergence rate follow directly from applying AMP to theg

factor graph (see Appendix A). 13 it t mod d then

B. Baseband Beamforming : o . N
) ) ) 14 Upgate via deterministic policy gradient:
Once the RF beamforming matrices are obtained, ie., ; 3 = N1 raQ (S8 ias (9F (s)

when a connection is established and noise level is low. Update target networks:
the baseband beamforming matrid&s 2[f ] and FEP[f | are a seleval c+ )Hi
constructed as the normalized left-singular vectors and righlté: e;1d if’

singular vectors of their respective effective channel, i.e
Heffectvelf 1 = W RFH . [f [FRF, as widely reported in the : : : : :
literature. When noise level is high, MMSE-SIC receiver i©OPeration Phase: Agent interacting with environment

Observe reward; and new state; .

Store the experiencgs:; a;;r¢;Sw1 ) in B.
Sample mini-batciN transitions fromB.
Smooth target polic by (21).

Update target networl; by (20).

Update critics by ¢  argmin , MSE(r;  v)

sel,eval sel,eval +
t

17: else

used. Note that in baseband beamforming, both calculations Sample Uniform(0; 1).
and decisions are centralized, but in RF beamforming, onhgp: if then . -greedy policy
the decision is centralized. In certain cases, such as singbe: Select operation vectoft) at random.
antenna single-user, distributed RF decisions are also optimal. else
The achievable rate is 22: Decrease : where < 1. | })
Wi iFi 7. X 23: Select () =argmax 2 Q  (sia; % ).
sEONr= 1 L sEN @) end if ) e
k=1 25: Beamform by (1) and (2). . Carry out action

Proposition 1. Let SE denote the achievable rate when per-og: Receive feedback; by (9). . Observe reward

fect CSl is available. Now, $BVPP almost surely converges 270 end if
to its upper bound SEas the number of antennas grows topg: end while

in nity. andM are subjective measures of convergence.
We use recursive least squares to implement the lters.

Proof. The proof is straightforward and follows from maxi-
mizing the Rayleigh quotient in fully digital beamforming(d
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Algorithm 2 Multi-layer AMP-based learning algorithm cessed data and collaborate with other AP$/ip to train a

Require: Forwardi.e.G; (Ry, ; iR\ w1 k) andre- shared beamforming model orchestrated by the virtual central

verse i.e.G| (Ry; 1 iRgyi w1 ki) €stimators baseband unit. _ _ _
1 SetRy, = 0and , =0;l=1;:::;L 1. _ In thls_sqheme, each ARn M k Uses its local data to |_tera-
2: Initialize all layers weights with random numbers. tively train its neural network (which has the same architecture
3: while MSBE < do as that in the virtual central baseband unit) for steering beams.

Local training is done via the scheme in Section IV-A. The

Phase I Inference weight values in each AP (instead of local training data) are

4. while kR, R, k=kR, k do transmitted to the virtual central baseband unit for obtaining a
5: Apply known input, i.e., (4). set of shared weight values via aggregation. This signi cantly
6: for |=1;:::5L 1do . Forward Pass reduces the communications overhead. The virtual central
7 Zoy = GrO+@ )2y, baseband unifggregatesthe received weight values into a
8: ;;, = [@3|+ O)=@R,1* | shared set of weight values, which is transmitted back to all
9 kI = ki kil 1 APs inM . At convergence, the shared weight values will be
10: R = (25 @ R e )t the same as the local weight values.

11 end for We formulate the aggregation as a consensus optimization
12: Apply known output, i.e., pilot signals. problem

13: forI=L 1;:::;1do . Reverse Pass minimize fi(w)); (23)

14: 2y =G, 0+@ )2y Wy

15: o = [@3, ()i@ ;;I]l ;;I wheref () andw, are the loss function and the vector of local
16: Kl =kl Kl o model variables for AR, respectively, andz is the vector

17: Ry = (2k;l o R )t of shared model variables. The constraimts = z enforce

18: end for consistency, or consensus. We solve (23) using Alternating
19: end while Direction Method of Multipliers (ADMM). Each iteration of
Phase II: Tuning weights for each layer ADMM reduces to the following updates )

200 forall z:1=1;:::L 1do wi :arngin flw)+(=2) wi W' +uj ; (24)

21 Cgmpute economy-sized SVD éf, = USV T. u|t+1 = ul+ It+1 witl (25)

22: Initialize r9 and 9. o A PL :

_ ! ¢ t1 ot wherew' = & |, w|, is the augmented Lagrangian
28 while kry ry - k=krik - do arameter and|3 is the iteration number
24 Wi g D@ )wi? P | |
25: 1=1=N 0 Farts D) V. NUMERICAL RESULTS AND DISCUSSION
26: ry= 1 : ;(Wf irh We numerically evaluate our schemes in two important high
27: ! = 51 Ptl mobility use cases for urban and rural deployments, namely
o8: L=1=N . b=(P=A + V2| and T2I. Our simulation method and rate evaluation are

2 j 2 l w 2 . . .

_ 41 _ ot L V(S2+A, L)1 S(UTz SV Trb) similar to [47] [49]. Table 1l shows our simulation setup for
29: - =ra+ ‘ 3 each scenario, which corresponds to measurement-based chan-
30: tl"l = tzl 2+l ) ! nel models and speci cations by 3rd generation partnership
31: end while 2 project (3GPP). Channel coef cients are generated as per the
32: end for procedure in [33]. As shown in Fig. 5, for V2I, a passing
33: end while truck blocks the LoS between the vehicle-under-test and the

Latent variable ofi-th layer is denoted by, . In training,Zo andZ, are known. infrastructure; and for T2l, a HST with links to infrastructure
R ;;| and E;| : mean and precision (inverse variance) of the Gaussian messages in &?itS a tunnel with semicircular cross-sections.
forward directionR ,, and ., represent the same quantities in the reverse direction. . .
’ ’ We model a two-part connection for end-users in each case.

Part 1 involves AP, UE (not end-users), and outdoor channels,
and Part 2 involves UE, end-users, and indoor channels. UE is
mounted on the exterior (usually on top) of the vehicle/HST.

As shown in Fig. 4(a), in our centralized beamformin@ur focus is on Part 1, and we use Keras libraries with a
scheme, for each UE, the APs inM | use a virtual central TensorFlow backend for implementing DRL, and MATLAB
processing unit to manage and learn beamforming withfer baseband processing. A total Kf Ns RF chains are
view to connecting the UE to at least one AP. In centralizegtoup-connected to the antenna via 10 xed phase shifters [9].
schemes, communications overhead as well as beam steeRegformance metrics are QoS-aware UL EE, convergence time,
latency may be high. To reduce this overhead, we develapd communications overhead. We use time-domain uplink
a scheme for beamforming via distributed processing/trainipgot signals (Zadoff-Chu sequences) for channel estimation,
shown in Fig. 4(b) by utilizing federated DRL in which APsand benchmark our scheme against the conventional pilot-
in M ¢ participate in learning (training) and beamformindased scheme and an of ine trained network where the optimal
(operation) by way of distributed computing and centralizesblution is obtained via exhaustive search. Figs. 6(a) to 6(h)
decision making. Speci cally, each AP uses its locally proshow simulation results.

C. Beamforming via Distributed Processing/Training
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Table Il
SIMULATION SETUP
Vehicular street-level application High-speed train
System setup L =4 access points serving =2 UEs L =3 access points serving =1 UE
Access points N AP-RF=512:N AP-BB = 1 NAP-RF=512: N AP-BB = 1
UEs Pkmax = 30 dBm;Rx = O;Ng = NUEBB = NUERF =4 pi. v =30 dBm;R¢x = 0;Ns = NUEBB = NUERF - o
OFDM with 1024 sub-channels OFDM with 1024 sub-channels
Channels 60 GHz band. For each channel realization, users are locate@8nGHz band. For each channel realization, user is located in a
a40m 60m grid with 0.1 m resolution. System bandwidth is 1400m 600m grid with 1 m resolution. System bandwidth is 1
GHz and noise gure is 5 dB. GHz and noise gure is 5 dB.
DRL model Per-dataset input normalization and per-AP output normalization. Six fully connected layers, each with 512 nodes using ReLU activation

units. Each layer feeds a drop-out regularization layer with 0.5% dropout rate. Training dataset has a maximum of 240,000 samples with
a batch size of 100 samples. Also= 0:75.

(@) (b)

Figure 5. Simulation scenarios: (a) the outdoor urban environment in which a moving vehicle under test is communicating with ground infrastructure and
its LoS is blocked by a passing truck, (b) the rural T2l scenario in a macro-and-relay layout exiting a tunnel with a semi-circle cross section equipped with
distributed antenna system (DAS). For simplicity of the gure, UEs’ beams are not shown.

As shown in Figs. 6(a) and 6(b), when a blockage occursThe 5th, 50th, and 95th percentile of cumulative distribution
repeatedly at a given time and duration for a beam, ofunction (CDF) of SE for a given UE, which can be attributed
scheme learns the timing of such blockage gmoactively to cell edge, median, and cell center UEs, respectively, are key
anticipates it for that beam, but of ine training scheme failperformance indicators (KPIs) for service continuity, whose
due tobad (non-representative) training data. When the stateinimum required values are speci ed in IMT-2020 [55]. Fig.
space is (very) large, there is little chance gfod ofine  6(e) shows that SE values for a fast-moving UE most likely
training irrespective of the computing power and/or storagearies from 1.5 bps/Hz (NLoS at cell-edge) to 4.2 bps/Hz (LoS
space. Figs. 6(c) and 6(d) show the achievable data rateatrcell center). Also, SE values in Table Ill show that by using
our scheme and in the pilot-aided scheme in a LoS settiraur hybrid beamformer, service remains available in spite of
In both schemes, the rate initially increases with the numbehannel variations ranging from LoS to NLoS and blockage.
of beams due to the beamforming gain. As the number ofNo scheme i priori better than other schemes (including
beams increases, the training overhead becomes dominantaitdom beamforming) [56], but our scheme performs well by
the pilot-aided scheme, which causes signi cant rate dropsigarning repeated irregularities in fast-moving UEs. As shown
higher velocities. This is not the case in our scheme becauseFig. 6(f), the a posteriori optimization method obtains
the uplink training time is optimized in (15) for each intervathe Pareto boundary in EE-SE plane that includes a critical
T. Speci cally, when the channel is affected due to a newperating point at which, energy ef ciency peaks. Our scheme
situation (e.g., weather changes, new blockages, etc.), Higis to reach this point in noise-limited paradigms via (15).
learning agent spends more time on the exploration (i.e.,

wrain/ T). As the agent learns new situations, it generalizes Table Il

its learning to cover all such cases and spends less time on fHgYALUES (IN BPS/HZ) IN UL FORUE (R: IMT-2020, S: SMULATION)
exploration, i.e., yain° 0. Meanwhile, the agent adjustgin V2| T2l
to balance between system ef ciency and training time via the R|ISsS| R[S
term(1 L) in _(15b). A_Iso, varia_tions in the achievable rate gg;h‘%;}:iltﬁeog szEEmmULLJ Lf?{) raaUEE 05.1:) ég 0.1025 éi
due to changes in velocity are minor. 95th %-tile of SE in UL fora UE 15| 16.8 | 15 | 12.6
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() (d)
(€ ()
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Figure 6. Simulation results: (a) and (b): Impact of blockage on achievable rates for V2| and T2I, respectively. (c) and (d): Impact of velocity on achievable
rates for V2| and T2lI, respectively. (e): Impact of blockage on CDF of a typical UE's achievable rates. (f): System Pareto boundary with critical operating
point. (g): Typical run times of our schemes against other methods. (h): The effect of subcarrier decoupling on the achievable rate.
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Table IV
COMPUTATIONAL COMPLEXITY

Beamforming Training Run Time
No. Method Time Complexity Time Complexity (msec)
1 Exhaustive search  O((U F )X w Lj) O(TgN AP-RFy 87540
2 OMP [10] O(K 3F3N{NEe(LN s + N&Z +2NEN)) O(TgN AP-RF 9839
3 PIS-MIB-SOMP [50] O(K 3F3N{NL(LN s+ N ,gFZ +2NEeNs)) O(TgN AP-RF) 6560
4 GS-HP [51] O(K 3F3N{NE-(LN s + N5 +2Ns)) O(TgN AP-RF 1985
5 SIC-based HP [4] O(K 3F3((N¢=NL)?(NigNte+ Nr)+2 N5Niy)) O(TgN AP-RFy 1040
6 Element-wise [8] O(K 3F3NigN{ANED) O(TgN AP-RFy 1985
7 MO-AltMin [7] Extremely high O(TgN AP-RF 43000
8 PE-AltMin [7] O(NirNLZN{F3K 3) O (T gN AP-RF) 850
9 SDR-AltMin [7] O(NirNLSN3F3K 3) O(TgN AP-RF 1615
10  CR-MF [9] O(N LNsN{KF ) O (TN AP-RF) 840
11  CR-MKM [9] O(NirNENSF3K 3) O(TgN AP-RF 240
12 FPS[52] O(Nig(K 2NZNE-+ NcNEN¢ log(N cNEN1))) O(TgN AP-RF) 125

P P

13 DLHB [53] O( 1§ Dy Dyt by by ein Gog) + OC 2§ b by e ) - 1670
14 ACE-based HP [54] O(NujWiN (K ?) - 2430
15 Our scheme O( |L:F1 B by cry ) - 120

Numerical values of run time (also called wall time) are obtained via a server with 64 cores, where each core is an Intel(R) Core(TM) i5-7200U CPU @2.5GHz.
L, K, F andNj, are the total number of paths in channels, the number of UEs, the number of subcarriers, and the number of iterations, respectively.
Notations:L ¢ ,L ¢ : number of convolutional and fully-connected layes;; ,Dy; : kernel dimensionsby; ,by; : dimensions of thd-th convolutional layer
output; ccy ,Cey : number of Iters in thel-th layer and units in thé-th fully-connected layer.

(a) (b)

Figure 7. (a) Spectral ef ciency in our centralized processing/training scheme with different values of synchronization mismatch among AP¢bin
Comparison of the communication overhead in our centralized and distributed processing/training schemes in 5G NR.

We call the length of time for steering a beam during In hybrid transceivers, beamforming involves both analog
each channel coherence tinfe as the run time, which is and digital parts. The size of matrices in analog beamforming
the sum of operating and training times. During edath is much larger than that in digital beamforming, i.e., CC
training is iterative. Each iteration involves certain calculationsf hybrid beamformers is dominated by CC of the analog
(computational complexity (CC)) that depend on the implgsart. Existing methods typically trade off CC with hardware
mentation of backpropagation algorithm in the neural networ&omplexity and/or with spectral ef ciency [57]. Note that CC
but operation is not iterative and its CC is straightforwardf Algorithm 2 is dominated by singular value decomposition
The number of iterations until convergence depends on t{®VD) of A, in Step 21. The SVD oA 2 R-" of rankr
quality of MIMO channels. Note that (20) avoids over/underan be obtained witl(Lnr ) oating-point operations ( ops).
tting the model, hence fewer iterations. MIMO channel qualHence, CC of Algorithm 2 is similar to that of AMP algorithm.
ity is inversely related to channel variations and co-channeltaple |v compares CC of different schemes. In exhaustive
interference, and can be expressed by the condition numbggch, all possible codebooks (the Cartesian product of trans-
of channel matrix, de ned as the ratio of the largest to thgit and receive analog beamforming matrices) are searched.
smallest singular values in singular value decomposition pbr CC of methods 2-14 in Table IV, the interested reader
that matrix. Ofine training fails to steer beams in a timelys referred to the respective references. Our centralized and
manner due to signi cant channel variations for fast-movingistributed schemes have the same order of polynomial CC,
UEs. Fig. 6(g) shows that run time in our schemes is stablejjhere in the latter, we move computations from the cloud

spite of channel variations and co-channel interference, anqrig the edge to reduce communications overhead and steering
signi cantly less than those of other online training schemegytency.
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@

(b)

Figure 8. (a) Signal ow graph in POMDP-based DRL in Section IV-A. (b) Signal ow graph in Algorithm 2. Variables with supers€)ipt are updated
in the forward (backward) pass. Algorithm 2 solves (27) by sequentially solving a set of simpler estimation problems in consecufiig pairg.

As stated in Section llI-A, in wideband communicationsyhere z, 2 RY%. The activation functions () are non-
one may utilize block diagonalization precoders to decouplieear functions acting component-wise on their inputs. Also,
subcarriers and reduce calculations. However, since RF beatiqin = zo and Ygain = 2z are the network’s input and
formers are shared by many subcarriers and cause inter-us@put, respectively. We are interested in the joint learning
and inter-carrier interference, block diagonalization is ineffeand inference problem under pri®(Xqain; ) and likelihood
tive and signi cantly reduces the achievable rate as shoviufX yain; Yirain; ), i.€.,
in Fig. 6(h). Alternatively, Iter bank multicarrier (FBMC) 2 W - bia-L 27
modulation that causes less out-of-band interference may be a . 2 W DG (273)
better choice for fast-moving UEs despite its complexity. Given fzo;z 9 (27b)

Fig. 7(a) shows that our centralized scheme is not sensitiveConsider the estimator in Fig. 8, based on insights from
to phase synchronization among APsMn,. Fig. 7(b) shows adaptive VAMP and multilayer VAMP algorithms. In what
that communication overhead in our distributed scheme (fefdilows, we show that it is an asymptotically consistent es-
erated DRL) is signi cantly less than that of the centralizedmator for (27), and analyze its convergence rate. Note that
scheme, as the former only transmits the weight values of t{m6b) represents a Markov chain, hence the postexiziz, )
neural network. Moreover, as stated earlier, our distributégctorizes asp(y:x) = P()N Jin x O L) (28)

scheme has the additional advantage of not requiring phase ) ) ) ) )
synchronization among APs M . Splitting x into two identical variablex; = X, gives an

equivalent factorization

P(y;X1;X2) = P(x1) (X1 X2)Nyja,x,(0; o )i (29)
here () is the Dirac delta distribution. This density can

Estimate

VI. CONCLUSION

In this paper, we utilized deep reinforcement learning for
steering beams in a timely and efcient manner for hig : .
mobility communications in future networks. We also pro—e represented as a linear factor graph with 1 factors

posed  l-complety federied DRL-uased beamornif P00 (70 e Pt | L0 L
to signi cantly reduce communications overhead by utilizin P ( )

edge computing instead of cloud computing. This signi Car?{lean squared error (MMSE) estimation for this posterior, i.e.,

reduction in the communications overhead has many practical
advantages for fast and cost-effective deployment of 5G/6G
networks in high mobility use cases. Simulation results demon-  zywse = Efzjz 9;z.9=
strate that our centralized and distributed processing/training

schemes proactively learn to steer beams with superior perforAlgorithm 2 produces estimates by a sequence of forward
mance as Compared to other existing schemes. and backward pass Updates for Computlng MAP and MMSE.

We then pass messages on the corresponding factor graph
according to the following rules:

1) Approximate beliefs: The approximate belgf(x) on

Zwap = arg max P(zjzo; 2. ) (30a)
Z

zP(zjzo; z, )dz: (30b)

APPENDIXA
ON CONVERGENCEANALYSIS OF ALGORITHM (2)

To analyze the convergence of Algorithm 2, consider an

L-layer stochastic neural network, as in Fig. 3, given by

variable nodex is N (xj®; ! 1), where ® = E(Xjbsp)
and ! = diag(Cov(xjby,)) are the mean and av-

2= W,z + by + n; I=1;3::::L 1, (26a) gjage variance of'the corresporjdlng beligf(x) =
_ RN o _ i f.x (X), i.e,, is the normalized product of all
2= (i im); =240 (26b) messages impinging on the node.

0733-8716 (c) 2021 |EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSAC.2021.3126056, IEEE Journal

on Selected Areas in Communications

14

2) Variable-to-factor messages: The message from a vdti4] A. Adhikary, J. Nam, J.-Y. Ahn, and G. Caire, Joint spatial division and

3) Factor-to-variable messages: The message from a fadtét

able node to a connected factor nodeis ¢ | (X) =
bappX)= f,1x (X), i.e., is the ratio of the most recent [15]
approximate beliebypx) to the most recent message
from f; to x.

def toa con@ected variable nodg is xr ,(X) =

f X Gie=) jesi i (X))dX. (17]

By applying the above message-passing rules to the factor
graph, the convergence of Algorithm 2 can be analyzeus)

The corresponding estimation functions are estimates of these

belief densities.
Similar to [58], we analyze Algorithm 2 in a large systempgj

wheredy ! 1

and d;;|1 6= Oare xed under rotatioanlly

invariant random weight matrices, and obtain the correspor}gﬁ]

ing

squared error of the estimates and test error. By concatenating
the sequential estimates, we can think of Algorithm 2 i;
an equivalent adaptive VAMP algorithm for which rigorou

state evolution, typically used to describe the mean-

convergence analysis exist, including state evolution equations,
consistency of its xed-point with that of the Bayes optimal??]
estimator, and stability/sensitivity analysis [59]. Thus, the

AMP-based Algorithm 2 provides a computationally tractables]

estimate with performance guarantees and testable conditions

for optimality in certain high-dimensional random settings.
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