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Abstract�Future 5G/6G wireless networks will be increasingly
using millimeter waves (mmWaves), where fast and ef�cient
beamforming is vital for providing continuous service to highly
mobile devices in the presence of interference and signal at-
tenuation, manifested by blockage. In this paper, we propose a
novel and ef�cient method for mmWave beamforming in massive
multiple-input multiple-output (MIMO) systems to achieve the
aforementioned goals with low complexity in such scenarios.
In doing so, we utilize deep reinforcement learning (DRL) to
maximize the network’s energy ef�ciency subject to the quality of
service (QoS) constraint for each user equipment (UE) and obtain
its hybrid beamforming matrices. In doing so, we assume each
UE is simultaneously associated with multiple access points (APs),
i.e., simultaneous beamforming to/from multiple APs (coordi-
nated multipoints) is needed for each UE. We also propose a low-
complexity training algorithm, based on approximate message
passing, which is well suited for the network edge. Besides, we
develop a distributed scheme to reduce communications over-
head via federated DRL. Extensive simulations show signi�cant
performance improvement over existing methods.

Index Terms�High mobility, mmWave connectivity, hybrid
beamforming, fast federated deep reinforcement learning, edge
computing.

I. I NTRODUCTION

FUTURE NETWORKS are expected to provide new ser-
vices such as virtual and augmented reality and vehicle-

to-everything (V2X) communications [1] to highly mobile
users, where millimeter waves (mmWaves) provide large
amounts of bandwidth [2]. A key enabler for connecting a
fast-moving user equipment (UE) to at least one access point
(AP) at any instance is mitigating interference and steering
beams (together called beamforming) in a timely and ef�cient
manner with reasonable signaling overhead in the presence of
channel variations and co-channel interference [2]�[4].

Fully digital beamforming is costly, power-hungry, and
requires complex hardware [3]�[5], but hybrid beamforming
can achieve comparable performance [6]�[9] with less cost and
complexity. In hybrid beamforming, digital signal processing
is employed in the baseband to eliminate/reduce interference,
and discrete phase shifters are used in the RF to steer beams.

In hybrid structures, RF chains are typically group-
connected to antennas via phase shifters. When the number
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of RF chains is the same as the number of antennas, energy
consumption is high. When each RF chain is connected to all
antennas (fully connected), interconnections are voluminous.
In practice, RF chains are fewer than antennas and are con-
nected to some (not all) antennas [9] to save energy and reduce
interconnections. The existing beamforming schemes need
channel state information (CSI) in a timely manner, obtained
either by sparse channel estimation [10] or by exhaustive or
hierarchical search [8], resulting in uncertain CSI or requiring
excessive signaling, which are aggravated in high mobility
cases, where channels and cell associations are fast changing.

We wish to develop a computationally ef�cient scheme for
mmWave beamforming in the presence of channel variations
and co-channel interference for fast-moving UEs. We consider
multiuser and multicarrier networks, and optimize a given
performance measure in partially-connected hybrid structures
for mitigating interference and steering beams in a timely
manner. In general, the problem is to minimize the distance
between hybrid and fully digital beamforming [10] for each
beam, which is known to be NP-hard [7]. In what follows, we
brie�y review prior works, and describe our contribution.

To reduce computations in optimization problems, various
methods exist. The orthogonal matching pursuit is used in
fully-connected structures, but with unsatisfactory results in
partially-connected structures (PCSs) [10]. The alternating
minimization method [7] is used for PCSs, but needs exces-
sive computations in multiuser and multicarrier settings. Low
complexity methods such as channel phase extraction [7] or
convex relaxation [9] exist, but require excessive signaling to
obtain uncertain CSI [11], [12]. To deal with uncertain CSI,
QoS-aware schemes have been developed that either use CSI
statistics (statistically robust) [13], [14], or consider an uncer-
tainty region assumed to contain all instantaneous CSI (worst-
case robust) [10], [11]. Nevertheless, all existing schemes fail
to meet key features of high mobility communications as
speci�ed in the �rst release of 5G new radio (NR), e.g., in
high-speed trains [15], [16].

Beamforming via deep supervised learning is a promising,
scalable and statistically robust approach for high mobility
cases [17]�[20]. In such schemes, RF signature of the environ-
ment and locations of users/APs are obtained via pilot signals
[17], and contextual side-information such as user trajectory
[18], past beamforming [17], [20]�[22], situational awareness
[23] and traf�c �ow [24] are used in the training phase. The
trained model is then used for online beamforming to connect
each fast-moving UE with at least one AP. Various deep learn-
ing paradigms, such as the generative adversarial estimation
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Figure 1. (a) Network layout in which each fast-moving UE is simultaneously served by multiple APs, i.e., coordinated multipoint, depending on the service
and fronthaul load. Typical cell radius for urban (rural) deployments are 150 m (580 m), which means that each user stays only 10.8 seconds (8.35 seconds)
in the footprint of each AP for speeds of100km/h (500km/h) [15]. (b) Block diagram of the system.

of channel covariance [20], long short-term memory in single-
user scenarios [21] and deep convolutional neural networks in
the downlink of multi-user settings [22] have been proposed.

In general, performance ofsuperviseddeep learning algo-
rithms is promising [25], but require extensive labeled datasets
for training, and are sensitive to unpredictable variations in
mmWave channels manifested by prevalent blockage [26]. To
alleviate this, in [27], deep reinforcement learning (DRL) is
used for hybrid beamforming in point-to-point communica-
tions. DRL has its costs as well: Its convergence is slow
and needs excessive computations, usually provided via cloud
computing with high latency and excessive signaling [17].
To manage slow convergence, we present novel DRL-based
schemes with reduced convergence time. Besides, stringent
time constraints in fast-moving UEs can be met by utilizing
edge computing (with signi�cantly less signaling and reduced
mobility interruption time) instead of cloud computing [28],
but the challenge is scarceness of computing power at the edge.

Ef�cient, fast, and low-overhead beamforming in the pres-
ence of unpredictable line-of-sight (LoS) blockage and channel
uncertainties in space, frequency, and time in mmWave bands
is needed to connect a fast-moving UE with at least one AP
with strict limits on beam steering latency, as shown in Fig.
1(a). In this paper, we present a novel DRL-based approach
with low-overhead training for fast hybrid beamforming in
urban and rural deployments. Speci�cally, we present a cen-
tralized and a distributed processing/training scheme for DRL,
both of which can achieve the above objectives. Our schemes
avoid the problem of frequent handovers of fast-moving UEs
that are in cell-boundaries and/or are not in LoS (NLoS).

In our centralized processing/training scheme, the weights
are learned by the DRL agent by alternating between training
and online beamforming. In general, centralized schemes
suffer from high communications overhead and require phase
synchronization among APs. To reduce communications over-
head, we develop a distributed processing/training scheme by
utilizing federated learning, which does not require phase
synchronization as well, but the challenge is utilizing locally

processed data to obtain the shared optimum weight values.
Our contributions can be summarized as:
� We show how DRL can be used for fast beamform-

ing in mmWave massive multiple-input multiple-output
(MIMO) channels in high mobility communications. In
doing so, we develop an ef�cient, practical, and conver-
gent centralized processing/training algorithm whose per-
formance is stable in the presence of signi�cant variations
in the UE’s velocity and uncertainties in typical values
of CSI.

� We also develop a distributed processing/training scheme
whose communications overhead is signi�cantly less,
i.e., is fronthaul-load scalable, and does not need phase
synchronization among APs.

� We apply our schemes in two important use cases, namely
vehicle to infrastructure (V2I) and high-speed train (HST)
communications in a train to infrastructure (T2I) scenario
in ultra wideband mmWave bands with spatial non-
stationarity in massive MIMO channels, and benchmark
our schemes against other existing schemes that do not
require perfect CSI. We also show that our approach has
important practical bene�ts.

The following notations are used in this paper:A, a, a, A ,
andA denote a matrix, a vector, a scalar, a set, and a function,
respectively;a / b denotes proportionality;jAj denotes the
cardinality of setA ; [A] i;j denotes the(i; j )-th entry of matrix
A; F and W are the uplink hybrid precoder and combiner
matrices, respectively;H denotes the channel between an AP
and a mobile unit;NC (m; C) denotes a complex normal
distribution with meanm and covarianceC; Ex (�) denotes
the ensemble average with respect tox; (�) H is the Hermitian
operator;� =

p
�1; and P(x) is the probability of eventx.

This paper is organized as follows. The system model and
channel model are described in Section II. In Sections III
and IV, the problem is formulated and our proposed schemes
are described, respectively. In Section V, performance of our
schemes is numerically studied and compared with those of
other existing methods, followed by conclusion in Section VI.
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II. SYSTEM MODEL AND CHANNEL MODEL

A. System Model
ConsiderL APs in the network, numbered from 1 toL,

each equipped withN AP-RF antennas andN AP-BB � N AP-RF

RF chains. There areK UEs, each withN UE-RF antennas and
N UE-BB � N UE-RF RF-chains. Each UEk is simultaneously
served by multiple APs inM k � f1; : : : ; L g over shared
bandwidthW , as shown in Fig. 1(b). The channel between
UE k and APl is denoted byH k;l 2 CN AP-RF�N UE-RF

. Assume
channel reciprocity in time division duplexing (TDD). Hence,
the estimate of UL channel at each AP can be readily used
in the downlink (DL) after compensating for any mismatches
between the transmitter-receiver pair. Each UEk sends UL
pilot signals, which enable APl to locally estimate its channel
to that UE, denoted bŷH kl .

Let sk 2 CN s with Ns � N UE-BB denote the normalized
(unit-power) signal that UEk wants to transmit, whereNs
is the number of independent transmit streams by that UE.
In orthogonal frequency division multiplexing (OFDM), each
UE k modulates its data streamsk by taking ajUj-point IFFT
and adding a cyclic pre�x of lengthD to obtainsk [t; f ] for
subcarrierf 2 U at discrete instancet. The total transmit
power of UE k in shared channels to all APs inM k is
pk [t; f ] � 0, obtained via the water-�lling algorithm. From
an interference perspective, this is a worst-case scenario.
Assuming perfect frequency and carrier offset synchronization,
the received signal at APl denoted byy UL

l 2 CN AP-RF
is [29]

y UL
l [t; f ] =

KX

k=1

H k;l [t; f ]F k [t; f ]
p

pk [t; f ]sk [t; f ] + n l [t; f ];(1)

where F k [t; f ] = FRF
k [t]F BB

k [t; f ] is the radio front end for
UE k, andFRF

k and FBB
k are the RF and baseband precoding

matrices of UEk, respectively,n l � N C(0N AP-RF; � 2I N AP-RF)
is the complex-valued independent additive white Gaussian
noise, andI N is theN � N identity matrix. Note that the UL
RF beamformer for each UE is common to all subcarriers.

APs in M k use their received signalsfy UL
l : l 2 M k g

to jointly detect the signal received from UEk. As shown
in Fig. 1(b), each APl 2 M k selects the baseband and RF
beamformer matrices for UEk, denoted byW BB

l;k and W RF
l ,

respectively, and computes

r l;k [t; f ] = W l;k [t; f ]y UL
l [t; f ]; (2)

where W l;k [t; f ] = W BB
l;k [t; f ]W rf

l [t]. Note that the analog
receive beamformer in APl 2 M k , i.e., W RF

l [t], is common
to each UEk and all subcarriers. The values ofr l;k are sent
to the virtual central baseband unit which takesL jUj-point
FFTs and combines them to get

r k [t; f ] = G k;k [t; f ]
p

pk [t; f ]sk [t; f ] (3)

+
X

j 6=k

G k;j [t; f ]p pj [t; f ]sj [t; f ] + m k [t; f ];

where r k =
P

l 2M k
r l;k , G k;j =

P
l 2M k

W l;k H j;l F j and
m k � N C(0N AP-BB; � 2Cm ) whereCm =

P
l 2M k

W l;k W H
l;k

is the post-processed colored-noise. We rewrite (3) as
R[t; f ] = S[t; f ]G[t; f ] + M[t; f ]; (4)

where[G] k;j = p pj G k;j .

From [29, Theorem 4.1], a tight lower bound on the
achievable spectral ef�ciency (SE) for UEk in nats/s/Hz is

SEUL
k ’

1
jUj

X

f 2U

log det
�
I + GUL

k [f ]
�

; (5)

whereGUL
k [f ] is given by (6).

This lower bound is achieved by utilizing minimum
mean squared error with successive interference cancellation
(MMSE-SIC). Note thatkGUL

k k2
2 is the UL effective signal-

to-interference-plus-noise ratio (SINR). When UEs have the
same priority, UL SE in nats/s/Hz is [30]

SEUL = log det
�

I + C �H=2
M G HGC �1 =2

M

�
’

KX

k=1

SEUL
k : (7)

Similar results hold for DL SE [31]. The total UL consumed
powerPUL is the sum of all UEs’ transmit power and the static
hardware power consumed in all APs and UEs, i.e.,

PUL = K � PUE-static+ L � PAP-static+
X

f 2U

KX

k=1

� �1
k pk [f ]; (8)

where � k is the ef�ciency of power ampli�er in mobile unit
k, and PUE-static and PAP-static are the static hardware power
consumption by one mobile unit and one AP, respectively. In
the above, we assume that transmit ampli�ers operate in their
linear region and static hardware power consumption is the
same irrespective of data rates.

Energy ef�ciency (EE) is de�ned as the ratio of the system’s
spectral ef�ciency in nats/s/Hz to the total power consumption
in Joule/s (Watt) for a given bandwidth ofW , i.e.,

EEUL = W
SEUL

PUL nats/Joule: (9)

B. Channel Model
Consider one transmitter (UE), one receiver (AP), and a

cluster of scatterers between UE and AP. We adopt a 3D time-
varying wideband geometry-based stochastic channel model
between UEk and APl where theN AP-RF� N UE-RF frequency-
domain baseband channel transfer function (CTF) is [32], [33]

[H l;k (t; f )] i;j =

s
K i;j (t)

K i;j (t) + 1
[H LoS

l;k (t; f )] i;j (10)

+

s
1

K i;j (t) + 1

N (t )X

n=1

[H NLoS
l;k;n (t; f )] i;j ;

where K i;j (t) is the K -Ricean factor,[H LoS
l;k (t; f )] i;j is the

LoS component given by (11), and[H NLoS
l;k;n (t; f )] i;j , as given

by (12), is the narrow-band process associated with allM n
irresolvable sub-paths in each cluster that have the same
delay � n;m

i;j (t) and mean gain� n;m (t) (including path loss
and shadowing). The channel is modeled by a two-state
Markov process whose state depends on the LoS blockage.
The azimuth and elevation angles of arrival (AoAs) of sub-
path m in cluster n at receive antennai are � Rx

i;m;n (t) and
� Rx

i;m;n (t), respectively. Similarly, the azimuth and elevation
angles of departure (AoDs) of sub-pathm in clustern from
transmit antennaj are � Tx

j;m;n (t) and � Tx
j;m;n (t), respectively.

The azimuth (elevation) AoAs/AoDs are assumed to have
wrapped Gaussian (truncated Laplacian) distribution whose
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GUL
k [f ] =

0

@
X

j 6=k

pj G H
k;j G k;j + � 2Cm

1

A
�H=2

pk G H
k;k G k;k

0

@
X

j 6=k

pj G H
k;j G k;j + � 2Cm

1

A
�1 =2

: (6)

[H LoS
l;k (t; f )] i;j =

�
FTx

i;V
�
� Tx

i; LoS(t); � Tx
i; LoS(t)

�

FTx
i;H

�
� Tx

i; LoS(t); � Tx
i; LoS(t)

�
� H "

e� LoS
V;V 0
0 e� LoS

H;H

#

(11)

�
�

FRx
j;V

�
� Rx

j;LoS (t); � Rx
j;LoS (t)

�

FRx
j;H

�
� Rx

j;LoS (t); � Rx
j;LoS (t)

�
�

� e��2�� LoS
i;j (t)t e��2 �f � LoS

i;j (t ) e�� 2�f
c D LoS

i;j (t)

[H NLoS
l;k;n (t; f )] i;j =

M nX

m=1

�
f
f c

� � n;m
s

� n;m (t)
M n

�
FTx

i;V
�
� Tx

i;m;n (t); � Tx
i;m;n (t)

�

FTx
i;H

�
� Tx

i;m;n (t); � Tx
i;m;n (t)

�
� H

(12)

�

"
1p � n;m

e� n;m
V;V e� n;m

V;H

e� n;m
H;V 1p � n;m

e� n;m
H;H

# �
FRx

j;V
�
� Rx

j;m;n (t); � Rx
q;m;n (t)

�

FRx
j;H

�
� Rx

j;m;n (t); � Rx
j;m;n (t)

�
�

� e��2 �� n;m
i;j ( t ) t e��2 �f � n;m

i;j (t) e�� 2�f
c D n;m

i;j (t )

parameter values are known for each scenario [34]. The
functionsFTx

V (FTx
H ) and FRx

V (FRx
H ) denote the antenna patterns

of vertical (horizontal) polarization of transmit and receive
arrays, respectively. The transmit and receive array response
vectors areaTx(�; �) andaRx(�; �), respectively.

When a uniform linear array (ULA) withI antenna elements
andd spacing is employed at the receiver broadside, we have
[aRx]i = e��(i�1)d� sin � Rx

m;n (t) for i = 1; : : : ; I , where� = 2�
� c

is the wave number and� c is the carrier wavelength. Also,
� k;l

m;n (t) = �
2� R(v H

k;l em;n ) is the Doppler frequency where
v k;l is the relative velocity vector of UEk and AP l , em;n
is the viewing direction vector of sub-pathm in cluster n
toward UE, R(�) returns the real part of a complex scalar,
� n;m is the frequency-dependent factor, and� n;m denotes the
cross polarization power ratio. Finally, m;n

V;V is a random phase
uniformly distributed in[��; � ) associated with scattererm in
clustern in the vertical-vertical polarization, and m;n

V;H ;  m;n
H;V ,

and  m;n
H;H are similarly de�ned. The last term denotes the

group delay of each path.
In high-mobility communications with distributed large

scale massive MIMO, channels are assumed to be wideband
and non-stationary in space and time [32]. These features are
considered in the channel model in (11). Due to movement
of each UEk, AP l , and the cluster of scatterers, parameter
values of channel model are time-varying, but assumed to
be stationary in short intervals during which fading statistics
remain invariant. We use the procedure described in [33] to
generate channel parameters for each stationary interval.

In mmWaves, channels are typically sparse in the angular
domain resulting in few, say 3-5 paths [2] which may experi-
ence blockage with the following probability

P(Blockage) = P(NLoS) � P(N (t) = 0 jNLoS)

=
1

1 + E(K i;j )
� (1 �

� b

� d
); (13)

where� b and � d are the birth rate and death rate of the birth-
death process associated withN (t), respectively [33].

We focus on cases where fading coef�cients vary quickly;
i.e., timely and accurate estimation of coef�cients is not fea-
sible. We model the channel as a stochastic process assumed
to be stationary over timeT , where

T = min fT b; Tcg; (14)

in which Tb is the beam coherence time andTc is the channel
coherence time, both of which depend on UEs’ mobility and
channel multipath parameters [35]. In practice,Tb � Tc, and
TNLoS / 1

� � �f D
andTLoS / 1

sin ����f D
; for NLoS and LoS,

respectively, wheref D is the maximum Doppler frequency,�
is the mean beamwidth,� 2 f1; 2g is a scenario-dependent
parameter, and� is the direction toward the transmitter. Note
thatT is higher in LoS due to the beamforming gain, e.g., the
coherence time is around 23 ms for a vehicle moving at 48
km/h [36], and is 9 ms for a HST moving at 324 km/h [37].
We use these values in Section V.

III. PROBLEM STATEMENT

Without loss of generality, we focus on the uplink (UL). Ide-
ally, each UEk simultaneously steers its beams towards APs in
M k with optimal transmit power to maximize spectral/energy
ef�ciency. At the same time, each AP simultaneously steers its
receive beams towards its corresponding UEs. In this context,
fast beamforming becomes vital. We assume that exact CSI
is unavailable since obtaining exact CSI in a timely manner
is nontrivial and costly. We also assume hybrid beamforming,
where RF beamformers are shared among multiple UEs and
subcarriers, and UEs may have different QoS requirements (SE
or EE). In noise-limited paradigms, SE and EE are aligned,
which is not the case in interference-limited paradigms. The
way in which resources are allocated and interference is
mitigated signi�cantly affect beamforming.
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A. Problem Formulation
Considering the beam steering latency, power consumption

by UE and its throughput, we wish to maximize the QoS-aware
UL EE, i.e.,

maximize
� train;

F k [f ]8f 8k;
W l;k [f ]8f 8k 8l

EEUL (15a)

subject to

8
>>>>>><

>>>>>>:

�
1 � � train

T

�
SEUL

k � Rk � 0 8k;
W RF

l 2 W 8 l;
FRF

k 2 F 8 k;
kW l;k [f ]k2

F = N AP-BB 8f; 8k; 8l;
kF k [f ]k2

F = N UE-BB 8f; 8k;
(15b)

where � train � T is the training length,Rk is the minimum
required data rate per bandwidth for UEk, and W and F
are the sets of RF beamforming matrices and RF precoding
matrices of APs and UEs, respectively.

The �rst constraint in (15b) makes the system QoS-aware by
requiring each UE’s data rate per bandwidth be higher than
its minimum required value. The second constraint in (15b)
limits the per-subcarrier transmit power. Also, the Frobenius
norm of precoding and beamforming matrices in the last two
constraints in (15b), limit the consumed power. The same
power budget is assumed for both training and operation.
The above formulation considers simultaneous associations to
multiple APs for each user. Solving (15) in wideband com-
munications requires many calculations because of coupling
between subcarriers. To reduce calculations, one may decouple
subcarriers by utilizing block diagonalization precoders, but as
we will show in Section V, this reduces the achievable rate.

The virtual central baseband unit solves (15) to �nd the
optimal beamforming matrices and transmit power vectors
in each short intervalT during which while the channel is
assumed to be stationary but unknown, the beams should be
steered. Since (15) is a non-convex problem and has mixed
discrete/continuous variables, an ef�cient and at least asymp-
totically optimal method is needed to decouple the transmitter
design from the receiver design and obtain their respective
matrices [7]. This signi�cantly reduces the problem size. Note
that DRL interacts well with unpredictable and unknown
environments, e.g., high mobility mmWave communications,
by alternating between exploration (training) and exploitation
(operation) to maximize a cumulative reward while solving
consecutive instances of (15). However, to use DRL for real-
time mmWave beamforming for highly mobile users, a low-
complexity training algorithm is needed.
B. Preliminaries

The partially observed Markov decision process (POMDP)
is a mathematical framework that models interactions of
an agent with an unknown time-varying environment when
the agent has limited observations. POMDP is a sextuple
(S; A ; P;R; 
; O), whereS is the set of environment states,
A is the set of agent’s actions,P : S � A ! �(S ) is the
state transition function, i.e.,P(st +1 jst ; at ), R : S �A ! R is
the reward function whose expectation isER fR(s t ; at )js t ; at g,

 is the set of limited observations, andO : S � A !

�(
) is the observation function, i.e.,P(ojst +1 ; at ); 8o 2

. The Markov process entails that future reward values
depend only on past history of states and actions, i.e.,
P(r t ; st +1 js0; a0; r 0; � � � ; st ; at ) = P(r t ; st +1 jst ; at ), which is
often the case in practice.

In POMDP, the agent adopts an optimal nonstationary policy
denoted by� � : 
 ! �(A ) to maximize the expected reward.
Typically, for a POMDP, a belief state is de�ned as

b� (s) = P(st jI C
t ); (16)

whereI C
t is the complete suf�cient information state at timet.

The value of a beliefbunder policy� , denoted byV� (b), is the
expected return when believingb and following � thereafter.

It is well-known that the optimal solutionV �
� (b) satis�es

the following Bellman optimality equation [38]

V �
� (b) = max

a2A
(R(b; a) + 

X

b0

P(b0jb; a)V � (b0)); (17)

where  2 (0; 1] is the weight factor for the sum of
future rewards,R(b; a) =

P
s b(s)R(s; a) and P(b0ja; b) =P

o0;s0;s P(b0ja; b; o0)P(o0js0; a)P(s0js; a)b(s). The belief up-
dating in (17) can be computed only for discrete low-
dimensionalS and linear-Gaussian dynamics. The model-
free reinforcement learning (RL) can overcome the above
challenge, where the agent explores the state space to tune
its action on a trial-and-error basis [38].

IV. PROPOSEDMETHOD

In this section, we develop a framework to use POMDP-
based DRL for solving (15). We also develop a low complexity
training algorithm for our proposed scheme. An important
issue for solving (15) is whether CSI is needed. Theorem IV.1
below shows that whenSINR is high, CSI may not be needed
(which is desirable) and noncoherent multiuser communica-
tions can be considered. The need for less computations and
resources when CSI is not needed is in fact the motivation
behind our proposed framework.

Theorem IV.1. Problem (15) asymptotically has a solution
iff (R1; : : : ; RK ) 2 C(Pk; max 8k) where C(Pk; max 8k) is the
system’s polymatroid noncoherent capacity region andPk; max
is the maximum transmit power of UEk.
Proof. Given a common diversity denoted byd for users,
we �nd a set of K -tuple achievable multiplexing gains
(r 1; : : : ; r K ), denoted byR (d), which is a polymatroid whose
rank function is

f (S) =
�

jSjr �
m;n (d); if 0 � j Sj � l � 1

r �
jS jm;n (d); if l � j Sj � K;

where d 2 [dl �1 ; dl ], dl = d�
m;n ( n

K +1 ) and d�
m;n (n)

is the single-user noncoherent rate-diversity tradeoff given
by sphere packing in the Grassmann manifold, i.e.,C =
DoF log2 SINR+ c(N UE-BB; L

K N AP-BB; Tq) + o(1) [39], where
DoF = M � (1 � M �

Tq
), M � = minf L

K N AP-BB; N UE-BB; bTq
2 cg,

o(1) is a vanishing term asSINR! 1, and Tq is the quantized
coherence timeT . Hence, whenSINR is high, there is no need
to have CSI. With beamforming, channel gain (andSINR) is
the highest in the desired direction. At highSINR, using only
M � of the N AP-BB available RF chains is optimal, i.e., using
more transmit antennas than receive RF chains does not yield
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(a) (b)

Figure 2. All connections (beam pairs) between APl and UEk are (a) trained via orthonormal UL pilots among which the connection(s) giving the highest
score (i.e., total achievable rate (received energy) across all subcarriers) are chosen for (b) online beamforming. In high mobility communications, obtaining
all scores is not practical, and one should consider only the observed scores (not the complete set) and predict the remaining ones.

any capacity increase. A capacity achieving scheme is to use
Grassmannian signaling [40], [41].

Similar to [10], in (15), we separately consider transmit
precoding and receive beamforming for each UEk. To obtain
the transmit precoding matrix, we use primal-dual interior
point methods to solve

minimize
F k :F RF

k 2F
kFopt;k � F k kF + � k (Rk � SEUL

k ); (18)

where Fopt;k is the transmit precoding matrix for the fully-
digital design, and� k (�) is the logarithmic barrier. We then use
the precoding matricesF ( t )

k to obtain the receive beamforming
matrix W (t)

l;k 8l 8k by minimizing mean squared error
(MSE). We cycle through the above until either convergence
or termination. To solve (18), we separately consider RF
beamforming and baseband beamforming.

A. RF beamforming via POMDP-Based DRL

A connection between UEk and AP l involves two beams
(one for the uplink and one for the downlink), namely,
FRF

k 2 F and W RF
l 2 W . Hence, the connection space

is F K � W L from which the connections with maximum
received energy (achievable rate) are chosen after training is
completed. When CSI is available at no cost, there is no need
for training, and� optimal

train = 0. In practice, however, obtaining
CSI is costly and nontrivial. In this case, as shown in Fig. 2,
each UEk repeatedly transmitsjWj known (orthonormal) UL
pilot sequencesSPilot

k [f ] 2 CN UE-BB�T p for each beam inF ,
during which each APl cycles through its RF beamforming
matrices and combines every received pilot sequence with a
different RF beamforming matrix.

Each AP (UE) hasN AP-RF(N UE-RF) beams out of which at
mostN AP-BB(N UE-BB) is active. After multiplying the received
RF signal by(SPilot

k [f ])H, the baseband received signal that
corresponds to theq-th RF beamforming matrix of APl and
the p-th RF beamforming matrix of UEk is

y Pilot
l;q;k;p [f ] = W RF

l;q H k;l [f ]FRF
k;p + noise: (19)

Next, AP l calculates its total achievable rate (score) for UE
k as
X

f 2U

log det(I + C �1
m FRF

k;p
HH k;l [f ]HW RF

l;q
HW RF

l;q H k;l [f ]FRF
k;p ):

In doing so, in (19), APl estimates channelsH k;l [f ]; 8k8f
by assuming knownW RF

l;q andFRF
k;p , and observingy Pilot

l;q;k;p [f ].
When noise is low, it may use suboptimal RF energy estimator.
A set of RF beams, sayfW RF

l;q 8l; FRF
k;p 8kg, is QoS-aware when

the sum of their associated scores from all APs is no less than
Rk , for all k (the �rst constraint in (15b)). All scores are
then sent to the virtual central baseband unit for solving (18)
by searching through all QoS-aware sets of RF beams that
maximizes (15a). The search space exponentially grows with
input size, i.e.,

O

0

@
 

(N UE-RF)N UE-BB

N UE-BB!

! K

�

 
(N AP-RF)N AP-BB

N AP-BB!

! L 1

A :

In high mobility communications, obtaining all scores is
not practical. To overcome this, instead of exhaustive search,
we use POMDP-based DRL which observes a small number
of scores (within optimized� train), and predicts the unobserved
ones. In this way, the set of scores for all RF beams is obtained.

Table I shows the mapping of POMDP parameters to the
parameters in (15). For fast convergence, both overestimation
and underestimation of the value function should be avoided.
We de�ne a twin delayed deep deterministic policy gradient
(TD3) agentQ� � (s; a; � sel

t ; � eval
t ) as the function approximator

for the optimal actionV �
� (s; a), where � sel

t and � eval
t are TD3

weights att used by the critic in DRL to select and evaluate
a policy, respectively, and� is the policy adopted by the
actor in DRL. Two clippedQ-functions Qsel(s; a; � sel

t ) and
Qeval(s; a; � eval

t ) are concurrently learned by minimizing the
loss function (mean squared Bellman error (MSBE)).

Fig. 3 shows our POMDP-based DRL scheme for beam-
forming. The learning agent feeds its model with the observed
y Pilot

l;q;k;p [f ] and the (incomplete) score table, as inputs and
desired outputs, respectively. The aim is to learn the hidden
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(a)

(b)

Figure 3. (a) A modular view of our DRL-based hybrid beamforming. (b) Timing: agent solves instances of (15) by adjusting the frame con�guration.

relation between the jointly received signals by all APs and the
rates of different sets of RF beams. Once trained, the agent can
predict the best set of RF beams during the operation phase.
The objective is to train the DRL’s neural network, i.e., obtain
the trained matrix of weight values that when multiplied by the
channel vector for each instance and location, the beam is set
to the desired direction. Beam steering is sequentially setting
the beam’s direction, depending on variations in channel
vectors. The channel vector to each AP is impacted by fast
mobility (i.e., varying from LoS to NLoS and blockage),
which may be correlated to other APs’ channels. The matrix
of weight values can be considered as the concatenation of
different vectors, where each vector corresponds to a different
channel vector. We also present a low complexity training
algorithm for our scheme, in which we directly map the
received pilot signals into hybrid beamforming vectors to steer
beams without excessive computations/signaling to obtain CSI.

In DRL, convergence of TD3 is not guaranteed [42], but a
near-optimal policy can be found even when an arbitrary off-
policy algorithm (exploratory policy) is used by the agent to

Table I
MAPPING POMDP PARAMETERS TOPARAMETERS IN (15)

Symbol DRL Description Our Problem

- Agent Virtual central baseband unit
S System state Instantaneous channel state information
A Action set Precoding and beamforming matrices
P Environment Stochastic uplink wireless channel
R Reward function QoS-aware EEUL


 Limited observations SEUL
k and EEUL

O Observation function SEUL
k and EEUL estimates

select actions. We choose the�-greedy policy to select actions,
which is known to have a linear regret (in time) as shown in
Algorithm 1. In doing so, we rewrite (17) as

yt+1 = r t +  max
â

�
� min

� t 2f� eval
t ;� sel

t g
Q(st+1 ; â; � t )

+(1 � �) max
� t 2f� eval

t ;� sel
t g

Q(st +1 ; â; � t )
�

;
(20)

where� is the weight of the minimum learned value, and

â = � � t +1 (st ) + �; � � clip(N (0; � 2); �c; c ); (21)

in which � is the exploration noise clipped byc. As can be
seen in simulations, our approach is stable, avoids convergence
to local minima, and also avoids over�tting. Setting hyperpa-
rameter values in machine learning algorithms to minimize the
learning error is a demanding task, but in what follows, we
show that the learning error in TD3 is bounded.

It is well known from learning theory that generalization
error is upperbounded [43]. Hence, the learning MSE of our
proposed scheme, denoted by� , is upper bounded, i.e.,� <

1
2M

�
2I (T � ;X ) + log(1=� )

�
, where� is the con�dence level,M

is the number of training examples,X is TD3 input,T� is the
� -partition of X , and I (T� ; X ) is the mutual information of
T� andX , which depends on the neural network model [43],
and can be used to choose a suitable model.

An advantage of our off-policy DRL is that ana priori de-
terministic target policy operates while the training (behavior)
policy explores all possible beamforming actions by utilizing
its own dataset. This, however, may introduce exploration bias
[44] when the operation and training datasets are uncorrelated.
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(a) (b)

Figure 4. (a) Beamforming via centralized processing/training. (b) Beamforming via distributed (federated) processing/training.

To mitigate this bias, the operation and training datasets must
be correlated but only to the extent that generalization is not
impeded. In other words, they should be similarly distributed,
called the coverage assumption in [38, Section 5]. In our
scheme, we use�-greedy policy, i.e., the operation and training
datasets are correlated with a probability of1 � �; and the
training policy explores all actions with a probability�.

Low-complexity training algorithms that are based on ap-
proximate message passing (AMP) are proposed in [45], [46]
for single-layer networks, where damped AMP is used to
improve stability at the cost of slow convergence. In Algo-
rithm 2, we propose a low-complexity AMP-based training
algorithm with unitary transformation for fast convergence.
In case of large right-orthogonally invariant priors, Algorithm
2 is convergent and its convergence rate depends on the
spectrum of the observation matrix. This can be easily shown
by considering Algorithm 2 in terms of the factor graph, which
is based on factorization of (16). Proof of convergence and its
convergence rate follow directly from applying AMP to the
factor graph (see Appendix A).
B. Baseband Beamforming

Once the RF beamforming matrices are obtained, i.e.,
when a connection is established and noise level is low,
the baseband beamforming matricesW BB

l;k [f ] and FBB
k [f ] are

constructed as the normalized left-singular vectors and right-
singular vectors of their respective effective channel, i.e.,
H effective

k;l [f ] = W RF
l H k;l [f ]FRF

k , as widely reported in the
literature. When noise level is high, MMSE-SIC receiver is
used. Note that in baseband beamforming, both calculations
and decisions are centralized, but in RF beamforming, only
the decision is centralized. In certain cases, such as single-
antenna single-user, distributed RF decisions are also optimal.
The achievable rate is

SEPOMDP =
�

1 �
jWj � jFj � Tp

T

� KX

k=1

SEUL
k : (22)

Proposition 1. Let SE� denote the achievable rate when per-
fect CSI is available. Now, SEPOMDP almost surely converges
to its upper bound SE� as the number of antennas grows to
in�nity.

Proof. The proof is straightforward and follows from maxi-
mizing the Rayleigh quotient in fully digital beamforming.

Algorithm 1 QoS-Aware DRL-HBF
Require: Rk 8k; W ; F .
Ensure: Precoding and beamforming matrices are optimal.

1: Initialize: time slott = 0; critic networks Q� sel
t

; Q� eval
t

and
actor network� � t with random numbers; target networks
� sel

t +1  � sel
t , � eval

t+1  � eval
t , � t+1  � t ; replay bufferB.

2: while TRUE do
3: if MSBE> � for M steps &t mod Tq � � max then

Training Phase: Agent learning
4: Receive pilots to estimatêH l;k . . Update state
5: Restore� to its initial value.
6: Select action:at � � � t (st ) + �; � � N (0; � 2).
7: Observe rewardr t and new statest+1 .
8: Store the experience(st ; at ; r t ; st+1 ) in B.
9: Sample mini-batchN transitions fromB.

10: Smooth target policŷa by (21).
11: Update target networkyt by (20).
12: Update critics by� t  arg min� t MSE(r t � yt )
13: if t mod d then
14: Update � via deterministic policy gradient:

r � J � = N �1 P
r aQ� t (s; a; � t )ja=� � (s) r � � � (s)

15: Update target networks:� sel,eval
t+1  � � sel,eval

t +
(1 � � )� sel,eval

t ; � t +1  � � t + (1 � � )� t
16: end if
17: else
Operation Phase: Agent interacting with environment
18: Sample� � Uniform(0;1).
19: if � � � then . �-greedy policy
20: Select operation vector�(t) at random.
21: else
22: Decrease� : �  �� where� < 1.
23: Select�(t) = arg max a Q� � t

(s; a; � sel
t ; � eval

t ).
24: end if
25: Beamform by (1) and (2). . Carry out action
26: Receive feedbackr t by (9). . Observe reward
27: end if
28: end while
� andM are subjective measures of convergence.
We use recursive least squares to implement the �lters.
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Algorithm 2 Multi-layer AMP-based learning algorithm
Require: Forward i.e.,G +

l (R +
k;l �1 ; R �

k;l ; � +
k;l �1 ; � �

k;l ) and re-
verse i.e.,G �

l (R �
k;l �1 ; R +

k;l ; � �
k;l �1 ; � +

k;l ) estimators
1: SetR �

0;l = 0 and � �
0;l = 0; l = 1; : : : ; L � 1.

2: Initialize all layers weights with random numbers.
3: while MSBE < � do

Phase I: Inference
4: while kR �

k;l � R �
k �1 ;l k=kR �

k;l k � � th do
5: Apply known input, i.e., (4).
6: for l = 1; : : : ; L � 1 do . Forward Pass
7: Ẑ+

k;l = �G +
l (�) + (1 � �) Ẑ+

k �1;l
8: � +

k;l = [ @G +
l (�)=@R �

k;l ]�1 � �
k;l

9: � +
k;l = � +

k;l � � �
k;l ,

10: R +
k;l = ( Ẑ+

k;l � +
k;l � R �

k;l � �
k;l )(� +

k;l ) �1

11: end for
12: Apply known output, i.e., pilot signals.
13: for l = L � 1; : : : ;1 do . Reverse Pass
14: Ẑ �

k;l = �G �
l (�) + (1 � �) Ẑ �

k �1 ;l
15: � �

k;l = [ @G �
l (�)=@R +

k;l ]�1 � +
k;l

16: � �
k;l = � �

k;l � � +
k;l ,

17: R �
k;l = ( Ẑ �

k;l � �
k;l � R +

k;l � +
k;l )(� �

k;l ) �1

18: end for
19: end while
Phase II: Tuning weights for each layer
20: for all zl ; l = 1; : : : L � 1 do
21: Compute economy-sized SVD ofA l = USV T .
22: Initialize r 0

1 and  0
1 .

23: while kr t
1 � r t �1

1 k=krt
1k � � th do

24: ŵ t
l = �g l (r t

r ;  t
1) + (1 � �) ŵ t �1

l
25: � t

1 = 1=N
P

j
@

@rj gl (r t
r ;  t

1)
26: r t

2 = 1
1�� t

1
(ŵ t

l � � t
1r t

1)

27:  t
2 =  t

1
1�� t

1
� t

1

28: � t
2 = 1=N

P
j  t

2=(s2
j =�̂ w +  t

2)
29: r t +1

1 = r t
2 + V (S2 + �̂ w  t

2 I) �1 S( U T z l �SV T r t
2 )

1�� t
2

30:  t +1
1 = � t

2
1�� t

2
� t

2
+ (1 � �) t

1
31: end while
32: end for
33: end while
Latent variable ofl -th layer is denoted byZ l . In training, Z 0 and Z L are known.

R +
k;l and � +

k;l : mean and precision (inverse variance) of the Gaussian messages in the
forward direction;R �

k;l and � �
k;l represent the same quantities in the reverse direction.

C. Beamforming via Distributed Processing/Training

As shown in Fig. 4(a), in our centralized beamforming
scheme, for each UEk, the APs inM k use a virtual central
processing unit to manage and learn beamforming with a
view to connecting the UE to at least one AP. In centralized
schemes, communications overhead as well as beam steering
latency may be high. To reduce this overhead, we develop
a scheme for beamforming via distributed processing/training
shown in Fig. 4(b) by utilizing federated DRL in which APs
in M k participate in learning (training) and beamforming
(operation) by way of distributed computing and centralized
decision making. Speci�cally, each AP uses its locally pro-

cessed data and collaborate with other APs inM k to train a
shared beamforming model orchestrated by the virtual central
baseband unit.

In this scheme, each APl in M k uses its local data to itera-
tively train its neural network (which has the same architecture
as that in the virtual central baseband unit) for steering beams.
Local training is done via the scheme in Section IV-A. The
weight values in each APl (instead of local training data) are
transmitted to the virtual central baseband unit for obtaining a
set of shared weight values via aggregation. This signi�cantly
reduces the communications overhead. The virtual central
baseband unitaggregatesthe received weight values into a
shared set of weight values, which is transmitted back to all
APs inM k . At convergence, the shared weight values will be
the same as the local weight values.

We formulate the aggregation as a consensus optimization
problem

minimize
w l :w l =z

LX

l =1

f l (w l ); (23)

wheref l (�) andw l are the loss function and the vector of local
model variables for APl , respectively, andz is the vector
of shared model variables. The constraintsw l = z enforce
consistency, or consensus. We solve (23) using Alternating
Direction Method of Multipliers (ADMM). Each iteration of
ADMM reduces to the following updates

w t +1
l = argmin

w l

�
f l (w l ) + (�=2)

 w l � w t + u t
l
 2

2

�
(24)

u t +1
l = u t

l + w t +1
l � w t +1 (25)

where w t = 1
L

P L
l =1 w t

l , � is the augmented Lagrangian
parameter, andt is the iteration number.

V. NUMERICAL RESULTS AND DISCUSSION

We numerically evaluate our schemes in two important high
mobility use cases for urban and rural deployments, namely
V2I and T2I. Our simulation method and rate evaluation are
similar to [47]�[49]. Table II shows our simulation setup for
each scenario, which corresponds to measurement-based chan-
nel models and speci�cations by 3rd generation partnership
project (3GPP). Channel coef�cients are generated as per the
procedure in [33]. As shown in Fig. 5, for V2I, a passing
truck blocks the LoS between the vehicle-under-test and the
infrastructure; and for T2I, a HST with links to infrastructure
exits a tunnel with semicircular cross-sections.

We model a two-part connection for end-users in each case.
Part 1 involves AP, UE (not end-users), and outdoor channels,
and Part 2 involves UE, end-users, and indoor channels. UE is
mounted on the exterior (usually on top) of the vehicle/HST.
Our focus is on Part 1, and we use Keras libraries with a
TensorFlow backend for implementing DRL, and MATLABfi

for baseband processing. A total ofK � Ns RF chains are
group-connected to the antenna via 10 �xed phase shifters [9].
Performance metrics are QoS-aware UL EE, convergence time,
and communications overhead. We use time-domain uplink
pilot signals (Zadoff-Chu sequences) for channel estimation,
and benchmark our scheme against the conventional pilot-
based scheme and an of�ine trained network where the optimal
solution is obtained via exhaustive search. Figs. 6(a) to 6(h)
show simulation results.
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Table II
SIMULATION SETUP

Vehicular street-level application High-speed train

System setup L = 4 access points servingK = 2 UEs L = 3 access points servingK = 1 UE
Access points N AP-RF = 512; N AP-BB = 1 N AP-RF = 512; N AP-BB = 1
UEs Pk; max = 30 dBm; Rk = 0 ; N s = N UE-BB = N UE-RF = 4 ,

OFDM with 1024 sub-channels
Pk; max = 30 dBm; Rk = 0 ; N s = N UE-BB = N UE-RF = 2 ,
OFDM with 1024 sub-channels

Channels 60 GHz band. For each channel realization, users are located in
a 40m � 60m grid with 0.1 m resolution. System bandwidth is 1
GHz and noise �gure is 5 dB.

28 GHz band. For each channel realization, user is located in a
400m � 600m grid with 1 m resolution. System bandwidth is 1
GHz and noise �gure is 5 dB.

DRL model Per-dataset input normalization and per-AP output normalization. Six fully connected layers, each with 512 nodes using ReLU activation
units. Each layer feeds a drop-out regularization layer with 0.5% dropout rate. Training dataset has a maximum of 240,000 samples with
a batch size of 100 samples. Also,� = 0 :75.

(a) (b)

Figure 5. Simulation scenarios: (a) the outdoor urban environment in which a moving vehicle under test is communicating with ground infrastructure and
its LoS is blocked by a passing truck, (b) the rural T2I scenario in a macro-and-relay layout exiting a tunnel with a semi-circle cross section equipped with
distributed antenna system (DAS). For simplicity of the �gure, UEs’ beams are not shown.

As shown in Figs. 6(a) and 6(b), when a blockage occurs
repeatedly at a given time and duration for a beam, our
scheme learns the timing of such blockage andproactively
anticipates it for that beam, but of�ine training scheme fails
due tobad (non-representative) training data. When the state
space is (very) large, there is little chance ofgood of�ine
training irrespective of the computing power and/or storage
space. Figs. 6(c) and 6(d) show the achievable data rate in
our scheme and in the pilot-aided scheme in a LoS setting.
In both schemes, the rate initially increases with the number
of beams due to the beamforming gain. As the number of
beams increases, the training overhead becomes dominant in
the pilot-aided scheme, which causes signi�cant rate drops at
higher velocities. This is not the case in our scheme because
the uplink training time is optimized in (15) for each interval
T . Speci�cally, when the channel is affected due to a new
situation (e.g., weather changes, new blockages, etc.), the
learning agent spends more time on the exploration (i.e.,
� train / T ). As the agent learns new situations, it generalizes
its learning to cover all such cases and spends less time on the
exploration, i.e.,� train ’ 0. Meanwhile, the agent adjusts� train
to balance between system ef�ciency and training time via the
term (1 � � train

T ) in (15b). Also, variations in the achievable rate
due to changes in velocity are minor.

The 5th, 50th, and 95th percentile of cumulative distribution
function (CDF) of SE for a given UE, which can be attributed
to cell edge, median, and cell center UEs, respectively, are key
performance indicators (KPIs) for service continuity, whose
minimum required values are speci�ed in IMT-2020 [55]. Fig.
6(e) shows that SE values for a fast-moving UE most likely
varies from 1.5 bps/Hz (NLoS at cell-edge) to 4.2 bps/Hz (LoS
at cell center). Also, SE values in Table III show that by using
our hybrid beamformer, service remains available in spite of
channel variations ranging from LoS to NLoS and blockage.

No scheme isa priori better than other schemes (including
random beamforming) [56], but our scheme performs well by
learning repeated irregularities in fast-moving UEs. As shown
in Fig. 6(f), the a posteriori optimization method obtains
the Pareto boundary in EE-SE plane that includes a critical
operating point at which, energy ef�ciency peaks. Our scheme
aims to reach this point in noise-limited paradigms via (15).

Table III
SE VALUES (IN BPS/HZ) IN UL FOR UE (R: IMT-2020, S: SIMULATION )

V2I T2I
R S R S

5th %-tile of SE in UL for a UE 0.15 1.5 0.045 1.5
50th %-tile of SE in UL for a UE 5.4 6.2 1.6 3.1
95th %-tile of SE in UL for a UE 15 16.8 15 12.6
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(e) (f)

(g) (h)

Figure 6. Simulation results: (a) and (b): Impact of blockage on achievable rates for V2I and T2I, respectively. (c) and (d): Impact of velocity on achievable
rates for V2I and T2I, respectively. (e): Impact of blockage on CDF of a typical UE’s achievable rates. (f): System Pareto boundary with critical operating
point. (g): Typical run times of our schemes against other methods. (h): The effect of subcarrier decoupling on the achievable rate.
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Table IV
COMPUTATIONAL COMPLEXITY

No. Method Beamforming
Time Complexity

Training
Time Complexity

Run Time�
(msec)

1 Exhaustive search O(j(U � F )K � W L j) O(TqN AP-RF) 87540

2 OMP [10] O(K 3F 3N t N t
RF(LN s + N t

RF
2 + 2 N t

RFN s )) �� O(TqN AP-RF) 9839
3 PIS-MIB-SOMP [50] O(K 3F 3N t N t

RF(LN s + N t
RF

2 + 2 N t
RFN s )) O(TqN AP-RF) 6560

4 GS-HP [51] O(K 3F 3N t N t
RF(LN s + N t

RF + 2 N s )) O(TqN AP-RF) 1985
5 SIC-based HP [4] O(K 3F 3 ((N t =N t

RF)2 (N itrN t
RF + N r ) + 2 N t

RFN itr )) O(TqN AP-RF) 1040

6 Element-wise [8] O(K 3F 3N itrN 4
t N t

RF) O(TqN AP-RF) 1985

7 MO-AltMin [7] Extremely high O(TqN AP-RF) 43000
8 PE-AltMin [7] O(N itrN t

RF
2N t F 3K 3 ) O(TqN AP-RF) 850

9 SDR-AltMin [7] O(N itrN t
RF

3N 3
s F 3K 3 ) O(TqN AP-RF) 1615

10 CR-MF [9] O(N t
RFN s N t KF ) O(TqN AP-RF) 840

11 CR-MKM [9] O(N itrN t
RFN 3

s F 3K 3 ) O(TqN AP-RF) 240
12 FPS [52] O(N itr (K 2N 2

s N t
RF + N cN t

RFN t log(N cN t
RFN t ))) O(TqN AP-RF) 125

13 DLHB [53] O(
P L C

l =1 D x;l D y;l bx;l by;l cC;l�1 cC;l ) + O(
P L F

l=1 bx;l by;l cF;l )�� - 1670
14 ACE-based HP [54] O(N itr jWjN t K 2 ) - 2430
15 Our scheme O(

P L F
l =1 bx;l by;l cF;l ) - 120

� Numerical values of run time (also called wall time) are obtained via a server with 64 cores, where each core is an Intel(R) Core(TM) i5-7200U CPU @2.5GHz.
�� L, K , F and N itr are the total number of paths in channels, the number of UEs, the number of subcarriers, and the number of iterations, respectively.
Notations:L C ,L F : number of convolutional and fully-connected layers;D x;l ,D y;l : kernel dimensions;bx;l ,by;l : dimensions of thel -th convolutional layer
output;cC;l ,cF;l : number of �lters in thel -th layer and units in thel -th fully-connected layer.

(a) (b)

Figure 7. (a) Spectral ef�ciency in our centralized processing/training scheme with different values of synchronization mismatch among APs inM k . (b)
Comparison of the communication overhead in our centralized and distributed processing/training schemes in 5G NR.

We call the length of time for steering a beam during
each channel coherence timeT as the run time, which is
the sum of operating and training times. During eachT ,
training is iterative. Each iteration involves certain calculations
(computational complexity (CC)) that depend on the imple-
mentation of backpropagation algorithm in the neural network,
but operation is not iterative and its CC is straightforward.
The number of iterations until convergence depends on the
quality of MIMO channels. Note that (20) avoids over/under-
�tting the model, hence fewer iterations. MIMO channel qual-
ity is inversely related to channel variations and co-channel
interference, and can be expressed by the condition number
of channel matrix, de�ned as the ratio of the largest to the
smallest singular values in singular value decomposition of
that matrix. Of�ine training fails to steer beams in a timely
manner due to signi�cant channel variations for fast-moving
UEs. Fig. 6(g) shows that run time in our schemes is stable in
spite of channel variations and co-channel interference, and is
signi�cantly less than those of other online training schemes.

In hybrid transceivers, beamforming involves both analog
and digital parts. The size of matrices in analog beamforming
is much larger than that in digital beamforming, i.e., CC
of hybrid beamformers is dominated by CC of the analog
part. Existing methods typically trade off CC with hardware
complexity and/or with spectral ef�ciency [57]. Note that CC
of Algorithm 2 is dominated by singular value decomposition
(SVD) of A l in Step 21. The SVD ofA 2 RL�n of rank r
can be obtained withO(Lnr ) �oating-point operations (�ops).
Hence, CC of Algorithm 2 is similar to that of AMP algorithm.

Table IV compares CC of different schemes. In exhaustive
search, all possible codebooks (the Cartesian product of trans-
mit and receive analog beamforming matrices) are searched.
For CC of methods 2-14 in Table IV, the interested reader
is referred to the respective references. Our centralized and
distributed schemes have the same order of polynomial CC,
where in the latter, we move computations from the cloud
into the edge to reduce communications overhead and steering
latency.
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(a)

(b)

Figure 8. (a) Signal �ow graph in POMDP-based DRL in Section IV-A. (b) Signal �ow graph in Algorithm 2. Variables with superscript+(�) are updated
in the forward (backward) pass. Algorithm 2 solves (27) by sequentially solving a set of simpler estimation problems in consecutive pairs(z l ; zl �1 ).

As stated in Section III-A, in wideband communications,
one may utilize block diagonalization precoders to decouple
subcarriers and reduce calculations. However, since RF beam-
formers are shared by many subcarriers and cause inter-user
and inter-carrier interference, block diagonalization is ineffec-
tive and signi�cantly reduces the achievable rate as shown
in Fig. 6(h). Alternatively, �lter bank multicarrier (FBMC)
modulation that causes less out-of-band interference may be a
better choice for fast-moving UEs despite its complexity.

Fig. 7(a) shows that our centralized scheme is not sensitive
to phase synchronization among APs inM k . Fig. 7(b) shows
that communication overhead in our distributed scheme (fed-
erated DRL) is signi�cantly less than that of the centralized
scheme, as the former only transmits the weight values of the
neural network. Moreover, as stated earlier, our distributed
scheme has the additional advantage of not requiring phase
synchronization among APs inM k .

VI. CONCLUSION

In this paper, we utilized deep reinforcement learning for
steering beams in a timely and ef�cient manner for high
mobility communications in future networks. We also pro-
posed a low-complexity federated DRL-based beamforming
to signi�cantly reduce communications overhead by utilizing
edge computing instead of cloud computing. This signi�cant
reduction in the communications overhead has many practical
advantages for fast and cost-effective deployment of 5G/6G
networks in high mobility use cases. Simulation results demon-
strate that our centralized and distributed processing/training
schemes proactively learn to steer beams with superior perfor-
mance as compared to other existing schemes.

APPENDIX A
ON CONVERGENCEANALYSIS OF ALGORITHM (2)

To analyze the convergence of Algorithm 2, consider an
L-layer stochastic neural network, as in Fig. 3, given by

zl = W l zl + b l + n l ; l = 1; 3; : : : ; L � 1; (26a)
zl = � l (z l �1 ; n l ); l = 2; 4; : : : ; L: (26b)

where zl 2 Rdl . The activation functions� l (�) are non-
linear functions acting component-wise on their inputs. Also,
x train = z0 and y train = zL are the network’s input and
output, respectively. We are interested in the joint learning
and inference problem under priorP(x train; � ) and likelihood
L(x train; y train; � ), i.e.,

Estimate fz l ; W l ; b l gL�1
l =1 (27a)

Given fz 0; zL g: (27b)
Consider the estimator in Fig. 8, based on insights from

adaptive VAMP and multilayer VAMP algorithms. In what
follows, we show that it is an asymptotically consistent es-
timator for (27), and analyze its convergence rate. Note that
(26b) represents a Markov chain, hence the posteriorp(zjzL )
factorizes asP(y ; x) = P(x)N y jA k x (0;  �1

w I): (28)
Splitting x into two identical variablesx1 = x2, gives an

equivalent factorization

P(y ; x1; x2) = P(x1)� (x 1 � x2)N y jA k x 2 (0;  �1
w I); (29)

where � (�) is the Dirac delta distribution. This density can
be represented as a linear factor graph withL + 1 factors
corresponding toP(z0) and P(zl +1 jzl ); l = 0; : : : ; L � 1.
We consider both maximum a posteriori (MAP) and minimum
mean squared error (MMSE) estimation for this posterior, i.e.,

zMAP = arg max
z

P(zjz0; zL ) (30a)

zMMSE = Efzjz 0; zL g =
Z

zP(zjz0; zL )dz: (30b)

Algorithm 2 produces estimates by a sequence of forward
and backward pass updates for computing MAP and MMSE.
We then pass messages on the corresponding factor graph
according to the following rules:

1) Approximate beliefs: The approximate beliefbapp(x) on
variable nodex is N (xj x̂; � �1 I), where x̂ = E(xjbsp)
and � �1 = diag(Cov(xjbsp)) are the mean and av-
erage variance of the corresponding beliefbsp(x) =Q

i � f i !x (x), i.e., is the normalized product of all
messages impinging on the node.
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2) Variable-to-factor messages: The message from a vari-
able nodex to a connected factor nodef i is � x!f i (x) =
bapp(x)=� f i !x (x), i.e., is the ratio of the most recent
approximate beliefbapp(x) to the most recent message
from f i to x.

3) Factor-to-variable messages: The message from a factor
nodef to a connected variable nodex i is � x!f i (x) =R

f (x i ; fx j gj 6=i)
Q

j 6=i � x j !f i (x j )dxj .
By applying the above message-passing rules to the factor

graph, the convergence of Algorithm 2 can be analyzed.
The corresponding estimation functions are estimates of these
belief densities.

Similar to [58], we analyze Algorithm 2 in a large system,
where d0 ! 1 and dl ; l 6= 0are �xed under rotatioanlly
invariant random weight matrices, and obtain the correspond-
ing state evolution, typically used to describe the mean-
squared error of the estimates and test error. By concatenating
the sequential estimates, we can think of Algorithm 2 as
an equivalent adaptive VAMP algorithm for which rigorous
convergence analysis exist, including state evolution equations,
consistency of its �xed-point with that of the Bayes optimal
estimator, and stability/sensitivity analysis [59]. Thus, the
AMP-based Algorithm 2 provides a computationally tractable
estimate with performance guarantees and testable conditions
for optimality in certain high-dimensional random settings.
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