
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE SYSTEMS JOURNAL 1

Position-Aided Beam Learning for Initial Access in
mmWave MIMO Cellular Networks

Anzhong Hu , Member, IEEE, and Jiguang He , Member, IEEE

Abstract—In this article, beam learning based on position in-
formation (PI) about mobile station positions in the initial access
(IA) of millimeter wave (mmWave) multiple-input–multiple-output
(MIMO) cellular networks is investigated. The existing PI-based
IA procedure cannot efficiently tackle the position inaccuracy and
blockage or may cause a long IA delay because of the inefficient
beam learning. Based on the sparse scattering of mmWave signals,
the serving area is partitioned into smaller areas and the beams
are learned for each small area. Moreover, the number of learned
beams is restricted and fixed after learning. Thus, the impact of
position inaccuracy and blockage can be mostly mitigated and the
IA delay is short in each successful IA. The analysis shows the
lower bound of the probability of miss detection. Additionally, the
simulation results show that the proposed approach can achieve
a reasonable IA delay and superior IA performance than other
PI-based approaches.

Index Terms—Beam, context information, millimeter wave
(mmWave), multiple-input–multiple-output (MIMO) systems.

I. INTRODUCTION

A S THE frequency band below 6 GHz is mostly occupied by
current communication systems, the frequency band above

6 GHz has been attracting attention in recent years. Moreover,
the channel in millimeter wave (mmWave) band above 30 GHz
has been measured and considered as a candidate for the next
generation mobile communication system [1], [2]. The mmWave
band brings both a shortcoming and a benefit. On one hand,
the propagation loss in the mmWave band is much higher than
that with frequency below 6 GHz. On the other hand, the short
wave length facilitates the placement of a large number of
antennas in a constrained space, which constitute the multiple-
input–multiple-output (MIMO) system and can provide a high
array gain. Thus, beamforming is essential in mmWave MIMO
systems as it can achieve a high array gain to compensate for
the high propagation loss.

However, beamforming is challenging in initial access (IA) in
mmWave MIMO cellular networks, where IA refers to the proce-
dures in which a mobile station (MS) establishes a physical link
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with a base station (BS), i.e., from idle mode to connected mode
[3], [4]. Because the MS and the BS have no knowledge of the
channel state information, they have to try all the beam directions
and find the best one. As can be seen, this beam searching in IA
will results into a long delay. Moreover, IA occurs more often
in mmWave MIMO cellular networks than in the conventional
systems [5]. Thus, the long IA delay for effective beamforming
reduces the feasibility of mmWave MIMO cellular networks.

The IA procedures for the conventional systems are not
suitable for mmWave MIMO cellular networks. In long-term
evolution (LTE) systems, omnidirectional transmission is em-
ployed for IA and beamforming is employed after IA success
[4]. Because the omnidirectional transmission cannot achieve
any array gain [3], [6], [7], IA success can only be achieved for
MSs very close to the BS, i.e., this causes a disparity between the
range that an MS can be detected and the range that an MS can
be served [8]. In mmWave short-range communication systems,
e.g., IEEE 802.11ad standard, hierarchical beam codebooks are
employed. More specifically, wide-coverage low-gain coarse
beams are first employed and the best one is selected. Then,
narrow-coverage high-gain fine beams for the coverage of the
best coarse beam are employed and the best one is selected [3],
[9]. However, the coarse beams cannot achieve a high array gain
and cannot achieve IA success for MSs with long distances to the
BS, i.e., this will also cause a disparity between the detectable
range and the service range in mmWave cellular networks.
Moreover, the collision probability of IA is high with dense
user scenario and the IA mechanism is enhanced in [10].

For mmWave MIMO cellular networks, there are three kinds
of IA procedures, i.e., the sequential search approaches, the
position information (PI)-based approaches, and the channel
estimation approaches. In sequential search approaches, the
basic one is the exhaustive search that sequentially scans all the
fine beams and selects the beam with the highest signal-to-noise
ratio (SNR) [11]. Suppose the BS array can formNBS fine beams
and the MS array can form NMS fine beams, then it will take
NBSNMS scan slots to select the beam in one side. In order to
reduce the IA delay, three kinds of sequential search approaches
have been proposed. The first kind is a hierarchical sequential
search approach proposed in [12], where the MS first usesNMS,C

coarse beams, and then, uses NMS,F fine beams to look for
the highest SNR. This approach costs NBS(NMS,C +NMS,F)
scan slots to select the beam in one side. But the IA delay is
still too long with large NBS. In [13], it is shown that with
the hierarchical codebook in [14] employed at the BS and a
posterior probability-based beam searching method employed at
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the MS, the right beamforming vector can be selected with high
probability in low SNR scenarios. However, this hierarchical
codebook faces the low array gain as those in the IEEE 802.11ad
standard [3], [9]. The second kind is a beam broadening approach
proposed in [15], where only the coarse beams are employed and
the coarse beams are design to achieve a high array gain for a
wide area. The third kind is the semidirectional approach in [16],
where the BS or the MS transmits with beamforming and the
other is omnidirectional. In [16], the coverage performance with
omnidirectional transmission, semidirectional transmission, and
fully directional transmission (i.e., both the BS and the MS are
directional) is compared and the results show the superiority of
fully directional transmission.

In order to reduce the IA delay and at the same time employ
fully-directional transmission, the PI-based approaches have
been proposed, where PI refers to the position information of the
MS and the BS. In [17], the MS sends its position information
to the macro BS with the LTE link, and the macro BS forwards
this information to the micro BS with the backhaul link, then
the micro BS forms an mmWave beam toward the line-of-sight
(LOS) direction of the MS. Similarly, in [4] and [18], the MS
gets the position information of the micro BS and forms a beam
toward the LOS direction of the micro BS. By taking into account
of the position inaccuracy, a greedy approach that scans around
the LOS direction is proposed in [19]. Moreover, the blockage
caused by obstacles is addressed in [20], where the beam in
an IA success is stored for the MS position. When an MS is
close to this position and cannot be detected with the LOS
beam, this stored beam will be used for detection. However,
with blockage and multipaths, the potential beam direction may
differ much from the LOS direction, and the store of the beam
for any position necessitates exhaustive search when the use
of the LOS beam and the stored beam causes an IA failure.
In [21], the authors propose to store the potential beam pairs
for each grid area of the serving area and select the potential
beam pairs according to the position of the MS. In [22], the
beam pairs are learned online with the positions of the MSs in a
hierarchy way. However, they did not take into consideration of
the MS rotation, and did not analyze the IA delay or probability
of miss detection (PMD). In [23], the BS tries one beam in the
database that correspond to the MS position or a few beams that
correspond to the nearby positions, but only one beam is stored
in the database for each position, which increases the PMD. The
train network is considered in [24], where the authors assume
perfect knowledge of the best beam for each position of the MS
and predicts the MS position for selecting the beam. Apparently,
this assumption is not appropriate for the cellular scenario with
fast fading channels. In [25], the authors use machine learning
to determine the beamwidth with the position information and
search all the beams. However, it is a kind of exhaustive search
and still faces the problem of a long delay or a PMD. In [26],
the MS which is a vehicle employs its position and the light
detection and ranging (LIDAR) sensor to select beam pairs for
the BS to use. However, the employment of LIDAR requires to
deploy the LIDAR sensor on the MS, which increases the cost.

Besides, the channel estimation approaches can also be
employed for the IA. In [14], a hierarchical beam codebook

is proposed and a compressive sensing (CS)-based channel
estimation approach is proposed. However, each MS should
have IA separately, which causes a lot of overhead for the case of
a large number of MSs or frequent handovers between cells. To
overcome this disadvantage, [27] proposes a CS-based channel
estimation approach, in which the BS sends time-domain
pilots with random beams to all the MSs, each MS estimates
the channel, and feedbacks the channel information. But the
estimation performance depends on the length of the pilots,
which may cause a long delay for a small estimation error.

Toward the goal of overcoming these shortages, in this arti-
cle, a PI-based beam learning approach is proposed for IA in
mmWave MIMO cellular networks. The motivation of employ-
ing the learning approach is to utilize the sparse scattering of
mmWave to reduce the IA delay. As the mmWave scattering is
sparse and is similar for nearby MSs, the beams can be learned
for the partitioned areas in the cell. Thus, the beams can be
learned efficiently, and the cardinality of the learned beam set
can be small. Thus, a short IA delay and a high IA success
rate can be achieved. In the proposed approach, the serving area
of each micro BS is partitioned into smaller areas according
to the corresponding LOS directions-of-arrival (DOAs), and a
corresponding empty beam set is formed. In the learning state,
the exhaustive search is employed and the success beam will be
incorporated into the beam set corresponding to the position of
the MS. In the nonlearning state, only the learned beam sets are
used for the IA. Moreover, the cardinality of each beam set is
restricted to prevent long IA delay in the nonlearning state. The
main contributions of this article are threefold.

1) A detailed beam learning procedure is presented. This pro-
cedure takes into account of the heterogeneous structure,
the MS rotations, the beam selection, and the learning and
nonlearning periods.

2) An MS classification method based on the sparse scatter-
ing of the mmWave signal is proposed, which partitions the
serving area into smaller areas. For each partitioned area,
the beams are learned and incorporated into a potential
beam set with a cardinality constraint. Thus, the beams can
be learned efficiently and a short IA delay can be achieved.

3) The IA delay is analyzed and compared with other meth-
ods. The results show that the proposed IA procedure can
achieve a short IA delay. Moreover, the PMD lower bound
is derived and the result shows the influence of the system
parameters on the PMD lower bound.

This article is organized as follows. In Section II, the system
model and the assumptions are given. Section III presents the
proposed IA procedure and the beam learning approach. In
Section IV, the IA delay and the PMD are analyzed. Section V
gives the simulation parameters and the numerical results. Fi-
nally, Section VI concludes this article.

Notations: Lower case (upper case) boldface symbols denote
vectors (matrices); 0K represents the K × 1 zero vector; (·)H
denotes the conjugate transpose; [·]j is the jth element of a vec-
tor; | · | is the absolute value of a variable or the cardinality of a
set; i is the imaginary unit;P(·) is the probability of an event; and
z ∼ CN (µ,Σ) means that z is a complex circularly symmetric
Gaussian vector with mean µ and covariance matrix Σ.

Authorized licensed use limited to: Oulu University. Downloaded on October 15,2020 at 05:21:17 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU AND HE: POSITION-AIDED BEAM LEARNING FOR INITIAL ACCESS IN mmWAVE MIMO CELLULAR NETWORKS 3

Fig. 1. Illustration of the system and the angles. The red antennas operate at
LTE frequencies, the beams are generated by URAs that operate at mmWave
frequencies.

II. SYSTEM MODEL

We consider a heterogeneous network that consists of one
macro BS and one micro BS as shown in Fig. 1. The macro
BS communicates with the micro BS and the MS at LTE fre-
quencies, the micro BS communicates with the MS at mmWave
frequencies. There is one MS in this network and this MS is a
mobile phone. In fact, the macro BS serves multiple micro BSs
and MSs. With the positioning of the MSs and the links operate
at LTE frequencies, the macro BS can find the nearest micro BS
for each MS and coordinate the IA process for them. In addition,
it is possible that the MS and the nearest micro BS is completely
blocked so that the IA cannot succeed. Then, the macro BS will
arrange the IA between the MS and another nearby micro BS.
In this article, we only consider the IA between one MS and one
micro BS that is not completely blocked to the considered MS.

The micro BS is equipped with one uniform rectangular array
(URA) and the MS is of one URA. The URAs are working at
mmWave frequencies. The URA on the micro BS serves the
area of 120◦ azimuth angular range in front of it. The URA on
the micro BS is composed of NBS,H antenna elements in the
horizontal direction and NBS,V antenna elements in the vertical
direction, and these antennas are fully connected to one radio
frequency (RF) chain. The URA on the MS is composed of
NMS,H antenna elements in the horizontal direction and NMS,V

antenna elements in the vertical direction, and these antennas are
fully connected to one RF chain. Note that the linear array may
also be employed at the micro BS or the MS, and the system
here can be easily generated to that case. Additionally, when
backhaul links are available, the micro BSs can communicate
with the macro BS through backhaul links, like the distributed
system in [28]. In this case, the LTE links are not necessary.

The channel model in [29] is employed here. The chan-
nel at time t is denoted as Ht ∈ CNBS,HNBS,V×NMS,HNMS,V .
Note that t is the index of the time slot, and each time slot
is of Tper milliseconds (ms). The LOS path may exist or
not, and the non-LOS (NLOS) paths always exist. When both
the LOS path and the NLOS paths exist, the channel from
the MS to the micro BS can be denoted as Ht = HRician

t ∈
CNBS,HNBS,V×NMS,HNMS,V . When only the NLOS paths exist,
the channel from the MS to the micro BS can be denoted asHt =
HRayleigh

t ∈ CNBS,HNBS,V×NMS,HNMS,V . Moreover, we have

HRicean
t =

√
1

KR + 1
βtaBS(φt, θt)a

H
MS(φ̃t, θ̃t)

+

√
KR

KR + 1

Ncl∑
ncl=1

Nray∑
nray=1

βncl,nray,t

× aBS(φncl,nray,t, θncl,nray,t)a
H
MS(φ̃ncl,nray,t, θ̃ncl,nray,t)

(1)

where KR is the Ricean K-factor, βt ∼ CN (0, σ2
t ) and

βncl,nray,t ∼ CN (0, σ2
ncl,nray,t

) are the fading coefficients and
are independent; φt and θt are the azimuth DOA and the eleva-
tion DOA of the LOS path, φ̃t and θ̃t are the azimuth direction-
of-departure (DOD) and the elevation DOD of the LOS path,
φncl,nray,t and θncl,nray,t are the azimuth DOA and the elevation
DOA of the NLOS path of the nray-th path in the ncl-th cluster,
φ̃ncl,nray,t and θ̃ncl,nray,t are the azimuth DOD and the elevation
DOD of the NLOS path of the nray-th path in the ncl-th cluster;
Ncl and Nray are the number of clusters and the number of paths
in each cluster, respectively; aBS(φ, θ) ∈ CNBS,HNBS,V×1 is the
micro BS array steering vector, aMS(φ, θ) ∈ CNMS,HNMS,V×1 is
the MS array steering vector, and their definition is

[aside(φ, θ)](n−1)NS,H+m =
1√

NS,HNS,V

exp

(
i
2π

λ
d

× ((m− 1) sin(φ) sin(θ) + (n− 1) cos(θ))

)
(2)

where n = 1, 2, . . . , NS,V, m = 1, 2, . . . , NS,H, “side” is either
MS or BS, d is the distance between adjacent antennas, and λ is
the wavelength. In addition, we have

HRayleigh
t =

Ncl∑
ncl=1

Nray∑
nray=1

βncl,nray,t

× aBS(φncl,nray,t, θncl,nray,t)a
H
MS(φ̃ncl,nray,t, θ̃ncl,nray,t). (3)

In addition, for the micro BS 0 ≤ θ ≤ π and −π/3 ≤ φ ≤
π/3. Moreover, θ = π/2 means the direction is perpendicular
to the micro BS array, θ = 0 means the direction is right above
the micro BS array, and θ = π means the direction is under the
micro BS array; φ = 0 means that the direction is the normal of
the micro BS array. For clarity, the angles are shown in Fig. 1.
In addition, time division duplex is assumed, which means the
two-way channels are reciprocal.

Note that the DODs of the MS are defined based on the basis
axes on the MS. As the basis axes rotate with the rotation of
the MS, the DODs are related to the rotation of the MS. More
specifically, when the rotation of the MS changes, i.e., the MS
rotates when the time t changes, the DODs change accordingly.
Thus, the consideration of the DODs means that the rotation of
the MS is considered in this article. Moreover, it should be noted
that rotation tracking is not considered. Thus, the DODs vary
over time and are assumed to be unknown. The rotation tracking
is left for future work. Also, it is assumed that the position of the
MS is available at the MS, which can be obtained with resorting
to the positioning system. It is further assumed that the position
information, also termed as PI here, of the MS can be conveyed
to the micro BS with the aid of the macro BS at LTE frequencies.
Thus, the LOS DOAs, i.e.,φt and θt, are known to the micro BS.
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Then, in contrast to the conventional beamforming that
searches in the potential beam set with the channel state informa-
tion, which can be obtained with methods such as the channel
estimation and the DOA estimation, the position information
can be utilized in beam selection in the IA procedure. However,
how to choose beams and design the IA procedure to achieve a
low PMD and a short IA delay is still a question, and will be
investigated in this article.

III. BEAM-LEARNING-BASED IA PROCEDURE

There are several IA procedures based on PI in [4], [17], and
[18]. In these approaches, the macro BS controls both the MS
and the micro BS in the IA procedure, informs the position
information of the MS and the micro BS to each other, and
informs the MS or/and the micro BS to steer the beam towards
the other one. However, the position error and the blockage of the
LOS path deteriorate the beam selection performance. Although
these issues are addressed in [19] and [20], the exhaustive search
is sometimes necessary and results into a long delay.

A. IA Procedure

In contrast to these PI-based IA procedures, we propose to
inform the position of the MS to the nearest micro BS and the
MS should not be in the deaf area of this micro BS,1 and the
micro BS searches in a potential beam set. The main difference
is that the beam of the micro BS is not simply steered toward
the MS but selected from a potential beam set. As long as the
potential beam set is properly built for the LOS path and the
NLOS paths, the near optimal beam can be selected with a short
IA delay. More specifically, the proposed IA procedure is shown
in Fig. 2, and is explained as follows.

1) Synchronization: The MS sends connection request and
its position to the macro BS. The macro BS searches for
the micro BS that is closest to this MS and is able to
serve this MS, i.e., this MS should not be inside the deaf
area of the micro BS. The macro BS sends the position
of the MS to the micro BS, informs the micro BS to send
primary synchronization signal (PSS), and informs the MS
to detect the PSS.

2) PSS detection: The micro BS sends PSS once every Tper

ms. Moreover, the micro BS uses the potential beams in
the set SBS,s(t), where SBS,s(t) is the set that is learned
by the micro BS and used for the MS. Note that s(t)
stands for the group index for the considered MS and is
determined by the position of this MS, and t stands for
the time. Meanwhile, the MS uses beams in the beam set
SMS to receive the PSS. As can be seen, this stage will
take |SBS,s(t)||SMS|Tper ms.

3) Random access (RA) preamble transmission: The MS
transmits an RA preamble once every Tper ms, with the
beam that corresponds to the highest SNR in the PSS
detection stage. The micro BS sequentially uses beams

1The deaf area of one micro BS refers to a circular region around the micro
BS, i.e., the radius is the minimum distance between one MS and the serving
micro BS.

Fig. 2. Illustration of the proposed IA procedure.

in the set SBS,s(t) to receive the RA preamble. If the
highest SNR surpasses the thresholdΘ, the corresponding
beam is selected for transmission. This stage will take
|SBS,s(t)|Tper ms.

4) Connection: If the RA preamble is successfully detected,
further connection request and channel scheduling will be
conducted. Otherwise, an IA failure occurs and the MS
cannot be connected to the micro BS.

B. Beam Learning Problem

From the aforementioned comparison, we can see that the
proposed PI-based IA procedure can achieve a short delay and
a low PMD, provided that the potential beam set SBS,s(t) is
properly constructed. Moreover, a proper beam set should satisfy
the following two constraints.

1) Cardinality: The cardinality should satisfy |SBS,s(t)| �
|SBS|. More specifically, we assume the beam set of the
micro BS is defined as

SBS =

{
aBS(φ̄q, θ̄q′)|φ̄q = −π/3 +

q − 1

2
QB
2

2π/3

θ̄q′ =
q′ − 1

2
QB
2

π, q, q′ = 1, 2, . . . , 2
QB
2

}
(4)

where QB is the number of bits that control the phases on
the micro BS, and the phase ranges are set according to
the serving area of each URA on the micro BS, as shown
in the second paragraph of this section. As |SBS| = 2QB ,
we have |SBS,s(t)| � 2QB . Moreover, the potential beam
set is a subset of the beam set, i.e., SBS,s(t) ⊂ SBS. Here,
we restrict the cardinality as |SBS,s(t)| = S ∀s(t).
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Fig. 3. Illustration of the IA and beam learning period.

2) Beamforming gain: If the beams that can achieve a high
gain are not in SBS,s(t), the SNRs in the RA transmission
stage will not be high enough for detection, then the PMD
will be high. Thus, the beams that may achieve a high gain
should be in SBS,s(t). Moreover, as the micro BS only has
the position information, the beams in SBS,s(t) should be
learned before the IA procedure.

In this article, the micro BS conducts beam learning pe-
riodically and exploits exhaustive-search-based approach for
IA in the beam learning stage. More specifically, as shown
in Fig. 3, in every period of Tconst ms, the micro BS first
conducts exhaustive-search-based IA for the MS with request,
and conducts beam learning at the same time, which takesT0 ms.
Then, the micro BS conducts the proposed IA for the MS with
request, which takes Tconst − T0 ms. In this article, we assume
that the environment changes slowly such that Tconst 
 T0.
Thus, the IA delay is mainly determined by the proposed IA,
and we will take the delay of the proposed IA as the delay of
the system with the proposed IA. According to the illustrations
at the last subsection and the beginning of this subsection, we
know that the proposed IA will take Tpro = (|SMS|+ 1)STper

ms.
In the beam learning mode, the micro BS transmits PSS with

all the beams in SBS, which is the beam set at the micro BS, and
the MS receives with all the beams in SMS, which is the beam
set at the MS, and is defined as

SMS =

{
aMS(φ̌p, θ̌p′)|φ̌p = −π/2 +

p− 1

2
QM
2

π

θ̌p′ =
p′ − 1

2
QM
2

π, p, p′ = 1, 2, . . . , 2
QM
2

}
(5)

where QM is the number of bits that control the phases on the
MS. Then, the MS transmits RA preamble with the beam in
SMS that corresponds to the highest SNR, and the micro BS
receives with all the beams in SBS.With the maximum SNR and
the position of the MS, the micro BS learns the potential beam
sets for MSs in its serving area.

At time t, the received RA signal at the micro BS can be
expressed as

zt = aHBS(φBS,t, θBS,t)HtaMS(φMS,t, θMS,t)st

+ aHBS(φBS,t, θBS,t)nt (6)

where st is the transmitted symbol, nt ∈ CNBS,HNBS,V×1

is the received noise and this vector satisfies nt ∼
CN (0NBS,HNBS,V

, σ2
nINBS,HNBS,V

); aBS(φBS,t, θBS,t) ∈ SBS is
the BS-side beam, aMS(φMS,t, θMS,t) ∈ SMS is the MS-side
beam. Moreover, aMS(φMS,t, θMS,t) is selected by choosing the

beam corresponding to the maximum SNR when the micro BS
transmits to the MS in the PSS stage.

Then, the corresponding SNR at the micro BS is

γt =
|aHBS(φBS,t, θBS,t)HtaMS(φMS,t, θMS,t)st|2

|aHBS(φBS,t, θBS,t)nt|2 . (7)

Assume that the considered beam learning starts at t = 0, and
the beam learning period T0 can be evenly divided into N times
of the exhaustive-search-based IA procedure. Then, all the SNRs
in the nth procedure can be written into one set as

Yn = {γt|aBS(φBS,t, θBS,t) ∈ SBS,aMS(φMS,t, θMS,t)

∈ SMS, (n− 1)T0/Tper/N + 1 ≤ t ≤ nT0/Tper/N}. (8)

The problem investigated here is how to design SBS,s(t)

according to the positions of the MSs and the SNR sets Yn, n =
1, 2, . . . , N .

C. MS Classification-Based Beam Learning

In this subsection, we will first classify the MS according to
its position. Then, we will propose to learn the beams for each
group of MSs based on the SNR.

1) MS Classification: When the LOS path exists, the chan-
nels corresponding to the LOS paths are highly correlated for
MSs with close LOS DOAs. Moreover, the scattering environ-
ments are likely to be similar for neighboring MSs, the channels
corresponding to the NLOS paths are also highly correlated for
MSs with close LOS DOAs. Thus, we can simply classify MSs
with close LOS DOAs as one group, e.g., the sth group, and
construct a potential beam set for the MSs in this group, i.e.,
SBS,s(t). Note that the LOS DOA can be calculated by the micro
BS with the location information of the MS.

More specifically, by extracting the LOS part in (1), we have

HLOS
t =

√
1

KR + 1
βtaBS(φt, θt)a

H
MS(φ̃t, θ̃t). (9)

Substituting this equation into (6), the signal part in the received
signal can be denoted as

yt = aHBS(φBS,t, θBS,t)H
LOS
t aMS(φMS,t, θMS,t)

=

√
1

KR + 1
βta

H
BS(φBS,t, θBS,t)aBS(φt, θt)

× aHMS(φ̃t, θ̃t)aMS(φMS,t, θMS,t).

Since the correlation |aHBS(φBS,t, θBS,t)aBS(φt, θt)| generally
decreases with the increase of |φ− φt| or |θ − θt|, we can
classify MSs according to these angle differences. We define
the sq,q′ th group as MSs with the LOS DOAs that satisfy

(φt, θt) ∈ Gsq,q′ = {(φ, θ)||φ̄q − φ| ≤ |φ̄q̃ − φ|
|θ̄q′ − θ| ≤ |θ̄q̃′ − θ| ∀q̃, q̃′} (10)

where sq,q′ = 2
QB
2 (q − 1) + q′.

2) Beam Learning: Consider the nth learning procedure, at
time t, the SNR of the received signal in (8) is compared with
the detection thresholdΘ. Additionally, the detection hypotheses
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Algorithm 1: MS Classification-Based Beam Learning.
Input: Positions of the MSs in the nth IA procedure for

beam learning, n = 1, 2, . . . , N
Output: SBS,s(t) ∀s(t)
Initialize: SBS,s(t) = ∅ ∀s(t)
1: For n = 1 → N
2: Calculate the LOS DOAs φt, θt according to the

position of the MS
3: Classify the MS into each group according to (10)
4: Detect with (11) and (12)
5: If H0 holds and |SBS,s(t�n)

| < S
6: Calculate the beam vector as (13)
7: Update the beam set SBS,s(t�n)

to (14)
8: End
9: End

are

H0 : γt ≥ Θ, ∃γt ∈ Yn (11)

H1 : γt < Θ ∀γt ∈ Yn (12)

where H0 represents the signal is present, and H1 represents
the signal is absent. If H0 holds, the time corresponding to the
maximum γt is denoted as

t�n = argmax
t

γt ∈ Yn. (13)

Based on the definition, this MS belongs to the s(t)th group
according to the LOS DOAs, cf., (10). If the potential beam
set is not full, i.e., |SBS,s(t�n)

| < S, this beam is added into the
potential beam set, and the potential beam set is updated to

SBS,s(t�n)
∪ {aBS(φBS,t�n , θBS,t�n)}. (14)

More specifically, the proposed MS classification-based beam
learning algorithm is presented in Algorithm 1.

IV. PERFORMANCE ANALYSIS AND COMPARISON

A. IA Procedure Comparison

For clarity, we present the brief stages in the other two
PI-based IA procedures, one exhaustive-search-based IA pro-
cedure, and two iterative-search-based IA procedures in Table I.
Meanwhile, the IA delays, i.e., the times taken by the PSS and
RA stages of these procedures, are also presented. In addition,
the proposed PI-based IA procedure is also shown for compari-
son. For the proposed PI based IA procedure, if S � |SBS|, the
IA delay is much shorter than that of the exhaustive search in
[5] and may be comparable to that of the other two PI-based
approaches. With the simulation parameters in Section V-A,
the IA delays of the partial procedures are listed in Table II
here. More specifically, the simulation parameters are S = 4,
Tper = 5 ms, |SMS| = 2QM = 16, and |SBS| = 2QB = 64. Be-
sides, the delays are not related to the scattering environment
such as LOS or NLOS. As can be seen, the IA delay of the
proposed PI procedure is comparable to that of other PI-based
IA procedures and is much shorter than the delay of the exhaus-
tive search procedure. Moreover, if the set SBS,s(t) is properly

constructed, the PMD of the proposed PI-based IA procedure
can get close to that of the exhaustive approach, and is superior
to that of the other two PI-based IA approaches when the LOS
path does not exist. For the two iterative approaches, their
delays depend on the parametersG, S̃, andÑ . For example, with
Ñ = 10, S̃ = 2, and G = 7, the delay of the iterative method in
[14] is 1.12 s, and the delay of the iterative method in [13] is
0.8 s. In this case, the delay of the proposed method is shorter
than that of the iterative methods. In the case that there is no MS
rotation, the LOS DODs are invariant, and the NLOS DODs
change more slowly than the case with MS rotation. Then, the
MS beam selection is not necessary in each IA procedure, i.e., we
can use the same MS beam in several IA procedures. Thus, the
effect of the MS rotation is that the IA delay should be longer.
In the case that the DODs and DOAs of the partial paths are
available in the beam learning stage, e.g., the MS is equipped
with LIDAR, the micro BS and the MS can use both the position
information and the angle information to learn partial beams that
correspond to these angles. Thus, the beam learning can be more
efficient.

Despite the IA delay, we can also compare the computational
complexities. In fact, for all the approaches in Table I, we can
see that there is negligible computational complexity. This is
because the beam steering is employed with the analog phase
shifts, and the sending of the positions or comparing power is of
negligible computational complexity. However, for the support
vector machine (SVM)-based method from [30] and [31], the
potential beam set should be found with calculations of the
MS position. Since the selection metric should be calculated
for all the micro BS beams and with all the learning points.
When the number of learning trials is N , the same as the
proposed approach, the computational complexity is on the order
of 2QBN .

B. PMD Analysis

In this subsection, we first analyze the PMD in the single path
case, and then, analyze the asymptotic PMD in the multipath
case.

At time t, the received RA signal at the micro BS can be
expressed as (6), the corresponding SNR at the micro BS is (7).
Here, we analyze the PMD in the RA transmission stage of the
proposed IA procedure, in which aBS(φBS,t, θBS,t) ∈ SBS,s(t).

Lemma 1: Assume there is only one path in the channel with

Ht = βtaBS(φt, θt)a
H
MS(φ̃t, θ̃t) (15)

where βt ∼ CN (0, σ2
t ), and the proposed IA starts at time T1,

the PMD of the proposed IA satisfies

P(γt ≤ Θ ∀T1 ≤ t ≤ T1 + |SMS|S − 1)

≥
T1+|SMS|S−1∏

t=T1

∫ ∞

0

h(y)(1− e−uty/2)dy (16)

whereut=Θσ2
n/(σ

2
t |r̃tst|2), r̃t=r(f(φ̃t,θ̃t,φMS,t,θMS,t), NMS,H)

r(g(θ̃t, θMS,t), NMS,V), r(x,N) = |sin(xN/2)/sin(x/2)|, and
h(x) = 1/2e−x/2.

Proof: Refer to Appendix A. �

Authorized licensed use limited to: Oulu University. Downloaded on October 15,2020 at 05:21:17 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HU AND HE: POSITION-AIDED BEAM LEARNING FOR INITIAL ACCESS IN mmWAVE MIMO CELLULAR NETWORKS 7

TABLE I
BRIEF STAGES AND DELAYS OF IA PROCEDURES

aBecause of the finite choices of analog beamforming vector, the beam for the LOS
direction is the one that is mostly correlated to the array steering vector corresponding
to the LOS path.
bThe procedure therein is modified in two aspects. First, the MS should scan all possible
directions. Second, the beamwidth at the micro BS is fixed.
cIn case |SBS,s(t)| < S after beam leaning, the selected beam in SBS,s(t) is repeated
in the IA to make |SBS,s(t)| = S.

TABLE II
TYPICAL IA DELAYS

As can be seen from Lemma 1, with the increase of the
signal power or the decrease of the detection threshold, the PMD
decreases. Then, we will analyze the PMD in the multipath case.

Lemma 2: Denote the existence of the LOS path as lt = 1
and the absence of the LOS path as lt = 0. Then, the PMD is

TABLE III
SIMULATION PARAMETERS

lower bounded as

P(γt ≤ Θ ∀T1 ≤ t ≤ T1 + |SMS|S − 1)

≥
T1+|SMS|S−1∏

t=T1

(∫ ∞

0

h(y)(1− e−wty/2)dylt

+

∫ ∞

0

h(y)(1− e−vty/2)dy(1− lt)

)
(17)

wherevt=Θσ2
n/(

∑Ncl

ncl=1

∑Nray

nray=1 σ
2
ncl,nray,t

|r̃ncl,nray,t|2|st|2)

wt = Θσ2
n/(KR/(KR + 1)

∑Ncl

ncl=1

∑Nray

nray=1 σ
2
ncl,nray,t

×|r̃ncl,nray,t|2|st|2 + 1/(KR + 1)σ2
t |r̃t|2|st|2).

Proof: Refer to Appendix B. �
As can be seen from Lemma 2, with the increase of the signal

power or the decrease of the detection threshold, the PMD lower
bound decreases. Moreover, when the number of clusters Ncl

increases, the PMD lower bound will also decrease. This means
that rich scattering is helpful for IA.

V. NUMERICAL RESULTS

A. Simulation Parameters

The parameters in the urban microcell (street canyon) scenario
of [29] are employed for the system parameters and are shown
in Table III. The LOS probability, i.e., the probability of (1), is
denoted as

PrLOS,t =

⎧⎪⎨
⎪⎩

1, d2D,t ≤ 10 m
18

d2D,t
+ exp (−d2D,t

36 )

×(1− 18
d2D,t

), 10 m < d2D,t

(18)

where d2D,t is the horizontal distance between the MS and the
micro BS. Thus, the NLOS probability, i.e., the probability of
(3), is 1− PrLOS,t. The micro BS antenna height is denoted as
hBS. The MS height is denoted asht and is uniformly distributed
in the range [1.5, 22.5] m. The MS distributes uniformly in the
horizontal annulus of inner radius rmin and outer radius rmax.
Additionally, the micro BS is in the center of the annulus. The
carrier frequency is denoted as fc. The micro BS transmission
power and the MS transmission power are both denoted asPT =
s2t , and the noise power is denoted as Pn = σ2

n.
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The antennas on the micro BS and the MS are omnidirectional.
For the LOS path, σt below (1) accounts the path loss PLt and
the shadow fading SFt as

10 log10(σt) = −PLt − SFt (19)

where

PLt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

32.4 + 21 log10(dt) + 20 log10(fc)

10 m ≤ d2D,t ≤ Dt

32.4 + 40 log10(dt) + 20 log10(fc)

−9.5 log10(D
2
t + (hBS − ht)

2)

Dt ≤ d2D,t ≤ 5 km

dt is the distance between the MS and the micro BS, and Dt =
4(hBS − 1)(ht − 1)fc/c is the breakpoint distance, c = 3.0×
108 m/s. For the shadow fading, SFt is Gaussian distributed with
zero mean and variance σ2

SF.
For the NLOS path, σncl,nray,t in the following (1) accounts

the path loss PLncl,t and the shadow fading SFncl,t as

10 log10(σncl,nray,t) = −PL′
t − SF′

ncl,t
(20)

where

PL′
t = 32.4 + 31.9 log10(dt) + 20 log10(fc). (21)

SF′
ncl,t

is Gaussian distributed with zero mean and variance

σ′
SF

2. The azimuth DOAs of the NLOS paths are generated as

φncl,nray,t = φncl,t + cASAαncl,nray,t (22)

whereφncl,t is the mean of the azimuth DOA in thenclth cluster;
cASA is the cluster-wise RMS DOA spread, αncl,nray,t is the ray
offset DOA defined in [29, Table 7.5-3]. Moreover, the multipath
DOAs are in a pattern as follows. Denote the position of the MS
at time t in the planer axes as x, y. For x ≤ (rmin + rmax)/2 and
y ≥ 0, −60◦ ≤ φncl,t ≤ −56◦; for x ≤ (rmin + rmax)/2 and
y < 0, −30◦ ≤ φncl,t ≤ −26◦; for x > (rmin + rmax)/2 and
y ≥ 0, 26◦ ≤ φncl,t ≤ 30◦; and for x > (rmin + rmax)/2 and
y < 0, 56◦ ≤ φncl,t ≤ 60◦. Additionally, the elevation DOAs,
the azimuth DODs, and the elevation DODs of the NLOS paths
are generated in the same way as that for the azimuth DOAs.
In Section V-B, we first simulate the extreme case that the LOS
probability is 1 and there is no multipath. This corresponds to the
scenario that there is no reflecting surfaces and the MS is in the
visible region of the micro BS. In Section V-C, we simulate the
normal case that the LOS appears randomly with a probability in
(18) and there are multipaths. This corresponds to the scenario
that there are random blockages and many reflecting surfaces.

B. Results With Single LOS Path

In this subsection, we set the LOS probability as PrLOS,t=1
and the number of multipaths as Ncl = 0. We simulate the
relation between the PMD with the potential beam cardinalityS.
Moreover, the PMD lower bound in (16) is also simulated. The
results are shown in Fig. 4. In this figure, the PMD decreases
with the increase of S. This is because the BS array can steer the
beam direction in a more precise way with the increase of S, and
correspondingly, the array gain achieved is higher. The PMD of
the proposed method is close to the lower bound in (16). This

Fig. 4. PMD versus the potential beam cardinality S.

Fig. 5. PMD versus the outer distance between the MS and the micro BS
rmax.

result shows that the derived lower bound is effective. Also, the
PMD with the maximal array gain is also simulated, which is
denoted as “Perfect.” The PMD with the maximal array gain is
the almost the same as the lower bound, which also shows the
effectiveness of the derived lower bound.

C. Results With Multipaths

In this subsection, we compare the PMDs of various meth-
ods in a multipath scenario. The compared methods include
the PI-based method in [4], the PI-based method in [19], the
exhaustive search method in [5], as shown in Table I. Moreover,
we also simulated the SVM-based method from [30] and [31].
Note that the slots with exhaustive searches for beam learning
in the proposed PI method and the SVM based method are the
same. Moreover, the cardinality of the potential beam set used
in the proposed PI method is the same as that for the maximal
number of beams in the SVM method. Thus, we keep fairness
between the proposed PI method and the SVM method. Note
that the SVM method is also based on the position information
available, is thus a PI-based method. Moreover, the PMD lower
bound in (17) is also simulated.

In Fig. 5, the outer radius of the cell area increases, and all the
PMDs increase at the same time. The reason is that the distances
between the MSs and the micro BS increase and the propagation
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Fig. 6. PMD versus the detection threshold Θ.

Fig. 7. PMD versus the number of clusters.

losses increase simultaneously. The proposed PI method per-
forms better than other methods except the exhaustive search
method in the range [60 100] m. This result shows that the
proposed method can achieve a higher PMD than other PI-based
methods. Meanwhile, the proposed PI method performs similar
as other methods except the exhaustive search method when the
outer radius is 100 m. This is because most of the MSs are not
in the serving area of the micro BS and almost all the beams are
not effective, which can be verified by the small gap between
these PI methods and the exhaustive search method.

In Fig. 6, the detection threshold increases, and all the PMDs
increase at the same time. The reason is that a higher detection
threshold requires a higher SNR for an IA success. The proposed
PI method performs better than other PI methods, especially
in the low detection threshold regime. Meanwhile, in all the
simulations, the PMD lower bound is lower than the PMDs and
changes in the same rate as the PMDs of these methods. These
results verify the effectiveness of the derived lower bound.

In Fig. 7, the PMD versus the number of clusters is shown.
As can be seen, the PMDs decrease with the increase of the
number of clusters. This is because the probability that the beam
can achieve a high gain increases with the number of clusters.
Meanwhile, it can be seen that the PMD of the proposed method
is lower than other PI-based methods.

In the aforementioned results, we can see that the PMD bound
is not quite close to the PMD of the proposed method. However,

Fig. 8. Spectral efficiency versus the outer distance between the MS and the
micro BS rmax.

the PMD bound is the same as that of the “Perfect” beam in
the single path scenario and is close to that of the exhaustive
search. The reason is as follows. We use the maximum micro
BS array gain to derive the PMD bound, the proposed method
cannot always select the best beam, and the best beam that is
selected by the exhaustive cannot achieve the maximum micro
BS array gain for the limit value of the BS beam cardinality
|SBS|. Additionally, the “Perfect” beam is in fact the case with
maximum micro BS array gain achieved.

In Fig. 8, we compare the spectral efficiency when the outer
radius of the cell area increases. Note the spectral efficiency is
calculated with the SNR in (7), and it is only calculated when
the detection succeed. It can be seen that the spectral efficiency
decreases with the increase of the outer distance. This is because
the path loss increases when the outer distance increases. More-
over, it can be seen that the spectral efficiency of the proposed
approach is higher than that of other approaches except the
exhaustive search. This result also shows the superiority of the
proposed approach.

VI. CONCLUSION

In this article, the beam selection problem in the IA state
of mmWave MIMO cellular networks is investigated. Based
on the sparse scattering property of mmWave communication,
the serving area of one BS is partitioned into smaller areas. By
exploiting the position information of the MS and the selected
beams in the learning stage, the potential beams are learned.
In the nonlearning stage, the learning results are used for beam
selection. The analysis shows the lower bound of the proposed
method, and the simulation shows that the proposed beam se-
lection method can achieve a lower PMD than other PI-based
methods. Meanwhile, the IA delay of the proposed method is
comparable to other PI-based methods and is more practical for
implementation than the exhaustive search method.

APPENDIX A
PROOF OF LEMMA 1

According to Fig. 3, the proposed method will use the ex-
haustive search and the proposed IA that uses the learned
beams. Following the analysis in Section III-B, the received
signal expression and the SNR expression of the proposed IA
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are the same as that of the exhaustive search in (6) and (7).
The difference is that in the exhaustive search, the BS beam
satisfies aBS(φBS,t, θBS,t) ∈ SBS, while in the proposed IA,
the beam satisfiesaBS(φBS,t, θBS,t) ∈ SBS,s(t). Assume that the
proposed IA starts at time T1, the PMD of the proposed IA is

P(γt ≤ Θ ∀T1 ≤ t ≤ T1 + |SMS|S − 1)

=

T1+|SMS|S−1∏
t=T1

P(γt ≤ Θ). (23)

Substituting (15) into (6) yields

zt = βta
H
BS(φBS,t, θBS,t)aBS(φt, θt)a

H
MS(φ̃t, θ̃t)

×aMS(φMS,t, θMS,t)st + aHBS(φBS,t, θBS,t)nt

= βt
1

NBS,HNBS,V

1− exp(iNBS,Hf(φt, θt, φBS,t, θBS,t))

1− exp(if(φt, θt, φBS,t, θBS,t))

×1− exp(iNBS,Vg(θt, θBS,t))

1− exp(ig(θt, θBS,t))

× 1

NMS,HNMS,V

1− exp(iNMS,Hf(φ̃t, θ̃t, φMS,t, θMS,t))

1− exp(if(φ̃t, θ̃t, φMS,t, θMS,t))

×1− exp(iNMS,Vg(θ̃t, θMS,t))

1− exp(ig(θ̃t, θMS,t))
st + aHBS(φBS,t, θBS,t)nt

where

f(φt, θt, φBS,t, θBS,t) =
2π
λ
d(sin(φt) sin(θt)

− sin(φBS,t) sin(θBS,t))

g(θt, θBS,t) =
2π
λ
d(cos(θt)− cos(θBS,t)).

By applying

1

N

∣∣∣∣1− exp(ixN)

1− exp(ix)

∣∣∣∣ = 1

N

∣∣∣∣ sin(xN/2)

sin(x/2)

∣∣∣∣ � r(x,N) (24)

to the aforementioned equation, we have

zt = βtr(g(θt, θBS,t), NBS,V)

× r(f(φt, θt, φBS,t, θBS,t), NBS,H)

× r(f(φ̃t, θ̃t, φMS,t, θMS,t), NMS,H)

× r(g(θ̃t, θMS,t), NMS,V)st + aHBS(φBS,t, θBS,t)nt

and the corresponding SNR as

γt =
|zt − aHBS(φBS,t, θBS,t)nt|2

|aHBS(φBS,t, θBS,t)nt|2 . (25)

Since r(x,N) ≤ 1, we have the upper bound of the SNR as

γt ≤ γb
t =

|βtr̃tst|2
|aHBS(φBS,t, θBS,t)nt|2 (26)

where

r̃t = r(f(φ̃t, θ̃t, φMS,t, θMS,t), NMS,H)r(g(θ̃t, θMS,t), NMS,V).

Then, we have

P(γt ≤ Θ) ≥ P(γb
t ≤ Θ)

= P
(

2|βt|2
σ2
t

− 2Θ|aH
BS(φBS,t,θBS,t)nt|2

σ2
t |r̃tst|2 ≤ 0

)
.

Since βt ∼ CN (0, σ2
t ) and nt ∼ CN (0NBS,HNBS,V

,
σ2
nINBS,HNBS,V

), 2|βt|2/σ2
t is Chi-square distributed with two

degrees of freedom, and 2|aHBS(φ̄q, θ̄q′)nt|2/σ2
n is Chi-square

distributed with two degrees of freedom. Thus, we have

P(γb
t ≤ Θ) =

∫ ∞

0

h(y)

∫ uty

0

h(x)dxdy

=

∫ ∞

0

h(y)(1− e−uty/2)dy

where ut = Θσ2
n/(σ

2
t |r̃tst|2), h(x) = 1/2e−x/2 is the proba-

bility distribution function of a Chi-square distributed variable
with two degrees of freedom. Thus, we have (16).

APPENDIX B
PROOF OF LEMMA 2

Since r(x,N) ≤ 1, with the NLOS multipath channel model
in (3), we have

|aHBS(φBS,t, θBS,t)HtaMS(φMS,t, θMS,t)|

≤
Ncl∑

ncl=1

Nray∑
nray=1

βncl,nray,tr̃ncl,nray,t

where

r̃ncl,nray,t = r(g(θ̃ncl,nray,t, θMS,t), NMS,V)

× r(f(φ̃ncl,nray,t, θ̃ncl,nray,t, φMS,t, θMS,t), NMS,H).

Correspondingly, we have

γt ≤
|∑Ncl

ncl=1

∑Nray

nray=1 βncl,nray,tr̃ncl,nray,tst|2
|aHBS(φ̄q, θ̄q′)nt|2

.

Because βncl,nray,t ∼ CN (0, σ2
ncl,nray,t

) and is independent of
each other, we have

Ncl∑
ncl=1

Nray∑
nray=1

βncl,nray,tr̃ncl,nray,t

∼ CN
⎛
⎝0,

Ncl∑
ncl=1

Nray∑
nray=1

σ2
ncl,nray,t

|r̃ncl,nray,t|2
⎞
⎠ .

Then, similar to the derivations in the proof of Lemma 1, we
have

P(γt ≤ Θ, ∀T1 ≤ t ≤ T1 + |SMS|S − 1)

≥
T1+|SMS|S−1∏

t=T1

∫ ∞

0

h(y)(1− e−vty/2)dy

where

vt = Θσ2
n

/⎛
⎝ Ncl∑

ncl=1

Nray∑
nray=1

σ2
ncl,nray,t

|r̃ncl,nray,t|2|st|2
⎞
⎠ .
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Similarly, for the case with both the LOS and NLOS paths,
the PMD satisfies

P(γt ≤ Θ, ∀T1 ≤ t ≤ T1 + |SMS|S − 1)

≥
T1+|SMS|S−1∏

t=T1

∫ ∞

0

h(y)(1− e−wty/2)dy

where

wt = Θσ2
n/(KR/(KR + 1)

Ncl∑
ncl=1

Nray∑
nray=1

σ2
ncl,nray,t

× |r̃ncl,nray,t|2|st|2 + 1/(KR + 1)σ2
t |r̃t|2|st|2).

Then, the lower bound of the PMD is (17).
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