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Abstract
Introduction: There has been a growing effort to characterize the time-varying 
functional connectivity of resting state (RS) fMRI brain networks (RSNs). Although 
voxel-wise connectivity studies have examined different sliding window lengths, 
nonsequential volume-wise approaches have been less common.
Methods: Inspired by earlier co-activation pattern (CAP) studies, we applied hier-
archical clustering (HC) to classify the image volumes of the RS-fMRI data on 28 
adolescents with autism spectrum disorder (ASD) and their 27 typically developing 
(TD) controls. We compared the distribution of the ASD and TD groups' volumes in 
CAPs as well as their voxel-wise means. For simplification purposes, we conducted a 
group independent component analysis to extract 14 major RSNs. The RSNs' average 
z-scores enabled us to meaningfully regroup the RSNs and estimate the percentage 
of voxels within each RSN for which there was a significant group difference. These 
results were jointly interpreted to find global group-specific patterns.
Results: We found similar brain state proportions in 58 CAPs (clustering interval from 
2 to 30). However, in many CAPs, the voxel-wise means differed significantly within 
a matrix of 14 RSNs. The rest-activated default mode-positive and default mode-
negative brain state properties vary considerably in both groups over time. This divi-
sion was seen clearly when the volumes were partitioned into two CAPs and then 
further examined along the HC dendrogram of the diversifying brain CAPs. The ASD 
group network activations followed a more heterogeneous distribution and some 
networks maintained higher baselines; throughout the brain deactivation state, the 
ASD participants had reduced deactivation in 12/14 networks. During default mode-
negative CAPs, the ASD group showed simultaneous visual network and either dor-
sal attention or default mode network overactivation.
Conclusion: Nonsequential volume gathering into CAPs and the comparison of voxel-
wise signal changes provide a complementary perspective to connectivity and an 
alternative to sliding window analysis.
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1  | INTRODUC TION

According to the latest draft of WHO's International Classification 
of Diseases, autism spectrum disorder (ASD) is usually a perva-
sive but contextually varying feature of an individual's functioning 
observed in all settings: for example, personal, family, social, ed-
ucational, and occupational interactions. ASD is characterized by 
persistent deficits in one's ability to initiate and sustain reciprocal 
social interaction and social communication, as well as by a range 
of restricted, repetitive, and inflexible patterns of behavior and 
interests (World Health Organization,  2018). Subjects with ASD 
prefer to focus on only a restricted number of repeating and con-
trollable sensory information instead of the subtle and irregular 
cues of multisensory information needed in social communication. 
The etiology and expression of ASD are highly diverse, and the re-
cent changes in the diagnostic criteria from categorical to dimen-
sional reflect this growing understanding (Betancur,  2011; Lord 
& Jones,  2012; Mattila et  al.,  2011; Park et  al.,  2016; Varghese 
et al., 2017; Waye & Cheng, 2017).

Resting state (RS) functional magnetic resonance imaging (fMRI) 
examines spontaneous brain function by using blood oxygen level-
dependent (BOLD) contrast in the absence of a task. Traditionally, 
RS-fMRI analysis has relied on a temporally stationary functional 
connectivity (FC) measure, in which the correlations between the 
voxel time series of brain regions are examined as unchanging over 
time. Previously, ASD has been affiliated with altered RS intrinsic 
FC, and the literature supports a diffuse pattern of both, rather than 
only under- or overconnectivity. Even a recent, thorough review of 
RS FC in ASD with nearly 70 analysis citations found it challeng-
ing to draw direct conclusions about the nature of FC in ASD (Hull 
et al., 2017). Since the seminal work of Chang and Glover (2010), the 
last decade has seen a growing trend and a deliberate effort to char-
acterize dynamic changes in brain connectivity as a function of time, 
dynamic FC (dFC) or time-varying FC (TVFC). The most widely used 
temporal sliding window approaches to between-voxel correlations 
have demonstrated that FC in the brain has time-varying properties 
(Allen et  al.,  2014; Chang & Glover,  2010; Hutchison et  al.,  2013; 
Kiviniemi et al., 2011; Lurie et al., 2020; Preti et al., 2017). It has been 
suggested that greater intraindividual dynamic variance is a potential 
biomarker of not only ASD but also mental disorders such as schizo-
phrenia and attention deficit hyperactivity disorder and that it may 
underlie confusing static FC measures (Chen et al., 2017; Falahpour 
et al., 2016; Zhang et al., 2016). It is also important to recognize that 
the same static FC pattern could result from many different combi-
nations or sequences of shorter spatiotemporal patterns of underly-
ing TVFC (Lurie et al., 2020).

Of the existing TVFC methods, the co-activation pattern (CAP) 
approach deviates from conventional time-domain approaches by 

regarding single fMRI volumes at individual time points, instead of 
fMRI time courses, as the basic units of analysis (Liu et  al., 2018). 
Hindriks et al. (2016) suggest that CAPs could be the building blocks 
of spontaneous BOLD activity and that dFC is a reflection of these. 
As Tagliazucchi et al.  (2016) state: "Instead of asking whether two 
voxels are engaged in synchronized fluctuations over a relatively long 
period of time, the question is shifted to whether two voxels become 
jointly activated (i.e., present high activity above their baseline lev-
els) and what are the timings and properties of these co-activations." 
The beginning of the development of CAP analysis can be traced to 
when Tagliazucchi et al. (2012) established their point process anal-
ysis and observed that the timing of high-activity events in BOLD 
signals allows the reconstruction of major RS networks (RSNs). Soon 
after, Liu and Duyn (2013) applied K-means clustering to arrange sin-
gle fMRI volumes into groups and averaged this data group-wise to 
produce distinct spatial CAPs. Related studies have been conducted 
by other groups using CAP (Bolton et al., 2020; Chen et al., 2015; 
Di Perri et al., 2017; Zhuang et al., 2018; recent CAP review by Liu 
et al., 2018) or other terms such as coincident threshold crossings 
(Hudetz et al., 2015) and modes (Li et al., 2015).

Constellations of different intrinsic connectivity network (ICN) 
patterns have previously been referred to as brain states (Allen 
et al., 2014). Although in our study, CAPs are not calculated as time-
varying FC matrix representations as illustrated by Allen et al. (2014), 
they can be seen as representing the same brain states, as a timeline 
of various spatiotemporal clusters of (de)activation patterns of inde-
pendent RSNs (Preti et al. 2017). These brain states are visualized as 
a mean image of multiple volumes (Figure 1) in which RSNs (Figure 2) 
are in sufficiently similar phases of activation as determined by a 
clustering algorithm. If the number of states or CAPs depicting the 
same data is increased, the amount of time for which one CAP is 
represented grows proportionately shorter. In CAP analysis, the 
gathered volumes do not have to be sequential, and voxel signal lev-
els per se can be evaluated. These two issues present the major dif-
ferences from most sliding window TVFC analyses (Liu et al., 2018; 
Lurie et al., 2020; Preti et al., 2017).

From the CAP methods, the following can be distinguished 1) 
seed-based methods (e.g., Amico et al., 2014; Chen et al., 2015; Di 
Perri et al., 2017; Liu & Duyn, 2013), in which the volumes for anal-
ysis are selected via predefined seed voxel or region thresholds and 
in which interactions with the rest of the brain are probed, and 2) 
seed-free analyses, such as ours, in which the clustering algorithm 
is applied to all volumes in an entirely data-driven way (e.g., Bolton 
et al., 2020; Liu et al., 2013, 2018). Another relevant distinction be-
tween studies is that most earlier studies have focused on temporal 
properties or CAP metrics, such as the occurrence rate, dwell time, 
and transition probability (e.g., Bolton et al., 2020; Chen et al., 2015), 
whereas the most salient findings in our study concentrate on the 
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spatial differences across the groups (also see Amico et al., 2014; Di 
Perri et al., 2017).

In CAP analysis, BOLD fMRI volumes are described by their 
voxels' signal amplitudes, and their relation to other volumes can 
be defined via a suitable function, such as the Pearson correlation 
coefficient (Chen et al., 2015; Di Perri et al., 2017; Li et al., 2015; 
Liu & Duyn, 2013; Yao et al., 2016) or cosine distance (Karahanoğlu 
& Van De Ville, 2015). fMRI studies have utilized hierarchical clus-
tering methods with a voxel-wise approach (Liu et al., 2012; Thirion 
et al., 2014; Wang & Li, 2013; Wang et al., 2016) and with FC analysis 
(Kam et al., 2017). Agglomerative algorithms are deterministic and 
do not require a predetermined number of clusters (as opposed to 
k-means clustering). To decide which data objects (here fMRI vol-
umes) are combined during hierarchical clustering, we chose Ward's 

method. This belongs to minimum variance methods and uses one 
variant of the Lance–Williams dissimilarity update formula, shar-
ing the total error sum of squares criterion with k-means clustering 
(Murtagh & Legendre, 2014).

As individual CAPs reflect the continuous flow of time-varying 
information within functional brain networks (Liu et al., 2018), we 
wanted to study whether the effects of restricted, narrow focusing 
of attention to limited information sources typical to ASD can be 
detected in the clustering of CAP information. To determine possible 
CAP differences between adolescents with ASD and typically devel-
oping (TD) controls, we compared the distribution of the ASD and 
TD groups' volumes in CAPs as well as their voxel-wise means. This 
enabled us to determine the specific differences between the (de)
activation patterns of the two groups. The number of CAPs in earlier 

F I G U R E  1   Hierarchical clustering result dendrogram. Top, hierarchical clustering (cosine distance, Ward's method) result dendrogram of 
11,930 resting state (RS) fMRI volumes of 55 adolescent participants. The x-axis shows the study-specific distances between the clusters 
as height h. When h = 0, each volume forms its own cluster, and h≈3.48 (dashed blue line on the right) corresponds to splitting the volumes 
into 30 clusters. Due to image resolution limitations, the volumes were merged as the thickened black column on the y-axis. The lower part 
of the figure highlights the cluster levels from 02 to 30 as a cladogram, which shows the relations between the CAPs. The first number 
indicates the total cluster count at that level. The second number was determined by the clustering algorithm that showed the cluster's 
ordinal number for only that hierarchical level. For the sake of visualization, in the cladogram, the branch lengths have been scaled equal, as 
opposed to a dendrogram. Each CAP's z-statistic map slice is shown from the same level of anterior and dorsal nodes of the default mode 
network (DMN). The lower DMN-negative or "task-positive" branches of the cladogram comprise 4,658 volumes (39%), and the upper DMN-
positive branches 7,272 volumes (61% of the whole data) of the RS-fMRI data. Further CAP volume distributions (Figures S1a-b) are detailed 
in Appendix S1. The z-statistic color keys range from −20 to −3.5 and from 3.5 to 20
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studies ranges from 4 (Li et al., 2015) to 30 (Liu et al., 2013), and we 
addressed this range accordingly.

2  | MATERIAL S AND METHODS

2.1 | Dataset

The study population, detailed diagnostic criteria, and all the data 
were the same as those used by Paakki et al.  (2010). As fMRI pre-
processing methods have advanced, in the present study, we utilized 
them as described below.

The study population consisted of 55 adolescents, of which 28 
had ASD (with normal IQ, age 14.58 ± 1.62 years, 20 males, 8 females, 

three left-handed) according to ICD-10 research criteria (World 
Health Organization,  1993) and 27 were TD-matched controls (age 
14.49  ±  1.51  years, 18 males, 9 females, two left-handed). The MR 
data were collected using a GE 1.5 T Signa HDX scanner with an eight-
channel parallel imaging head coil. Before the scan, the participants 
were asked to lie still, remain relaxed and awake, and look at a white 
cross in the middle of a dark-gray screen. The 7.5 min RS BOLD fMRI 
scanning consisted of 253 whole brain volumes. The parameters of the 
gradient-recalled echo-planar imaging (GRE EPI) were as follows: TR 
1.8 s, TE 40 ms, flip angle 90°, FOV 256 mm, 64 × 64 in-plane ma-
trix, 4 × 4 × 4 mm voxel size, and 28 oblique axial slices with a 0.4 mm 
gap and interleaved acquisition order. We acquired the structural data 
using a T1-weighted 3D FSPGR sequence with 1  mm oblique axial 
slices, FOV 24.0 × 24.0 cm with a 256 × 256 matrix.

F I G U R E  2   Study-specific cores of 14 resting state networks (FSL MELODIC group ICA components). The components are ordered 
column-wise according to the explained variance. Overlapping areas were removed by assigning each voxel to only one IC, where it had the 
highest absolute z-statistic over the other ICs. The component areas were only used as voxel-wise masks and a simple atlas to label brain 
areas when interpreting CAP results. Images of the combined 14 components and study mask are also displayed. The z-statistic color key 
ranges from 0 (black) to 14 (white)
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All participants and their parents gave written informed consent. 
The study was approved by the Regional Ethics Committee of the 
Northern Ostrobothnia Hospital District and conducted in accor-
dance with the Declaration of Helsinki.

2.2 | Preprocessing of RS-fMRI signals

For anatomical data, we used FSL-VBM FNIRT to register individual 
T1 structural head volumes and generate a study-specific template 
(Andersson et al., 2007; Douaud et  al.,  2007; Good et  al.,  2001; 
Smith et al., 2004). After skull stripping, the FSL's FIRST segmented 
cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM) 
(Patenaude et al., 2011).

For the functional data, AFNI's (Cox, 1996; Cox & Hyde, 1997; 
Gold et  al.,  1998) "afni_proc.py" program produced preprocessing 
pipeline according to the program's help page examples 9b and 10 
(https://afni.nimh.nih.gov/pub/dist/doc/progr​am_help/afni_proc.
py.html) and following the guidelines of Jo et al. (2013). We removed 
the first three volumes to avoid T1 effects and computed the outlier 
fractions for each volume. Motion correction was applied, and the 
skull was stripped. Exploiting the results of our earlier FSL-VBM pro-
cedure and the study-specific average template, we applied a nonlin-
ear transformation to functional data.

After these steps, we interrupted the AFNI pipeline and ran the 
independent component (IC) analysis-based automatic removal of 
motion artifacts (ICA-AROMA) for the functional data. The median 
number of ICs left after artifact removal was 14.5 in ASD and 13 in 
the TD group (Wilcoxon rank-sum test p-value =  .41). The nonag-
gressive option was implemented in the participant-wise removal of 
artifact components (Pruim et al., 2015; Pruim, Mennes, van Rooij, 
et al., 2015).

The AFNI pipeline continued with despiking. The volumes with 
a displacement of >0.2 mm or with a normalized signal level of over 
1.29 (outlying 10% of expected SD) were labeled for censoring 
(Aurich et  al.,  2015; Nichols,  2013; Power et  al.,  2014, 2015). On 
average, 13.2% (min. 0%, max. 45.6%) of the time series were cen-
sored. The shortest time left was 4 min 5 s, which was still consid-
ered adequate (White et al., 2014). After censoring, 13,750 volumes 
were reduced to 11,930: The TD participants had an average of 223 
volumes, and the ASD participants 210 volumes left (Wilcoxon rank-
sum p-value = .34).

For full details on preprocessing, Appendix S1. We did not re-
gress the global signal. We performed spatial smoothing with 8 mm 
(~2 voxels) full width at half maximum kernel (Chen & Calhoun, 2018) 
and calculated high pass temporal filtering regressors for frequen-
cies of <.005 Hz. Removal of trends, censoring, temporal filtering, 
motion, once eroded CSF mask, and local WM (ANATICOR) regres-
sors were combined into a regression matrix with AFNI 3dDecon-
volve and projected out of the smoothed data in one step with the 
AFNI 3dTproject to remove any possible residual noise (Jo et  al., 
2010, 2013).

2.3 | Group independent component analysis

We created uncensored but otherwise similarly preprocessed data-
sets with FSL MELODIC multisession temporal concatenation analy-
sis and estimated group-level ICs. These were used as masks and a 
simple atlas to label brain areas when interpreting the CAP results. 
We adjusted the dimensionality to 14 ICs and chose the low dimen-
sional approach for the sake of pragmatic visual pattern analysis, but 
still covered major networks in line with earlier studies (Castellazzi 
et  al.,  2014; Smith et  al.,  2009; Starck et  al.,  2013; Thornburgh 
et al., 2017; Yeo et al., 2011, 2015).

2.4 | Hierarchical clustering and extraction of CAPs

The preprocessing continued in MATLAB® (MathWorks®, 2016; 
Shen,  2014). The fMRI signal was temporally normalized voxel-
wise for each participant by subtracting the mean and then divid-
ing by the temporal SD (Liu et al., 2018). The individual datasets 
were masked using combined GICA components and GM voxels 
(Figure 2). These volumes and mask were later used with FSL 
randomise.

The volumes were reshaped and concatenated, and the resulting 
data matrix was transferred to the R environment (Bengtsson, 2016; 
R Core Team,  2017). We applied clustering to all the BOLD fMRI 
volumes acquired from the 55 participants that had survived censor-
ing. As mentioned in the introduction, the volumes are described by 
their voxels' signal amplitudes, and their relation to other volumes 
has to be defined via a suitable function. Here, individual volumes 
were represented as 29,684-dimensional vectors, and a matrix con-
taining the pairwise cosine similarity among all the 11,930 vectors 
was calculated.

As we were interested in the spatial similarity of the volumes 
and the corresponding "directionality" of the voxels' signals (above 
or below average) rather than their absolute amplitude strength, 
we chose to use the cosine similarity, which is invariant to the scal-
ing of the data. In other words, excluding anticorrelated patterns, 
we tried to prevent spatially similar patterns in different phases 
and with different signal amplitudes from going into different clus-
ters. The Pearson correlation coefficient and cosine similarity are 
related measures, but the Pearson correlation is also invariant to 
adding any constant to all data elements, which we considered 
to possibly have a global signal regression (GSR) type of effect 
on clustering (Manning et al., 2008; Murtagh & Contreras, 2012; 
Singhal, 2001).

A cosine similarity matrix was converted to a distance matrix, 
as we performed hierarchical clustering using R fastcluster-package 
function hclust (method =  "ward.D2") (Müllner, 2013). The results 
from 30 to 2 clusters (in total, 58 clusters or CAPs) were evaluated. 
We aggregated the fMRI volumes assigned to each cluster. The 
mean image of such a cluster's volumes provided an overall view of 
the resulting CAP and was then normalized by the standard error 

https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html
https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html
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(within-cluster and across fMRI volumes) to generate z-statistic 
maps, which quantify the degree of significance to which the CAP 
map values for each voxel deviate from zero (Liu et al., 2013, 2018).

2.5 | Group comparison t tests

The 11,930 RS-fMRI volumes concatenated into one file were used 
as input for FSL's randomise (Anderson & Robinson, 2001; Winkler 
et al., 2014). The voxel-wise differences between the ASD and TD 
groups were assessed for each CAP using two-sample unpaired 
t tests (10,000 permutations). The design matrix for each hier-
archy level included all the volumes as rows and all the clusters, 
that is, CAPs existing at that level of the hierarchy, as columns, 
with separate columns for the TD and ASD participants. We cre-
ated within-group and between-group contrast files for the CAPs 
and used participant-wise exchangeability block labels. The re-
sulting threshold-free cluster enhancement (TFCE) uncorrected 
p-value maps were merged, and the false discovery rate (FDR) 
corrected across all the contrasts using FSL's fdr (q = 0.05), which 
gave a p-value threshold of .004, corrected for two-tailed results at 

p <.002 (Anderson & Robinson, 2001; Benjamini & Hochberg, 1995; 
Genovese et al., 2002). We used MRIcron (Rorden & Brett, 2000) and 
R packages ape (Paradis & Schliep, 2018), dendextend (Galili, 2015), 
dendsort (Sakai et al., 2014), dplyr (Wickham et al., 2020), ggtree (Yu 
et al., 2017), ggplot2 (Wickham, 2016), gplots (Warnes et al., 2020), 
plyr (Wickham,  2011), and RColorBrewer (Neuwirth,  2014) to aid 
data visualization.

3  | RESULTS

The median number of fMRI volumes assigned to each CAP from ei-
ther the ASD or the TD participants' data was calculated with boot-
strapped confidence intervals (95%, 10,000 resamples), which were 
overlapping (Figure 3). The Mann–Whitney test p-value was <.05 in 
seven CAPs but became nonsignificant after FDR correction. Thus, 
we found no reliable ASD- or TD-specific CAPs within the cluster 
levels used in our study (from 2 to 30). The number of volumes in 
each CAP (Figures S1a-b) and the images of each CAP (Figures S2a-
i), and when found, their group activation differences (Figures S2a-i), 
are visualized in Appendix S1.

F I G U R E  3   The median number of fMRI volumes per subject in CAPs with confidence intervals and outlier dots. The outliers may reflect 
individual differences in time spent in default mode-positive or task-positive brain states. As described earlier, participant-wise, censoring 
excluded on average 13 volumes more from the ASD data than from the TD data
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The clustering of the whole RS-fMRI data reveals a familiar-
looking division into two main cluster groups. At the highest level of 
the cladogram (Figure 1), the first level of branching, there are only 
two CAPs, and each fMRI volume belongs to one or the other. The 
first CAP (02–01, 39% of the 11,930 volumes) resembles a task-
positive ICN as its fMRI volumes contain below-average values in 
lateral visual, default mode, language, and frontoparietal cognitive 
control (FPC) networks, but above-average values in dorsal attention 
(DAN), medial visual, somatosensory, motor, auditory, salience, and 
ventral attention (VAN) networks. The second CAP (02–02, 61% of 
the volumes) shows a reversal in the activity patterns with above-
average values in default mode network (DMN) and correspond-
ing opposite values in other networks embodying task-negative, or 
rather default mode-positive ICN features, compared to the first CAP.

Both DMN-positive and DMN-negative (or task-positive) CAPs 
divide into subhierarchies and smaller CAPs (Figure 1), which are dis-
tinguished from each other by different areal average values (also 

referred to here as activation when above average and deactiva-
tion when below average) in ICA-based RSNs (Figure 2). This is also 
depicted in the heatmap of Figure 4, which illustrates the average 
z-score values of our study-specific RSN parcellations in different 
CAPs. The hierarchical clustering of both rows and columns of this 
heatmap groups the different RSNs and CAPs by their features, 
respectively. This kind of review is modest in terms of spatial ac-
curacy but facilitates pattern recognition in group-level activation 
differences. The most obvious patterns are reported in the following 
paragraphs.

When the CAPs in Figure 1 are transformed into the heatmap 
of Figure 4, one can roughly detect four panels. Firstly, the DMN, 
language, and FPC networks exhibit mainly negative z-scores (in-
terpreted here as network deactivation) during the default mode-
negative CAPs (DMN-CAPs) and form the bluish colored lower panel 
on the left, whereas the DAN and all the sensory, motor, salience, 
and VAN networks mostly exhibit red colored positive z-scores 

F I G U R E  4   Mean voxel-wise z-scores by resting state networks (as in Figure 2) for each CAP. On the x and y axes, the brain areas' 
grouping was determined by the hierarchical clustering (cosine distance, Ward's method) of only this particular z-score matrix. On the 
x-axis, the CAP label colors correspond to the "DMN-negative/task-positive" (blue labels, DMN-CAPs) and "DMN-positive" (red labels, 
DMN + CAPs) grouping of CAPs, with a thin black separating line between them. Network abbreviations: DAN = dorsal attention; Visual 
Med, Up Med, Lat = visual medial, upper medial, lateral; VAN-P/-A = ventral attention posterior/anterior; DMN-V/-D/-A = default mode 
ventral/dorsal/anterior, FPC L/R = frontoparietal cognitive control left/right. Views: DAN, Visual (3D elevated occipital), Somatosensory, 
Motor, DMN-A (3D above), Auditory, Salience, VAN, FPC R (3D right lateral), DMN-V, -D (axial slice above), DMN/Language, FPC L (3D left 
lateral)
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(interpreted here as task-positive network activation) and form the 
reddish left upper panel of the DMN-CAPs.

But during the DMN-positive CAPs (DMN + CAPs) on the right, 
the DMN, language, and FPC networks largely exhibit positive z-
scores and form the reddish right lower panel. Fourthly, the right 
upper panel of the DMN + CAPs consist for the most part, of blue 
colored negative z-scores, excluding a few CAPs with activation 
among auditory, visual, salience, and VAN networks.

Due to z-score averaging, the nuances of the CAPs are lost in 
the heatmap, and a few seemingly similar CAPs coexist on both left 
and right. Notably, some CAPs also show only activation or deacti-
vation over all the RSNs, that is, negative blue or positive red vertical 
stripes over the whole brain cortex matrix (Figures 4 and 5).

The areas in the CAPs in which the TD or ASD group have sig-
nificantly greater activation than the other group are shown as a 
percentage of the corresponding RSN volume in Figure 6. The high-
lighted highest deciles of these results are projected on the earlier 
CAP heatmap (Figure 4). This combination in Figure 5 enables finding 
the RSNs in the CAPs that exhibit the largest simultaneous group-
related activations. The twenty largest between-group differences 
in CAPs are listed in Table  1. Additional descriptive (Figures  S1a-
b, Figures  S2a-i) and detailed results Table  S1 can be found in 
Appendix  S1 of this article and in Zenodo (Paakki et  al.,  2021), 
respectively.

When inspecting Figure 5 through the four-panel approach de-
scribed earlier, one can see that most of the largest TD group-related 
activations fall within the task-related networks in the upper left 
panel during the DMN-CAPs. In contrast, during the DMN + CAPs, 
the TD group-related activations are mostly within the DMN and the 
language and VAN networks.

The TD group-related FPC activation was left-dominant during 
the DMN-CAPs and right-dominant during the DMN + CAPs. The 
left FPC was activated, while the task-related networks were also 
activated and seemed to associate with the salience and VAN-A net-
works in particular, but also with the auditory, somatosensory, and 
DAN networks. Right FPC activation associated with the DMN and 
language networks.

The earlier described four-panel approach generally showed 
more incoherently highlighted patterns during the ASD group-
related activations than the TD group-related activations (Figures 5 
and 6). The ASD group's FPC activations did not demonstrate clear-
cut sidedness related to the DMN-negative or DMN-positive CAPs. 
However, there were some repeating overactivation patterns. The 
DAN associated with the visual networks. If the visual network was 
overactive but not concurrent with the DAN, it associated in turn 
with the DMN. In the TD group, the DAN overactivation was also 
associated with other task-positive networks in a more balanced 
way. It also seems that the ASD group did not quite reach as strong 
deactivations as the TD group (Figure 5). ASD group-related over-
activations were found especially in the DAN, visual and auditory 
networks, and the DMN. In the 06–06 CAP, which deactivated all 14 
RSNs, the ASD group showed a considerably reduced deactivation 
pattern in nearly all (12/14) of the RSNs.

4  | DISCUSSION

4.1 | Study results and comparison to earlier studies

Our study provides complementary information and an alterna-
tive perspective to FC analysis by gathering nonsequentially brief 
instances of similar fMRI brain volumes into larger CAP clusters. 
This method may be especially beneficial before group comparisons 
in RS studies, in which no external synchronization is provided by 
tasks or stimuli. We found the DMN + CAPs and DMN-CAPs (61% 
and 39% of the fMRI volumes, respectively) to be spatially similar in 
both TD and ASD groups as the clustering algorithm gathered vol-
umes to each CAP from both groups without significant group-wise 
differences in time spent in each CAP. However, the CAPs showed 
focused alterations of internal activity levels among many RSNs, in-
cluding the following (Figures 5 and 6):

1) ASD-related activations during the DMN-CAPs considerably 
affected the DMN, and during DMN + CAPs, other RSNs.

2) The ASD group showed visual network overactivation during 
the DMN-CAPs, which was simultaneous with the overactivation of 
either the DAN or the DMN.

3) Autism spectrum disorder-related FPC activations were inco-
herent and showed hemispherical shifts.

4) The auditory, DMN, and language networks were overacti-
vated in the ASD group during the RSN deactivations, which may 
indicate higher baseline activity in the ASD group.

The TD group-related alterations can be assessed similarly: In 
general, the TD group showed greater activation in the task-positive 
RSNs during the DMN-CAPs and in the positively activated DMN 
during the DMN  +  CAPs, than the ASD group. During the DMN-
CAPs, auditory activation reached higher levels in the TD group. In 
addition, DAN activation was also more evenly related to other sen-
sory (auditory, somatosensory), salience, and VAN networks. FPC 
overactivation was consistently asymmetric in the TD group: pre-
dominantly left-sided during the DMN-CAPs and right-sided during 
the DMN + CAPs.

Comparing the group-related changes in Figure 5 shows that the 
ASD participants demonstrated overactivation of visual medial areas 
during the DMN-CAPs. Simultaneous overactivation with a visual 
network was detected among the DAN and/or DMN. This tendency 
might have been related to increased reliance on posterior brain 
areas in ASD when mediating visuospatial tasks (Kana et al., 2013). 
In a recent magnetoencephalography study, the ASD group pre-
sented early enhanced activity in the occipital region, suggesting 
that impaired face processing in ASD might be sustained by atypical 
responses in primary visual areas (Kovarski et al., 2019). Anecdotal 
experiences of individuals with ASD report overwhelming sensa-
tions of visual details in everyday environments that they cannot 
pass without becoming absorbed in them. Abnormal simultaneous 
overactivation of the visual networks with the DAN and the DMNs 
detected in our study could reflect such propensity.

People with ASD experience trouble filtering torrents of infor-
mation, which hijacks their concentration, and this may explain why 
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F I G U R E  5   Combination of Figures 4 and 6. Largest clusters (highest decile) of TD and ASD group-related CAP activity in resting state 
networks. (a) The TD group-related activity is marked by the letter "T" and (b) the ASD group-related activity by "A" over the color-coded 
average z-scores of the same heatmap as those in Figure 4



10 of 20  |     PAAKKI et al.



     |  11 of 20PAAKKI et al.

prolonged simultaneous multisensory events cause fatigue sooner 
for people with ASD. On the other hand, it could be speculated that 
neurotypical people may not be able to concentrate with similar in-
tensity or for equal periods under normal levels of stimuli. It would 
be interesting to study further whether the neurobiological poten-
tial for concentration in ASD could be reflected in task-related DMN 
activation. Such a study could utilize the gradual-onset continuous 
performance task (gradCPT). The gradCPT is a sustained attention 
ability paradigm that has been validated behaviorally and recently 
with neuroimaging (Fortenbaugh et al., 2018). The gradCPT results 
show that fluctuations in attentional stability are tracked over time 
in task-positive (e.g., DAN and VAN) and task-negative (e.g., DMN) 
regions and vary in specific ways before attention lapses or con-
cerning reaction time and performance. The DMN contributions are 
not unambiguous but also modulated, for example, by motivation 
(Fortenbaugh et al., 2018). We are not aware of ASD-related studies 
utilizing gradCPT and fMRI.

In healthy adults, a network graph study found that optimal sus-
tained attention arose from reduced network cross talk and greater 
within-network communication in task-relevant networks such as 
salience, cingulo-opercular, dorsal attention, and visual (Zuberer 
et  al.,  2021). In contrast, optimal attention predicted greater net-
work cross talk and reduced within-network communication in 
auditory and sensorimotor networks and lower within-network 
communication in the subcortical and ventral attention networks 
(Zuberer et al., 2021). The relationship between network graphs and 
brain (de)activations needs clarification.

Concentration or sustained attention and mind-wandering or 
task-unrelated thoughts are two general mind states alternating 
with varying frequency and duration during some task. In a study by 
Scheibner et al. (2017), mindful attention was characterized by less 
activity in the DMN than mind-wandering, independent of attention 
type (internal breathing or external sound). The activation difference 
was greater in the inner attention meditation than in the external 
attention meditation. While the ability to concentrate or uphold 
sustained attention is not equal to mindfulness, these concepts are 
related, and mindfulness-based interventions can increase attention 
(Trautwein et  al.,  2020). These transient cognitive states may be 
captured better in dynamical temporal analysis than static methods. 
Marusak et  al.  (2018) showed that trait mindfulness in youths re-
lated to dynamic but not static RS connectivity. The more mindful 
youths transitioned more between brain states, spent less time in 
a particular connectivity state, and showed a state-specific reduc-
tion in connectivity between salience and central executive (i.e., 
frontoparietal cognitive control) networks (Marusak et al., 2018). In 
our study, the strongest salience and FPC mean activations were de-
tected during DMN + CAPs (Figure 4). We found TD group-related 
salience and FPC L association during the DMN-CAPs, but during 

the DMN + CAPs, similar activity was seen in two ASD-related CAPs 
only (Figures 5 and 6). The inferences between FC and CAP analysis 
are not yet clear.

As stated earlier, in the ASD group, during the DAN activated 
task-positive CAPs (24–21, 13–11, 11–01, 10–01, 04–01, and 02–
01, Appendix  S1: Figures  S2a-i), there was a repeated association 
with ASD-related overactivation of the visual medial network 
(Figure 5). Parallel top-down volitional attention is influenced by 
the DAN, which has key nodes in the bilateral intraparietal sulcus, 
superior parietal lobule, and frontal eye fields (Vossel et al., 2014; 
Yamasaki et al., 2017). Research has demonstrated that these dor-
sal frontoparietal areas can causally modulate visual areas' activity 
(Vossel et al., 2014). One hypothetical explanation for our study re-
sults could be that this modulating effect may be more substantial 
among ASD individuals. However, we detected visual overactivation 
during many DMN-CAPs, and the CAP method used here cannot 
infer causality. Yamasaki et al. (2017) reviewed studies using visual 
evoked potentials, event-related potentials, and the diffusion tensor 
MRI of visual and attention networks in ASD. They found that (1) en-
hanced and impaired processing coexists within the lower visual area 
(V1), (2) local information integration from lower visual areas (V1) 
is impaired in higher-level visual areas after V4 and V5/MT, and (3) 
the DAN is impaired, while the VAN is intact in ASD. The VAN con-
tains key nodes in the temporoparietal junction and ventral frontal 
cortices related to automatically produced and quicker bottom-up 
attention (Yamasaki et  al.,  2017). Despite the results of Yamasaki 
et al. (2017), some fMRI studies have found ASD-related abnormal-
ities in the VAN as well (Bernas et al., 2018; Farrant & Uddin, 2016; 
Fitzgerald et al., 2015).

Moreover, a study by Feczko et al. (2018) hints that some ASD 
subgroups have altered visual processing or attention mechanisms 
or both. In addition to overwhelming sensory experiences, altered 
connectivity of visual and attention networks may contribute to 
the impaired social communication in ASD. Early disordered FC in-
volving the visual network may engender later disruptions in higher 
order behaviors. McKinnon et al. (2019) showed that aberrant func-
tional connectivities between the visual, control, DMN, DAN, and 
subcortical networks are also associated with certain restricted and 
repetitive behaviors among children with ASD at 12 and 24 months 
of age. Other recent findings regarding abnormal attention mecha-
nisms in ASD have been made in studies by Bi et al. (2018), Fitzgerald 
et al. (2015), and Gabrielsen et al. (2018). While ASD may offer ad-
vantages in various visual-attentional tasks, the predisposition to 
intense attentional focus may come at the cost of resistance to task 
disengagement and other behavioral symptoms such as overfocus-
ing and restricted interests (Kaldy et al., 2016).

In the TD group, highlighted simultaneous DAN and visual net-
work overactivation were detected only during task-positive CAP 

F I G U R E  6   Percentages of brain areas in CAPs in which the (a) TD and (b) ASD groups have significantly greater voxel-wise z-score values 
than the other group. The results are shown at q = .05 false discovery rate (FDR) corrected. An arbitrary threshold of the highest decile is 
applied to the cell background coloring (blue rectangles for TD, red for ASD) as a highlighting method, in which cluster areas comprise at 
least 19% of the corresponding IC areas. The order and origin of the x- and y-axis labels are identical to those in Figure 4
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06–03 and DMN-positive CAP 03–03. The former, unlike the CAPs 
mentioned in the previous paragraph, exhibits mainly motor and so-
matosensory activation. In addition to the DAN and visual medial 
networks, TD group-related overactivation is more comprehen-
sive and detected among the auditory, salience and VAN, and FPC 
networks.

A recent study showed that tactile and auditory hypersensitiv-
ity among children raised the risk of ASD diagnosis 34- and 22-fold, 
respectively (Jussila et  al.,  2019). Our results suggest higher audi-
tory network baseline activity during deactivations in ASD and that 
somatosensory activations are less unambiguous. Despite hearing 
protection, noisy MRI environments may cause more auditory than 
somatosensory input in a supine patient lying still.

Autism spectrum disorder-related functional brain asymmetry 
has been detected during RS by, for example, Cardinale et al. (2013) 
and Subbaraju et al. (2018), who have shown rightward asymmetry 
shifts of functional networks and atypical hemispherical lateraliza-
tion, respectively. Diffusion imaging has found inversion or dimin-
ishing of typical left-right asymmetry among ASD individuals (Carper 
et  al.,  2016; Conti et  al.,  2016; Wei et  al.,  2018). In a similar vein, 
our study demonstrated ASD group-related FPC activation shifts 
that were rightward during the DMN-CAPs and leftward during the 
DMN + CAPs (Figure 5).

Earlier evidence of reduced functional integration of the DMN, 
especially weaker coherence of connectivity between the posterior 
and anterior subsystems (Joshi et al., 2017; Starck et al., 2013), may 
be mirrored in our study as higher baseline activity during the DMN-
CAPs, especially in the dorsal and ventral components of DMN. Still, 
the inferences between FC and CAP analysis remain unclear.

4.2 | Limitations and future directions

Resting state studies have found it difficult to show unambiguous 
brain FC changes in ASD (Hull et al., 2017). Even though local (e.g., 
regional homogeneity) and more distant changes of FC have been 
shown (Hull et al., 2017; Jao Keehn et al., 2018; Nair et al., 2018), 
legitimate concern has arisen that motion during RS examinations 
might at least partly explain the detected hypo- and/or hypercon-
nectivity (Jo et al., 2013; Power et al., 2014). Recent evidence sug-
gests that censoring and ICA-AROMA perform well across most 
preprocessing quality benchmarks (Parkes et  al.,  2018). Whereas 
earlier dual-regression ICA and FC analysis has revealed only hypo-
connectivity within the DMN subnetworks of our study participants 
with ASD (Starck et  al.,  2013), we found significant differences in 
many CAPs. When similarly activated brain BOLD fMRI volumes are 
accumulated into CAPs, between-group comparisons may become 
more powerful than, for example, sliding window methods, in which 
each "window" of sequential volumes includes more heterogeneous 
brain activation patterns. When discussing results, one should re-
member that hierarchical clusters are nested and thus volumes ac-
cumulate as we move up the hierarchy into lower-numbered cluster 

levels. Depending on the different spatial (de)activation signal ampli-
tudes of the clusters (CAPs) combined and the difference in the brain 
areas' activation behavior between the groups, some of the spatial 
between-group differences may fade, and others may increase from 
one hierarchical level to another.

It should be remembered that hierarchical clustering is an ex-
ploratory method and imposes a hierarchical structure regardless of 
whether such exists in the data (Friedman et al., 2001). Accordingly, 
the results should be interpreted cautiously. However, based on both 
previous research knowledge about alternating rest and task states 
of brain function and our results, this method can yield meaningful 
complementary information on the "natural" occurrence of CAPs 
and their relations to each other during RS-fMRI. The coarse divi-
sion in our data showed that 61% of the volumes had default mode-
positive RSN features. RS data certainly also include varying epochs 
with true task-positive ICN activations, as the MRI environment is 
noisy and disruptive, especially to young individuals, and we imaged 
RS with the participants' eyes open. Empirical evidence suggests 
that eyes-open brain states are better controlled than eyes-closed 
states, but that eye status affects local connectivity, highlighting 
overconnectivity in posterior, visual regions and underconnectivity 
in the cingulate gyrus (Nair et al., 2018). We did not compare RS with 
task data, and the relationship between the CAPs of the rest and 
task data should be addressed in the future to determine the propor-
tions of DMN-positive and task-positive activity in combined data 
and the various settings: or to determine whether certain CAPs and 
their between-group differences persist during tasks and how they 
are modified. In this context, there is suggestive evidence that func-
tional hierarchies in the pediatric brain are stable and similar during 
rest and task (Harrewijn et al., 2020).

As stated earlier, due to z-score averaging, the nuances of CAPs 
are lost in the heatmap, and a few seemingly similar CAPs coexist on 
both DMN-negative and DMN-positive sides of the clustering re-
sults. The clustering procedure itself is, of course, unaware of this 
interpretive naming convention and simplification aimed to facilitate 
the understanding of complex network interactions. In addition to 
averaging, the weaknesses of the chosen method may predispose to 
this phenomenon.

There are several linkage methods in hierarchical clustering. 
We chose Ward's method as it shares a common principle with 
k-means, providing a basis for current research and comparison to 
earlier research. We found a high correlation with the CAPs from 
Liu et  al.  (2013) using the fslcc tool (results not shown), though 
their results were acquired after global mean removal. Using GSR 
could eliminate artifacts even more efficiently than censoring and 
ICA-AROMA alone (Byrge & Kennedy,  2018; Ciric et  al.,  2017; 
Murphy & Fox, 2017; Power et al., 2015). Possible anticorrelations 
in the CAPs might not be as problematic as with FC measures, as 
signal amplitudes are compared. Our educated guess is that using 
GSR would reduce the portion of CAPs that exhibit whole brain-
wide activation or deactivation. Unfortunately, censoring reduces 
degrees of freedom and may also remove the signal of interest 
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from the data. For example, Syed et al. (2017) found that although 
the DMN provided the highest discriminability between the con-
trol and ASD groups, the motor network regions with midcingulate 
cortex and temporal-parietal junction were also discriminatory. 
Moreover, the choice of clustering distance measure (cosine, 
Euclidean, Pearson correlation, etc.) may potentially increase or 
decrease GSR-like effects.

Besides distance and linkage adjustments, combining other sta-
tistical procedures such as permutational methods to hierarchical 
clustering could achieve results closer to the ground truth. Based 
on our study, however, efforts to refine volume-wise methods are 
worth pursuing. Hierarchical and k-means are only two common, 
older clustering methods, and more efficient algorithms that can 
utilize fMRI-specific data features probably exist. For example, ran-
dom forest methods could be used in a volume-wise fashion instead 
of measures from temporally stationary FC (Feczko et  al.,  2018; 
Fernández-Delgado et al., 2014). Though FC and ICA RS metrics are 
not substantially affected by different TRs, faster imaging methods 
such as MREG with 10–20  Hz temporal resolution show "neural 
avalanches," which in traditional 0.5–1  Hz fMRI temporal resolu-
tions are only seen as aliased images and could enable the study of 
higher cluster numbers and shorter CAPs (Huotari et al., 2019; Rajna 
et  al.,  2015), though the inherently slow hemodynamic response 
function may act as a limiting bottleneck (Bolton et al., 2020). Faster 
imaging and dynamic lag analysis (Kotila et  al.,  2020; Raatikainen 
et  al.,  2020) or causality analysis methods (Bernas et al., 2018; 
Bielczyk et  al.,  2019; Borchers et  al.,  2012; Chen et  al.,  2016; 
Deshpande & Hu, 2012; Kaminski et al., 2016; Li et al., 2020) may 
shed light on interactions between attention, visual, and other brain 
networks. MREG fMRI coupled with simultaneous EEG analysis 
(Hiltunen et al., 2014; Li et al., 2019; Ridley et al., 2017) could clarify 
the relationship between the neural avalanches and the brain's elec-
trical activity in the future.

As each volume is a time point in the imaging time series and 
is assigned with cluster membership, this method could map the 
changes at the individual level. The current study could be ex-
tended using a network or Markov chain analysis to determine 
whether there are repetitive sequences or states in the occur-
rence of the CAPs (Chen et  al.,  2015; Liu et  al.,  2013; Zhuang 
et  al.,  2018), as some ASD studies indicate (Malaia et  al.,  2016; 
Zhang et al., 2016).

Even if independent RSNs seemed to activate normally, CAP 
analysis might reveal aberrant in-between network interactions and 
their timing. FC analysis could be supplemented by CAP analysis. It 
may find CAPs that exhibit the greatest differences between the 
voxels with aberrant connectivity and may pinpoint the moments at 
which the differences lie and detect simultaneous patterns in other 
intrinsic networks and their activity levels. This knowledge may 
help find new approaches to ASD rehabilitation: for example, using 
customized stimuli targeting brain network combinations that have 
been found to have abnormal interactions or appropriate timing in 
interaction situations.

5  | CONCLUSION

The present study describes one relatively simple method for com-
paring CAPs between study populations, but because a myriad of 
network combinations are possible and the signal amplitude in each 
network varies greatly, developing a method that could satisfyingly 
capture the whole dynamics of brain networks is still a never-ending 
challenge. Based on our study experiences, we encourage the devel-
opment of volume-wise approaches as an option to further charac-
terize the TVFC changes in brain networks.
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