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Abstract—In this paper, cooperative edge caching problem
is investigated in fog radio access networks (F-RANs). By
considering the non-deterministic polynomial hard (NP-hard)
property of this problem, a federated deep reinforcement learning
(FDRL) framework is put forth to learn the content caching
strategy. Then, in order to overcome the dimensionality curse
of reinforcement learning and improve the overall caching
performance, we propose a dueling deep Q-network based
cooperative edge caching method to find the optimal caching
policy in a distributed manner. Furthermore, horizontal federated
learning (HFL) is applied to address issues of over-consumption
of resources during distributed training and data transmission
process. Compared with three classical content caching methods
and two reinforcement learning algorithms, simulation results
show the superiority of our proposed method in reducing the
content request delay and improving the cache hit rate.

Index Terms—Fog radio access network, cooperative edge
caching, deep reinforcement learning, dueling deep Q-network,
horizontal federated learning.

I. INTRODUCTION

With the advent of 5G, the number of mobile devices and

applications are increasing rapidly, generating the massive

amount of data putting huge traffic pressure on wireless

cellular networks [1]. Fog radio access network (F-RAN) is a

very promising way to solve the problem of cellular network

communication congestion [2]. In F-RANs, edge caching

places popular contents in fog access points (F-APs), closer to

users [3]. F-APs can effectively reduce the load pressure of the

backhaul link and content transmission delay [4]. Due to the

limited communication resources and local storage capacity

in F-AP, how to cache the most popular content is the prime

challenge of edge caching [5].

There has been a flurry of research work in content place-

ment of edge caching. In recent years, reinforcement learning

has become a popular tool to optimize cooperative caching

of content in F-RANs. In [6], the authors used two types of

recurrent neural networks to predict user mobility and content

popularity, and then, deep reinforcement learning framework is

applied to implement dynamic caching decisions and optimize

content delivery issues. In [7], content caching placement

in edge networks is modeled as a stochastic game. The

authors proposed an alternate Q-learning caching algorithm

with multi-agent cooperation to solve the stochastic game. In

[8], the hidden Markov process is adopted to characterize the

content request model, which is used to describe the traffic

demand of temporal and spatial fluctuations in F-RANs. A

value function approximation method is combined with Q-

learning to find the optimal caching strategy. In order to

overcome the dimensionality curse of reinforcement learning

and improve the speed of convergence, a distributed edge

caching algorithm based on the deep Q-network was con-

sidered in [9], [10]. In [11], a learning automata-based Q-

learning algorithm was investigated to obtain the optimal

caching action selection for the predicted model in a random

and stable environment. In the heterogeneous networks, a Q-

learning based content caching solution was exploited in [12]

to realise content caching securely. The double auction game

was quoted to describe the collaborative interaction between

edge server and content provider, so that each participant

can get the maximum benefit from it. The above-mentioned

methods based on reinforcement learning can find the optimal

caching strategy dynamically and efficiently. However, these

methods can damage sensitive data of user when they use user

data to train the model directly, especially in some commercial

and industrial scenarios. Meanwhile, these caching methods

deploy learning agents in a single user or a single F-AP. The

individual training of separate and low-relevant learning agents

can also lead to an additive waste of resources.

Motivated by the above discussion, a cooperative caching

method based on federated deep reinforcement learning

(FDRL) framework is proposed to find the optimal caching

policy in F-RANs. First, content caching scenario composed of

multiple cooperative F-APs is formulated. We use the M-Zipf

distribution of random parameters to describe the dynamic

content popularity in the scenario. Then, we adopt the dueling

deep Q-network to learn the user request content data in

each F-AP. Based on the content popularity distribution, the

dueling deep Q-network can make optimal caching decision

and reduce content request delay. Finally, we apply horizontal

federated learning (HFL) to aggregate the local model of each

F-AP into a global model in the cloud server. Through the

iterative training of the global model, the data privacy of

users in each F-AP can be protected and the resource cost of

individual training for separate learning agents can be reduced.

The rest of this paper is organised as follows. The system

model and problem formulation are introduced in Section II.

Section III describes the FDRL-based cooperative caching

policy elaborately. Simulation results are given in Section IV



Fig. 1: Illustration of cooperative caching scenario in F-RANs.

and Section V summarizes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The considered cooperative caching scenario is illustrated in

Fig. 1, where a cloud server is connected with several F-APs

and multiple users are served by each F-AP. The set of F-APs

is N= {1, 2, ..., n, ..., N} and the set of users served by F-AP

n is denoted by Un= {1,2,...,un,...,Un}. Request contents of

all users is denoted by a content library F= {1,2,...,f, ...,F}
and the size of content f is L. It is assumed that all requested

contents from users are cached in the cloud server. However,

each F-AP can only cache a certain number of request contents

because of its limited cache capacity. Let C (C ≪ F ) denotes

the storage capacity of F-AP n. Furthermore, we assume that

all F-APs have the same cache capacity and all contents have

the same size.

We consider that time is divided into discrete time slots.

The set of time slots is denoted by T = {1,2,...,t, ..., T} and

the network operates in each time slot. At time slot t, the

network needs to perform three operations. At the first stage,

each F-AP sends its local information table of caching contents

to the neighboring F-APs and the cloud server to share its

content caching state. At the second stage, each F-AP transmits

content to user based on the requested content of user. If the

requested content is cached in the local F-AP, the local F-AP

directly sends the content to the user. If the requested content

is not cached in the local F-AP, the local F-AP will deliver

the content to the user from the neighboring F-APs or the

cloud server. Finally, each F-AP will update its local caching

contents according to the requested contents from its serving

users for the next time slot. In time slot t, let Pf (t) denote

the global popularity of content f , and Pf (t) also represents

the probability distribution of content f being requested by all

users in the network. The set of global popularity of content is

P (t)= {P1 (t) , P2 (t) , ..., Pf (t) , ..., PF (t)}. Let pnf (t) de-

note the probability distribution of content f in F-AP n that

is requested by users. We consider Pf (t) =
∑

n∈N pnf (t),

and Pf (t) satisfies the Mandelbrot-Zipf (M-Zipf) distribution

[13] as follows:

Pf (t) =
if

−αt

∑

j∈F ij
−αt

, ∀f ∈ F , (1)

where if represents the rank of content f in descending order

of global content popularity, αt denotes the skewness factor

of M-Zipf distribution. The larger αt is, the fewer contents

occupy the majority of user requests.

B. Problem Formulation

Based on the discussion of the above system model, there

are three ways for users to obtain their requested content:

• The users obtain the requested content from the local F-

AP serving them. If the requested content is cached in the

local F-AP, the local F-AP directly delivers the content

to users. Each F-AP transmits content to users from its

local cache with the content transmission delay dn1. Let

DF-U(t) denote the average delay of fetching content from

the local F-AP for the whole user requests in slot t, then

we have:

DF-U(t)=
F
∑

f=1

N
∑

n=1

mf,n(t) ∗ pnf (t) ∗ dn1, (2)

where mf,n(t) is a binary variable representing whether

users fetch the requested content from the local F-AP

serving them or not in slot t. mf,n(t) = 1 indicates that

users can obtain the requested content from the local F-

AP in slot t, otherwise mf,n(t) = 0.

• The users obtain the requested content from the other

neighboring F-APs. If the requested content is not cached

in the local F-AP, users can obtain the requested con-

tent from the neighboring F-APs. Let dn2 denote the

transmission delay between F-APs. The average delay of

obtaining content from the neighboring F-APs is denoted

by DF-F-U(t), then we have:

DF-F-U(t)=
F
∑

f=1

N
∑

n=1

N
∑

k=1

mf,n,k(t) ∗ pnf (t) ∗ (dn1 + dn2),

(3)

where ∀k ∈ N , n 6= k. mf,n,k(t) = 1 indicates that users

obtain the requested content from the neighboring F-APs,

otherwise mf,n,k(t) = 0.

• The users get the requested content from the cloud server.

If the requested content is not cached in the local F-

AP and the neighboring F-APs, users need to fetch

the content from the cloud server. Let dn3 denote the

transmission delay of sending the content to the F-AP

from the cloud server, and DC-F-U denotes the average

delay of obtaining the content from the cloud server for

the whole user requests, then we have:

DC-F-U(t)=
F
∑

f=1

N
∑

n=1

mf,n,C(t) ∗ pnf (t) ∗ (dn1+ dn3),

(4)



where mf,n,C(t) = 1 indicates that users can obtain

the requested content from the cloud server, otherwise

mf,n,C(t) = 0.

Without loss of generality, we consider dn1 < dn2 ≪ dn3.

In time slot t, for a given caching state in F-AP n, the total

content request delay for any user can be expressed as follows:

Dtotal (t) = DF-U (t)+DF-F-U (t)+DC-F-U (t) . (5)

The goal is to find the optimal caching strategy π* to

minimize the total content request delay Dtotal(t) in the net-

work. Therefore, considering the limited storage space of F-

AP and the integer characteristics of cache decision variable,

cooperative caching problem is described as follows:

argmin
π*

Dtotal(t) (6)

s.t.
∑

f∈F
L ∗mf,n (t) ≤ C, (6a)

mf,n (t) ,mf,n,k (t) ,mf,n,C (t) ∈ {0, 1} . (6b)

The constraint (6a) requires the amount of locally cached

content in each F-AP cannot exceed its maximum storage

capacity. The constraint (6b) is to ensure that each content is

cached in a single F-AP at most, which improves the diversity

of locally cached content in each F-AP.

In the cooperative caching network we have discussed, the

cache hit rate of content is considered to be a good indicator

for evaluating network performance. In this paper, the cache

hit rate of each F-AP in slot t is calculated as follows:

hn (t) = 1−
∑

k∈N

∑

f∈F

(mf,n,k (t) +mf,n,C (t))∗pnf (t) . (7)

The cache hit rate indicates the probability that the requested

content of users can be obtained from the local cache of the

F-AP serving them.

III. FDRL-BASED COOPERATIVE CACHING POLICY

In this section, we propose an FDRL-based cooperative

caching policy to solve the content caching problem in (6). We

combine the dueling deep Q-network in deep reinforcement

learning with horizontal federated learning. The dueling deep

Q-network is able to make optimal caching decision based on

the requested content information of users and the popularity

of content in each F-AP. However, individual training of

separate learning agents can lead to an additive waste of

resources and sensitive data of user may be endangered during

training process. We apply horizontal federated learning to

aggregates all the local models from each F-AP to obtain

a global model in the cloud server. By minimizing the loss

function of the global model, the content request delay of

the entire network is reduced and the total cache hit rate

is improved. Federated learning can not only enable better

cooperation between each F-AP, but also protect user data

privacy because model parameters are transmitted between F-

AP and the cloud server, not user data [14].

A. Deep Reinforcement Learning Framework

Among deep reinforcement learning algorithms, the deep

Q-network (DQN) can effectively combine deep learning and

reinforcement learning. The main reason is the DQN has three

core elements:

(1) Objective function: Based on the Q-learning algorithm,

an objective function learned by deep learning is constructed.

The neural network in the DQN is used to approximate the

action value function Q (s (t) , a (t)) in a high-dimensional and

continuous state, where s(t) and a(t) are the state and the

action of time slot t. In order to obtain the objective function

that the neural network can learn, the DQN constructs a loss

function through the Q-learning algorithm. The update formula

of the Q-learning algorithm is:

Q∗ (s (t) , a (t))← Q (s (t) , a (t))+

α(r + γ max
a(t+1)

Q (s (t+ 1) , a (t+ 1))−Q (s (t) , a (t))),

(8)

where r is a reward for transferring to state s(t + 1) after

performing action a(t) under state s(t). γ is the future discount

factor and α is the learning rate. According to (8), the loss

function of the DQN is:

L (θ) =
[

(Target Q−Q (s (t) , a (t) , θ))
2
]

, (9)

where θ is the weight parameter of the prediction neural

network model. The target Q-value (i.e., Target Q) is:

Target Q = r + γmax
a(t+1)

Q
(

s(t+ 1), a(t+ 1), θ−
)

, (10)

where θ− is the weight parameter of the target neural network

model. After obtaining the loss function of the DQN, the

gradient descent method can be used to obtain the gradient

update of the weight parameter θ of the loss function L (θ) in

(9).

(2) Target network: The DQN uses two neural networks for

learning: prediction network Q (s (t) , a (t) , θ) is to evaluate

the Q-value function of the current state-action pair; target

network Q (s (t) , a (t) , θ−) is to generate the target Q-value

in (10). The DQN updates the parameter θ of the prediction

network according to the loss function in (9). After each M

rounds of iteration, the parameters θ of the prediction network

are copied to the parameters θ− of the target network.

(3) Experience playback mechanism: The DQN introduces

an experience playback mechanism to store the experience

sample data obtained by the interaction between the agent

and the environment in the replay memory D at each time

step. Then, small batches of data are randomly selected

from the replay memory D for neural network training.

The DQN saves a large amount of historical experience

sample data, and each experience sample data is stored in

(s (t) , a (t) , r (t) , s (t+ 1)). It indicates the learning agent

reaches the new state s(t+1) after performing the action a(t)
under the state s(t) and obtains the corresponding reward r(t).
By introducing the experience playback mechanism, randomly



sampling small batches for training is helpful to remove the

correlation and dependence between samples and reduce the

deviation in the evaluation of the value function. It solves the

problem of data correlation and non-static distribution to make

the network model easier to converge.

B. Dueling Deep Q-Network

We use deep reinforcement learning network to solve the

content caching problem in (6), and each F-AP is our learning

agent. We model the content caching replacement process as a

Markov decision process (MDP) [15]. The state space, action

space and reward function are described as follows:

(1) State space s(t): The state space s(t) is the index set

of the cached content in F-AP n [9], i.e.,

s (t) = [i1, i2, ..., ic, ..., iC ], ∀ic ∈ [1, F ]. (11)

The index in the state space will increase rapidly as the content

number of the content library increases, which is the curse of

dimensionality. We sort the content indexes in the state space

in descending order according to the request frequency, which

can reduce the probability of low-frequency content indexes

appearing in the state space.

(2) Action space a(t): a(t) ∈ {0, 1} indicates whether the

cached content in F-AP n needs to be replaced or not. Contents

in the content library that are not cached in F-AP form a

collection K. If a(t) = 1, k (k < C) contents will be randomly

selected from K and exchanged with the last contents stored in

F-AP n. After sorting the content index based on the request

frequency, s(t+1) is obtained. It can ensure that the replaced

contents are the least popular contents during each time slot in

the current storage of F-AP n. a(t) = 0 indicates the cached

content in F-AP n does not need to be replaced.

(3) Reward function r(t): when the caching state of F-AP

n is s(t), the reward r(t) will be obtained after performing

the action a(t). Based on (6), in order to minimize the total

content request delay and maximize the system reward, we

design the reward function as follows [13]:

r (t) =











pnfe
−λ1dn1 , Local Service

pnfe
−(λ1dn1+λ2dn2), F-APs Cooperation

pnfe
−(λ1dn1+λ3dn3), Cloud Service,

(12)

where λ1 + λ2 + λ3 = 1, λ1 < λ2 ≪ λ3, pnfe
−λ1dn1 is the

reward that the user obtains the requested content f from the

local F-AP. pnfe
−(λ1dn1+λ2dn2) indicates the user is served

by the neighbouring F-APs. If user fetches content f from the

cloud server, the reward is pnfe
−(λ1dn1+λ3dn3).

Based on (8), the neural network internally decomposes the

action-state value function Q into the state value function V

and the action advantage function A in the dueling deep Q-

network. The state value function V is not related to the action.

The action advantage function A is related to the action and It

is the average return of performing action a(t) under the state

s(t) to solve the reward bias problem. The action Q-value

function is given by

Q (s (t) , a (t) ; θ) = V (s (t) ; θ) +A (s (t) , a (t) ; θ) . (13)

In practice, the action advantage is generally set as a single

action advantage function minus the average value of all action

advantage functions in a certain state. Based on this, the action

Q-value function is calculated as follows:

Q (s (t) , a (t) ; θ) = V (s (t) ; θ)+

(A (s (t) , a (t) ; θ)−
1

|A|

∑

a(t+1)

A (s (t) , a (t+ 1) ; θ)). (14)

The (14) can ensure that the relative order of the dominant

functions of each action is unchanged in this state. The

advantage of the method is that it reduces the Q-value range

and removes excess degrees of freedom. The stability of the

algorithm is improved. The dueling deep Q-network based

content caching replacement process is shown in Algorithm 1.

Each F-AP optimizes the caching strategy π* by maximizing

the reward function r(t) based on local content popularity and

content request information of users.

C. HFL-Based Algorithm Workflow

In order to improve the caching cooperation between F-APs

and protect user data privacy, we apply horizontal federated

learning in cooperative edge caching. Each F-AP uploads the

local model learned by the dueling deep Q-network to the

cloud server. The cloud server aggregates all local models

into a global model through federated averaging. Then, the

cloud server sends the updated global model to each F-AP,

and each F-AP trains its local model according to the updated

global model. The HFL-based content caching policy is shown

in algorithm 2. For F-AP n, the learning problem is to find

the objective parameters θ̂tn with the loss function f (θtn)
according to (9), i.e.,

θ̂tn = argmin
θt

n

f
(

θtn
)

. (15)

The global model is obtained by

f
(

θtG
)

=
1

∑

n∈N Dn

N
∑

n=1

Dnf
(

θtn
)

, (16)

where Dn is the local dataset of F-AP n. The learning problem

in (15) can be solved by the gradient descent algorithm [16].

For t = 1, 2, ..., T , F-AP n updates its local parameter θtn as

follows:

θt+1
n = θtn − η∇f

(

θtn
)

(17)

where η ≥ 0 is the learning step. After T iterations, the global

parameter θt+1
G is updated in the cloud server:

θt+1
G =

1
∑

n∈N Dn

N
∑

n

Dnθ
t+1
n (18)

The updated global model parameter θt+1
G will be sent to the

each F-AP for the next round training.

IV. SIMULATION RESULTS

In this section, the performance of the proposed FDRL-

based cooperative caching policy is evaluated. We consider the



Algorithm 1 The dueling deep Q-network based content

caching replacement algorithm

1: Initialize reply memory D, the maximum value B of
experience samples;

2: Initialize the prediction network Q with the weight param-

eters θ, the target network Q̂ with the weight parameters
θ− = θ;

3: for time slot t = 1, 2, ..., Ts do
4: for user un = 1, 2, ..., Un do
5: user un requests content f ;
6: if content f has been cached in F-AP n or the

neighbouring F-APs then
7: Fetch the content from the F-AP n or the

neighbouring F-APs;
8: else
9: if the storage of F-AP n is not full then

10: Fetch content f from the cloud server and
cache content f in F-AP n;

11: else
12: Observe the caching state s(t);
13: According to the ε-greedy method, choose

an action a(t) = argmax
a(t)

Q (s(t), a(t));

14: Execute action a(t), get new state s(t+1);
15: Obtain reward r(t) according to (12);
16: Save (s(t), a(t), r(t), s(t+ 1)) in D;
17: Set s(t) = s(t+ 1);
18: Randomly sample a minibatch of

experiences from D;
19: Update θn of the prediction network by

using the gradient descent method in (9);
20: Reset θ−n = θn every M steps;
21: end if
22: end if
23: end for
24: end for

size of the content library F = 500 and the storage capacity

of each F-AP C = 50. The popularity of the content in the

caching scenario is generated by M-Zipf distribution, which

also represents the content request probability of the user.

In time slot t, the parameter αt of M-Zipf distribution are

randomly generated, ranging from 0.5 to 1.5. In addition, dn1,

dn2, dn3 caused by three different transmission methods are

set to 10ms, 20ms, and 200ms, respectively. We compare and

analyze the proposed FDRL-based cooperative caching policy

with three traditional caching algorithms, including First In

First Out (FIFO), the Least Recently Used (LRU) and the Least

Frequently Used (LFU). Meanwhile, we use two reinforcement

learning algorithms (Q-learning and DQN) as the benchmark

caching algorithms.

Fig. 2 shows the performance comparison between the

proposed cooperative caching policy and three traditional

caching algorithms (FIFO, LRU, LFU) in improving the cache

hit rate of content. We can observe that the cache hit rate

of our proposed policy is lower than that of three traditional

caching algorithms when time slot t < 2000. When time

slot t > 2000, our proposed policy has a higher cache hit

rate. The reason is that our proposed policy has few samples

that can be learned in the reply memory D at the beginning

of the algorithm iteration. With the continuous accumulation

Algorithm 2 The HFL-based cooperative caching algo-

rithm

1: Initialize parameter θtn from Algorithm 1; number of

iterations T ; step size η;

2: for time slot t = 1, 2, ..., T do

3: for each F-AP n do

4: Compute its local update;

5: θt+1
n = θtn − η∇f (θtn);

6: Return θt+1
n ;

7: end for

8: Send θt+1
n to the cloud server;

9: The cloud receive θt+1
n from each F-AP n;

10: Update global model according to (18);

11: Set θt+1
n = θt+1

G ;

12: The cloud server disperses θt+1
n to each F-AP;

13: end for

Fig. 2: Cache hit rate versus time slot for the proposed policy

and three benchmark algorithms

of learning samples, learning efficiency of the algorithm has

been significantly improved. When cache size of each F-AP

is set as C = 10%F = 50, cache hit rate of our proposed

policy can reach 0.65. As the number of iteration increases,

the performance of our proposed policy in improving cache

hit rate of the content is better than that of three traditional

caching algorithms.

Fig. 3 shows the variation of the cache hit rate between

the proposed cooperative caching policy and three traditional

caching algorithms (FIFO, LRU, LFU) with different cache

sizes. The cache size of each F-AP increases from C = 25 to

C = 250 with F = 500. It can be observed from Fig. 3 that

the cache hit rate of our proposed cooperative caching policy

gradually increases with the cache size. Meanwhile, it can also

be observed that the cache hit rate of our proposed policy is

always higher than that of three traditional algorithms.

Fig. 4 shows the performance comparison of the proposed

cooperative caching policy and two reinforcement learning

algorithms (Q-learning, DQN) in reducing the total request

delay of users. We set the reward discount factor γ=0.9 and

the learning step length α=0.001. It can be seen from Fig.

4 that our proposed policy has the lower request delay and



Fig. 3: Cache hit rate versus cache size for the proposed policy

and three benchmark algorithms

Fig. 4: Request delay versus time slot for the proposed policy

and two benchmark algorithms

the faster convergence speed. In addition, we observe that

the convergence speed of the Q-learning-based algorithm is

significantly slower than the two algorithms with deep neural

network (DQN, FDRL). The reason is that DRL uses deep

neural network Q (s (t) , a (t) , θ) to approximate the action

value function Q∗(s(t), a(t)), which greatly reduces the time

of finding the optimal value.

V. CONCLUSIONS

In this paper, we have proposed an FDRL-based cooperative

edge caching policy based on content popularity in F-RANs.

In each F-AP, the dueling deep Q-network allows to learn a

local caching model for optimal caching decision according to

the user content request and the content popularity. HFL can

enhance the caching cooperation between F-APs and improve

the caching performance of the whole network by aggregating
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