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Abstract—Cooperative perception plays a vital role in extend-
ing a vehicle’s sensing range beyond its line-of-sight. However,
exchanging raw sensory data under limited communication
resources is infeasible. Towards enabling an efficient cooperative
perception, vehicles need to address fundamental questions such
as: what sensory data needs to be shared? at which resolution?
with which vehicles? In this view, this paper proposes a reinforce-
ment learning (RL)-based vehicular association, resource block
(RB) allocation, and content selection of cooperative perception
messages by utilizing a quadtree-based point cloud compression
mechanism. Simulation results show the ability of the RL agents
to efficiently learn the vehicles’ association, RB allocation and
message content selection that maximizes the fulfillment of the
vehicles in terms of the received sensory information.

Index Terms—V2V, cooperative perception, reinforcement
learning, quadtree

I. INTRODUCTION

Vehicles nowadays are equipped with a variety of sensors
(e.g., RADAR, LiDAR, cameras) whose quality varies widely.
These sensors enable a wide range of applications that assist
and enhance the driving experience, from simple forward
collision and lane change warnings, to the more advanced
application of fully automated driving. However, the reliability
of these sensors is susceptible to weather conditions, existence
of many blind spots due to high density traffic or buildings, as
well as sensors’ manufacturing, and operating defects, all of
which jeopardize these applications. In order to overcome this
issue, the recent advancements of vehicle-to-vehicle (V2V)
communication can be exploited. V2V communication is
a promising facilitator for intelligent transportation systems
[1]. It can facilitate the exchange of sensory information
between vehicles to enhance the perception of the surrounding
environment beyond their sensing range; such process is called
cooperative perception [2]. The advantages of cooperative
perception are validated in [3] demonstrating that it greatly
improves the sensing performance. Motivated by its potential,
several standardization bodies are currently focusing their
efforts towards formally defining the cooperative perception
message (CPM), its contents and generation rate [2], [4]. In
addition, a growing body of literature has explored the use of
cooperative perception in various ways [5]–[7]. In [5], the
authors investigated which information should be included
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within the CPMs to enhance a vehicle’s perception reliability.
Cooperative perception from the sensor fusion point-of-view
is tackled in [6] and a hybrid vehicular perception system
that is able to fuse both local onboard sensor data as well
as data received from a multi-access edge computing (MEC)
server is proposed. Finally, the authors of [7] conducted
a study focusing on raw-data level cooperative perception
for enhancing the detection ability of self-driving systems;
whereby sensory data collected from different positions and
angles of connected vehicles is fused. Though interesting,
neither of these works perform an in-depth analysis of the
impact of wireless connectivity.

Cooperative perception over wireless networks cannot rely
on exchanging raw sensory data, due to the limited com-
munication resources availability [2]. Therefore, this raw
sensory data should be compressed efficiently to save both
the storage and the available communication resources. One
possible technique that could be useful for such spatial raw
sensory data is called region quadtree [8]. Region quadtree is
a tree data structure used to efficiently store data on a two-
dimensional space. A quadtree recursively decomposes the
two-dimensional space into four equal sub-regions (blocks)
till all the locations within a block have the same state or till
reaching a maximum predefined resolution (tree-depth). Tai-
loring the number and resolution of the transmitted quadtree
blocks to bandwidth availability is a challenging problem.

The main contribution of this paper is to study the joint
problem of associating vehicles, allocating RBs and selecting
the content of the exchanged CPMs, with the objective of
maximizing the vehicles’ satisfaction in terms of the received
sensory information. Solving such problem using conventional
mathematical tools is complex and intractable. As a result,
we resort to machine learning techniques, specifically deep
reinforcement learning (DRL), which proved to be useful in
such complex situations [9]. In our paper, we split the main
problem into two sub-problems formulated as RL problems,
one is solved at a road-side unit (RSU) where the objective
is to learn the association and RB allocation that maximizes
the average vehicular satisfaction, while the other is solved
by each vehicle with the objective of learning which quadtree
blocks to transmit and at which resolution to maximize the
associated vehicle’s satisfaction. Simulation results show that
the policies achieving higher vehicular satisfaction could be
learned at both the RSU and vehicles level. It is also shown
that trained agents always outperform non-trained random
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Figure 1. (a) Vehicles under the coverage of a single RSU, drive through
a junction while dynamically exchanging sensory information. (b) Quadtree
representation of a vehicle’s sensing range, with a maximum resolution level
L = 5. Green represents the unoccupied state s−, red represents the occupied
state s+ and orange represents the unknown state s0.

agents in terms of the achieved vehicular satisfaction.
The rest of this paper is organized as follows. Section II

presents the different parts of the system model. The network-
wide problem is formulated in Section III, followed by our
proposed RL solution within the cooperative sensing scenario,
in Section IV. Finally, in Section V, simulation results are
presented while conclusions are drawn in Section VI.

II. SYSTEM MODEL

A single RSU providing a coverage to a road junction,
as shown in Fig. 1, is considered. Let N , {1, 2, · · · , N}
denotes the set of vehicles served by the RSU. We denote
the location of each vehicle n ∈ N at time slot t by ln (t).
For the sake of simplicity and without loss of generality, we
assume that each vehicle is equipped with a single sensor
having a fixed circular range of radius r. Each location sensed
by vehicle n can have one of three states: occupied (s+),
unoccupied (s−), or unknown (s0). This latter unknown state
corresponds to blind-spots, due to occlusion, or to points
beyond the limits of the vehicle’s sensing range. As a result
and due to the sensor’s faults and uncertainties, the probability
of occupancy at location x with respect to vehicle n is,

pn(x) =


λn if sn(x) = s+,

1− λn if sn(x) = s−,

1/2 if sn(x) = s0,

(1)

where sn(x) is the state of location x defined by vehicle n,
and λn ∈ (0.5, 1] corresponds to the reliability of its sensor.
Let qn(x) denotes the worthiness (quality) of the sensed
information at location x that depends on the probability of
occupancy pn(x), and the freshness of the sensed information,
which can be quantified by the age of information (AoI)
metric ∆n(x) [10]. This worthiness is given by,

qn(x) = |2pn(x)− 1|µ∆n(x), (2)

with a parameter µ ∈ (0, 1). Note that qn(x) decreases as
its AoI increases (outdated information) or the probability of
occupancy approaches 1/2 (uncertain information).

Moreover, vehicle n is interested in extending its sensing
range by a duration of tint seconds along its direction of
movement which is captured by a circular region of interest
(RoI). The RoI of vehicle n has a diameter of vntint, where vn
is the velocity of the vehicle, as shown on Fig. 1(a). Within the
RoI, the vehicle has higher interest in the locations closer to
its current position as well as locations closer to its direction
of movement over any other location. Therefore, the interest
of vehicle n in a location x is formally defined as follows

wn(x) =

{
vntint cos θ−d
vntint cos θ d ≤ vntint cos θ

0 o.w.,
(3)

where d is the euclidean distance between the location x and
the vehicle’s position ln (t), and θ is the angle between the
vehicle’s direction of motion and location x, as illustrated on
Fig. 1(a). To capture the need of gathering new information,
the interest wn(x) of vehicle n needs to be weighted based
on the lack of worthy information, i.e., 1− qn(x). Hence, the
modified interest of vehicle n in location x is given by,

in(x) = wn(x)[1− qn(x)]. (4)

Furthermore, a time-slotted communication with transmis-
sion slots of duration τ is considered, where each vehicle
is allowed to exchange sensory information with at most
one vehicle at each time slot. We define E(t) = [enn′(t)]
to be the global association matrix, where enn′(t) = 1 if
vehicle n is associated (transmits) to vehicle n′ at time slot t,
otherwise, enn′(t) = 0. The association is assumed to be bi-
directional, i.e., enn′(t) = en′n(t). Moreover, we assume that
each associated pair can communicate simultaneously with
each other, i.e. each vehicle is equipped with two radios, one
for transmitting and other is for receiving. Additionally, a set
K , {1, 2, · · · ,K} of orthogonal resource blocks (RBs), with
bandwidth ω per RB, is shared among the vehicles, where
each radio is allocated with only one RB. We further denote
the RB usage as ηknn′(t) ∈ {0, 1} , for all k ∈ K and n, n′ ∈
N , in which ηknn′(t) = 1 if vehicle n transmits over RB k to
vehicle n′ on time slot t and ηknn′(t) = 0, otherwise.

Let hknn′(t) be the instantaneous channel gain, including
path loss and channel fading, from vehicle n to vehicle n′ over
RB k in slot t. We consider the 5.9 GHz carrier frequency
and adopt the realistic V2V channel model of [11] in which,
depending on the location of the vehicles, the channel model
is categorized into: Line-of-sight, weak-line-of-sight, and non-
line-of-sight. Thus, the data rate from vehicle n to vehicle n′

on time slot t (in packets per slot) is expressed as

Rnn′(t) =
τ

M

∑
k∈K

ηknn′(t)ω log2

(
1 +

Phknn′(t)

N0ω + Iknn′(t)

)
,

(5)
where M is the packet length in bits, P is the transmis-
sion power per RB, and N0 is the power spectral den-
sity of the additive white Gaussian noise. Here, Iknn′(t) =∑
i,j∈N/n,n′ ηki,j(t)Ph

k
in′(t) indicates the received aggregate

interference at the receiver n′ over RB k from other vehicles
transmitting over the same RB k.



Exchanging raw sensory information between vehicles
about individual locations x, would require huge commu-
nication resources for cooperative perception to be deemed
useful. As a result, the region quadtree compression technique
is utilized by each vehicle [8]. Within this technique, each
vehicle converts its sensing range into a squared-block of side-
length 2r. This block is divided recursively into 4 blocks until
reaching a maximum resolution level L or until the state of
every location x within a block is the same. Without loss
of generality, we assume that each block can be represented
using M bits. Fig. 1(b) shows the quadtree representation of
the sensing range of a vehicle with L = 5.

The state of a block b within the quadtree of vehicle n is
said to be occupied if the state of any location x within the
block is occupied, while the state of a block is said to be
unoccupied if every location within the block is unoccupied.
Otherwise, the block would have an unknown state. Let Bn (t)
represents the set of quadtree blocks available for transmission
by vehicle n at time slot t. For simplicity and without loss
of generality, we assume that Bn (t) only contain blocks
available from its own sensing range. Due to the quadtree
compression, the cardinality of Bn (t) is upper bounded by:
|Bn (t) | ≤

∑L−1
l=0 4l = 1−4L

1−4 .

III. PROBLEM FORMULATION

Each vehicle n is interested in associating (pairing) with
another vehicle n′ where each pair exchanges sensory in-
formation in the form of quadtree blocks with the objective
of maximizing the joint satisfaction of both vehicles. The
satisfaction of vehicle n with the sensory information received
from vehicle n′ at time slot t can be defined as follows:

fnn′ (t) =
∑

b∈Bn′ (t)

σbn′ (t)

(∑
x∈b in (x)

Ar (b)
.qn′ (b)

)
, (6)

where σbn′ (t) = 1 if vehicle n′ transmitted block b at time slot
t, and σbn′ (t) = 0 otherwise, and Ar (b) is the area covered by
block b. Note that, vehicle n is more satisfied when receiving
quadtree blocks with a resolution proportional to the weights
of its RoI as per (4), which is captured by

∑
x∈b in(x)

Ar(b) . Fur-
thermore, vehicle n is more satisfied when receiving quadtree
blocks having more worthy sensory information, which is
captured by qn′ (b). As a result, our cooperative perception
network-wide problem can be formulated as follows:

max
η(t),E(t),σ(t)

∑
n,n′∈N

fnn′ (t) · fn′n (t)

s.t.
∑

b∈Bn(t)

σbn (t) ≤
∑
n′∈N

Rnn′(t), ∀n ∈ N , ∀t

(7a)∑
n′∈N

∑
k∈K

ηknn′(t) ≤ 1, ∀n ∈ N , ∀t (7b)∑
n′∈N

enn′ (t) ≤ 1, ∀n ∈ N , ∀t (7c)

enn′ (t) = en′n (t) , ∀n, n′ ∈ N , ∀t (7d)

where the objective is to associate vehicles E (t), allocate
RBs η (t), and select the contents of the transmitted messages
σ (t), in order to maximize the sum of the joint satisfaction
of the associated vehicular pairs. Note that (7a) upper bounds
the number of transmitted quadtree blocks of each vehicle by
its Shannon data rate, while (7b) constrains the number of
RBs allocated to each vehicle by 1 RB. Finding the optimal
solution of this problem is complex and not straight-forward
because it would require the frequent exchange of fast-varying
information between the RSU and vehicles, yielding a huge
communication overhead which is impractical. Hence, to solve
(7) practically, we leverage the machine learning techniques
which have proved themselves to be useful to deal with such
complex situations, specifically deep reinforcement learning
(DRL) techniques [9].

IV. RL IN COOPERATIVE SENSING

In order to solve (7), the timeline is splitted into two
scales, a coarse scale called time frames and a fine scale
called time slots. At the beginning of each time frame, the
RSU associates vehicles into pairs and allocates RBs to those
pairs. The association and RB allocation stay fixed during the
whole frame which consists of X time slots. At the beginning
of each time slot t, each vehicle selects the quadtree blocks
to be transmitted to its associated vehicle. By utilizing RL1

within this cooperative sensing scenario, we can formulate
two different RL problems: Vehicular RL and RSU RL.

A. Vehicular RL

Within this RL problem, for a given association nn′ and
RB allocation, each vehicle n acts as an RL-agent who wants
to learn which quadtree blocks to transmit to its associated
vehicle n′ in order to maximize vehicle’s n′ satisfaction.
Accordingly, the global state of the RL environment is de-
fined as 〈Bn (t) , In′(t), vn, vn′ , ln (t) , ln′ (t)〉, where In′ (t)
is the set of vehicle’s n′ RoI weights, as per (4), at time
slot t. However, this global state cannot be observed by
vehicle n, instead, the local observation of vehicle n is
〈Bn (t) , vn, vn′ , ln (t) , ln′ (t)〉. At every time slot t and by
utilizing this local observation, vehicle n would take an action
σn (t), selecting which quadtree blocks to be transmitted to its
associated vehicle n′, and receives a feedback (reward) from
vehicle n′ equal to fn′n (t). In a nutshell, the elements of the
RL problem at each vehicle n can be described as follows:
• Global state: 〈Bn (t) , In′(t), vn, vn′ , ln (t) , ln′ (t)〉
• Local observation: 〈Bn (t) , vn, vn′ , ln (t) , ln′ (t)〉
• Action: σn (t)
• Reward: fn′n (t)

B. RSU RL

Within this RL problem, the RSU acts as the RL-agent
where the state of this RL environment is given by the
locations and velocities of all vehicles serviced by the RSU,
〈vn, ln ∀n ∈ N〉. Based on this state at the beginning of each

1For detailed information regarding RL, please refer to [12].
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Figure 2. The BDQ neural network architecture utilized for both RSU and
vehicular RL problems.

time frame, the RSU takes the action of vehicles association
E(t), and RB allocation η(t). Then, once the time frame ends,
each vehicle will report back its mean satisfaction during the
whole frame and the RL reward is computed as the mean of
those feedbacks. In a nutshell, the elements of the RSU RL
problem can be summarized as follows:
• State: 〈vn, ln ∀n ∈ N〉
• Action: E(t) and η(t)

• Reward:
∑

n∈N (
∑i+X

t=i
f
nn′ (t))/X

|N |
In order to solve these two RL problems, the deep Q-Network
(DQN) algorithm [9] can be utilized. Within DQN, the Q-
value for each possible action should be estimated before
deciding which action to take. As a result, its application to
high dimensional, discrete action spaces is still arduous. At
this point, it should be noted that our two RL problems suffer
from the high dimensionality of action spaces. Specifically,
within the RSU RL problem, the RSU needs to select E(t) and
η(t): The association matrix E(t) is of size N×N , and due to
our one-to-one association assumption, the number of possible
actions for the association problem would be Π

bN/2c
n=1 (2n− 1).

Moreover, the RB allocation matrix η(t) is of size N × K,
as a result, the number of possible actions is KN , assuming
that each vehicle is allocated only 1 RB. Similarly, within the
vehicular RL problem, each vehicle needs to select σn (t)
whose dimension is |Bn|max × 1, yielding a total number
of possible actions equal to 2|Bn|max . These huge number of
actions can seriously affect the learning behavior of DQN.

Recently, the authors in [13] have introduced a novel agent
called Branching Dueling Q-Network (BDQ) leading to a
novel neural network architecture that allows to distribute
the representation of the action dimensions across individual
network branches while maintaining a shared module that
encodes a latent representation of the input state and helps
to coordinate the branches. Remarkably, this neural network
architecture exhibits a linear growth of the network outputs
with increasing action space as opposed to the combinatorial
growth experienced in traditional DQN network architectures.
Fig. 2 demonstrates this neural network architecture.

In this work, we adopt these BDQ agents from [13] within
our RL problems. As a result, the neural network at the RSU

agent will have N branches2 constructed as follows:
• bN/2c branches corresponding to the association action

with each branch having ji = N − 2i + 1 sub-actions,
where i is the branch ID. For example, let us consider a
simplified scenario with N = 6, then bN/2c = 3 vehic-
ular pairs could be formed: the first branch representing
the first vehicle would have N−2 ·(1)+1 = 5 candidate
vehicles to pair with, while for the second branch the
candidates are reduced to 3 and so on. This leads to a
unique vehicular association for any combination of sub-
actions selected at each of the branches.

• bN/2c branches corresponding to the RB allocation with
each branch having

(
K
2

)
sub-actions, knowing that each

associated pair is allocated 2 orthogonal RBs (one RB
for each vehicle).

The aftermath of using the BDQ agent is that, to select
an association action E(t), the Q-value is only estimated
for

∑bN/2c
n=1 (2n− 1) actions instead of for Π

bN/2c
n=1 (2n− 1)

actions with a non-branching network architecture. Similarly,
selecting an RB allocation η(t), requires the Q-value estima-
tion of N

2 ×
(
K
2

)
actions instead of the

(
K
2

)N/2
values involved

in a traditional DQN architecture. Equivalently, by utilizing
the BDQ agent within our vehicular RL problem, for the
message content selection σn (t), the Q-value is estimated
for 2× |Bn|max actions only instead of 2|Bn|max actions.

For the RSU and vehicular agents training purposes, DQN
[9] is selected as the algorithmic basis3. The detailed training
algorithm is shown in Algorithm 1. Note that the loss function
used for training any of the agents is as follows [13]:

L (φ) = E(s,a,r,s′)∼U(D)

[
1

J

∑
i

(yi −Qi (s, ai))
2

]
,

where for an action dimension i ∈ {1, . . . , J} with |Ai| = ji
discrete sub-actions, the individual branch’s Q-value at state
s ∈ S and sub-action ai ∈ Ai is expressed in terms of
the common state value V (s) and the corresponding state-
dependent sub-action advantage Ai (s, a′i) by Qi (s, ai) =

V (s) +
(
Ai (s, ai)− 1

ji

∑
a′i∈Ai

Ai (s, a′i)
)

. Moreover, yi =

r + γ 1
J

∑
iQ
−
i

(
s′, arg maxa′i∈Ai

Qi (s′, a′i)
)

is the temporal
difference targets, with a discount factor of γ4.

V. SIMULATION RESULTS AND ANALYSIS

In this section, simulations are conducted based on practical
traffic data to demonstrate the effectiveness of the proposed
approach. A traffic light regulated junction scenario is consid-
ered. The scenario contains vehicles of different dimensions
to mimic assorted cars, buses and trucks. The vehicles’
mobility traces are generated using the simulation of urban
mobility (SUMO) application [14]. Unless stated otherwise,
the simulation parameters are listed in Table I.

2N − 1 branches if N is odd.
3DQN is selected for its simplicity, powerfulness, and off-policy algorithm.
4For more details on the choice of the loss function and its components,

please refer to [13].



Algorithm 1 Training a BDQ agent for cooperative sensing

1: Initialize the replay memory of each agent to capacity C.
2: Initialize each agent’s neural network with random weights φ.
3: Initialize each agent’s target neural network with weights φ− = φ.
4: foreach RSU episode do
5: Reset the RSU environment by selecting a random trajectories for

vehicles within the junction scenario.
6: The RSU observes its current state 〈vn, ln ∀n ∈ N〉
7: foreach Z frames do
8: With probability ε, the RSU agent selects a random association

and RB allocation action, otherwise it selects the action with
maximum Q-value.

9: The RSU transmits its decision to the corresponding vehicles.
10: foreach X slots do
11: Each vehicle n computes its local observation

〈Bn (t) , vn, vn′ , ln (t) , ln′ (t)〉.
12: With probability ε, each vehicle’s agent selects random sensory

blocks to be transmitted to its associated vehicle, otherwise it
selects the sensory blocks with maximum Q-value.

13: The selected sensory blocks is transmitted over the allocated
RB to the associated vehicle which only receives a random
subset of these blocks depending on the data rate Rnn′ (t) as
per (5).

14: Each vehicle n calculates its own satisfaction fnn′ (t) with the
received blocks and feeds it back as a reward to its associated
vehicle.

15: Each vehicle n receives the reward, observes the next local
observation and stores this experience (st, at, rt, st+1) in its
replay memory.

16: if vehicle n collected a sufficient amount of experiences do
17: Vehicle n samples uniformly a random mini-batch of expe-

riences en from its replay memory.
18: Using these samples, a gradient decent step is performed

on L (φ) w.r.t. φ.
19: end if
20: end for
21: Each vehicle feeds back its average received reward during the

whole frame to the RSU.
22: The RSU calculates the mean of all the received feedbacks and

use the result as its own reward.
23: The RSU stores its own experience, (si, ai, ri, si+1), in its replay

memory.
24: if the RSU collected a sufficient amount of experiences do
25: Sample uniformly a random mini-batch of experiences eRSU

from its replay memory.
26: Using these samples, a gradient decent step is performed on

L (φ) w.r.t. φ.
27: end if
28: end for
29: end for

Table I
SIMULATION PARAMETERS.

Parameter Value Parameter Value
K 10 N0 −174 dBm/Hz
ω 180 KHz P 10 dBm
τ 2 ms tint 2 sec
M 100 Byte L 5
λn 1 r 20
X 5 slots Z 10 frames

Moreover, the hyperparameters used for training the RSU
and vehicular agents are discussed next. Common to all
agents, training always started after the first 1000 steps, after
which one step of training is run at every time step. Adam
optimizer was used with a learning rate of 10−4. Training

0 20 40 60 800

5000

10000

Figure 3. Learning curves for the vehicular RL environment using BDQ vs
DQN agents, for different L. The solid lines represent the average over all
the vehicles, where the learning curve of each vehicle is smoothed by the
moving average over a window size of 1000 episodes, while the shaded areas
show the 90% confidence interval over the vehicles.

was done with a mini-batch size of 64 and a discount factor
γ = 0.99. The target network is updated every 1000 time
steps. A rectified non-linearity (ReLU) is used for all hidden
layers and a linear activation is used on the output layers, for
all the neural networks. Each neural network had two hidden
layers with 512 and 256 units in the shared network module
and one hidden layer per branch with 128 units. Finally, a
buffer size of 106 is set to the replay memory of each agent.

First of all, we verify that the BDQ agent can deal with the
huge action space problem without any performance degrada-
tion compared to the classical DQN agent. For this purpose,
we vary the size of the action space of the vehicular RL
problem by varying the maximum quadtree resolution L. Note
that, when L = 2, the maximum number of blocks available is
1−4L

1−4 = 5, resulting in a total number of actions of 25 = 32,
and when L = 3, the maximum number of blocks available is
21, leading to a total number of actions of 221 ≈ 2×106. Fig. 3
shows the learning curve of both BDQ and DQN agents, for
each case of L. When L = 2 (small action space), the learning
curve of both the BDQ and DQN agents are comparable and
they learn with the same rate. However, when L increases
to 3 (huge action space), the training process of the DQN
agent could not be completed because it is computationally
expensive. This is due to the huge number of actions that need
to be explicitly represented by the DQN network and hence,
the extreme number of network parameters that need to be
trained every iteration. On the other hand, the BDQ agent
performs well with robustness against the huge action space,
which demonstrates the suitability of BDQ agents to overcome
the frequent scalability problems faced by other forms of RL.

Next, in Fig. 4 we focus on the training dynamics of the
RSU agent for different N . The results show that the RSU
reward increases gradually with increasing the number of
episodes, meaning that the RSU and vehicles learn a better
association, RB allocation and message content selection over
the training period. However, it can be noted that the rate



Figure 4. Training/Evaluation curves of the RSU agent for different N . Each
curve is smoothed by the moving average over a window size of 500 episodes.

of increase of the RSU reward decreases as the number of
served vehicles N increases and hence, more episodes are
required to reach the same performance. The reason lays on
the increase in the state space of the RSU agent experimented
as N increases, which ultimately requires more episodes to be
explored/discovered. Moreover, Evaluations were conducted
every 100 episodes of training for 10 episodes with a greedy
policy. The progress of the evaluation process during training
is shown in Fig. 4. It verifies that agents learn better policies
along the training duration.

Finally, after obtaining the trained RSU and vehicular
agents, we deploy those trained agents within a newly gener-
ated vehicular mobility trajectory scenario that runs for 20000
slots. Fig. 5 shows the complementary cumulative distribution
function (CCDF) of the vehicular rewards of all the vehicles
for different N for two cases: the case of trained agents and
the non-trained agents case, that randomly selects its actions.
Note that, the trained agents achieve a better vehicular reward
distribution both for N = 4 and N = 6. This proves that
RL has taught the RSU and vehicular agents to take better
actions for association, RB allocation and message content
selection, to maximize the achieved vehicular satisfaction with
the received sensory information.

VI. CONCLUSION

In this paper, we have studied the problem of associating
vehicles, allocating RBs and selecting the contents of CPMs
in order to maximize the vehicles’ satisfaction in terms of the
received sensory information while considering the impact of
the wireless communication. To solve this problem, we have
resorted to the DRL techniques where two RL problems have
been modeled. In order to overcome the huge action space
inherent to the formulation of our RL problems, we applied
the dueling and branching concepts. Simulation results show
that policies achieving higher vehicular satisfaction could be
learned at both the RSU and vehicular levels leading to a
higher vehicular satisfaction.

Figure 5. The CCDF of the vehicular reward achieved by trained and non-
trained agents for different N .
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