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Abstract

Low back pain is a very common symptom and the leading cause of disability

throughout the world. Several degenerative imaging findings seen on magnetic re-

sonance imaging are associated with low back pain but none of them is specific for

the presence of low back pain as abnormal findings are prevalent among asymp-

tomatic subjects as well. The purpose of this population‐based study was to in-

vestigate if more specific magnetic resonance imaging predictors of low back pain

could be found via texture analysis and machine learning. We used this methodology

to classify T2‐weighted magnetic resonance images from the Northern Finland Birth

Cohort 1966 data to symptomatic and asymptomatic groups. Lumbar spine mag-

netic resonance imaging was performed using a fast spin‐echo sequence at 1.5 T.

Texture analysis pipeline consisting of textural feature extraction, principal com-

ponent analysis, and logistic regression classifier was applied to the data to classify

them into symptomatic (clinically relevant pain with frequency ≥30 days and in-

tensity ≥6/10) and asymptomatic (frequency ≤7 days, intensity ≤3/10, and no pre-

vious pain episodes in the follow‐up period) groups. Best classification results were

observed applying texture analysis to the two lowest intervertebral discs (L4‐L5 and

L5‐S1), with accuracy of 83%, specificity of 83%, sensitivity of 82%, negative pre-

dictive value of 94%, precision of 56%, and receiver operating characteristic area‐
under‐curve of 0.91. To conclude, textural features from T2‐weighted magnetic

resonance images can be applied in low back pain classification.
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1 | INTRODUCTION

Low back pain (LBP) is a complex condition in which biological,

psychological, and social factors impact on both the experience of

back pain and associated disability.1 LBP is a very common symptom

and the leading cause of disability throughout the world.1 Conse-

quently, LBP amounts to a considerable amount of annual costs

worldwide when healthcare costs and indirect costs from sick leaves

are considered.2

LBP may result from an injury or degenerative process of the

lumbar innervated tissues such as facet joints, intervertebral discs

(IVDs), ligaments, or muscles. Several studies have shown that LBP is

related to annular tears,3,4 disc height narrowing,3 facet (or apo-

physeal) joint degeneration,5 and endplate lesions such as Schmorl's

nodes, fractures, erosion, and calcifications.6

Magnetic resonance imaging (MRI) is the preferred imaging

modality for most spinal diseases, as it allows illustration of ver-

tebrae, IVDs, musculature, nerve roots, foramina, and facet joints

with good contrast.7 MRI studies are often used to confirm IVD

herniation, nerve root entrapment, spinal canal stenosis, and more

serious pathologies such as trauma or tumor metastases.8 MRI can

also show IVD degeneration and vertebral endplate changes that

have been associated with clinically relevant LBP.9–11 However,

these abnormalities are also common among asymptomatic subjects

as imaging studies have revealed that up to 87% of asymptomatic

people have lumbar IVD abnormalities seen in MRI.12–14 Thus, le-

sions or degenerative changes revealed in MRI studies may not be

representative of clinical symptoms.15,16 LBP that cannot be attrib-

uted to any known pathology is called nonspecific LBP.

Despite these diagnostic challenges of LBP, substantial effort has

been made to find a connection between LBP and MRI findings. Disc

degeneration is categorized into five grades, also known as Pfirrmann

grades, correlating loss of IVD signal intensity and height in

T2‐weighted MRI to progressive degenerative changes.17 Associations

between LBP and degenerative changes seen in T2‐weighted MRI have

been observed.18–22 Disc herniation revealed on MRI has been related

to LBP in sciatica patients.23 Multifidus fat infiltrations visible in

T2‐weighted MRI have been strongly associated with ever having LBP

and leg pain.24,25 The so‐called Modic changes categorize degenerative

changes in vertebral endplate and bone marrow into three types,26 and

a significant association has been found between them and pain as

well.27,28 Furthermore, correlation between Modic changes and

Pfirrman grades of disc degeneration has been observed.29

Radiomics stands for the extraction of quantitative features

from radiographic medical images. This process consists of image

acquisition, reconstruction, segmentation, extraction of features, and

building a data analysis pipeline for the given task. Radiomics studies

are often conducted by means of texture analysis (TA), which refers

to the characterization of images by their texture content. TA en-

codes images into feature vectors that characterize image properties

such as roughness or smoothness by analyzing spatial variation in

pixel intensities. Usually, a large amount of features is collected, and

afterward, the most important ones are selected by statistical

methods, or alternatively, data are transformed into a fewer‐
dimensional space by dimensionality reduction techniques such as

principal component analysis, to avoid the so‐called “curse of di-

mensionality.” Statistical measures or machine learning methods can

then be applied to classify these feature data. Recent scientific

contributions to using this methodology in spinal MRI include, but

are not limited to, assessment of fatty infiltrations in paraspinal

musculature,30,31 classification of spinal metastases of different

TABLE 1 Descriptive statistics from the used data subset

Symptomatic

(N = 110, 21%)

Asymptomatic

(N = 408, 79%)

N (%)

Male* 43 (39%) 210 (51%)

Female* 67 (61%) 198 (49%)

Modic type 1* 24 (22%) 50 (12%)

Modic type 2* 41 (37%) 99 (24%)

Modic type 3* 19 (17%) 31 (7.6%)

Pfirrman 1 1 (0.9%) 1 (0.2%)

Pfirrman 2 103 (94%) 393 (96%)

Pfirrman 3 80 (73%) 289 (71%)

Pfirrman 4* 60 (55%) 164 (40%)

Pfirrman 5* 30 (27%) 54 (13%)

mean ± STD

Weight 80.2 ± 16.1 77.6 ± 15.1

Height 170.2 ± 9.2 171.9 ± 9.2

BMI† 27.6 ± 4.6 26.2 ± 4.4

Note: Modic changes and Pfirrman grades are listed by incidence of each

grade across all lumbar levels.

Abbreviations: BMI, body mass index; STD, standard deviation.

*Variable significantly different between the symptomatic and

asymptomatic groups (p < .05), χ2 test with contingency tables.
†Variable significantly different between the two groups (p < .05),

independent t‐test.

F IGURE 1 Examples from the data showing both a symptomatic
and an asymptomatic subject with typical signs of spinal
degeneration. Arrows correspond to, from top to bottom: herniation,

disc degeneration, endplate changes, and collapsed disc
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origins,32–34 automatic categorization of Modic changes,35 quanti-

tative analysis of neural foramina,36 quantification of vertebral bone

marrow alterations due to aging,37 and distinguishing bone metas-

tases from spinal hyperplastic hematopoietic bone marrow.38

Automation or semiautomation of image processing steps, such as

reconstruction, noise and artifact removal, or segmentation makes the

imaging pipeline more fluent and time‐efficient, and artificial in-

telligence (AI)–enhanced analysis of imaging findings can greatly

relieve the workload of often‐overburdened medical profes-

sionals.39–41 If AI could be used to perform routine tasks or process

clear negative findings, more human resources could be used for cases

that are more challenging to diagnose.

To our best knowledge, the association between TA of lumbar

MRI and the level of LBP individuals are experiencing has not been

previously studied. Therefore, the aim of this study is to investigate

whether TA could yield more specific MRI predictors of LBP that

F IGURE 2 Deep learning pipeline for segmentation of lumbar MRI data. Left: Example image showing computed segmentations for
vertebrae L1…L5 and intervertebral discs L1‐L2…L5‐S1. Right: U‐net architecture used in the segmentation task; conv, convolution; BN, batch
normalization; ReLU, rectified linear unit [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Description of the computed textural features (N = 603) and other features (N = 8‐9 depending on the ROI)

Texture type Feature names Notes

Grayscale histogram Maximum value, minimum value, mean, variance, skewness, kurtosis,

percentiles (1, 10, 25, 50, 90, and 99)

N = 12

Gray‐level co‐occurrence
matrix

Angular second moment, contrast, correlation, sum of squares

variance, inverse difference moment, sum average, sum entropy,

sum variance, entropy, difference variance, difference entropy,

information measures of correlation, maximal correlation

coefficient

Directions: 0°, 45°, 90°, and 135°; radii: 1–5

pixels; discretization: 8‐bit; N = 280

Run‐length matrix Long and short run emphasis, run‐length and grayscale nonuniformity,

run percentage

Directions: 0°, 45°, 90°, and 135°; max run‐
length: 8; discretization: 8‐bit; N = 20

Absolute gradient Non‐zero values, mean, variance, skewness, kurtosis N = 5

Gradient angle Mean, variance, skewness, kurtosis N = 4

Autoregressive model phi1‐4, sigma N = 5

Wavelet transform Energy in low‐frequency and high‐frequency (horizontal, vertical, and

diagonal) sub‐bands
5 decomposition levels; N = 20

Local binary patterns Local binary patterns histogram, mean Radius: 1 pixel; N = 257

Other

Imaging phenotypes Modic changes for individual vertebrae, Pfirrman grading for

individual intervertebral discs, mean and maximum Modic and

Pfirrmann grades in the ROI

Graded by two independent physicians.

N = 4‐5

Demographic variables Gender, weight, height, BMI N = 4

Note: The N in the right‐hand column refers to the number of individual extracted features from each feature type.

Abbreviations: BMI, body mass index; ROI, region‐of‐interest.
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could classify lumbar MRI data to symptomatic and asymptomatic

cases. Furthermore, our aim is to compare predictive ability between

(1) discs and vertebral bodies and (2) upper and lower lumbar levels.

Finally, we aim to project our results to a subset of data exhibiting

nonspecific LBP symptoms. Such AI‐enhanced analysis could be

beneficial in the ever‐increasing flow of radiological images in terms

of time and resource savings.

2 | METHODS

2.1 | Level of evidence

The level of evidence of this prospective cohort study is 2.

2.2 | Data

The Northern Finland Birth Cohort 1966 (NFBC1966, http://www.

oulu.fi/nfbc/) data were used in this study. The NFBC1966 is a

prospective population‐based birth cohort. The collection of

NFBC1966 data started in 1965 in Northern Finland. Pregnant

women living in Oulu and Lapland were asked during their ma-

ternity clinic appointment to take part in the NFBC1966. The in-

clusion criterion was that the child's expected date of birth was

between January 1st and December 31st, 1966. Health and life-

style data on the mothers (N = 12 068) and children (N = 12 231)

have been collected ever since, via postal questionnaires and

clinical examinations.42

Postal questionnaires on health status and lifestyle were sent to the

cohort members whose addresses were known (N=10 321) at the age of

46–48 (2012–2014). Out of the 66% of the recipients (N=6 825) who

responded with the filled questionnaires, those who currently lived in

Finland were invited to clinical examinations, which 57% of the recipients

(N=5 861) attended. Among other examinations, height, and weight

(i.e. total body mass) were measured by a trained study nurse, and body

mass index (BMI, kg/m2) was calculated from these measurements.

Prevalence of LBP over a period of 12 months was elicited by a

questionnaire. The first question was “Have you had any aches or

pains in your low back?” Drawings were used to elucidate the correct

anatomical area. The alternatives to respond to this question were

(1) no and (2) yes. In the case of a positive answer, the second

F IGURE 3 Data processing workflow.
Regions‐of‐interest (ROI) were segmented
from MRI data with U‐net. ROIs were further
separated to contain the three uppermost and
two lowermost vertebrae and discs. Textural
features were then extracted from these data.
Principal component analysis (PCA) and
logistic regression were used to predict the
pain label. MRI, magnetic resonance imaging
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question was “How often have you had aches or pains during the last

12 months?” to which the alternatives were (1) 1‒7 days, (2) 8‒30
days, (3) more than 30 days, and (4) daily. In addition, the individuals

reporting pain during the past 12 months were asked about the

intensity of the pain they were experiencing, using a numerical rating

scale from 0 (no pain) to 10 (extremely severe or bothersome pain).

An invitation to undergo lumbar MRI examinations was sent to

cohort members that participated in the clinical examinations living

no more than 100 km from the city of Oulu (N = 1 988). A total of 1

540 cohort members underwent MRI of the spine.

T2‐weighting was chosen as the studied MRI contrast because it

allows for clear visualization of both the vertebrae and IVDs. For texture

analysis, mid‐sagittal slice images were selected from the imaged vo-

lumes. Imaging was performed on a Signa HDxt 1.5 T MRI system (GE

Healthcare) using a fast spin‐echo sequence (TE = 112.7 ms, TR=3,500

ms, ETL = 27, slice thickness = 4mm, matrix size = 512× 512, and

FOV=280×280mm). Based on the pain characteristics in the ques-

tionnaire at the time of imaging, two groups were formed for classifi-

cation: subjects with clinically relevant pain (frequency ≥30 days and

intensity ≥6/10), and no pain (frequency ≤7 days, intensity ≤3/10, and no

previous pain episodes in the follow‐up period). These cut‐offs were

motivated by the data: pain intensity of greater than or equal to 6 was

perceived as clearly symptomatic and, on the other hand, very mild and

infrequent pain symptoms are common and likely not a sign of pro-

longed LBP. These criteria were met by 518 subjects, comprising 110

and 408 subjects in the symptomatic and asymptomatic groups, re-

spectively. Descriptive statistics about demographic variables, as well as

Modic changes and Pfirrmann grades that were read by two in-

dependent physicians, are shown in Table 1. Statistical methods used on

the data in Table 1 were the independent t test for continuous variables

(distribution normality was tested with the Kolmogorov–Smirnov test)

and the χ2 test (with contingency tables) for binary variables. Figure 1

shows example images of symptomatic and asymptomatic patients with

typical spinal degeneration phenotypes seen in MRI.

2.3 | Image segmentation with U‐net

Before texture analysis, lumbar vertebrae L1…L5 and IVDs L1‐L2…L5‐
S1 were segmented from the MR images (Figure 2). 200 samples were

segmented by hand and used to train a U‐net43 deep learning con-

volutional neural network that is known to perform well in segmen-

tation tasks. A subset of 15% of the training data was used for model

validation. The U‐net comprised of five encoding and four decoding

layers and was trained for 300 epochs using the combination of binary

cross‐entropy and Jaccard index (with equal weights) as the loss metric

(Figure 2). Separate models were trained to segment the vertebrae and

IVDs. The trained networks were then used to segment the vertebrae

and IVDs from the rest of the MR images.

2.4 | Feature extraction

The obtained segmentation masks were split to four regions‐of‐interest
(ROI): vertebrae L1, L2, and L3; vertebrae L4 and L5; IVDs L1‐L2, L2‐L3,
and L3‐L4; and IVDs L4‐L5 and L5‐S1. A custom‐made MATLAB (v.9.7,

The MathWorks Inc., Natick, MA, 2019) program was used to extract

textural features (N = 603) from the ROIs. These features consisted of

TABLE 3 First three principal components (PCs) in each analysis. Explained variance and top five features contributing to each PC are listed.
Numbers in parentheses indicate the direction (in terms of either displacement in vertical and horizontal directions, or degrees). Square
brackets indicate the same feature occurred consecutively but with different parameters

Vertebrae Explained variance Feature names of top five features contributing to PC

Upper PC1 28.2% Difference entropy [(−3, −3); (‐3, 3)]; difference variance [(−3, −3); (−4, −4)]; difference entropy (−2, −2)

PC2 12.3% Information measure of correlation [(−3, −3); (−4, −4); (−3, 3); (−4, 4); (0, 5)]

PC3 11.2% Grayscale nonuniformity (90°, 0°, 135°, 45°); LBP histogram bin 255

Lower PC1 29.0% Sum entropy [(−1, 0); (0, 1); (−1, 1); (−1, −1); (0, 2)]

PC2 12.4% Information measure of correlation [(−2, 0); (−2, −2); (−3, 0); (−2, 2); (−1, −1)]

PC3 8.5% LBP histogram bin 255; grayscale nonuniformity (90°, 0°); non‐zero gradient values; run‐length
nonuniformity (135°)

IVDs

Upper PC1 29.8% Sum entropy [(−2, −2); (−3, −3); (−2, 2); (−2, 0); (−3,0)]

PC2 12.4% Non‐zero gradient values; LBP histogram bin 112; information measure of correlation (−1, 0); LBP

histogram bin 143; wavelet energy (decomposition level 4)

PC3 9.8% Run‐length nonuniformity (0°); run percentage (0°), information measure of correlation [(0, 1); (0, 2)];

inverse difference moment (0, 1)

Lower PC1 32.1% Sum entropy [(0, 5); (−2, 2); (−3, 3); (−3, 0); (−4, 4)]

PC2 13.7% Information measure of correlation [(−1, 0); (−2, 0); (−1, 1); (−2, −2); (−3, 0)]

PC3 6.3% Grayscale nonuniformity (0°, 45°, 90°, 135°); LBP histogram bin 255

2432 | KETOLA ET AL.



histogram features, gradient features, Haralick features from the

grayscale co‐occurrence matrix, run‐length encoding features, wavelet

features, and local binary patterns.44–46 Images were standardized

(to zero mean and unit variance) before feature extraction. In addition to

the textural features described above, Modic grading was added to the

vertebral features and Pfirrman grading was added to the IVD features.

A more detailed description of the features can be found in Table 2.

2.5 | Classification

Sklearn (v. 0.21.2) machine learning library was used in Python

(v. 3.7.3) to build a machine learning pipeline to analyze the feature

data (Figure 3). Data were split into training (80%) and test (20%)

sets with equal class distributions (Table 1). Data were standardized

and shuffled before analyses. Principal component analysis (PCA)

was used for dimensionality reduction using 80% as the variance

threshold. A logistic regression classifier was then implemented

to predict the presence of LBP in the subjects. A five‐fold

cross‐validation scheme was used in conjunction with a grid search

to tune the amount of L2 regularization in the classifier. The best‐
performing parameters on the training set were then used in the final

classification task. The analysis was done separately for different

ROIs. All fitting procedures were done on the training data.

For the quantification of classification results, specificity, sensi-

tivity, negative predictive value (NPV), precision, and accuracy scores

were computed. In addition, receiver operating characteristic (ROC)

curves were visualized and the areas‐under‐curve (ROC‐AUC) were

determined. Furthermore, to compare our results with basic grading‐
based classification, we performed similar logistic regression analysis

to Modic and Pfirrmann grade data.

2.6 | Sensitivity analysis for nonspecific LBP

To investigate sensitivity for nonspecific LBP, the classification pipeline

was run in two different scenarios as follows: (1) discarding cases with

sciatica symptoms from the symptomatic group. This was done by asking

“Have you had aches in your lower back that are associated with ra-

diating pain or numbness below the knee”. In addition, protrusions and

extrusions were evaluated from the MRI data of the symptomatic group.

If a subject had both radiating pain below the knee and a protrusion or

extrusion, they were removed from this analysis (referred to as NS1).

This group of nonspecific symptomatic subjects included 69 cases

(14.5%). (2) Additionally, cases exhibiting Modic 1 or 2 changes (MC)

exceeding 25% of the height of the adjacent vertebrae were discarded as

the larger MC were more strongly related to clinically relevant LBP in

our previous study.47 This other group of nonspecific symptomatic

subjects (referred to as NS2) included 54 cases (11.7%).

3 | RESULTS

3.1 | Data preprocessing

An example output from the segmentation network is shown in

Figure 2. PCA yielded 44 and 55 principal components for the upper

and lower vertebral ROIs, and 53 and 56 principal components for

the upper and lower IVD ROIs, respectively. Several gray‐level co‐
occurrence matrix and run‐length encoding matrix features were

frequently ranked high in the first principal components (Table 3).

3.2 | Classification

Using demographic variables with Modic and Pfirrmann grades in the

logistic regression analysis resulted in poor classifier performance, and

when textural features were added to the analysis, classification results

improved greatly (Table 4, Figure 4). When comparing the classification

performance between different ROIs, the best results in the test set

were obtained with the ROI with the two lowest IVDs with 83% accu-

racy, 83% specificity, 82% sensitivity, 94% NPV, and 56% precision

TABLE 4 Classification metrics for grading‐based classification
(i.e. using only Modic and Pfirrmann metrics) and texture analysis
based classification (i.e. including textural features)

Grading based classification

Modic changes Pfirrmann grading

ROI

L1‐L2, L2‐
L3, and

L3‐L4

L4‐L5
and

L5‐S1
L1‐L2, L2‐L3,
and L3‐L4

L4‐L5 and

L5‐S1

Specificity 0.62 0.61 0.56 0.55

Sensitivity 0.54 0.59 0.64 0.64

NPV 0.84 0.85 0.85 0.85

Precision 0.28 0.29 0.28 0.27

Accuracy 0.60 0.61 0.58 0.57

ROC‐AUC 0.57 0.64 0.60 0.62

Texture analysis based classification

Lumbar vertebrae Lumbar intervertebral discs

ROI

L1, L2,

and L3 L4 and L5

L1‐L2, L2‐L3,
and L3‐L4

L4‐L5 and

L5‐S1

Specificity 0.84 0.77 0.79 0.83

Sensitivity 0.55 0.77 0.55 0.82

NPV 0.87 0.93 0.87 0.94

Precision 0.48 0.47 0.41 0.56

Accuracy 0.78 0.77 0.74 0.83

ROC‐AUC 0.78 0.84 0.76 0.91

Note: Scoring metrics for classification quality for the different anatomical

ROI with test data are reported. Bolded values highlight the best values

across the ROIs. All fitting operations were done on training data.

Abbreviations: NPV, negative predictive value; ROC‐AUC, receiver
operating characteristics area‐under‐curve; ROI, region‐of‐interest.
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(Table 4). Classification with the three uppermost vertebrae yielded a

ROC‐AUC of 0.78 (Figure 4A), and the two lowest yielded a ROC‐AUC
of 0.84 (Figure 4B). The ROC‐AUC scores for upper (Figure 4C) and

lower (Figure 4D) IVDs were 0.76 and 0.91, respectively.

In the sensitivity analysis for nonspecific LBP, in the NS1 group

(subjects with sciatica symptoms discarded) all the classification

metrics for the lowest two discs improved slightly (0.94 ROC‐AUC,
93% specificity, 95% NPV, and 63% precision) apart from sensitivity

(71%; Table 5, Figure 5B). The other ROIs exhibited similar im-

provements (Table 5, Figure 5A‐B). In the NS2 group, classification

accuracy and ROC‐AUC were slightly lower for the lowest discs and

slightly higher for the other ROIs (Table 5, Figure 5C, D).

4 | DISCUSSION

In this study, the texture of T2‐weighted MR images was analyzed

and machine learning methodology (logistic regression) was used to

classify textural features by a binarized pain variable based on a

questionnaire. A subsample of N = 518 subjects from the NFBC1966

data was used in this population‐based study. Various classification

metrics were computed along with ROC analysis to assess the quality

of the classifier.

Best classification accuracy (83%) and ROC‐AUC (0.91) in the

test set were achieved using the two lowest IVDs (Table 4, Figure 4).

The specificity score of 83% suggests that true negatives were re-

latively well‐identified. The sensitivity score of 82% in turn suggests

that also true positives were identified by the classification algo-

rithm. NPV refers to the proportion of true negatives in all negative

results, and a score of 94% means there were only a few false ne-

gatives. Out of all the classification scores, precision was the lowest

(56%), suggesting that the classification was not very robust to false

positives. False positives were likely represented because up to 87%

of asymptomatic subjects are known to display signs of IVD degen-

eration.12 However, because asymptomatic subjects account for the

majority of the population (79% in our study), classification based on

degenerative tissue changes instead of texture analysis would be

expected to result in worse precision score than what our model

F IGURE 4 (A) Receiver‐operating characteristic (ROC) curves for the three uppermost (L1, L2, and L3) vertebrae using Modic grading based
(dashed line, area under curve (AUC) =0.57) and texture analysis (TA) based (AUC=0.78) classification. (B) ROC curves for the two lowest (L4 and L5)
vertebrae using Modic grading based (dashed line, AUC=0.64) and TA based (AUC=0.84) classification. (C) ROC curves for the three uppermost
(L1‐L2, L2‐L3, and L3‐L4) intervertebral discs (IVDs) using Pfirrmann grading based (dashed line, AUC=0.60) and TA based (AUC=0.76) classification.
(D) ROC curves for the two lowest (L4‐L5 and L5‐S1) IVDs using Pfirrmann grading based (dashed line AUC=0.62) and TA‐based (AUC=0.91)
classification. The diagonal lines represent a random classifier (AUC=0.5) [Color figure can be viewed at wileyonlinelibrary.com]
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exhibited. Indeed, the comparative grading‐based classification using

only Modic and Pfirrman grades yielded inaccurate classification

(Table 4, Figure 4) when compared to TA‐based classification. Fur-

thermore, LBP is a very complex phenomenon and cannot be at-

tributed to one factor, such as imaging findings, solely.1 Pain is a

highly subjective variable and although the used classification divi-

sion had strict rules (frequency ≥ 30 days and intensity ≥6/10 in the

symptomatic group, and frequency ≤7 days and intensity ≤3/10 in

the asymptomatic group), it is possible that subjects with mild

symptoms were present in both groups, thus affecting the results

with regard to precision. Results do, however, suggest a pro-

portionally lower number of false negatives, which is desirable in

medical studies.

Rest of the ROIs exhibited similar phenomenon albeit the scores

were lower. Interestingly, the texture features of IVDs in the upper

lumbar levels could not classify as well as the texture features ob-

tained from the two lowest IVDs or the vertebral ROIs. Classification

results between the two vertebral ROIs were similar, with the lower

vertebrae showing higher scores in terms of sensitivity, NPV, and

ROC‐AUC and the upper vertebrae outperforming in terms of spe-

cificity, precision, and accuracy.

Our results suggest that texture in IVDs L4‐L5 and L5‐S1 in

T2‐weighted MRI play a role in the manifestation of LBP in the data we

used. This is also supported by a recent genetic study that showed a

strong significant genetic correlation between IVD problems and back

pain.48 Furthermore, two phenotypes of disc degeneration in the upper

and lower lumbar levels have been identified, originating from different

injuries to the annulus and endplate.49,50 While our study does not

address the origin of these phenotypes, it shows that T2‐weighted MRI

texture in the lower lumbar levels is more predictive of LBP. Texture

features contributing to classification success were more prevalent in

the lower discs, which could be indicative of such a distinction of two

different IVD phenotypes existing.

Interestingly, our results improved slightly in the NS1 group of

sensitivity analysis for nonspecific LBP. In this analysis, subjects with

sciatica symptoms were removed from the symptomatic group. The

observed improvement could be because protrusions and extrusions

are not always causing pain symptoms, and thus they exist in the

asymptomatic group as well. In the NS2 group, large Modic 1 and 2

changes were discarded as well. Compared to the original division,

this resulted in slightly worse performance for the IVDs, especially in

terms of precision, but improved the results for vertebrae. Modic

changes are closely related to vertebral signal intensity and dis-

carding the extreme cases seems to result in improvement of

texture‐based classification of the vertebrae. It should be noted that

in both of these cases the initially small group of symptomatic pa-

tients became roughly halved. Therefore, the proportion of positives

in the group is considerably smaller. However, we believe this ana-

lysis gives more insight into how the presented methodology would

work on nonspecific cases, and will certainly delve into this further in

future studies.

Principal component analysis performs a change of basis on

feature data, computing linear combinations of the original features

as new features along which the variance is maximized. As most of

the variance in the data is explained by the first principal compo-

nents, we studied the three first principal components in the dif-

ferent classification studies we performed (Table 3). Entropy

features from the gray‐scale co‐occurrence matrix and non-

uniformity features from the run‐length matrix were present in these

principal components in all studies, and information measures of

correlation were present in these principal components in all but one

study. As similar features were among the highest‐contributing fea-

tures to principal components, those features may have higher pre-

dictive power than others. A more thorough investigation comparing

classification outcomes using different feature types would be wel-

come in the future as it could reveal fundamental connections be-

tween MRI texture and symptoms.

Our study includes several limitations. We defined a binary pain

outcome and a conservative definition of asymptomatic subjects,

excluding those with mild symptoms. All subjects were of similar

age (46–48 years old) due to the nature of the study population

TABLE 5 Sensitivity analyses for nonspecific low back pain

Discarding sciatica symptoms (NS1)

Lumbar vertebrae Lumbar intervertebral discs

ROI

L1, L2,

and L3

L1, L2,

and L3

L1‐L2, L2‐L3,
and L3‐L4

L4‐L5 and

L5‐S1

Specificity 0.88 0.87 0.77 0.93

Sensitivity 0.64 0.50 0.79 0.71

NPV 0.94 0.91 0.95 0.95

Precision 0.47 0.39 0.37 0.63

Accuracy 0.84 0.81 0.77 0.90

ROC‐AUC 0.83 0.90 0.91 0.94

Additionally discarding large MC1/2 (NS2)

Lumbar vertebrae Lumbar intervertebral discs

ROI

L1, L2,

and L3 L4 and L5

L1‐L2, L2‐L3,
and L3‐L4

L4‐L5 and

L5‐S1

Specificity 0.85 0.93 0.93 0.83

Sensitivity 0.73 0.45 0.55 0.82

NPV 0.96 0.93 0.94 0.97

Precision 0.40 0.45 0.50 0.40

Accuracy 0.84 0.87 0.88 0.83

ROC‐AUC 0.88 0.85 0.80 0.90

Note: NS1 refers to the case where cases with notable protrusions/

extrusions and sciatica symptoms were discarded, and NS2 refers to the

case where additionally Modic 1/2 changes (MC1/2) exceeding 25% of

adjacent vertebrae height were discarded. Scoring metrics for

classification quality for the different anatomical regions‐of‐interest (ROI)

are reported. Bolded values highlight the best values across the ROIs.

All fitting operations were done on training data.

Abbreviations: NPV, negative predictive value; ROC‐AUC, receiver
operating characteristics area‐under‐curve.
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(birth cohort). Because of these statistical concerns, the data we

analyzed represents a subset of a population and thus should not be

considered as representative of the population at large. Our study

concerns only vertebral bodies and IVDs seen from two‐dimensional

images of the mid‐sagittal plane of imaging. In this plane, for ex-

ample, posterolateral fissures in the disc annulus or pathologies in

the facet joints cannot be seen. Including more slices, imaging planes,

or data from an isotropic three‐dimensional imaging sequence, al-

though computationally far more challenging, would allow for larger

regions and more anatomy and tissues to be analyzed. Furthermore,

we analyzed IVDs as whole, while further segmentation to the high‐
intensity nucleus pulposus and low‐intensity annulus fibrosus would

allow for comparison within the IVD.

While our results show promise in using texture analysis and

machine learning in predicting pain from T2‐weighted images, fur-

ther investigations are required. In future, we aim to apply deep

learning approaches for pain classification from MRI. Deep con-

volutional neural networks would allow for, for example,

localization of “hot‐spots” or attention maps pinpointing the regions

contributing to the classification outcome.51,52 By doing this, each

lumbar level could be analyzed without specific ROI delineation for

each tissue type, and textures within the IVD or at the vertebral

endplate could be analyzed. In addition, using more MRI contrasts,

such as T1 or short‐TI inversion recovery (fat suppression), and

incorporating 3D data containing more anatomy, is planned. Addi-

tional clinical imaging features and specific lesions (such as annulus

fissures, high‐intensity zones, and endplate defects) will be ana-

lyzed in the future as well. Furthermore, while this study suggests

that MRI can reveal quantitative image features indicative of the

presence of LBP, it does not address which biological processes are

behind the alterations to these features. This warrants further in-

vestigation in the future, at least for different phenotypes of Modic

1 changes, as it seems that size47 and location53 of Modic 1 changes

may be related to LBP. Regardless, to our best knowledge, this is

the first work applying texture analysis and machine learning in an

attempt to predict the presence of LBP from MRI.

F IGURE 5 Sensitivity analyses for nonspecific low back pain. NS1 refers to the case where cases with notable protrusions/extrusions and sciatica
symptoms were discarded, and NS2 refers to the case where additionally Modic 1/2 changes (MC1/2) exceeding 25% of adjacent vertebrae height were
discarded. (A) Receiver‐operating characteristic (ROC) curves for three uppermost (L1, L2, and L3) vertebrae (dashed line, area‐under‐curve
(AUC) = 0.83) and two lowest (L4 and L5) vertebrae (AUC=0.90) in NS1. (B) ROC curves for three uppermost (L1‐L2, L2‐L3, and L3‐L4) intervertebral
discs (IVDs) (dashed line, AUC=0.91) and two lowest (L4‐L5 and L5‐S1) IVDs (AUC=0.94) in NS1. (C) ROC curves for three uppermost vertebrae
(AUC=0.88) and two lowest vertebrae (AUC=0.85) in NS2. (D) ROC curves for three uppermost IVDs (AUC=0.80) and two lowest IVDs (AUC=0.90)
in NS2. The diagonal lines represent a random classifier (AUC=0.5) [Color figure can be viewed at wileyonlinelibrary.com]
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To conclude, texture analysis of lumbar MRI data shows promise

as a diagnostic tool in the assessment of LBP. This methodology

could be used, for example, to identify which tissues and anatomical

regions account for the presence of LBP, or to process clearly ne-

gative cases to lighten the diagnostic workflow of medical profes-

sionals in routine imaging tasks.
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